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Two methods providing representation of high-dimensional (input) data in a lower-
dimensional (target) space are compared. Although multidimensional scaling (MDS) and
Kohonen’s self-organizing maps (SOM) are dedicated to very different applications both
methods are based on an iterative process that tends to approximate the topography of
high-dimensional data and both can be used to model self-organization and unsupervised
learning. In general it is impossible to find a lower-dimensional representation that preserves
exactly the topography of high-dimensional data. An error function is defined to measure
the quality of representations and is minimized in an iterative process. The minimal error
measures the unavoidable distortion of the original topography represented in the target
space.

I. INTRODUCTION

Human experts can analyze data in at most three dimensions, therefore evaluation
of high-dimensional data is possible only if its dimensionality is reduced. Such re-
duction is also useful in pattern recognition [1] where “the curse of dimensionality”
plagues many computational procedures. Statistical method known as the multidi-
mensional scaling (MDS) technique has foundations in the work of Torgerson [2] and
in the Coombs theory of data [3]. Computer programs and applications of MDS have
been developed, among others, by Kruskal [4] at the Bell Laboratories, by Lingoes,
Roskam and Borg [5] in Ann Arbor, and by Shepard [6] in Palo Alto. MDS was used
by experts in mathematical psychology who wanted to obtain a lower-dimensional
representation of psychological data. These data are related to perception (perceived
nearness of objects, preferences, feature intensity or affinity) and are obtained by
subjective evaluation of similarities or dissimilarities between different items, charac-
terizing a small part of human psychological spaces. MDS techniques were developed
to provide a two or three-dimensional image of the observed data, reducing their com-
plexity and allowing their analysis by a human expert. Unfortunately MDS methods
are almost unknown outside the mathematical psychology field. A very similar vi-
sualization method, called the nonlinear mapping, has been developed by Sammon

[7].

The self-organizing map (SOM) algorithm introduced in 1981 by Kohonen [8] is
usually presented as a particular type of artificial neural network. The network is
first trained on the high-dimensional samples, in such a way that the weight vectors
of the array of neurons in the output layer tend to approximate the probability density
function of the high-dimensional data. This iterative learning process is unsupervised,



or self-organizing, since there is no intervention of a teacher giving information about
clusters that exist in the data space. Kohonen was working in pattern recognition
(especially in speech recognition) when he developed the SOM algorithm, and his
intentions were the following [9]: “The SOM has not been meant for statistical pat-
tern recognition; it is a clustering, visualization, and abstraction method. Anybody
wishing to implement decision and classification processes should use LVQ (Learning
Vector Quantization) instead of SOM.”

Despite this warning SOM is used quite frequently as a network for classification (cf.
the book [10] or the bibliography on SOM stored in the {tp archive cochlea.hut.fiin
the /pub/ref/ catalog, file references.bib.Z). The most interesting aspect of SOM
is its ability to visualize the high-dimensional data, although the method does not
provide any measures of the quality of this visualization. After a brief presentation
of the SOM algorithm we will describe the MDS algorithm and compare these two
methods in a few cases. In summary we will comment on the differences observed
between the maps and the two-dimensional representations obtained and the prospects
to develop reliable visualization and classification methods using a combination of

MDS and SOM 1deas.

II. SELF-ORGANIZING MAPS

The SOM algorithm allows to perform in an unsupervised manner a visualization of
high-dimensional input data, usually in a target space of one, two or three-dimensions.
We will assume here a two-dimensional array of nodes. SOM seems to preserve the
topography of the input data. This means that if some of the high-dimensional
points are grouped in clusters, then their representations in the map are also grouped
in clusters and the relative distances between clusters are to some degree preserved.
The SOM network takes as input a set of labeled sample vectors and gives as output
an array of network nodes with the input vector labels attached to these nodes.

Let N be the dimension of the n sample vectors X (t) € ®V,¢ = 1,2,...,n, where
each sample vector X (¢) is identified by a label. The two-dimensional output layer
contains ¢ = 1,...,zdim X ydim nodes W;, each serving as a codebook vector of
dimension N. The training of the weight (codebook) vectors of the map’s nodes is
realized by the following algorithm:

For a given number of iterations do:

1. Pick up randomly one sample vector X ()

2. Find the nearest weight vector W.: || X — W.|| = min; {||X — W;||}

3. Update the weights W; according to the rule:

Wi(t+1) = Wi (t) + hei(t) - [X (t) = Wi (1)]
where h.;(1) is the neighborhood function that can be of type:

e “bubble”: hy(t) = a(t) if [|W, — W;|| < r(t) and
hes(t) = 0 if [|W, — Wi|| > r(t);

o “gaussian”: h(t) = a(t) - exp (M)

202(t)



Only the neurons within the neighborhood h.;(t) are moved near to X(¢). The
learning rate «(t) € [0, 1] decreases monotonically with time, o(¢) and r(t) are neigh-
borhood radiuses decreasing also monotonically. Although one-dimensional Kohonen
maps have been analyzed in some details little is known about the self-organization
process in two or three dimensions [9]. The main problem is the lack of quantitative
measure to determine what exactly “the good map” is.

III. MULTIDIMENSIONAL SCALING

MDS techniques emerged from the need to visualize in a two- or three-dimensional
space high dimensional objects described by some measure of their similarities or
dissimilarities. The problem is to find the coordinates of points representing the
multivariate items in the two or three-dimensional space in such a manner that the
low-dimensional interpoint distances correspond to the dissimilarities of the original
objects. MDS takes as input a symmetric matrix of the similarities or dissimilarities
between objects, whereas SOM needs absolute coordinates of these objects in the
high-dimensional space. Note that for the MDS input space does not even need to be
a metric space. If a given observation concerns n objects there are n(n—1)/2 distances
between these objects. SOM algorithm in the same case needs n x N input values,
where NNV is the dimension of the input vectors. If the number of objects n > 2N + 1
Kohonen map uses more information than MDS.

Let n be the number of observed objects in the high-dimensional input space
X1,X5,..., Xy, and let &; be the observed similarities between objects X;, equiva-
lent to distances 6;; = ||X; — X;|| in metric spaces. Let Y; be the low dimensional
target space point representing the input object X; and let d;; be the distance be-
tween Y; and Y;. We have to place the points {¥;,7 = 1,...,n} in the target space in
such a way that the distances d;; are as close as possible to the original distances 6;;.
A sum-of-squared error function can be used as a criterion to decide whether a given
configuration of image points is better than another. There are two commonly used
criterion:

(6i5—dij)?
- Kruskal’s stress: S = 2:023:(72)
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- Lingoes’ alienation coefficient: K = Rt
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The best configuration is found iteratively:

0. Define a starting configuration for the points Y; randomly or by a principal
components analysis,
While the criterion function significantly decreases, do:

1. Compute the distances d;;.

2. Compute the value of the criterion functions S and K.

3. Find a new configuration of the points Y; by a gradient-descent procedure such
as Kruskal’s linear regression or Guttman’s rank-image permutation.

Looking for quantitative measures of the preservation of topography between the
high-dimensional input and low-dimensional target spaces Duch [11] has introduced
the stress-like measure D; = S and its quadratic version:
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where yl(»l) are components of Y; objects in the k-dimensional target space and the
reduction in the number of the degrees of freedom going from N dimensions to &
dimensions is taken into account by setting all components of Yy = 0 and £ — 1 com-
ponents of Y7 to zero, ygl) =0,/ =1..k— 1. For this measure we may obtain the best
representation by solving a set of non-linear equations [11] instead of minimization:

Zn: (yf»m) - y](»m))3 +Zn: (yf»m) - y](»m)) Zk: (yf»’) - y](»’))z - Zn: 8 (y§m> - y](»m)) =0
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Unfortunately it is as hard to solve this system of nonlinear equations as it is to
minimize the stress function.

IV. COMPUTATIONAL RESULTS

Minimization in MDS is usually done via gradient procedure. Since we are looking
for a global minimum we have used simulated annealing method for minimization.
We have applied SOM and MDS algorithms to a number of cases in which the quality
of maps could be assessed easily. Due to the lack of space we will present only two
cases: the data related to semantic maps about animals and a series of hypercubes
in 3-b dimensions, with cube corners represented in two-dimensional target space.
Configurations of points obtained from SOM and MDS are compared in figures below.
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FIG. 1. The two-dimensional representations of the 13-dimensional semantic data ob-
tained by SOM (left) with a 10 x 10 neurons map, a training of 10000 cycles, with final
stress of 0.25, and the MDS (right) with final stress of 0.20 after 10 iterations.
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FIG. 2. The two-dimensional representations of the 8 points of the 3D cube obtained by
SOM (left) with a 20 x 20 neuron map, a training of 10000 cycles, a final quantization error
of 0.001 and stress 0.321, MDS (right) has the final stress value 0.246 after 22 iterations.
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FIG. 3. The two-dimensional representations of the 16 points of the 4D hypercube ob-
tained by SOM (left) with a 20 x 20 neurons map, a training of 10000 cycles, quantization
error of 0.001, stress value 0.327, MDS (right) has the final stress of 0.312 after 18 iterations.
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FIG. 4. The two-dimensional representations of the 32 points of the 5D hypercube ob-
tained by SOM (left) with a 20 x 20 neurons map, a training of 10000 cycles, the stress value
of 0.353 and by MDS (right) with a final stress of 0.333 after 18 iterations.

In figures 2-4 all corners of the hypercube that are adjacent to each other are
connected by lines. All these lines should be short but SOM tries to use all neurons



and places many codebook vectors at the boarders, missing the best configuration even
in the 3D case. Perhaps with infinitely slow learning (i.e. decreasing the neighborhood
function h.;(?) to zero infinitely slowly) it would be possible to avoid “freezing” wrong
configurations - 10000 iterations were not sufficient to obtain global minimum of the
stress function.

V. SUMMARY AND CONCLUSIONS

Theoretical considerations as well as computational experience shows that MDS is
a better approach for visualization of multidimensional data than SOM. Multidimen-
sional scaling provides a well defined measure of the quality of maps, a measure that
may also be used to compare the quality of different Kohonen maps. Computational
demands of the two methods in the learning phase are similar.

It is possible to modify the original Kohonen SOM algorithm to take into account
minimization of stress measure. MDS may also be useful in initialization of large SOM
maps used for classification since minimization of stress adding one additional object
is more computationally demanding than calculation of output from the Kohonen
layer. Introducing the coordinate mesh in the MDS target space and the codebook
vectors 1n each node of this mesh one obtains a combination of the LVQ and MDS
methods useful not only in visualization and classification but also in approximation
problems (W. Duch and A. Naud, work in progress)
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