
Hybrid neural-global minimization method of logical rule
extraction

Włodzisław Duch, Rafał Adamczak, Krzysztof Gra¸bczewski and GrzegorżZal
Department of Computer Methods, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Toru´n, Poland.
E-mail: [duch,raad,kgrabcze]@phys.uni.torun.pl

May 18, 2000

Abstract

Methodology of extraction of optimal sets of logical
rules using neural networks and global minimization pro-
cedures has been developed. Initial rules are extracted
using density estimation neural networks with rectan-
gular functions or multi-layered perceptron (MLP) net-
works trained with constrained backpropagation algo-
rithm, transforming MLPs into simpler networks per-
forming logical functions. A constructive algorithm
called C-MLP2LN is proposed, in which rules of
increasing specificity are generated consecutively by
adding more nodes to the network. Neural rule extrac-
tion is followed by optimization of rules using global
minimization techniques. Estimation of confidence of
various sets of rules is discussed. The hybrid approach
to rule extraction has been applied to a number of bench-
mark and real life problems with very good results.

Keywords: computational intelligence, neural net-
works, extraction of logical rules, data mining

1 Logical rules - introduction.

Why should one use logical rules if other methods of
classification – machine learning, pattern recognition or
neural networks – may be easier to use and give better
results? Adaptive systemsMW , including the most pop-
ular neural network models, are useful classifiers that
adjust internal parametersW performing vector map-
pings from the input to the output space. Although they
may achieve high accuracy of classification the knowl-
edge acquired by such systems is represented in a set of
numerical parameters and architectures of networks in
an incomprehensible way. Logical rules should be pre-
ferred over other methods of classification provided that
the set of rules is not too complex and classification ac-
curacy is sufficiently high. Surprisingly, in many appli-
cations simple rules proved to be more accurate and were

able to generalize better than various machine and neural
learning algorithms. Many statistical, pattern recogni-
tion and machine learning [1] methods of finding logical
rules have been designed in the past. Neural networks
are also used to extract logical rules and select classi-
fication features. Unfortunately systematic comparison
of neural and machine learning methods is still missing.
Many neural rule extraction methods have recently been
reviewed and compared experimentally [2], therefore we
will not discuss them here. Neural methods focus on
analysis of parameters (weights and biases) of trained
networks, trying to achieve high fidelity of performance,
i.e. similar results of classification by extracted logical
rules and by the original networks. Non-standard form
of rules, such asM -of-N rules (M out ofN antecedents
should be true), fuzzy rules, or decision trees [1] are
sometimes useful but in this paper we will consider only
standard IF ... THEN propositional rules.

In classification problems propositional rules may take
several forms. Very general form of such rule is: IF
X ∈ K(i) THEN Class(X) = Ci, i.e. if X belongs
to the clusterK (i) then its class isCi =Class(K(i)), the
same as for all vectors in this cluster. If clusters over-
lap non-zero probability of classificationp(C i|X ;M)
for several classes is obtained. This approach does not
restrict the shapes of clusters used in logical rules, but
unless the clusters are visualized in some way (a diffi-
cult task in highly dimensional feature spaces) it does not
give more understanding of the data than any black box
classifier. A popular simplification of the most general
form of logical rules is to describe clusters using separa-
ble “membership” functions. This leads to fuzzy rules,
for example in the form:

p(Ck|X ;M) =
µ(k)(X)∑
i µ

(i)(X)
(1)

where

µ(k)(X) =
∏

i

µ
(k)
i (Xi) (2)



Journal of Advanced Computational Intelligence Vol. 3, 1999 2

andµ(k)(X) is the value of the membership function
defined for clusterk. Such context-dependent or cluster-
dependent membership functions are used in the Feature
Space Mapping (FSM) neurofuzzy system [3]. The flex-
ibility of this approach depends on the choice of mem-
bership functions. Fuzzy logic classifiers use most fre-
quently a few triangular membership functions per one
input feature [4]. These functions do not depend on the
region of the input space, providing oval decision bor-
ders, similar to Gaussian functions (cf. Fig.1). Thus
fuzzy rules give decision borders that are not much more
flexible than those of crisp rules. More important than
softer decision borders is the ability to deal with oblique
distribution of data by rotating some decision borders.
This requires new linguistic variables formed by taking
linear combination or making non-linear transformations
of input features, but the meaning of such rules is some-
times difficult to comprehend (cf. proverbial “mixing ap-
ples with oranges”). Logical rules require symbolic in-
puts (linguistic variables), therefore the input data has to
be quantized first, i.e. the features defining the problem
should be identified and their values (sets of symbolic
or integer values, or continuous intervals) labeled. For
example a variable “size” will have the value “small” if
the continuous variablexk measuring size falls in some
specified range,xk ∈ [a, b]. Using one input variable
several binary (logical) variables may be created, for ex-
amples1 = δ(size, small) equal to 1 (true) only if vari-
able “size” has the value “small”.

The rough set theory [5] is used to derive crisp logic
propositional rules. In this theory for two-class problems
the lower approximation of the data is defined as a set of
vectors or a region of the feature space containing in-
put vectors that belong to a single class with probability
= 1, while the upper approximation covers all instances
which have a chance to belong to this class (i.e. probabil-
ity is> 0). In practice the shape of the boundary between
the upper and the lower approximations depends on the
indiscernibility (or similarity) relation used. Linear ap-
proximation to the boundary region leads to trapezoidal
membership functions. The simplest crisp form of logi-
cal rules is obtained if trapezoidal membership functions
are changed into rectangular functions. Rectangles allow
to define logical linguistic variables for each feature by
intervals or sets of nominal values.

A fruitful way of looking at logical rules is to treat
them as an approximation to the posterior probability of
classificationp(Ci|X ;M), where the modelM is com-
posed of the set of rules. Crisp, fuzzy and rough set de-
cision borders are a special case of the FSM neurofuzzy
approach [3] based on separable functions used to esti-
mate the classification probability. Although the deci-
sion borders of crisp logical rule classification are much
simpler than those achievable by neural networks, results

0 0.5 1 1.5 2

0

0.5

1

1.5

2

0 0.5 1 1.5 2

0

0.5

1

1.5

2

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Figure 1: Shapes of decision borders for general clus-
ters, fuzzy rules (using product of membership func-
tion), rough rules (trapezoidal approximation) and log-
ical rules.

are sometimes significantly better. Three possible expla-
nations of this empirical observation are: 1) the inability
of soft sigmoidal functions to represent sharp, rectangu-
lar edges that may be necessary to separate two classes,
2) the problem of finding globally optimal solution of the
non-linear optimization problem for neural classifiers –
since we use a global optimization method to improve
our rules there is a chance of finding a better solution
than gradient-based neural classifiers are able to find; 3)
the problem of finding an optimal balance between the
flexibility of adaptive models and the danger of overfit-
ting the data. Although Bayesian regularization [6] may
help in case of some neural and statistical classification
models, logical rules give much better control over the
complexity of the data representation and elimination of
outliers.

We are sure that in all cases, independently of the final
classifier used, it is advantageous to extract crisp logi-
cal rules. First, in our tests logical rules proved to be
highly accurate; second, they are easily understandable
by experts in a given domain; third, they may expose
problems with the data itself. This became evident in the
case of the “Hepar dataset”, collected by dr. H. Wasyluk
and co-workers from the Postgraduate Medical Center in
Warsaw. The data contained 570 cases described by 119
values of medical tests and other features and were col-
lected over a period of more than 5 years. These cases
were divided into 16 classes, corresponding to different
types of liver disease (final diagnosis was confirmed by
analysis of liver samples under microscope, a procedure
that we try to avoid by providing reliable diagnosis sys-
tem). We have extracted crisp logical rules from this
dataset using our C-MLP2LN approach described below,
and found that 6 very simple rules gave 98.5% accuracy.



Journal of Advanced Computational Intelligence Vol. 3, 1999 3

Unfortunately these rules also revealed that the missing
attributes in the data were replaced by the averages for
a given class, for example, cirrhosis was fully charac-
terized by the rule “feature5=4.39”. Although one may
report very good results using crossvalidation tests using
this data, such data is of course useless since the averages
for a given class are known only after the diagnosis.

In this paper a new methodology for logical rule ex-
traction is presented, based on constructive MLPs for
initial feature selection and rule extraction, and followed
by rule optimization using global minimization methods.
This approach is presented in detail in the next section
and illustrative applications to a few benchmark prob-
lems are given in the third section. The fourth section
contains applications to a real life medical data. The pa-
per is finished with a short discussion.

2 The hybrid rule extraction
methodology

Selection of initial linguistic variables (symbolic inputs)
is the first step of the rule extraction process. Linguis-
tic variables are optimized together with rules in an it-
erative process: neural networks with linguistic inputs
are constructed, analysed, logical rules are extracted, in-
tervals defining linguistic variables are optimized using
rules, and the whole process repeated until convergence
is achieved (usually two or three steps are sufficient, de-
pending on the initial choice).

Linguistic (logical) input variables sk, for integer or
symbolic variablesxi, taking values from a finite set of
elementsXi = {X(j)

i }, are defined as true ifxi belongs
to a specific subsetXik ⊆ Xi. DefiningX as a subset
of integers such linguistic variables as “prime-number”
or “odd-number” may be defined. For continuous input
featuresxi linguistic variablesk is obtained by specify-
ing an open or closed intervalxi ∈ [Xk, X

′
k] or some

other predicatePk(xi). Each continuous input feature
xi is thus replaced by two or more linguistic values for
which predicatesPk are true or false. For neural net-
works a convenient representation of these linguistic val-
ues is obtained using vectors of predicates, for exam-
ple Vs1 = (+1,−1,−1...) for linguistic variables1 or
Vs2 = (−1,+1,−1...) for s2 etc.

Initial values of the intervals for continuous linguis-
tic variables may be determined by the analysis of his-
tograms, dendrograms, decision trees or clusterization
methods. Neural-based methods are also suitable to se-
lect relevant features and provide initial intervals defin-
ing linguistic variables. FSM, our density estimation
neurofuzzy network, is initialized using simple cluster-
ization methods [7], for example dendrogram analysis of
the input data vectors (for very large datasets rounding

of continuous values to lower precision is applied first,
and then duplicate data vectors are sorted out to reduce
the number of input vectors). Rectangular functions may
be used in FSM for a direct extraction of logical rules.

MLP (multilayered perceptron) neural models may
find linguistic variables by training a special neural layer
[8] of L-units (linguistic units). Each L-unit is a combi-
nation of two sigmoidal functions realizing the function
L(xi; bi, b′i, β) = σ(β(xi − bi)) − σ(β(xi − b′i)), pa-
rameterized by two biasesb, b′ determining the interval
in which this function has non-zero value. The slopeβ
of sigmoidal functionsσ(βx) is slowly increased dur-
ing the learning process, transforming the fuzzy mem-
bership function (“soft trapezoid”) into a window-type
rectangular function [3, 8] (for simplicity of notation the
dependence of L-functions on the slope is not shown
below). Similar smooth transformation is used in the
FSM network using biradial transfer functions, which
are combinations of products ofL(xi; bi, b′i) functions
[9] with some additional parameters. Outputs of L-units
L(xi; bi, b′i) are usually combined and filtered through
another sigmoidσ(

∑
ij L(xi; bij , b′ij)) or the product∏

ij L(xi; bij , b′ij)) of these functions is used.

x

+1

+1

2

b'

b

b b' b b'1
W

W

σ(W x+b)
1

σ(W x+b')
2

+1

-1

Figure 2: L-units, or pairs of neurons with constrained
weights, used for determination of linguistic variables.

After initial definition of linguistic variablesneural
network is constructed and trained. To facilitate
extraction of logical rules from an MLP network one
should transform it smoothly into something resembling
a network performing logical operations (Logical Net-
work, LN). This transformation, called MLP2LN [10],
may be realized in several ways. Skeletonization of a
large MLP network is the method of choice if our goal
is to find logical rules for an already trained network.
Otherwise it is simpler to start from a single neuron
and construct the logical network using the training data.
Since interpretation of the activation of the MLP network
nodes is not easy [11] a smooth transition from MLP to
a logical-type of network performing similar functions is
advocated. This is achieved by: a) gradually increasing
the slopeβ of sigmoidal functions to obtain crisp de-
cision regions; b) simplifying the network structure by
inducing the weight decay through a penalty term; c) en-
forcing the integer weight values 0 and±1, interpreted



Journal of Advanced Computational Intelligence Vol. 3, 1999 4

as 0 = irrelevant input,+1 = positive and−1 = nega-
tive evidence. These objectives are achieved by adding
two additional terms to the standard mean square error
functionE0(W ):

E(W ) = E0(W ) + (3)
λ1

2

∑
i,j

W 2
ij +

λ2

2

∑
i,j

W 2
ij(Wij − 1)2(Wij + 1)2

The first term, scaled by theλ1 hyperparameter, en-
courages weight decay, leading to skeletonization of the
network and elimination of irrelevant features. The sec-
ond term, scaled byλ2, forces the remaining weights to
approach±1, facilitating easy logical interpretation of
the network function. In the backpropagation training
algorithm these new terms lead to the additional change
of weights:λ1Wij + λ2Wij(W 2

ij − 1)(3W 2
ij − 1). The

last, 6-th order regularization term in the cost function,
may be replaced by one of the lower order terms:

|Wij ||W 2
ij − 1| cubic (4)

|Wij | + |W 2
ij − 1| quadratic

+1∑
k=−1

|Wij + k| − |Wij −
1
2
| − |Wij +

1
2
| − 1

Introduction of integer weights may also be justified
from the Bayesian perspective [6]. The cost function
specifies our prior knowledge about the probability dis-
tributionP (W |M) of the weights in our modelM . For
classification task when crisp logical decisions are re-
quired the prior probability of the weight values should
include not only small weights but also large positive and
negative weights distributed around±1, for example:

P (W |M) = Z(α)−1e−αE(W |M) ∝ (5)∏
ij

e−α1W 2
ij

∏
ij

e−α2|W 2
ij−1|

where the parametersαi play similar role for proba-
bilities as the parametersλi for the cost function. Using
alternative cost functions amounts to different priors for
regularization, for example Laplace instead of Gaussian
prior. Initial knowledge about the problem may also be
inserted directly into the network structure, defining ini-
tial conditions modified further in view of the incoming
data. Since the final network structure becomes quite
simple insertion of partially correct rules to be refined by
the learning process is quite straightforward.

Although constraints Eq. (3) do not change the MLP
exactly into a logical network they are sufficient to fa-
cilitate logical interpretation of the final network func-
tion. MLPs are trained using relatively largeλ1 value
at the beginning, followed by a largeλ2 value near the
end of the training process. These parameters determine

the simplicity/accuracy tradeoff of the generated network
and extracted rules. If a very simple network (and later
logical rules) is desired, giving only rough description of
the data,λ1 should be as large as possible: although one
may estimate the relative size of the regularization term
versus the mean square error (MSE) a few experiments
are sufficient to find the largest value for which the MSE
is still acceptable and does not decrease quickly when
λ1 is decreased. Smaller values ofλ1 should be used to
obtain more accurate networks (rules). The value ofλ 2

should reach the value ofλ1 near the end of the training.

Logical rule extraction: the slopes of sigmoidal
functions are gradually increased to obtain sharp deci-
sion boundaries and the complex decision regions are
transformed into simpler, hypercuboidal decision re-
gions. RulesRk implemented by trained networks are
obtained in the form of logical conditions by consider-
ing contributions of inputs for each linguistic variables,
represented by a vectorVs. Contribution of variables to
the activation is equal to the dot productVs ·Ws of the
subsetWs of the weight vector corresponding to theVs

inputs. A combination of linguistic variables activating
the hidden neuron above the threshold is a logical rule of
the form:R= (s1 ∧ ¬s2 ∧ ... ∧ sk).

In theconstructive version of the MLP2LN approach
(called C-MLP2LN) usually one hidden neuron per out-
put class is created at a time and the training proceeds
until the modified cost function reaches minimum. The
weights and the threshold obtained are then analyzed
and the first group of logical rules is found, covering
the most common input-output relations. The input data
that are correctly handled by the first group of neurons
will not contribute to the error function, therefore the
weights of these neurons are kept frozen during further
training. This is equivalent to training one neuron (per
class) at a time on the remaining data, although some-
times training two or more neurons may lead to faster
convergence. This procedure is repeated until all the
data are correctly classified, weights analyzed and a set
of rulesR1∨ R2...∨ Rn is found for each output class
or until the number of rules starts to grow rapidly. The
output neuron for a given class is connected to the hidden
neurons created for that class – in simple cases only one
neuron may be sufficient to learn all instances, becoming
an output neuron rather than a hidden neuron. Output
neurons perform simple summation of the hidden nodes
signals. Since each time only one neuron per class is
trained the C-MLP2LN training is fast. The network re-
peatedly grows when new neurons are added, and then
shrinks when connections are deleted. Since the first
neuron for a given class is trained on all data for that
class the rules it learns are most general, covering largest
number of instances. Therefore rules obtained by this al-
gorithm are ordered, starting with rules that cover many



Journal of Advanced Computational Intelligence Vol. 3, 1999 5

cases and ending with rules that cover only a few cases.
Simplification of rules: the final solution may be pre-

sented as a set of logical rules or as a network of nodes
performing logical functions. However, some rules ob-
tained from analysis of the network may involve spuri-
ous conditions, more specific rules may be contained in
general rules or logical expressions may be simplified if
written in another form. Therefore after extraction rules
are carefully analyzed and whenever possible simplified
(we use a Prolog program for this step).

Optimization of rules: optimal intervals and other
adaptive parameters may be found by maximization of
a predictive power of a classifier. LetP(Ci, Cj |M)
be the confusion matrix, i.e. the number of instances
in which classCj is predicted when the true class was
Ci, given some parametersM . Then for n samples
p(Ci, Cj |M) = P(Ci, Cj |M)/n is the probability of
(mis)classification. The best parametersM are selected
by maximizing the number (or probability) of correct
predictions (called also the “predictive power” of rules):

max
M

[Tr P(Ci, Cj |M)] (6)

over all parametersM , or minimizing the number
of wrong predictions (possibly with some risk matrix
R(Ci, Cj)):

min
M


∑

i�=j

R(Ci, Cj)P(Ci, Cj |M)


 (7)

Weighted combination of these two terms:

E(M) = λ
∑
i�=j

P(Ci, Cj |M) − Tr P(Ci, Cj |M) (8)

is bounded by−n and should be minimized over pa-
rametersM without constraints. For this minimiza-
tion we have used simulated annealing or multisimplex
global minimization methods. Ifλ is large the number
of errors after minimization may become zero but some
instances may be rejected (i.e. rules will not cover the
whole input space). Since rules discriminate between in-
stances of one class and all other classes one can define
a cost function for each rule separately:

ER(M) = λ(P+− + P−+) − (P++ + P−−) (9)

and minimize it over parametersM used in the ruleR
only (+ means here one of the classes, and− means all
other classes). The combinationP++/(P++ +P+−) ∈
(0, 1] is sometimes called the sensitivity of a rule [12],
while P−−/(P−− + P−+) is called the specificity of a
rule. Some rule induction methods optimize such com-
binations ofPx,y values.

Estimation of the accuracy of rules is very impor-
tant, especially in medicine. Tests of classification accu-
racy should be performed using stratified 10-fold cross-
validation, each time including rule optimization on the

training set. Changing the value ofλ1 will produce a
series of models with higher and higher confidence of
correct classification at the expense of growing rejection
rate. A set of rules may classify some cases at the 100%
confidence level; if some instances are not covered by
this set of rules another set of (usually simpler) rules at
a lower confidence level is used (confidence level is es-
timated as the accuracy of rules achieved on the training
set). In this way a reliable estimation of confidence is
possible. The usual procedure is to give only one set of
rules, assigning to each rule a confidence factor, for ex-
ampleci = P (Ci, Ci|M)/

∑
j P (Ci, Cj |M). This is

rather misleading. A ruleR(1) that does not make any
errors covers typical instances and its reliability is close
to 100%. If a less accurate ruleR(2) is given, for ex-
ample classifying correctly 90% of instances, the relia-
bility of classification for instances covered by the first
rule is still close to 100% and the reliability of classifi-
cation in the border region (R(2)\R(1), or cases covered
byR(2) but not byR(1)) is much less than 90%. Includ-
ing just these border cases gives much lower confidence
factors and since the number of such cases is relatively
small the estimate itself has low reliability. A possibility
sometimes worth considering is to use a similarity-based
classifier (such as the k-NN method or RBF network) to
improve accuracy in the border region.

Logical rules, similarly as any other classification sys-
tems, may become brittle if the decision borders are
placed too close to the data vectors instead of being
placed between the clusters.The brittleness problem
is solved either at the optimization stage by selecting
the middle values of the intervals for which best perfor-
mance is obtained or, in a more general way, by adding
noise to the data [13]. So far we have used the first
method: starting from the values of the optimized param-
eters the largest cuboid in the parameter space in which
the number of errors is constant is determined. The cen-
ter of this cuboid is taken as the final estimation of the
adaptive parameters.

3 Illustrative benchmark applica-
tions.

Datasets for benchmark applications were taken from the
UCI machine learning repository [14]. Application of
the constructive C-MLP2LN approach to the classical
Iris dataset was already presented in detail [15], there-
fore only new aspects related to the hybrid method are
discussed here. The Iris data has 150 vectors evenly dis-
tributed in three classes: iris-setosa, iris-versicolor and
iris-virginica. Each vector has 4 features: sepal length
x1 and widthx2, and petal lengthx3 and widthx4 (all in
cm). Analysis of smoothed histograms (assuming Gaus-



Journal of Advanced Computational Intelligence Vol. 3, 1999 6

sian width for each value) of the individual features for
each class provides initial linguistic variables. Assuming
at most 3 linguistic variables per input feature a network
with 12 binary inputs equal to±1 (features present or ab-
sent) is constructed. For example, the medium value of a
single feature is coded by(−1,+1,−1) vector. For the
Iris dataset a single neuron per one class was sufficient
to train the network, therefore the final network structure
(Fig. 3) has 12 input nodes and 3 output nodes (hidden
nodes are only needed when more than one neuron is
necessary to cover all the rules for a given class).

The constraint hyperparameters were increased from
λ1 = 0.001 at the beginning of the training to about
λ1 = 0.1 near the end, withλ2 increasing from 0 to
0.1 to enforce integer weights near the end of the train-
ing. On average the network needed about 1000 epochs
for convergence. The final weights are taken to be ex-
actly ±1 or 0 while the final value of the slopes of sig-
moids reaches 300. Using L-units with initial linguis-
tic variables provided by the histograms very simple net-
works were created, with non-zero weights for only one
attribute, petal lengthx3. Two rules and else condition,
giving overall 95.3% accuracy (7 errors) are obtained:
R(1)

1 : iris-setosa ifx3 < 2.5 (100%),

R(1)
2 : iris-virginica if x3 > 4.8 (92%),

R(1)
3 : else iris-versicolor (94%)
The first rule is accurate in 100% of cases since the se-

tosa class is easily separated from the two other classes.
Lowering the final hyperparameters leads to the follow-
ing weights and thresholds (only the signs of the weights
are written):

Setosa (0,0,0 0,0,0 +,0,0 +,0,0) θ = 1
Versicolor (0,0,0 0,0,0 0,+,- 0,+,-) θ = 3
Virginica (0,0,0 0,0,0 -,-,+ -,-,+) θ = 2

Interpretation of these weights and the resulting net-
work function (Fig. 3) is quite simple. Only two fea-
tures,x3 andx4, are relevant and a single rule per class
is found:

setosa if(x3 < 2.9 ∨ x4 < 0.9) (100%)
versicolor if(x3 ∈ [2.9, 4.95]∧x4 ∈ [0.9, 1.65]) (100%)
virginica if (x3 > 4.95) ∨ (x4 > 1.65) (94%)

ThisR(2) level set of rules allows for correct classifi-
cation of 147 vectors, achieving overall 98.0% accuracy.
However, the first two rules have 100% reliability while
all errors are due to the third rule, covering 53 cases.
Decreasing constraint hyperparameters further allows to
replace one of these rules by four rules, with a total of
three attributes and 11 antecedents, necessary to classify
correctly a single additional vector, a clear indication that
overfitting occurs.

The third set of rulesR(3) has been found after opti-
mization with increasingλ (Eq. 8), reliable in 100% but

m
s

l

m
s

l

m
s

l

m
s

l

X

X

X

X

1

2

3

4

l1

l2

l3

input
linguistic
variables

hidden
layer output

Setosa
50 cases,
all correct

Versicolor,
47 cases,
all correct

Virginica
53 cases
3 wrong

Figure 3: Final structure of the network for the Iris prob-
lem.

rejecting 11 vectors, 8 virginica and 3 versicolor:

setosa if (x3 < 2.9) (100%)
versicolor if (x3 ∈ [2.9, 4.9] ∧ x4 < 1.7) (100%)
virginica if (x3 ≥ 5.3 ∨ x4 ≥ 1.9) (100%)

The reliability of classification for the 11 vectors in the
border region (R(2)\ R(3)) is rather low: withp = 8/11
they should be assigned to the virginica class and with
p = 3/11 to the versicolor class. It is possible to generate
more specific rules, including more features, just for the
border region, or to use in this region similarity-based
classification system, such as k-NN, but for this small
dataset we do not expect any real improvement since the
true probability distributions of leave’s sizes for the two
classes of iris flowers clearly overlap.

In the mushroom problem [2, 14] the database con-
sists of8124 vectors, each with 22 discrete attributes
with up to 10 different values. 51.8% of the cases rep-
resent edible, and the rest non-edible (mostly poisonous)
mushrooms. A single neuron is capable of learning all
the training samples (the problem is linearly separable),
but the resulting network has many nonzero weights and
is difficult to analyze from the logical point of view. Us-
ing the C-MLP2LN algorithm with the cost function Eq.
(3) the following disjunctive rules for poisonous mush-
rooms have been discovered:

R1) odor=¬(almond∨anise∨none)
R2) spore-print-color=green
R3) odor=none∧stalk-surface-below-ring=scaly∧

(stalk-color-above-ring=¬brown)
R4) habitat=leaves∧cap-color=white

RuleR1 misses 120 poisonous cases (98.52% accu-
racy), adding ruleR2 leaves 48 errors (99.41% accu-
racy), adding third rule leaves only 8 errors (99.90% ac-
curacy), and all rulesR1to R4 classify all poisonous
cases correctly. The first two rules are realized by one
neuron. For large value of the weight-decay parameter



Journal of Advanced Computational Intelligence Vol. 3, 1999 7

only one rule with odor attribute is obtained, while for
smaller hyperparameter values a second attribute (spore-
print-color) is left. Adding a second neuron and training
it on the remaining cases generates two additional rules,
R3 handling 40 cases andR4 handling only 8 cases. We
have also derived the same rules using only 10% of all
data for training. This is the simplest systematic logi-
cal description of the mushroom dataset that we know
of (some of these rules have probably been also found
by the RULEX and TREX algorithms [2]) and therefore
should be used as a benchmark for other rule extraction
methods.

We have also solved the three monk problems [16].
For the Monk 1 problem a total of 4 rules and one excep-
tion classifying the data without any errors was created
(exceptions are additional rules handling patterns that are
not recognized properly by the rules). In the Monk 2
problem perfect classification with16 rules and8 ex-
ceptions extracted from the resulting network has been
achieved. The number of atomic formulae which com-
pose them is132. In the Monk 3 problem, although the
training data for this problem is corrupted by 5% noise it
is still possible to obtain 100% accuracy [2]. The whole
logical system for this case contains33 atomic formulae.

4 Applications to real-world medi-
cal data

To facilitate comparison with results obtained by sev-
eral classification methods we have selected three well-
known medical datasets obtained from the UCI reposi-
tory [14].

4.1 Wisconsin breast cancer data.

The Wisconsin cancer dataset [17] contains 699 in-
stances, with 458 benign (65.5%) and 241 (34.5%) ma-
lignant cases. Each instance is described by the case
number, 9 attributes with integer value in the range 1-
10 (for example, featuref2 is “clump thickness” andf8

is “bland chromatin”) and a binary class label. For 16
instances one attribute is missing. This data has been
analyzed in a number of papers (Table 1).

The simplest rules obtained from optimization in-
cludes only two rules for malignant class:

f2 ≥ 7 ∨ f7 ≥ 6 (95.6%)

These rules cover 215 malignant cases and 10 benign
cases, achieving overall accuracy (including ELSE con-
dition) of 94.9%. Without optimization 5 disjunctive
rules were initially obtained from the C-MLP2LN pro-
cedure for malignant cases, with benign cases covered
by the ELSE condition:

R1: f2 < 6 ∧ f4 < 4 ∧ f7 < 2 ∧ f8 < 5 (100)%
R2: f2 < 6 ∧ f5 < 4 ∧ f7 < 2 ∧ f8 < 5 (100)%
R3: f2 < 6 ∧ f4 < 4 ∧ f5 < 4 ∧ f7 < 2 (100)%
R4: f2 ∈ [6, 8] ∧ f4 < 4 ∧ f5 < 4 ∧ f7 < 2 ∧ f8 < 5

(100)%
R5: f2 < 6 ∧ f4 < 4 ∧ f5 < 4 ∧ f7 ∈ [2, 7] ∧ f8 < 5

(92.3)%

The first 4 rules achieve 100% accuracy (i.e. they
cover cases of malignant class only), the last rule covers
only 39 cases, 36 malignant and 3 benign. The confusion

matrix is: P =
(

238 3
25 433

)
, i.e. there are 3 benign

cases wrongly classified as malignant and 25 malignant
cases wrongly classified as benign, giving overall accu-
racy of 96%. Optimization of this set of rules gives:

R1: f2 < 6 ∧ f4 < 3 ∧ f8 < 8 (99.8)%
R2: f2 < 9 ∧ f5 < 4 ∧ f7 < 2 ∧ f8 < 5 (100)%
R3: f2 < 10 ∧ f4 < 4 ∧ f5 < 4 ∧ f7 < 3 (100)%
R4: f2 < 7 ∧ f4 < 9 ∧ f5 < 3 ∧ f7 ∈ [4, 9] ∧ f8 < 4

(100)%
R5: f2 ∈ [3, 4] ∧ f4 < 9 ∧ f5 < 10 ∧ f7 < 6 ∧ f8 < 8

(99.8)%

These rules classify only 1 benign vector as malignant
(R1 andR5, the same vector), and the ELSE condition
for the benign class makes 6 errors, giving 99.00% over-
all accuracy of this set of rules. Minimizing Eq. (8) we
have also obtained 7 rules (3 for malignant and 4 for be-
nign class) working with 100% reliability but rejecting
79 cases (11.3%). In all cases featuresf3 andf6 (both
related to the cell size) were not important andf2 with
f7 were the most important. Incidentally, the Ljubliana
cancer data [14] gives about 77% accuracy in crossvali-
dation tests using just a single logical rule.

Method Accuracy %

IncNet [18] 97.1
LVQ 96.6
MLP+backprop 96.7
CART (decision tree) 94.2
LFC, ASI, ASR decision trees 94.4-95.6
Fisher LDA 96.8
Linear Discriminant Analysis 96.0
Quadratic Discriminant Analysis 34.5
3-NN, Manhattan (our results) 97.0±0.12
Naive Bayes 96.4
Bayes (pairwise dependent) 96.6
FSM (our results) 96.5

Table 1: Results from the 10-fold crossvalidation for the
Wisconsin breast cancer dataset, data from [19] or our
own calculations, except IncNet.



Journal of Advanced Computational Intelligence Vol. 3, 1999 8

4.2 The Cleveland heart disease data.

The Cleveland heart disease dataset [14] (collected at
V.A. Medical Center, Long Beach and Cleveland Clinic
Foundation by R. Detrano) contains 303 instances, with
164 healthy (54.1%) instances, the rest are heart disease
instances of various severity. While the database has 76
raw attributes, only 13 of them are actually used in ma-
chine learning tests, including 6 continuous features and
4 nominal values. There are many missing values of the
attributes. Results obtained with various methods for this
data set are collected in Table 2.

After some simplifications the derived rules obtained
by the C-MLP2LN approach are:

R1: (thal=0∨ thal=1)∧ ca=0.0 (88.5%)
R2: (thal=0∨ ca=0.0)∧ cp�= 2 (85.2%)

These rules give 85.5% correct answers on the whole
set and compare favorable with the accuracy of other
classifiers (Table 2).

Method Accuracy %

LVQ 82.9
MLP+backprop 81.3
CART (decision tree) 80.8
LFC, ASI, ASR decision trees 74.4-78.4
Fisher LDA 84.2
Linear Discriminant Analysis 84.5
Quadratic Discriminant Analysis 75.4
k-NN 81.5
Naive Bayes 83.4
Bayes (pairwise dependent) 83.1
FSM - Feature Space Mapping 84.0

Table 2: Results from the 10-fold crossvalidation for the
Cleveland heart disease dataset.

4.3 The hypothyroid data.

This is a somewhat larger dataset [14], with 3772 cases
for training, 3428 cases for testing, 22 attributes (15 bi-
nary, 6 continuous), and 3 classes: primary hypothyroid,
compensated hypothyroid and normal (no hypothyroid).
the class distribution in the training set is 93, 191, 3488
vectors and in the test set 73, 177, 3178. For the first
class two rules are sufficient (all values of continuous
features are multiplied here by 1000):

R1: FTI < 63∧ TSH≥ 29
R2: FTI < 63∧ TSH∈ [6.1, 29)∧ T3< 20

For the second class one rule is created:

R3: FTI ∈ [63, 180]∧ TSH ≥ 6.1∧on thyroxine=no∧
surgery=no

and the third class is covered by ELSE. With these
rules we get 99.68% accuracy on the training set and

99.07% error on the test set. Optimization of the rules
leads to slightly more accurate rules:
R1: TSH≥ 30.48∧ FTI < 64.27 (97.06%)
R2: TSH ∈ [6.02, 29.53]∧ FTI < 64.27∧ T3< 23.22
(100%)
R3: TSH ≥ 6.02∧ FTI ∈ [64.27, 186.71]∧ TT4<
150.5∧ on thyroxine=no∧ surgery=no (98.96%)

The ELSE condition has 100% reliability (on the train-
ing set). These rules make only 4 errors on the training
set (99.89%) and 22 errors on the test set (99.36%). They
are similar to those found using heuristic version of PVM
method by Weiss and Kapouleas [20]. The differences
among PVM, CART and C-MLP2LN are for this dataset
rather small (Table 3), but other methods, such as well-
optimized MLP (including genetic optimization of net-
work architecture) or cascade correlation classifiers, give
results that are significantly worse. Poor results of k-NN
are especially worth noting, showing that in this case, de-
spite large amount of reference vectors, similarity-based
methods are not competitive.

Method % train % test

k-NN [20] – 95.3
Bayes [20] 97.0 96.1
3-NN, 3 features used 98.7 97.9
MLP+backprop [21] 99.60 98.45
Cascade correl. [21] 100.00 98.48
PVM [20] 99.79 99.33
CART [20] 99.79 99.36
C-MLP2LN 99.89 99.36

Table 3: Results for the hypothyroid dataset.

4.4 Psychometric data

The rule extraction and optimization approach described
in this paper is used by us in several real-life projects.
One of these projects concerns the psychometric data
collected in the Academic Psychological Clinic of our
University. A computerized version of the Minnesota
Multiphasic Personality Inventory (MMPI) test was
used, consisting of 550 questions with 3 possible an-
swers each. MMPI evaluates psychological characteris-
tics reflecting social and personal maladjustment, includ-
ing psychological dysfunction. Hundreds of books and
papers were written on the interpretation of this test (cf.
review [22]). Many computerized versions of the MMPI
test exist to assist in information acquisition, but evalu-
ation of results is still done by an experienced clinical
psychologist. Our goal is to provide automatic psycho-
logical diagnosis.

The raw MMPI data is used to compute 14 coefficients
forming a psychogram. First four coefficients are just the



Journal of Advanced Computational Intelligence Vol. 3, 1999 9

control scales (measuring consistency of answers, allow-
ing to find malingerers), with the rest forming clinical
scales. They were developed to measure tendencies to-
wards hypochondria, depression, hysteria, psychopathy,
paranoia, schizophrenia etc. A large number of simplifi-
cation schemes has been developed to make the interpre-
tation of psychograms easier. They may range from rule-
based systems derived from observations of characteris-
tic shapes of psychograms, Fisher discrimination func-
tions, or systems using a small number of coefficients,
such as the 3 Goldberg coefficients. Unfortunately there
is no comparison of these different schemes and their rel-
ative merits have not been tested statistically.

At present we have 1465 psychograms, each classi-
fied into one of 34 types (normal, neurotic, alcoholics,
schizophrenic, psychopaths, organic problems, malin-
gerers etc.) by an expert psychologist. This classifica-
tion is rather difficult and may contain errors. Our initial
logical rules achieve about 93% accuracy on the whole
set. For most classes there are only a few errors and it is
quite probable that they are due to the errors of the psy-
chologists interpreting the psychogram data. The only
exception is the class of organic problems, which leads
to answers that are frequently confused with symptoms
belonging to other classes. On average 2.5 logical rules
per class were derived, involving between 3 and 7 fea-
tures. A typical rule has the form:

If f7 ∈ [55, 68] ∧ f12 ∈ [81, 93] ∧ f14 ∈ [49, 56] Then
Paranoia

After optimization these rules will be used in an expert
system and evaluated by clinical psychologist in the near
future.

5 Summary

A new methodology for extraction of logical rules from
data has been presented. Neural networks - either den-
sity estimation (FSM) or constrained multilayered per-
ceptrons (MLPs) - are used to obtain initial sets of rules.
FSM is trained either directly with the rectangular func-
tions or making a smooth transition from biradial func-
tions [9] or trapezoidal functions to rectangular func-
tions. MLPs are trained with constraints that change
them into networks processing logical functions, either
by simplification of typical MLPs or by incremental con-
struction of networks performing logical functions. In
this paper we have used mostly the C-MLP2LN con-
structive method since it requires less experimentation
with various network structures.

The method of successive regularizations introduced
by Ishikawa [23] has several features in common with
our MLP2LN approach and is capable (although in our
opinion it requires more effort to select the initial net-

work architecture) of producing similar results [24].
Specific form of the cost function as well as the C-
MLP2LN constructive algorithm in which neurons are
added and then connections are deleted, seems to be
rather different from other algorithms used for logical
rule extraction so far [2]. Neural and machine learning
methods should serve only for feature selection and ini-
tialization of sets of rules, with final optimization done
using global minimization (or search) procedures. Opti-
mization leads to rules that are more accurate and sim-
pler, providing in addition sets of rules with different re-
liability.

Using C-MLP2LN hybrid methodology simplest log-
ical description for several benchmark problems (Iris,
mushroom) has been found and perfect solutions were
obtained for the three monk problems. For many med-
ical datasets (only 3 were shown here) very simple and
highly accurate results were obtained. It is not quite clear
why logical rules work so well, for example in the hy-
pothyroid or the Wisconsin breast cancer case obtaining
accuracy which is better than that of any other classi-
fier. One possible explanation for the medical data is that
the classes labeled “sick” or “healthy” have really fuzzy
character. If the doctors are forced to make yes-no diag-
nosis they may fit the results of tests to specific intervals,
implicitly using crisp logical rules. Logical rules given
in this paper were actually used by us to initialize MLPs
but high accuracy is preserved only with extremely steep
slopes of sigmoidal functions. In any case the approach
presented here is ready to be used in real world applica-
tions and we are at present applying it to complex medi-
cal and psychometric data.

Acknowledgments

Support by the Polish Committee for Scientific Research,
grant 8 T11F 014 14, is gratefully acknowledged. We
would like to thank J. Gomuła and T. Kucharski for pro-
viding the psychometric data.

References

[1] T. Mitchell, “Machine learning”. McGraw Hill
1997

[2] R. Andrews, J. Diederich, A.B. Tickle. “A Sur-
vey and Critique of Techniques for Extracting
Rules from Trained Artificial Neural Networks”,
Knowledge-Based Systems 8, 373–389, 1995

[3] W. Duch and G.H.F. Diercksen, “Feature Space
Mapping as a universal adaptive system”, Com-
puter Physics Communications, 87: 341–371,
1995; W. Duch, R. Adamczak and N. Jankowski,



Journal of Advanced Computational Intelligence Vol. 3, 1999 10

“New developments in the Feature Space Mapping
model”, 3rd Conf. on Neural Networks and Their
Applications, Kule, Poland, October 1997, pp. 65-
70

[4] N. Kasabov, “Foundations of Neural Networks,
Fuzzy Systems and Knowledge Engineering”, The
MIT Press (1996).

[5] Z. Pawlak, “Rough sets - theoretical aspects of rea-
soning about data”, Kluver Academic Publishers
1991

[6] D.J. MacKay. “A practical Bayesian framework for
backpropagation networks”, Neural Computations
4, 448-472, 1992

[7] W. Duch, R. Adamczak and N. Jankowski, “Ini-
tialization of adaptive parameters in density net-
works”, 3rd Conf. on Neural Networks and Their
Applications, Kule, October 1997, pp. 99-104

[8] W. Duch, R. Adamczak and K. Gra¸bczewski, “Con-
strained backpropagation for feature selection and
extraction of logical rules”, in:Proc. of “Collo-
quiua in AI”, Łódź, Poland 1996, p. 163–170

[9] W. Duch and N. Jankowski, “New neural trans-
fer functions”. Applied Mathematics and Computer
Science 7, 639-658 (1997)

[10] W. Duch, R. Adamczak and K. Gra¸bczewski, “Ex-
traction of logical rules from backpropagation net-
works”. Neural Processing Letters 7, 1-9 (1998)

[11] J.M. Żurada. “Introduction to Artificial Neural Sys-
tems”, West Publishing Co., St Paul, 1992.

[12] S.M. Weiss, C.A. Kulikowski, “Computer systems
that learn”, Morgan Kauffman, San Mateo, CA
1990

[13] C.M. Bishop, “Training with noise is equivalent to
Tikhonov regularization”, Neural Computation 7,
108-116 (1998)

[14] C.J. Mertz, P.M. Murphy, UCI repository of
machine learning databases, http://www.ics.uci.
edu/pub/machine-learningdatabases

[15] W. Duch, R. Adamczak, K. Gra¸bczewski, “Ex-
traction of logical rules from training data us-
ing backpropagation networks”, The 1st Online
Workshop on Soft Computing, 19-30.Aug.1996;
http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/, pp.
25-30

[16] W. Duch, R. Adamczak, K. Gra¸bczewski, “Ex-
traction of crisp logical rules using constrained
backpropagation networks”, Int. Conf. on Arti-
ficial Neural Networks (ICNN’97), Houston, 9-
12.6.1997, pp. 2384-2389

[17] K. P. Bennett, O. L. Mangasarian, “Robust linear
programming discrimination of two linearly insep-
arable sets”, Optimization Methods and Software
1, 1992, 23-34.

[18] N. Jankowski N and V. Kadirkamanathan, “Sta-
tistical control of RBF-like networks for classifi-
cation”, 7th Int. Conf. on Artificial Neural Net-
works (ICANN’97), Lausanne, Switzerland, 1997,
pp. 385-390

[19] B. Ster and A. Dobnikar, “Neural networks in med-
ical diagnosis: Comparison with other methods”.
In: A. Bulsari et al., eds, Proc. Int. Conf. EANN’96,
pp. 427-430, 1996.

[20] S.M. Weiss, I. Kapouleas. “An empirical compari-
son of pattern recognition, neural nets and machine
learning classification methods”, in:Readings in
Machine Learning, eds. J.W. Shavlik, T.G. Diet-
terich, Morgan Kauffman Publ, CA 1990

[21] W. Schiffman, M. Joost, R. Werner, “Comparison
of optimized backpropagation algorithms”, Proc. of
ESANN’93, Brussels 1993, pp. 97-104

[22] J.N. Butcher, S.V. Rouse, “Personality: individual
differences and clinical assessment”. Annual Re-
view of Psychology 47, 87 (1996)

[23] M. Ishikawa, “Rule extraction by succesive regular-
ization”, in: Proc. of the 1996 IEEE ICNN, Wash-
ington, June 1996, pp. 1139–1143

[24] W. Duch, R. Adamczak, K. Gra¸bczewski, M.
Ishikawa, H. Ueda, “Extraction of crisp logical
rules using constrained backpropagation networks
- comparison of two new approaches”, Proc. of
the European Symposium on Artificial Neural Net-
works (ESANN’97), Bruge 16-18.4.1997, pp. 109-
114


