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A framework for similarity-based classification methods.
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Abstract. A general framework for similarity-based (SB) classification methods is pre-
sented. Neural networks, such as the Radial Basis Function (RBF) and the Multilayer Per-
ceptrons (MLPs) models, are special cases of SB methods. Many new versions of minimal
distance methods are derived from this framework.
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1 Introduction

Recently one of us [1] presented a general framework for similarity-based classification meth-
ods. This framework is extended here and connections between neural methods and SB methods
pointed out. Some of the simplest classification algorithms applicable to pattern recognition prob-
lems are based on thek-nearest neighbor (k-NN) rule [2]. Each training data vector is labeled by
the class it belongs to and is treated as a reference vector. During classificationk nearest reference
vectors to the unknown (query) vectorX are found, and the class of vectorX is determined by a
‘majority rule’. The probability of assigning a vectorX to classC i is p(Ci|X) = Ni/k. The Ham-
ming neural network [3] is explicitly based on the nearest neighbor rule, computing distances
for the binary patterns and finding the maximum overlap (minimum distance) with the prototype
vectors. A general framework for similarity based methods is presented here and relations with
neural methods are explained. A short discussion is presented at the end.

2 A framework for the minimal distance methods

The problem of classification is stated as follows: given a set of class-labeled training vectors
{Xp,C(Xp)}, p = 1..K, whereC(Xp) is the class ofXp, and a vectorX of an unknown class,



use the information provided in the distanced(X,X p) to estimate probability of classification
p(Ci|X;M), whereM describes the classification model used (parameter values and procedures
employed). The empirical risk matrixR(Ci,Cj) measures the risk of misclassification (in the sim-
plest caseR(Ci,Cj) = δi j) and the error function that should be minimized is:

E(M) = ∑
p
∑
k

R(C(Xp),Ck)p(Ck|Xp;M) (1)

where p runs over all vectors in the training dataset,k runs over all classes andC(X p) is
the true class of the vectorXp. Parameters and procedures defining the modelM should be
found that minimize the probability of misclassification and thus maximize the probability of
correct classification (although there are some differences between the two approaches they will
be ignored here).

A general model of an adaptive system used for classification may include all or some of the
following:
M = {k,d(·; r),G(d(·)),{Dn},E[·],K(·)), where
k is the number of reference vectors taken into account in the neighborhood ofX;
r is the maximum size of the neighborhood considered;
d(·; r) is the function used to compute similarities (distances);
G(d(X,Xp)) is the weighting function estimating contribution of reference vectorX p to the
classification probability;
{Dn} is the set of reference vectors created from the training set of vectors{Xp};
E[·] is the total cost function that is minimized at the training stage;
K(·) is a kernel function, scaling the influence of the error, for a given training example, on the
total cost function.

In addition an adaptive system may include several modelsMl and an interpolation procedure
to select between different models or combine results of a committee of models. In the simplest
versionp(Ci|X;M) is parametrized byp(Ci|X;k,d(·),{Xn}}), and thek-NN method is obtained.
Instead of enforcing exactlyk neighbors the radiusr may be used as an adaptive parameter. The
number of classification errors, or the probability of classificationp(Ci|X; r) = Ni/∑ j N j, is then
optimized using the leave-one-out method or a validation set. Introduction of variable radiusesr i

for each reference vector instead of one universal radius in the input space increases the number
of adaptive parameters significantly. Development along this line leads to the Restricted Coulomb
Energy (RCE) classifier introduced by Reilly, Cooper and Elbaum [4] which may be treated as
the hard limit approximation of the Gaussian-based RBF network.

The the conical radial function (favorite fuzzy logic membership function) is suitable for
the weighting function: it is zero outside the radiusr and 1−d(X,D)/r inside this radius. Clas-
sification probability:

p(Ci|X; r) =
∑n∈Ci

G(X;Dn, r)

∑n G(X;Dn, r)
;G(X;D, r)= max

(
0,1− d(X,D)

r

)
(2)

G(X;D, r) is the weight estimating contribution of reference vector at the distanced(X,D).
Radial Basis Function (RBF) networks using Gaussian or inverse multiquadratic transfer func-
tions are a particular example of the soft weighting minimal distance algorithm. Other useful



weighting functions include a combination of two sigmoidal functions:σ(||X− D n|| − r)−
σ(||X−Dn||+ r). If rk is the distance to thek-th neighbor andrk ≥ ri, i = 1..k−1 then a coni-
cal weighting functionG(d) = 1−d/αrk,α > 1 has valuesG(0) = 1 andG(rk) = 1−1/α; for
largeα the cone is very broad and all vectors receive the same attention; forα approaching 1 the
furthest neighbor has weight approaching zero. Multilayer perceptron (MLP), the most common
neural networks models, compute in each node:

σ(W ·X) = σ
(

1
2
(||W||2+ ||X||2−||W−X||2)

)
= σ(Imax −d(W,X)) (3)

For normalized input vectors (normalization inN +1 dimensional space is recommended)
sigmoidal functions evaluate the influence of reference vectorsW, depending on their distance
d(W,X), on classification probabilityp(Ci|X;{W,θ}). As a function of a distanceσ(Imax −
d(W,X)) monotonically decreases, atd(W,X) = Imax reaching the value of 0.5. For normalized
X but arbitraryW the range of sigmoid argument is in the[−|W|,+|W|] interval. Unipolar sig-
moid has a maximum curvature around±2.4, therefore smaller weights of the norm mean that
the network operates in almost linear regime. Sigmoidal functions used in MLPs estimate the
influence of weight vectors according to the distance between weight and the training vectors,
combining many such estimations to compute the final output.

Calculation of similarity is most often based on Minkowski’smetricd(X,X ′;g)α =∑N
i gi(Xi−

X ′
i )

α . In the simplest RBF version with Gaussian functions only one parameter – dispersion – is
optimized. Independent optimization of allN components of dispersion vector has the same
effect as optimization of the scaling factorsgi in soft-weighted NN-r method. Calculation of
distances may also be parameterized in a different way around each reference vector, provid-
ing a large number of adaptive parameters. To select features useful for classification and to
lower the complexity of the classification model the cost function should have an additional
penalty term, such as the sum of allg2

i . Features for which the product of the scaling factors

gi maxjk |X ( j)
i − X

(k)
i | is small may be deleted without significant loss of accuracy. Nonlinear

similarity function that is approximately constant within a cluster and rapidly changes between
clusters belonging to different classes is obtained replacing(Xi − X ′

i ) terms in the Minkovsky
metric with∑ni

j=1ai jσ(bi j(Xi −X ′
i )− ci j). Such similarity measures provide usefula,b,c param-

eters for minimization of in-class variances and maximization of between-class variances.
Active selection of reference vectors starts from K-means or other clusterization techniques

to select a relatively small number of initial reference vectors close to the cluster centers. Clas-
sification accuracy is checked on the remaining set (usingk-NN or NN-r rule) and each time
an error is made the vector is moved from the remaining to the reference set. An alternative ap-
proach starts from the whole training set and removes those vectors that have allk nearest vectors
from the same class. The reference vectorDn in the neighborhood of a training vectorX may be
updated using:Dn

new = Dn
old +ηδ±(C(X),C(Dn

old))(X−Dn
old), whereη is the learning rate, de-

creasing during training, andδ± is +1 if X andDn
old belong to the same class or−1 otherwise.

Virtual Support Vectors added to the reference set may improve classification rates.
The choice of kernel function in the measure of classification error may be based on local

regression [6]:E(X;M) = ∑i K(d(Xi,Xre f ))(F(Xi;M)−yi)2, whereyi are the desired values for
Xi andF(Xi;M)are the values predicted by the modelM; here the kernel functionK(d) measures
the influence of the reference vectors on the total error.



3 Discussion

The similarity based framework accommodates many classification methods. We have found very
few methods in the literature that try to improve upon the simplek-NN scheme. Value Difference
Metric is a probabilistic similarity measure gaining popularity [5]. Hastie and Tibshirani [8]
write about adaptivek-NN classification from the linear discriminant point of view, advocating
the use of several local metrics. Friedman [9] proposed adaptation of metric based on a tree-
like interactive partitioning of the data. Atkenson, Moor and Schaal [6] discuss locally weighted
regression techniques, various metric and kernel functions applied to approximation problems.

All these proposals and many more may be accommodated in the general framework pre-
sented here. Identification of the best combination of procedures and adaptive parameters should
allow for improvements ofk-NN as well as neural classifiers. Performance of various methods
described here depends on the nature of the data given for classification and remains a subject
of further empirical study. So far we have tested only a few simplest methods obtaining very
encouraging results.
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