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ABSTRACT

Despite all the progress in neural networks the technology is still
brittle and sometimes difficult to apply. Automatic construction of
networks and proper initialization of their adaptive parameters are
the key factors to create robust neural networks. Methods of ini-
tialization of MLPs are reviewed and new methods based on statis-
tical discriminants and logical rules are suggested. These methods
in many cases achieve higher accuracy before learning starts than
random initialization achieves after the learning process finishes.
KEYWORDS: Neural networks, discriminant analysis, initial-
ization, neural architectures

1. Introduction

Learning and generalization in neural networks strongly depends on
the complexity of the network used, including the architecture of the
network, the number and types of parameters used by the network,
the procedure used for initialization of its parameters and the de-
tails of the learning procedure. Models that are too complex may
learn the training data perfectly but will not generalize well. It is
commonly believed that the simplest models have the best gener-
alization capabilities, but proper regularization of the cost function
may ensure good generalization even in overparametrized models
[1]. Finding global minimum of a complex, nonlinear error function
with many parameters is an NP-hard problem [2]. Construction of
appropriate architecture and proper initialization of adaptive param-
eters should enable finding close to optimal solutions for real-world
problems, significantly decreasing the learning time.

We have observed that simple statistical discriminant or clusteri-
zation methods in many cases give results that are comparable or
better than those found by neural networks. A review of different
approaches to classification and comparison of performance of 20
methods on 22 real world datasets has been done within theStat-
Log European Community project [3]. The algorithms that ap-
peared most frequently as the top five were all of statistical na-
ture, including four discriminant approaches: linear (LDA), logis-
tic (LogDA), quadratic discriminant (QDA) and a more involved
DIPOL92 method that uses hyperplanes to discriminate between
clusters. The last of the top five method, ALLOC80, is based on
clusterization/density estimation techniques. It is also worth noting
that the simplest version of the nearest neighbor method, using a sin-
gle neighbor, achieved best results in 4 cases, and close to the best
in another 3 cases. Our own results on several medical datasets [4]
showed that logical rules that discriminate using hyperplanes per-
pendicular to the axes of the input variables are sometimes more
accurate than any other method of classification. Among the top 5
algorithms MLPs trained with the backpropagation algorithm appear
only once at the third position and 3 times at the fifth position. This
clearly shows that in most cases MLPs did not find solutions as good
as those found by statistical discriminant function methods.

In this paper we propose to use the statistical discriminants and logi-

cal rules for construction of the architectures and initialization of pa-
rameters in multilayered perceptrons. We have already used cluster-
ization techniques to initialize our density estimation Feature Space
Mapping (FSM) architecture obtaining significant improvements in
classification accuracy with reduced complexity of the network [5].
After a suitable transformation of inputs toN+1-dimensional space
clusterization techniques may also be used to initialize the MLP net-
work using prototypes [5]. Procedures for automatic MLP network
construction should propose architecture (the number of nodes and
connections), weights (biases are also counted as weights), and also
the slopes of sigmoidal functions (many MLP programs use unipo-
lar sigmoids only). The structure of MLP networks is frequently
optimized during learning, either using genetic or other global min-
imization methods. Such methods are computationally quite costly
and so far have not produced competitive results. Regularization
methods [2] are a good way to simplify an overparametrized ar-
chitecture, but still may miss an optimal solution. Using computa-
tionally inexpensive discriminant or clusterization methods for MLP
construction provides an interesting alternative that should simplify
the training process.

In the next section methods of MLP initialization are briefly re-
viewed and several statistical methods of classification suitable for
construction of MLPs described. The third sections presents the use
of logical rules for network construction. Short discussion closes
this paper.

2. Statistical methods for network construction.
Long training times and the suboptimal results of MLPs seem to be
due to the lack of a proper initialization. In a series of computer
experiments Schmidhuber and Hochreiter [6] observed that repeat-
ing random initialization (“guessing” the weights) many times is
the fastest way to convergence. In other words, even sophisticated
learning procedures are not able to compensate for bad initial values
of weights, while good initial guess leads to fast convergence even
with simple gradient-based error minimization techniques. There-
fore good strategy is to abandon training as soon as it slows down
significantly and start again from random weights. Wrong initializa-
tion may create network of sigmoidal functions dividing the input
space into areas where the network function gives constant inputs
for all training data, making all gradient procedures useless. If some
weights overlap too much (scalar productW ·W′/|W||W′| is close
to 1) the number of effective hyperplanes is reduced.

Random weight initialization is still the most popular method. Wes-
sel and Bernard [7] aim at a uniform covering of all data space
with hyperplanes, setting the hidden-output layer weights to 1. Sev-
eral random initialization schemes have recently been compared by
Thimm and Fiesler [8] using a very large number of computer exper-
iments. The best initial weight variance is determined by the dataset,
but differences for small deviations are not significant and weights in
the range±0.77 give the best mean performance. A few authors pro-
posed initialization methods which are not based on random weights



but we have no space to review them here [5].

The results of theStatlog [3] project, as well as our own results,
show that in many cases statistical methods are more accurate than
neural or machine learning approaches. These methods are more
than an order of magnitude faster than neural networks and use much
simpler, linear description of decision borders. A more drastic ex-
ample in which random initialization fails comes from classification
of “interesting” events in High Energy Physics data [9]. The best
results were obtained for a one-bit representation of weights (inter-
preted as +/- 5 weight values). The generalization levels reached
90% while in the standard MLP they were only 62%.

There are several inexpensive methods that should be suitable for
initialization of neural classifiers, including statistical discriminant
functions, decision trees such as C4.5 or CART, and clusterization
methods. We will consider statistical discriminant and clusterization
techniques here, although the use of decision trees is equally worth
investigating. Classical statistical discriminant techniques include
Fisher, linear, logistic, multiple discriminant analysis, and more
modern methods like DIPOL92 [10]. The Fisher discriminant anal-
ysis [11] is based on a projection on a single line passing through the
origin, trying to increase the separation of projected points between
the classes and decrease the separation of projected points inside the
same class. The error function becomes:

E(W) =
WTSBW
WTSWW

(1)

SW = ∑
i

∑
X∈Ci

(X− X̄i)(X− X̄i)T (2)

SB = ∑
i> j

(X̄i − X̄j )(X̄i − X̄j )T (3)

whereX̄i is the sample mean for classi, the matrixSB is the between-
class scatter (covariance) matrix andSW is the in-class scatter ma-
trix. The solution to the maximization ofE(W) for the two-class
case is:

W1 = S−1
W (X̄1− X̄2) (4)

Thus for thek-class problem the simplest neural architecture based
on the FDA is composed of the input layer and the hidden layer, with
one hidden neuron per output class, serving also as the output units
(in practicek−1 output units suffice, with the default class corre-
sponding to zero output of all hidden units). The weightsWi sepa-
rating classi from all other classes are used for the hidden neuron
numberi and the bias is determined from the probability distribu-
tion of the projectionsx = W ·X. The biasb is obtained from the
solution of thepi(x) = pr(x), wherepr(x) is the probability distri-
bution of projections from all other classes (both may be zero for
well separated classes). This probability distributions are estimated
from smoothed histograms for the one-dimensional projections. The
hidden neuron performsσ((W ·X + b)T) where the variableT de-
termining the slope of sigmoid may additionally be optimized by
fitting a line to the differencepi(x)− pr(x) aroundx for which the
two distributions cross.

The simplest network constructed from FDA solution gives classifi-
cation error which is as good as the original FDA. For such datasets
[12] as Wisconsin breast cancer, hepatitis, Cleveland heart disease or
diabetes the network obtains better results already before the learn-
ing process starts, but for some datasets this is not the best approach
since separation of a single class from all others may be difficult.
Suppose that vectors from classC1 are not separated well by FDA
procedure from all other vectors. In such a case separation from in-
dividual classes may still work (since weights are computed from

means of classes), or classes should be broken into several sub-
classes (clusters) before applying FDA. The weights depend directly
on the selection of the vectors used to computeX̄2 mean, giving us a
lot of flexibility in their selection. This leads to a more sophisticated
construction of the network, with several hidden neurons per class
and one output neuron per class connected to those hidden layer
units that discriminate this class from all others. The hidden-output
layer weights are all equal to 1.0 and the bias is determined by se-
lecting the smallest activation of the output unit after presentation of
all vectors from a given class.

Empirical comparison of FDA with neural networks on some
datasets taken from UCI repository [12] show that despite the ex-
treme simplicity of the method it is sometimes highly accurate. For
the Wisconsin breast cancer data Fisher discriminant obtains in the
10-fold crossvalidation tests 96.8% accuracy, while randomly ini-
tialized MLPs give slightly worse results with much larger effort.
For the Hepatitis dataset FDA achieves 84.5% while MLP result is
82.1%, for Cleveland Heart disease (original version) 84.2% com-
paring to 81.3% for MLP, and for Indian Pima diabetes almost the
same accuracy is obtained. In all these cases there were only two
classes, therefore only one projection line has been used (one neuron
in MLP). We are performing experiments now to determine what is
the optimal number of projections, although it is quite possible that
for these datasets best results are obtained with the simplest archi-
tecture.

Linear discriminant analysis (LDA) is an alternative statistical pro-
cedure that may be used for construction of neural networks. LDA
fits a separating plane between vectors of a given class and all other
vectors. If the weight vectorW includes the biasW0 = −b and the
input data vectorsX includeX0 = 1 the discrimination of classC1
vectors from all others requires to find a solution to:

XT
i ·W =

{
> 0 if Xi ∈C1
< 0 otherwise

(5)

This equation is further simplified if all vectors from classesCi , i =
2..k are replaced by their negative. Collecting all input vectors in
a rectangular matrixA the discriminating plane is found by solving
A·W > 0. Introducing a vectorB with small positive components the
inequality is replaced by a linear equationA·W−B = 0 which may
be solved by a pseudoinverse method [11] or several other methods.
LDA is sometimes justified also by the maximum likelihood method
using multivariate normal distribution, but there is no need to make
such assumptions. If one hyperplane is not sufficient for discrimi-
nation between a given class and all others a clustering procedure to
decompose this class into several subclasses is applied.

Each hyperplane requires a hidden neuron. If only one neuron per
class is sufficient there is no need for additional output neurons,
otherwise an output layer combines results from hidden neurons
discriminating a single class. The LDA procedure determines all
weights and biases for the input-hidden layer, while the output-
hidden layer weights and biases are set in the same way as in the
FDA case. One problem is that LDA procedure, minimizing the
classification error, does not determine an optimal separating plane,
i.e. the plane may be close to the vectors of one class and far from
the vectors of other classes. MLP minimizing the error function for
soft sigmoids places the separating hyperplanes at better positions.
SolvingA ·W−B = 0 by Ho-Kashyap method [11] with additional
requirement that the norm||B|| should be maximum increases the
overall separation of the discriminating hyperplane from the vec-
tors of different classes. A better condition for optimal separation
should include only the maximization of the squared sum of dis-
tancesXi ·W/|W| between the hyperplane and the vectorsXi that are
close to the hyperplane, i.e. many rows from theA matrix corre-



sponding to vectors far from the hyperplane may be deleted.

Thus many variants of the LDA procedure are suitable for network
construction. Empirical comparison of the simplest version based on
pseudoinverse solution for the Hepatitis dataset [12] gives 86.4% ac-
curacy (10-fold crossvalidation tests) versus 82.1% for randomly ini-
tialized MLP, for the Cleveland Heart disease 84.5% versus 81.3%
and for the Pima Indian Diabetes 77.5% versus 76.4%. For the Wis-
consin breast cancer data LDA accuracy is 96.0%, while MLP after
training achieves slightly better result of 96.7%. In all cases net-
works with a single neuron are constructed since these are two-class
problems. We are experimenting now with adding more than one
hyperplane to increase the complexity (and hopefully the accuracy)
of MLP networks.

Logistic Discriminant Analysis (LogDA) maximizes conditional
likelihood, modeling ratio of the probability density functions be-
tween two classes. This method frequently gives very similar results
to the LDA (for normal distributions with equal covariances results
are identical) but since it requires much more computational and pro-
gramming effort we will not consider it here. Quadratic Discrimi-
nant Analysis (QDA) provides decision borders that are quadratic
surfaces. Although combination of slowly varying (small slopes)
sigmoidal functions may provide similar decision borders we have
not tried to use it for initialization yet. More sophisticated statistical
methods, such as DIPOL92 [10] may also be used for network con-
struction but we have not tried them so far. Results from theStatLog
project [3] show that it would certainly be worthwhile to try.

3. Logical rules for network construction.

Table 1: Classification results for a number of optimized MLP train-
ing algorithms applied to the thyroid dataset – only the best results
are shown. BP = Backpropagation.

Method Training % Test
k-NN (Manhattan) – 93.8
Bayes rule [14] 97.0 96.1
BP+conjugate gradient 94.6 93.8
Best BP 99.1 97.6
RPROP 99.6 98.0
Quickprop 99.6 98.3
BP + genetic optimization 99.4 98.4
Local adaptation rates 99.6 98.5
Cascade correlation 100.0 98.5
PVM [14] 99.8 99.33
CART [14] 99.8 99.36
C-MLP2LN (our logical rules) 99.9 99.36

Logical rules proved to be quite accurate, especially for medical
diagnosis, in a number of our previous studies [4]. Although our
method is a combination of neural/search based optimization logi-
cal rules may be induced in a great number of ways. Rules provide
feature selection, a very simple description of decision borders and
MLPs may refine this symbolic knowledge achieving higher clas-
sification accuracy. In the hypothyroid dataset case [12] two types
of the disease, primary hypothyroid and compensated hypothyroid,
are diagnosed and differentiated from normal (no hypothyroid) cases
using the results of 22 medical tests. Thus the problem has 3 classes
and 22 attributes, 3772 cases for training and 3428 cases for test-
ing. This data was used by Schiffmanet al. [13] in optimization
of several MLPs and related models. About 15 MLPs trained with
different variants of backpropagation and cascade correlation algo-

rithms were used. In addition tedious genetic optimization has been
performed [13] on many network architectures. The best results of
this study are reported in the Table 1. On the other hand we have
derived crisp logical rules [4] using our C-MLP2LN method. These
rules divide the input space with discriminating hyperplanes perpen-
dicular to the axes. The best set of rules for the three classes is:

C1: TSH ≥ 30.5∧FTI < 64.2
C1: TSH ∈ [6.2,29.5]∧FTI < 64.1∧T3 < 23.2
C2: TSH ≥ 6.0∧FTI ∈ [64.3,186.7]∧TT4 < 148.5∧

on thyroxine=no ∧ surgery=no
C3: ELSE

These rules make only 4 errors on the training set (99.89%) and
22 errors on the test set (99.36%). They are similar to those found
using heuristic version of PVM method by Weiss and Kapouleas [4].
The differences among PVM, CART and C-MLP2LN are for this
dataset negligible (Table 1), but all other methods give results that
are significantly worse. Poor results of k-NN are especially worth
noting: the default rate corresponding to the normal instances of
the test set is 92.7% or 250 errors (standardized data with k=1 were
used, as in theStatLog study, results with other distance function
are even worse).
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Figure 1: Decision borders corresponding tox ∈ [−1,+1] andy ≥
−1 rules implemented by neurons withT = 5.

We have tried to construct an MLP starting from logical rules, using
3 neurons for two classes (the third class is treated as a default). One
may either remove completely all connections corresponding to in-
puts that are not used by the rules or leave them with zero weights.
If the network is initialized with very steep slopes the same results
as from the logical rules are obtained on the test and training set.
Very steep slopes create a problem for gradient-based learning, since
steep slopes give non-zero gradient only for a few vectors falling in
the range of high network function variability. Even withT = 5 the
region of high sigmoid variability may span the whole range of the
standardized data. The MLP decision borders forT ≈ 1 have hy-
perellipsoidal or hyperbolical shapes instead of approximating the
hyperrectangular shapes that logical rules provide. Gradually de-
creasing the slope may lead to rapid changes in the number of errors
since several sigmoidal functions added together create irregular de-
cision border shapes. We have used batch training to avoid the de-
terioration of the initial high accuracy but softening of the sigmoids
always leads to inferior results. Thus in this case there is no easy



way to obtain better results with gradient based techniques. How-
ever, the problem may be specific to medical data: if the degree
to which thyroid problem is present was given, instead of the yes-
no decisions based on values of medical tests, the decision borders
could be softer and training would improve the accuracy.

4. Summary and discussion
Various methods of initialization of adaptive parameters in MLP net-
works have been briefly discussed. Initialization of MLPs is still
done more often by randomizing weights [8], although initializa-
tion by prototypes based on initial clusterization presented in [5] and
network construction based on discriminant techniques should give
much better results enabling solutions to complex, real life prob-
lems. Introduction of this methods of network construction should
allow for creation of robust neural systems requiring little optimiza-
tion in further training stages. However, for problems requiring
sharp decision borders MLPs trained with the gradient-based tech-
niques may not be the best models.

The main point of this paper is: there is structure in the data that is
easily recognized by discriminant and cluster-based methods and it
is foolish not to use this structure, relaying on random initializationa
and forcing the networks to laboriously discover it. Since some sta-
tistical methods are computationally much less expensive than neu-
ral approaches in all cases where they are applicable they should
be used as a reference and as a starting point for neural methods.
Nonlinear methods are usually difficult to converge and a good start
from linear approximation makes the learning process easier, espe-
cially in complex cases, when neural solutions are hard to find (good
benchmark problems are the two spiral or the parity problem here).
Software for statistical methods is much harder to find than the soft-
ware for neural simulations. For example, we were able to find a
program for FDA only in the IMSL Fortran library. This software
is simple to write and we are convinced that statistical and neural
methods should be integrated in a single software package.
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