Extraction of crisp logical rules using
constrained backpropagation networks

Wiodzistaw Duch®?, Rafal Adamczak® and Krzysztof
Grabczewski?, Masumi Ishikawa® and Hiroki Ueda®

?Department of Control Engineering and Science, Kyushu
Institute of Technology, 680-4 Kawazu, lizuka, Fukuoka 820, Japan

®Department of Computer Methods, Nicholas Copernicus
University, Grudziadzka 5, 87-100 Torun, Poland.

Abstract. Two recently developed methods for extraction of crisp
logical rules from neural networks trained with backpropagation algo-
rithm are compared. Both methods impose constraints on the structure
of the network by adding regularization terms to the error function. Net-
works with minimal number of connections are created, leading to a small
number of crisp logical rules. The two methods are compared on the Iris
and mushroom classification problems, generating the simplest logical
description of this data published so far.

1. Introduction

Knowledge acquisition by extraction of logical rules from the sample data is
an important and difficult problem in computational intelligence. Neural net-
works, in particular multi-layered perceptrons (MLPs), are useful classifiers
that can learn arbitrary vector mappings from the input to the output space
and successfully use this mapping in novel situations. The knowledge acquired
by neural systems is represented in a set of numerical parameters and architec-
tures of these networks in a way that is incomprehensible for humans. Some
classification problems have an inherent logical structure and even in other
cases it may be preferable to use logical rules instead of adaptive classifiers.
Many methods to analyze trained neural networks, extract logical rules
and select classification features have been devised in the past (for a recent
review see [1]). These methods focus on analysis of parameters (weights) of
trained networks, trying to achieve high fidelity of performance, i.e. obtaining
identical classification results by extracted logical rules in comparison to the

W.D. is grateful for support by the Polish Committee for Scientific Research, grant 8T11F
00308, and Heiwa Nakajima Foundation, Japan. M.I. acknowledges the support by Grant-
in-aid for Scientific Research (c) 07680404 from the Ministry of Education, Japan. E-mails:
ishikawa@kyutech.ac.jp, duch,raad, kgrabcze@phys.uni.torun.pl
European Symposium on Artificial Neural Networks (ESANN’97), Bruge 16-18.4.1997

original networks. Analysis of complex networks is quite difficult and may lead
to a large number of rules, too large to be useful in practice. Non-standard form
of rules, such as MofN (M out of N antecedents should be true) or decision
trees [2], are sometimes useful.

In this paper we take a different approach, simplifying the network structure
to the point when the logical functions performed by the network are quite clear.
In the next section two new methods of rule extraction are presented. In the
following sections they are compared on the iris and mushroom classification
problems.

2. Presentation of algorithms

Logical rules require symbolic inputs (linguistic variables), therefore the contin-
uos input data has to be quantized first, i.e. the features defining the problem
should be identified and labeled. The problem of optimal selection of input
features is very important. So far we have found two solutions to this prob-
lem. First, neural networks that use factorizable transfer functions, such as
the Feature Space Mapping (FSM) networks [3], may be treated as neurofuzzy
systems and their output interpreted in a fuzzy logic sense using membership
functions. In such cases rules are of the type:

IF (21 € X1 A..xy € Xy)THEN (y; € Y1 A .yns € Yar) (1)

Crisp decision regions may be obtained in an adaptive way by using as
the neuron processing function a pure product form of sigmoidal functions
[L o(xi —b;)(1 —o(z; + b)), product of differences [[,(o(x; — b;) — o(x; +b}))
or a filtered combination of differences o (>, (o (x; — b;) — o(x; +b})) — B) [4]
and slowly increasing the gain of the sigmoidal functions o(z) during learning.
In this process fuzzy rules are transformed into crisp logic rules, i.e. complex
decision regions are transformed into simpler, hypercuboidal decision regions.

We will not pursue this further here, concentrating instead on the extraction
of crisp logical rules using standard multilayered perceptrons. Interpretation of
the activation of the MLP network nodes trained on the classification problem
is not easy since the resulting networks are rather complex. In the structural
learning with forgetting (SLF) approach Ishikawa [5] has used the Laplace-type
regularizing term:

E(W) = Ey(W) + XY |Wi] (2)

where Eo (W) is the mean square error (MSE) criterion function and W;; is the
connection weight between units ¢ and j. The additional change in the weights
due to the regularizing term during backpropagation learning is simply equal
to —e sgn(W;;), where a constant e determines the amount of forgetting. In
selective forgetting procedure only the weights smaller than some threshold are
included in the regularizing term. This term leads to a constant decay of smaller

weights. Small weights that do not contribute to the MSE are automatically
pruned and a skeletal network emerges.

To facilitate logical interpretation of the function performed by the network
“clarification” of hidden unit performance is done by forcing them to be fully
active or fully inactive. This is achieved by adding an additional penalty term
¢y ;,min(1l — h;, h;), where h; is the output of the hidden unit 7. The SLF
procedure can be applied to rule extraction in a series of successive steps,
starting from rather large regularization parameter A to acquire dominant rules
first. While these rules, or corresponding part of the network, are kept fixed,
regularization parameter is decreased. Connections once deleted revive and new
rules are derived. Since the network has only skeletal structure and the hidden
units have outputs close to 0 or 1 each node is represented as a logical function
of nodes in the adjacent lower layer. These logical functions are combined into
a final logical output expression.

The second approach considered here [7] is aimed directly at making a
smooth transition from MLP to a logical network, therefore we will called it here
MLP2LN. This is achieved by: a) increasing the slope of sigmoid functions to
obtain crisp decision regions; b) simplifying the network structure by inducing
the weight decay through a gaussian penalty term; c) enforcing the integer
weight values 0 and £1, interpreted as 0 = irrelevant input, +1 = positive and
—1 = negative evidence. The error function has two extra terms:

A1 A2
E(W) = Bo(W) + 22 Y W2 + 22 S WA Wy — 12(Wyy +17 ()
(2] 2]

The first term, scaled by A, hyperparameter, encourages weight decay, lead-
ing to skeletonization of the network and elimination of irrelevant features. The
second term, scaled by Ag, forces the remaining weights to approach +1, fa-
cilitating logical interpretation of the network function. Additional change
of weights in the backpropagation training algorithm due to these terms is
)\1Wij +)\2W7;]‘(Wi2j — 1)(3Wi2j — 1).

This approach may be justified from the Bayesian point of view [8]. The
cost function specifies our prior knowledge about the probability distribution
P(W|M) of the weights in our model M. Since we model a network for classifi-
cation tasks and expect crisp logical decision weights of connections for positive
evidence should be +1, for negative —1 and for irrelevant inputs 0, therefore
P(W|M) « exp(—aE(W|M)) = exp(—aiW3) exp(= W2 (Wi; — 1)*(Wi; +
1)%).

Although MLP2LN method may be applied to any MLP network a simpli-
fied constructive procedure is recommended. The training proceeds separately
for each output class. One hidden neuron is created and is trained on the input
data by backpropagation procedure until convergence is achieved. The weights
and the threshold obtained are then analyzed and the first group of logical rules
is found, covering the most common input-output relations. The input data
that is correctly handled by the first neuron will not contribute to the error
function. Therefore the weights of this neuron are kept frozen during further

training and a second neuron is trained on the remaining data. After con-
vergence the second weight vector is analyzed and corresponding rules found.
This procedure is repeated until all the data are correctly classified. The same
procedure is repeated for the remaining classes. Each time only one neuron is
trained, therefore the training is very fast.

The two approaches to logical rule extraction share some similarities. In
both cases the skeletonization of the network is stressed by adding the Laplacian
or Gaussian regularization term. Clarification of the hidden units in SLF plays
similar role to increasing the slopes in MLP2LN, providing only 0 or 1 outputs
from the hidden units. In SLF with scuccessive regularization and MLP2LN
after the most common rules, obtained for large regularization parameters, are
found, a part of network is kept frozen and new hidden neurons are trained
to obtain more rules. The rules obtained by these algorithms are ordered,
starting with rules that are used most often and ending with rules that handle
only a few cases. The final solution may be presented as a set of rules or as a
network of nodes performing logical functions. Direct logical interpretation of
MLP2LN networks is somewhat easier because the weights are constrained to
+1. In the following two sections empirical comparison of the results of these
two approaches applied to two classification problems is presented.

3. Classification of iris flowers

In the first example the classical iris dataset was used. The data has 150
vectors evenly distributed in three classes, called iris-setosa, iris-versicolor and
iris-virginica. Each vector has four features: sepal length x7 and width x2, and
petal length 3 and width x4 (all in cm). This data was used to train SLF
network while for the MLP2LN linguistic variables obtained from analysis of
histograms of the individual features for each class were used. For example, Iris-
virginica class is more frequent for the value of x3 above 4.93 and Iris-versicolor
are more frequent below this value. Discretization based on histograms leads
to the linguistic variables presented in Table 1. With this discretization of the
input features two vectors of the iris-versicolor class (coded as (m,m,l,1) and
(m,1,m,1)) become identical with a number of iris-virginica vectors and cannot
be classified correctly, i.e. the best classification accuracy is 98.7%.

Table 1: Linguistic variables obtained by analysis of histograms.

L s [m [|
7 || [4.3,6.5] | (5.5,6.11 | (6.1,7.9]
T2 [2.0,2,75] | (2.75,3.2] (3.2,4.4]
T3 [1.0,2.0] (2.0,4.93] | (4.93,6.9]
s || [0.1,0.6] | 0.6,1.71 | (1.7,2.5]

Thus initial MLP2LN network had 12 discrete input nodes, while SLF net-

work 4 real-valued input nodes. The MLP2LN network needed about 1000
epochs on average and the final weights were within 0.05 from the desired +1
or 0 values. Only two features, x3 and x4 were found to be relevant and a
single rule per class was found:

IF (x3 = sA x4 =s) THEN iris-setosa
IF (x3 =m A xy =m) THEN iris-versicolor 4)
IF (x3 =1)V (24 = 1) THEN iris-virginica

These rules allow for correct classification of the 147 vectors, achieving
98% of accuracy. Replacing one of the rules with the condition ELSE, and
noting that for the iris-setosa one may remove one antecedent without changing
classification results one gets two rules: iris setosa if x3 = s, iris virginica if
x3 = IV xy = I, else iris versicolor. Decreasing regularization parameters
allows to replace one rule by four rules necessary to classify correctly just
one additional vector, a clear indication that overfitting occurs. Increasing
regularization parameters selects only one attribute, petal length x3, and two
rules giving 95.3% accuracy: iris setosa if x3 < 2.5, iris virginica if x3 > 4.9,
else iris versicolor. This is the simplest description of the Iris dataset that we
know of.

4. Classification of mushrooms

The mushroom dataset contains 8124 cases, each with 22 discrete attributes,
with about half of the cases (51.8%) representing edible and the rest nonedible
(mostly poisonous) mushrooms. A single neuron is capable of learning all the
training samples, but the resulting network has many nonzero weights and is
difficult to analyze from the logical point of view. The following single rule
has been obtained with MLP2LN as well as SLF method, giving 48 errors, or
99.41% accuracy on the whole dataset:

edible if odor=(almondVaniseVnone)A spore-print-color=-green

This rule uses only two features and four antecedents. Using weaker reg-
ularization parameters for edible mushrooms SLF has discovered (after some
simplifications of resulting logical expressions) a conjunctive rule with 6 at-
tributes, achieving perfect accuracy. MLP2LN has discovered systematically
equivalent disjunctive rules for poisonous mushrooms:

R;) odor=-(almondVaniseVnone), 120 poisonous cases missed, 98.52%

R») spore-print-color=green, 48 cases missed, 99.41% correct

R3) odor=noneAstalk-surface-below-ring=scalyA (stalk-color-above-ring=
—brown), 8 cases missed, 99.90%

R,) habitat=leavesAcap-color=white, all poisonous cases correctly classified.
We have tried training on randomly sampled 10% of the database as well as

on the whole data, achieving identical results. This is the simplest systematic

logical description of this dataset that we know of, although some of these rules

have probably also been found by RULEX and TREX algorithms [1].

5. Discussion and summary

The problem of extracting rules from neural networks has a natural geomet-
rical interpretation. Crisp logical rules correspond to a division of the input
space with perpendicular hyperplanes into areas with symbolic names. This
may be achieved in MLP networks by using neurons with high gain and +1
or zero weights. If the classes in the input space are correctly separated with
such hyperplanes logical description of the data is possible. Logical approxi-
mation may become arbitrarily accurate by increasing the number of linguistic
variables, but the number of rules may become unacceptably large.

We have presented here two methods of rule extraction based on the stan-
dard backpropagation technique with modified error function. Crisp logical
rules are found automatically by analyzing nodes of trained networks. These
methods seem to outperform in many ways previous methods of rule extraction
[1]. It is too early to tell which of these two methods will be more useful for
larger datasets, but both seem to be capable of finding the simplest logical
structure in some of the benchmark datasets used for neural network testing.

References

[1] R. Andrews, J. Diederich, A.B. Tickle, A Survey and Critique of Tech-
niques for Extracting Rules from Trained Artificial Neural Networks,
Knowledge-Based Systems 8 (1995) 373-389

[2] M.W. Craven, J. W. Shavlik, Extracting Tree-Structured Representations
of Trained Networks, Adv. in Neural Info. Processing 8 (1996) 24-30

[3] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a universal adap-
tive system, Computer Physics Communic. 87 (1995) 341-371

[4] W. Duch, N. Jankowski, Bi-radial transfer functions, Proc. second con-
ference on neural networks and their applications, Orle Gniazdo, Poland,
pp- 131-137, 1996; W. Duch, R. Adamczak, K. Grabczewski, Constrained
backpropagation for feature selection and extraction of logical rules, Proc.
of “Colloquiua in AI”, L6dz, Poland 1996, p. xxx

[5] M. Ishikawa, Structural learning with forgetting, Neural Networks 9 (1996)
509-521

[6] M. Ishikawa, Rule extraction by successive regularization, in: Proc. of the
1996 IEEE ICNN, Washington, June 1996, pp. 1139-1143.

[7] W. Duch, R. Adamczak and K. Grabczewski, Extraction of
logical rules from training data using backpropagation networks,
The First Online Workshop on Soft Computing, 19-30.Aug.1996;
http://www.bioele.nuee.nagoya-u.ac.jp/wscl/

[8] D.J. MacKay, A practical Bayesian framework for backpropagation net-
works, Neural Computations 4 (1992) 448472

