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Preliminaries






Preface

7Concepts, like men, are gregarious”
Ernest Gellner, ”Plough, Sword and Book. The Structure of Human History.”

Although, E. Gellner refers to a culture, which he defines as a system of notions, interrelated
and interdependent in various complex ways, I find his metaphor matching very well the content
and background of this work. It is devoted to the development of new methods of the Quantum
Chemistry or Theoretical Atomic and Molecular Physics, if one prefers. Not depending on the
actual (and historically determined) nomenclature, it means theoretical methods of research on
the electronic structure of the matter.

After 70 years (starting from the very beginning of the Quantum Mechanics) of the develop-
ment of this discipline and 50 years since the invention of the computer - its nowadays inevitable
companion - it has reached high degree of sophistication and impressive predictive capabilities.
Due to ’black box’ quantum chemistry packages, one can routinely describe the structure of
chemical compounds, reaction paths and spectra, and many other interesting properties and
characteristics [1] — [3].

Nevertheless, despite the parallel progress in computer technology, further formal develop-
ment of methods and increasing of effectiveness of the computer algorithms of Quantum Chem-
istry is highly desired. We shall always be pushed to attack larger and larger systems with
growing accuracy.

It seems that the project of linear Quantum Chemistry (i.e. using algorithms for which
the computational complexity scales linearly with the number of electrons) remains still quite
exotic. The problem of bad scaling has been however constantly inducing efforts resulting
in various combinations in the spirit of the so-called direct algorithms and other numerically
efficient schemes.

Another area of vital importance for contemporary Quantum Chemistry is further develop-
ment of existing and well established methods for special and difficult cases as for example open
shell systems and excited states.

This work has been inspired by both challenges and tries to offer some new solutions to
these problems. They are formulated on the grounds of well known and standard Configuration
Interaction method, that had been devised and employed to account for the electron correlation
i.e. to go beyond the one particle approximation. On the other hand the methods presented



in this thesis are far from the methodological purity and are based on effective combination
of concepts, coming from different approaches to the electron correlation problem. Certainly
all these approaches are interrelated and this fact has been used many times to introduce new
schemes and algorithms.

The Superdirect Configuration Interaction (Sup-CI) method, proposed independently by
Bendazzolli [42] and in a more general form by W. Duch [39] - the supervisor of this thesis - uses
Perturbation Theory to built effective short linear expansion of the electronic wave function.
This idea has been previously used with great success in various diagonalization algorithms for
instance. The Sup-CI method in third order is a matter of the first part of this work. It is tested
on a series of benchmark problems and its efficient implementation is discussed. The formulas
for matrix elements occurring in this approximation are derived.

The ’dressing’ of the set of linear equations of the Configuration Interaction (CI) method,
which allows to incorporate non-linear terms of the Coupled Cluster (CC) method, has been used
in the first implementations of the Coupled Electron Pair Approximation method. Recently, it
has been rediscovered and generalized by J.P. Malrieu and his collaborators [86], giving theo-
retical and practical bridge between CI and CC methods. It appeared to be a generator of a
series of efficient algorithms of the Coupled Cluster type, formulated in terms of Configuration
Interaction method. Some of them are presented in the second part of the thesis, with the
obvious accent on those, which the author of this work has contributed to. Because one is facing
a collection of (gregarious) ideas in this case, I shall leave further comments to the subsequent
parts of the work.

Most of the presented schemes have been formulated in terms of multiconfigurational ex-
pansions and are directed to the description of systems having different electronic structures
at different conformations as for instance dissociating molecules, of the open shell systems and
excited states. Multiconfigurational procedures are certainly more complex than their single
reference counterparts, but real chemical systems and processes inevitably require some mea-
surements of a non-dynamical correlation. All those general issues will be discussed in a more
detailed manner in the first chapter.

Coming back to the Gellner’s metaphor, I would like to point out that it may be interpreted
in two - contradictory to some extent - ways. One may regard that it expresses a natural and
fruitful tendency in any systematic search for the logically consistent knowledge, especially in
science. This tendency manifests itself by two rules of scientific investigation. First - do not try
to go too far as long as it is possible. Second - combining known things you may always find
something new. Its deeper meaning suggests however that only straying one may really make a
progress.

This is consistent with the character of a scientific revolution or a change of paradigm, as
described by Kuhn. Men are conformistic. They usually choose what has already been chosen.
They tend to exclude all different individuals from their communities. It may however happen
that a deep crisis may force them to accept previously rejected options or to invent new solutions.
The same concepts do.

Looking at this work from a wider perspective of the theoretical physics, one has to admit that
it has nothing to do with any fundamental question that might change our view of Quantum
Mechanics. The aim of this thesis is to widen the range of standard computational options
enabling chemists to predict behavior of real chemical systems.
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The Quantum Paradigm still seems not to be seriously threatened and we seem to remain
in the relatively calm, intermediate period. I am (gregarious) man and I may only hope that
my modest contribution to the development of Quantum Chemistry will not cause a butterfly
effect.

Seriously speaking, my hope is that at least some of the algorithms I have contributed
to, will find their way to the world of real applications in chemistry and molecular physics or
will inspire some further formal developments resulting in more mature methods. It seems to
me that combining traditional approaches may not only serve in increasing of the efficiency of
calculations, but it may also bring a new light on the mutual relationships among those deeply
interrelated approaches.

11



Chapter 1

Introduction

Some basic aspects of the description of electronic states of chemical molecules and method-
ological background of the developments presented here shall be considered in the following
chapter.

1.1 Roots

In Quantum Mechanics any microscopical system may be characterized by the mathematical
quantity called a wave function (usually denoted as ¥(r,?)). The wave function has probabilistic
interpretation: ¥*(r,¢)¥(r,¢) means the probability density of finding objects, a given system
consists of, at points given by r and at a moment ¢. It fulfills time dependent Schrodinger
equation
dV(r,1)
ot
A differential operator H is called Hamiltonian and its particular form is depended on the system
considered. We shall consider only non-relativistic Hamiltonians.
When the potential V is not depended on time, one can separate variables, obtaining time
independent Schrodinger equation

ih = HW(r,1) = [T+ V(x,)| ¥(r,1) (1.1)

HU(x) = [T +V(r)] w(r) = BU(x) (1.2)

Square integrible (i.e. localized in space) solutions of this equation define a Hilbert space H.
The bounded states of a system are represented by functions belonging to H and thus may be
expanded in terms of eigenfunctions of f{, that form a basis of the space H. A bounded state,
which is a superposition of eigenfunctions having the same eigenvalue F, is called a stationary
state. A set of eigenvalues F,, associated with all stationary states is in turn called an energetic
spectrum of a system [4].

The goal of Quantum Chemistry is to solve the Schrédinger equation (1.2) for a given chem-
ical system. More precisely, one of the main objectives of Quantum Chemistry is to find (not
necessarily all) stationary states of electron cloud in the potential associated with the interac-
tions between nuclei and electrons, a given molecule consists of. Speaking in general terms, the
methods presented in this thesis are aiming at that goal as well.
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The study of time dependent phenomena (e.g. arising in the interaction between time-
dependent external field and the electronic system) in general require solving the time dependent
Schrodinger equation, but this may often be done in the basis of time independent eigenstates
of eq. (1.2) [5].

There are only a few known analytic solutions of the Schrédinger equation for such simple
systems as hydrogen atom. Therefore various approximations are inevitable. They not only
allow us to solve the Schrédinger equation but also play a fundamental role in understanding
(modeling) of molecular structure.

Since a large difference in mass between electrons and nuclei it is well grounded to pos-
tulate the separation of nuclei and electrons motions [5]. This assumption is known as Born-
Oppenheimer approximation (or adiabatic approximation if one includes some additional terms
that do not couple nuclei and electronic states [5]) and leads to great practical and conceptual
simplifications. It allows to introduce the electronic Hamiltonian H.

H.(r,,R)=T(r.)+ V(r,,R) (1.3)

and electronic wave functions that depend on the (fixed at a given conformation) positions of
nuclei R as parameters only. In the above equation r. denotes a vector of electronic coordinates.
Since the potential V(r.,R) consists of one-electron, separable terms and two-electron non-
separable terms

V(r.,R)= Z(ﬂmHZiHZL = hy + hy (1.4)
A

% rea(R) p<l TR

one may define the one- and two-particle parts (denoted as hy and ho respectively) in . [6].
The summation over A refers to the atomic centers and atomic units are used in the eq. (1.4).

As a consequence of the separation of the electronic and nuclei states the electronic energy
(eigenvalue associated with electronic wave function) plays the role of a potential energy in the
motion of nuclei. This in turn allows to introduce the concept of the Potential Energy Surface
(PES) [5]. Therefore the electronic structure is not only important for the description of the
electronic phenomena (as for instance excitation energies or transition probabilities) but it serves
also as a starting point for further investigation of vibrational and rotational phenomena.

Another model central to contemporary Quantum Chemistry is the one-particle approxi-
mation. Within this model every electron is associated with a one-particle function, called an
electron spin orbital v¥;. One may look for one-particle functions that define the energetically
lowest many-particle wave function, which is defined as antisymmetrized product (determinant)
of one-particle functions. It brings substantial reduction of the complexity of the problem and
leads to a set of well known integro-differential Hartree-Fock equations for one-electron problems
(a single electron interacting with an averaged field of all electrons)

foi = ey f=h+ Z(jj ~ k) (1.5)
J

where e; is called one-particle energy and the Fock operator f is a sum of one-particle Hamil-
tonian and Coulomb and exchange operators respectively. For N electrons, from a set of spin
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orbitals with N lowest one-electron energies one can built the best single determinant approxi-
mation to the ground state of the N-electron system described by an electronic Hamiltonian .
[6].

In case of atoms and linear molecules the above equations may be directly solved by numerical
methods [12]. Because the operator f is defined by spin orbitals t;, one has to solve eqs. (1.5)
iteratively, in a self-consistent way. Unfortunately, this procedure is not as yet applicable to
molecules consisting of a larger number of atoms [12] and further simplifications are required.

1.2 Molecular orbital approximation

The N-particle Hilbert space HV has very nice and simple structure in the one-particle ap-
proximation. It is built of the one-particle function products i.e. it has the form of a tensor
product

HY = o™ (1Y) (1.6)

where H! denotes the one-particle Hilbert space of all localized one-particle functions (dim(H!) =
o0). When dealing with fermions, only the antisymmetric subspace ApN
account (we shall skip further the A index). Solving the Hartree-Fock equations in this space
one obtains the so-called Hartree-Fock limit for the energy of N-particle system [6].

As was pointed out in the previous section, except for the simplest linear molecules, alge-
braization of the problem is necessary to obtain solutions of the Hartree-Fock equations in case
of chemical systems. It was Roothan, who introduced the expansion of molecular orbitals in the
finite basis of atomic orbitals [10]. Therefore we say about Hartree-Fock-Roothan equations or
LCAO MO (Linear Combination of Atomic Orbitals, Molecular Orbitals) method.

From the formal point of view it means that one-particle Hilbert space H! has finite di-
mension n, where n is the dimension of the basis set used and certainly the NV-particle Hilbert
space is also of finite dimension. As the one-particle basis approaches completeness (n — o0)
the method approaches Hartree-Fock limit. The acronym SCF (Self-Consistent Field) method
is often used to distinguish the Hartree-Fock method in the finite basis set.

It is common to introduce a set of k& = n/2 spatial basis functions, electron orbitals. The
spatial parts of the spin orbitals with the a (and (3 respectively) spin function are expanded
in terms of these atomic orbitals, giving finally n molecular spin orbitals. Assuming the same
spatial parts for @ and [ spins, we get the restricted HI' (RHF') method. Relaxing this constraint
one obtains unrestricted HF (UHF) method [6].

In practice, one has to restrict the dimension of the basis set severely (to about 100 in
routine calculations). Quality of the basis is of great importance. The art of constructing of such
basis for molecular ab initio calculations has been developing since the early days of Quantum
Chemistry. The most common choice is to expand molecular orbitals as linear combinations of
atomic gaussian functions (i.e. with exponents and coefficients of primitive functions optimized
in atomic calculations), leading to simplifications in evaluation of multicentered integrals [6].

In contradistinction to ab initio methods the so-called semi-empirical methods mean pro-
cedures that use some parameters fitted to known empirical data and not only basic physical
constants [14]. The use of atomic functions with optimized parameters for the construction of
one-particle basis functions makes the distinction between ab initio and semi-empirical methods

has to be taken into
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actually only traditional. Nevertheless, the semi-empirical methods usually assume a simplified
form of a Hamiltonian, as the Hiickel one, and are in this sense less refined [7].

The Hartree-Fock approximation is important not only for its own sake but as a starting
point to the so-called post Hartree-Fock methods that try to incorporate the instantaneous
interactions among the electrons - to include the electron correlation, as quantum chemists say.

1.3 Electron correlation problem

Although the Hartree-Fock (or molecular orbital) approximation has proved its high predictive
capabilities, it is very often inadequate for description of chemical systems and processes because
they depend on energy differences (which are relatively small) rather than on energies themselves.

In extreme cases like that of the F, molecule, the HF method is unable to describe the
bonding [8]. The problem cannot be removed even by using the numerical solutions of the HF
equations (HF limit). Single determinantal description, even in the infinite Hilbert space, is not
adequate and one has to go beyond the one-particle approximation.

When each electron is assumed to move in the field of nuclei and the average field of all other
electrons, one should expect an error coming from the discarding of the instantaneous effects in
the Coulomb interactions, arising from the interelectronic potential ejey/rqs.

The electronic correlation energy is essentially a measure of the error of the HF method. It
is defined by the difference

Eeorr = E — Egp (17)

where E is the exact eigenvalue of the Hamiltonian H under consideration [9]. Because the
Hamiltonian employed normally in Quantum Chemistry does not contain the relativistic effects,
which are always present in the experimental energy, the correlation energy has no physical
meaning. It only indicates how good (or bad) the HF approximation is.

It is worth to note that working in a given basis set (H!) of finite dimension we may only
talk about HF energy Escr and the ’exact’ energy I in the resulting N-particle space H™.
Despite that, the correlation energy (in a given basis) remains very useful for the evaluation of
the quality of the post Hartree-Fock methods.

When dealing with finite dimensional basis sets another problem arises, connected to the
Coulomb correlation and leading to a slow convergence of the post HF methods. The restricted
flexibility of such an approach causes errors even when going beyond the one-particle approxi-
mation. Taking into account all determinants in N-particle space H™Y one is not able to describe
properly such special effects as the Coulomb hole, arising for r15 — 0. The solution for this
problem requires methods that explicitly take into account the interelectron distances rio and
face serious computational difficulties [11].

One should not forget that, in practice, the correlation energy is a formal parameter rather
than a measure of physical correlation in the system. The latter one is partially included in
the HF method and partially is not included even in F of eq. (1.7), when employing finite
dimensional approximations.

In the next section we shall briefly consider different post HF approaches. An important
remark should be made before we go further. All the considerations presented here refer to
molecular ab initio methods and not to density methods. Various methods oriented at electron
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density instead of the wave functions undertake recently an intensive development. They are
commonly referred to as the Density Functional Theory (DFT) and offer an interesting alterna-
tive to the traditional molecular approach (at least for the lowest states in a given symmetry)

[13].

1.4 Going beyond the Hartree-Fock method

A given choice of » atomic basis functions for an N-electron system implies that one obtains in
the SCF procedure n (usually orthonormal for the sake of computational efficiency) molecular
spin orbitals. They form a basis of the finite dimensional space H!. All their antisymmetrized
products are eigenfunctions of N-particle Fock operator P o= Z fZ and form a basis of V-
particle Hilbert space ™. The number of all such products is given by n!/N!(n — N)! and may
be very large even for the systems of a moderate size. For 28 basis functions and 10 electrons (of
the water molecule for instance) it reaches 107. Although this number is significantly decreased
(by about one order of magnitude) when excluding determinants characterized by unwanted
total spin projection and further reduction is possible by the full spin and space symmetry
adaptation, it shows the potential computational difficulties.

Those spin orbitals that occur in the energetically lowest, so-called Hartree-Fock determinant
Uyrr, are defined as occupied spin orbitals. The rest is called wvirtual spin orbitals. Since one can
describe each determinant with respect to the HF one (by the number of occupied spin orbitals
replaced by virtual spin orbitals), we may define single (S), double (D), triple (T), quadruple
(Q) ... N-tuple substitutions or excitations

N={lUup)} O HY OHY - O HY (1.8)

From now we shall use more convenient language of the state vectors |Yyp) in the abstract
Hilbert space rather than the explicit coordinate representation Vyp(r) = (r|¥yr). The par-
titioning of (1.8) is a useful tool to avoid problems associated with huge dimensions of H”" by
defining some truncated schemes. When employing orbitals rather than spin orbitals and spin
adapted basis rather than determinantal one, it is necessary to use other partitioning, based for
instance on the concept of the interaction space, since the excitation level may not be uniquely
defined [16].

Going beyond the Hartree-Fock method means that we take into account not only the ground
HF state. A given state is expressed as a linear combination of a number of N-electron functions.
Among those state functions (being in case of symmetry and spin adaptation combinations of
determinants) one can distinguish those that have significantly large coefficients (comparable to
the coefficient of the ground state determinant) in the expansion of a given state in terms of
N-particle basis and those that have relatively small coefficients or weights in the total wave
function. Such a distinction is never sharp nor unique. Nevertheless, some intuitive heuristics
usually allow us to justify a given choice.

In general non-dynamical or structural correlation effects and dynamical correlation effects
are distinguished [16], manifested by relatively large or small coefficients respectively. A more
strict distinction follows the definition of Sinanoglu [15] which says that the term non-dynamical
correlation refers to a minimal qualitatively correct description of the separation of a molecule
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into fragments. Thus, the non-dynamical correlation arises in a situation, when some configu-
rations are of different importance at various molecular conformations and all of them have to
be included in the zeroth order treatment to obtain correct description of the PES. It also may
happen that even at equilibrium the single determinant treatment is entirely not adequate (as in
the I case mentioned before) and a multireference treatment, accounting for the non-dynamical
correlation, is necessary. Some excited states are also inherently of the multireference character.

The above situation implies that all methods used in Quantum Chemistry, primarily devised
for single reference zeroth order description, has now its multireference counterpart. It concerns
also the SCF method itself, which has its generalized version: Multiconfigurational SCF (MC-
SCF') method. In the MCSCF scheme the orbitals are variationally optimized not for single
determinant, but for linear combination of determinants. The choice of the reference space is
often based on the concept of the Complete Active Space (CAS) i.e. a space composed of all
possible excitations within a given set of (chemically active) orbitals. It is equivalent to the FCI
treatment (see subsection 1.4.2) in this small subspace of H™.

One should recall another and related distinction, important from the conceptual and prac-
tical point of view. A closed shell state of N-electron system is a state described by a single
electronic configuration, consisting of completely occupied shells. Any other state is called an
open shell state. This includes cases with a single modeling configuration but involving partially
occupied shells and states that cannot be described in a qualitatively correct way using single
reference approach [16].

Once the non-dynamical part of the correlation energy is taken care of by small MCSCF
or CASSCF calculations the post Hartree-Fock methods account for the dynamical part of it.
This is computationally more demanding. Moreover, as mentioned before, the problem with
quantum chemical methods is that there is no clear distinction between the dynamical and the
non-dynamical parts of the correlation energy in different molecular conformations. In the next
three subsections we shall restrict to the single reference approaches unless otherwise stated.

1.4.1 Perturbation Theory

Perturbation Theory prevails in many branches of physics. It has been also used as one of the
basic tools of the molecular quantum mechanics.

On the grounds of molecular orbital approximation, a special role is played by the Rayleigh-
Schrédinger expansion with the Fock operator as a zeroth order approximation to the exact
Hamiltonian [17]

H=Hy+V; Hy = F; V:ZT;J‘I_ZW (1.9)
1< i
where u; is a potential of the motion of ¢th electron, obtained in the one-particle approximation.

Then, the expansion of the wave function for a state |¥) with a dominating contribution from
|Wo) and the corresponding expression for the energy are given order by order

1) = Qpp|o) = (14 QW + 0@ 4 ..|w,) (1.10)
E=p0 4 pM p@ ... (1.11)
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where the indices in the parenthesis (¢) refer to orders in the pertubative expansions and
W) = QOWe); W) = |Wy). The zeroth order description is obtained using the one-
particle approximation F|\IJO> = FEo|¥o); E©) = Ey, as indicated by the partitioning of the
total Hamiltonian. The operator Qpy is called a wave operator and occurs in the theory of effec-
tive Hamiltonians (see Sec. 4.1). Acting on the model functions it produces the exact functions.
In this and the two next subsections it will simply denote a generator of the particular (here
perturbative) expansion characteristic for a given post Hartree-Fock method.

One reason for the success of the Rayleigh-Schrédinger approach is that the exact energy
is not explicitly present in this formalism and therefore it can be applied to a group of states
simultaneously and leads to the energy-independent effective operators [17]. Second reason is
probably more important. Using the so-called diagrammatic technique (graphical representation
similar to that introduced by Feynman in field theory) one can conveniently derive formulas for
energies and properties at subsequent orders in terms of sums of products of molecular integrals
[17]. Using this technique, it was also formally shown by Goldstone [18] that the so-called
unlinked terms, that have non-physical i.e. non-linear dependence on the number of electrons in
the system disappear from the expansion and they do not need to be considered at subsequent
orders.

When a particular method scales properly (i.e. linearly) with the size in a homogeneous
system we say that it is size-extensive [19] [21]. In case of the methods formulated in the second
quantization language size-extensivity is insured by the requirement of linked expression for the
energy and is very often simply identified with the lack of unlinked terms [20]. The Mgller-
Plesset Many Body Perturbation Theory (MBPT) i.e. the RSPT with the partitioning of the
Hamiltonian of the form (1.9), first proposed by Mgller and Plesset, is size-extensive, even when
truncated at finite order, taking benefit of the linked diagram theorem [18].

Related, although different notion which deals with the problem of correct scaling with size
is size-consistency. As defined by Pople et. al. [22] a method is considered size-consistent if the
energy of a (super)system A---B composed of two (sub)systems A and B far apart is equal to
the sum of subsystem energies computed separately by the same method. Hence we require that
for any molecule AB the following separability condition is satisfied

E(AB) 2= E(A---B) = E(A) + E(B) (1.12)

where A and B may be open or closed shell fragments.

The above condition for a supersystem A --- B may be satisfied by a given method only when
the separable (i.e. correctly dissociating) reference function is used. Thus size-consistency im-
poses additional requirement on the zeroth order description and refers to a desired model of the
dissociation processes. While using separable zeroth order description, size-extensivity ensures
size-consistency. The reverse is however not true. In the interaction regions size-extensivity is
still well defined as lack of unlinked terms, whereas size-consistency i.e. additivity of a super-
system energy is not (the same concerns atoms).

There is a lot of confusion in the literature, regarding the terms size-extensivity, size-
consistency and separability. There is no canonical (commonly accepted) distinction among
these terms. Therefore it is necessary to evoke explictly the definitions exploited here (for
further discussion see Sec. 4.1).

18



Perturbation methods that have been very successful and are routinely used are second, third
and fourth order Mgller-Plesset MBPT. This is a well defined theory that can be unambiguously
applied in completely automated way [1]. The success of the MBPT method depends on the
proper zeroth-order description of the system. Perturbation theory can be applied safely for the
ground states of closed-shell molecules around equilibrium geometries.

Unfortunately, the generalization of PT to multireference situations (referred to as multiref-
erence PT — MRPT) is not straightforward. There is no well defined zeroth order Hamiltonian
in this case. Some MRPT schemes have been formulated, but they rely on a rather arbitrary
choice of Hy or are iterative. All of them become quite expensive already at the third order [80].

1.4.2 Configuration Interaction method

Expressing the wave function as a linear combination of (all or a part of ) determinants belonging

to HY
d

T) = > er|¥p); d < dim(H™) (1.13)
L=0

and applying the Ritz variational principle, one obtains conceptually the simplest approach to

electron correlation problem, known as the method of configuartion interaction (CI) or super-
position of configurations [31]. It leads to well known eigenvalue problem

Hc = FSc (1.14)

where usually the overlap matrix S = I. When all determinants are employed we talk about full
configuration interaction (FCI), otherwise about limited CI.

The method is variational i.e. £ is an upper bound to the exact energy (of the considered
Hamiltonian) [31]. As the one-particle basis approaches completness the F'CI energy approaches
the exact energy. Since the FCI result is the best one can get in a given basis set it is often used
as a benchmark result for other calculations.

Variational methods are much more robust although computationally more demanding, since
they are iterative and their complexity is at least of the third order (n%). They are also not so easy
to use as MBPT methods: except for the most commonly used configuration interaction method
with singly and doubly excited configurations (CISD) out of a single reference, roughly equivalent
in accuracy (at least when the size-inextensivity errors are small) as well as computational
complexity to the MBPT(3), they require experience in the selection of configuration space and
interpretation of their results.

While MBPT methods may give us energies and properties directly, variational methods
almost always compute wave functions. For large basis sets or highly excited configurations
vectors of wave function coeflicients become prohibitively long, making the computer memory,
rather than the time of computations, the main barrier of further progress. The full CI (FCI)
techniques used in recent years produce vectors of dimension up to 10° — 10? [29] and an order
of magnitude increase is in sight [30].

Nevertheless, only limited CI schemes (CISD, CISDTQ) remain practical, despite tremendous
progress in both computer and CI technology. Thus, in the expansion of the CI wave function,
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which may be rewritten in the intermediate normalization as
W) = Qor|Wo) = (1+Cr + Co 4 -+ Cn)|Wo) (1.15)

one is usually tempted to truncate it at a given level of excitations. The k-body excitation op-
erators (', generate k-tuply excited functions (with respect to |¥g)) with the proper coefficients
i.e.
Cel¥o) = > er|¥y) (1.16)
|WpyeHE

where the summation over L is restricted to a proper subspace H% consisting of k-tuply excited
functions only. In the second quantized form they become

MM M T

ék — Z Cal"'ak éal"'ak (117)

where the indices m; refer to occupied spin orbitals, a; to the virtual ones and

g1k — gt gt
N A R (1.18)

Any truncated CI suffers from very serious formal drawback. It is neither size-extensive
nor size-consistent [23] [20]. It means that one cannot properly describe using approximate CI
schemes, processes like dissociation or extended systems like crystals. Because cancellation of
unlinked effects that are present in truncated CI schemes is only possible by mixing different
categories of excitations, a remedy for this problem may be achieved by an exponential factoriza-
tion of the wave operator [20]. Nevertheless, one should note that the Multireference CI (MRCI)
method, which is direct generalization of the single reference counterpart, allows in principle to
remove substantial part of the size-consistency error.

1.4.3 Coupled Cluster method

The Coupled Cluster (CC) method, originally formulated in the framework of nuclear physics
by Coester and Kiimmel, was later introduced to molecular electronic theory by Cizek [64]. The
CC method is non-variational but it is size-extensive. The CC wave function has an exponential
structure

W) = Qoe W) = €T Wo) (1.19)

where the cluster operator 7' is given as

T=Ty+To+-+1Ty (1.20)
TelWo) = > 1}|¥z) (1.21)
|‘1JL>EH%

with the coefficients tj{ called cluster amplitudes, which are unknown quantities to be determined.
The index k in the amplitude tj’{ says that this amplitude is associated with the promotion of
k electrons from k occupied spin orbitals to k& virtual ones and not with a product of two
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promotions defining finally the same function |¥r). Such products occur due to the exponential
structure of the CC expansion and as a result higher excited functions appear also with the
coeflicients being products of lower rank amplitudes. For example the total coeflicient in the CC
expansion of a quadruply excited function |V, ) will involve t4LO and products of the type t%l t%z)
as well, where Ly and L, denote some doubly excited functions defining in terms of excitations
decomposition of the function Lg. The additional index k becomes obsolate when using the
second quantized definition of the cluster operator

MM~y M

Ty = ST e g (1.22)

One way to look at the CC expansion is based on the comparison with the MBPT method.
When rearranging all terms not order by order but according to the rank of k-body effects
included one finds that it may be realized by means of the exponential expression (1.19) for the
wave function. Moreover, as shown by Hubbard [27], there is a CC counterpart of the linked
energy diagram theorem in MBPT stating that only the connected diagrams has to be retained
in the CC expansion [20] [28].

The working equations of the CC method are usually obtained by projections against func-
tions defining the corresponding CI space [28]. Premultiplying the Schrédinger equation ﬁ|§l> =
E|¥) by e~ one obtains

e THeT|Wo) = E|W,) (1.23)

or equivalently, using the identity [28]
H|eTWo) = (HeT ) ]eTWo) = e (HneT )| ) (1.24)

and subtracting (Wo|H|¥,)

(Hyel) | Wo) = AE|W,) (1.25)
where Hy indicates the normal product form of the Hamiltonian and ( ). means that only
connected terms are included [20]. Projecting eq. (1.25) onto |¥¢) and the set of the excited
state functions, one obtains the expression for the correlation energy AF = F — <\I;0|f{|q;0>
and the amplitudes of subsequent excitation, respectively. Certainly one might also project eq.
(1.23) and then using the Hausdorff-Cambell formula one obtains an equivalent set of equations
for cluster amplitudes [5].

The simplest CC type approximation is the CCD method. Within this scheme one postulates
that 7 = T,. The corresponding equations for the energy and amplitudes of doubly excited
determinants (defined by a set of the one-particle indices |f‘;’> where 7, j are occupied indices
which are replaced by the virtual indices a,b) have the form

AE = (Wo| Hn(1 4 T5)|¥o). (1.26)

. . 1.
0= (N + Ty + ST5)| Vo) (1.27)

As may be seen from the above formulas, all the linked quadruple excitation energy diagrams
that arise from the disconnected part of the wave operator T are included in CCD. The resulting
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energy is accurate up to the fourth order of MP(DQ) i.e. Mgller-Plesset PT in a space of all
double and quadruple excitations from the closed shell ground state (for open shells that may
require multireference treatment the comparison is not so obvious) and moreover includes infinite
summation of all pair effects [24]. The computational complexity of the CC(S)D procedure is
of the order n® [25]. Neglecting most of the non-linear terms while retaining those which are
necessary to restore size-consistency one obtains various approximations of the CEPA (Coupled
Electron Pairs Approximation) type [71].

From the formal point of view the CC method is certainly superior to the CI method. It
is size-extensive, has nice invariance properties and is highly accurate even when truncated at
low rank operator level. On the other hand the coupled cluster approach is more difficult to
generalize to the multireference situations than the CI approach. The impressive development
of Multireference Coupled Cluster (MRCC) methods has led to mature formalisms and tractable
approximations [65]. An increasing number of applications to atomic [77] and molecular [77] [84]
[97] systems is encountered in the recent literature. However the computational complexity of
these methods is very high and there are still many specific problems that have to be overcome
[78] in order to reach the ’black box’ level.

1.4.4 Wind rose

Figure 1.1: Standard molecular ab initio methods

Heorsp = Hprs Hersp = Heosp C Herspro

Qcrsp = Qpra Qccosp ~* QorspTQ

Hprs O Heoosp

Qpra ~" Qccosp
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Some of the previously presented observations about the basic approaches to the electron cor-
relation and their most typical approximations are put together in the schematic diagram 1.1.
Hx indicates here the subspace of HY, the problem is projected onto (within a given approx-
imation). Qy indicates the range of interactions (mixing of different Hs, Hp, ... subspaces)
that is actually taken into account and is related to the quality of a given approximation.

The relation ~ may be read as ’approximations of comparable quality’ i.e. including the
same range of interactions (although not necessarily at the same level of accuracy). The star *
denotes ’practically comparable approximations’ in the sense of comparable quality of results,
provided that each method is used in the range of its applicability (e.g. when perturbation series
is quickly convergent, size-consistency error is small or the cluster assumption is reasonable for
PT, CI and CC respectively). PTN means Nth order of the MBPT method (for the energy).
Parametrization of the wave operator (simply as a generator of the expansion, not necessarily
implying the use of the theory of effective Hamiltonians) is indicated by arrows labels.

Perhaps the relationship between PT4 and CCSD requires more detailed comment. In fact
the restriction of 7' to Ty and T, is an approximation which omits some important 4" order
corrections to the energy (i.e. the linked contributions of the triples) but includes some higher
order effects: 5t (resp. 6Y) order corrections coming from T2Ty and T3 (resp. T7). Thus,
one can expect similar results in PT4 and CCSD, except when some T5 terms have very large
amplitudes [24].

Finally, one should remember that the above schematical presentation refers to the single
reference methods and is much more approximate in case of multireference schemes (in this case
only Hilbert space CC approch may be compared directly to MRCI for instance - see Chap. 5).

1.5 Introduction par excellence

After brief presentation of the methodological background of this thesis, it is time to introduce
more precisely the methods, it is conserned with. Figure 1.2 shows their relative positions with
respect to the three main (molecular) approaches to correlation energy i.e. CI, CC and PT with
arrows indicating the 'migration’ of ideas.

The CI node is here treated in a special way with arrows going out described by the following
labels: lvp - linear variational principle, ff- functional form of the method, pev - pseudoeigenvalue
problem. All these terms and relationships between the new algorithms and standard approaches
will be described in details in the subsequent parts of the thesis.

For the sake of simplicity, the MR acronyms, indicating multireference procedures are omit-
ted. It has also deeper motivation. All the methods, even though they may be formally single
reference (i.e. there exists a state function which plays distinguished role) work in multireference
spaces i.e. generated as single and double substitutions from a set of reference state functions.

There are many procedures (e.g. SSCC method proposed by Adamowicz [92], some ver-
sions of MRPT [44]) that similarily work in multireference spaces, although they employ single
reference formalism. To avoid mistakes one should call them single reference methods in mul-
tireference spaces (SR(MR)), as proposed by Duch [44]. All the methods presented below are
at least of the SR(MR) type.

e The Superdirect Configuration Interaction or Sup-CI method. It has been proposed in-
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Figure 1.2: New algorithms: methodological perspective
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dependently by Duch [39] and by Bendazzolli et. al. [42]. It has the usual versatility
and stability of the CI methods with computational efficiency typical to that of the many
body methods, such as the many-body perturbation theory (MBPT). Hamilton operator
is projected into a space of a few trial vectors, such as Krylov, Nesbet or Mgller-Plesset
perturbation correction vectors. In this space Hamiltonian matrix elements may be di-
rectly computed in the many-body fashion, as weighted sums of integral products over
orbital indices and such formulas up to the third order are derived in the second chapter.
Variation-perturbation method based on the first order wave function is equivalent to the
Sup-CI method with a single correction vector of the Mgller-Plesset type. The Sup-CI
method in third order is consisdered in this work.

The Coupled Cluster method through the pseudoeigenvalue problem or CCdCI (’-d-’
standing for 'dressed’). It was demonstrated by Malrieu et. al. [104] that a set of non-
linear equations for every approximate CC method may be translated into a set of ’dressed’
linear equations of the corresponding CI approximation. In other words the CC methods
may be formulated in terms of the pseudoeigenvalue problem. Then, using very stable
and efficient Davidson-like diagonalization procedures one may obtain its solution in an
iterative, self-consistent manner or directly, using perturbative arguments for the non-
linear, coefficient-dependent, dressing terms. Another, very important advantage of such
reformulation is great flexibility, comparable to that of pure CI. Selected schemes that
employ only a part of a given class of excitations (instead of all of them taken into account
in CC once a given T; is included) and treat the remaining small contributions by lower
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order methods are easily obtainable.

One considers in this work various dressings of the MRCI matrix by non-linear terms
appearing in CCSD or CEPA methods, in a way insuring size-consistency of such defined
procedures. The state-specific size-consistent multireference procedure of the CC type
(referred to as SS-CCdCI) as well as its generalization to state-universal or multistate
procedure (MS-CCdCI) are presented in the chapters 5 and 6.

Approximate schemes of the CEPA or MRCEPA type: Size-consistent Self-consistent Con-
figuration Interaction or (SC)?CI method and Generalized Coupled Pair Functional or
GCPF method, and Multireference or MR(SC)2CI method, respectively, are also intro-
duced (the (SC)2CI method for pedagogical reasons - the author has not contributed to its
invention but has clarified the relationship between this scheme and conventional CEPA
method). The character of approximations introduced to CCdCI to obtain such CEPA
type procedures will be discussed in the Chapter 4.

e The acronym (SC)?CI(pt) denotes Size-consistent Self-consistent combination of selected
CI and perturbation theory, which is actually a selected CEPA type procedure with an
account of a pertubative type for the influence of remaining small (i.e. not selected)

doubles.

None of the algorithms presented here matches all basic characteristics of the pure CI method.
Nevertheless, there is a common denominator occurring in all of them: at least a part of CI
machinery used to maximize the efficiency of the method.

From the formal point of view the pseudoeigenvalue problem cannot be regarded as arising
from a linear combination of a set of state functions. However, the procedure for solving this
problem is the same as for the original set of equations of the CI method. The Sup-CI method
in turn, although it employs compact linear expansion of the wave function and variational
principle, similarily to MBPT avoids the explicit construction of the long vector of the wave
function coefficients and uses matrix elements expressed in terms of weighted sums of integral
products over orbital indices. In light of the above, the title of this thesis reflects my subjective
point of view on the matter (coming from a tradition I have been growing up). I hope hewever
that it expresses the right perspective in this methodologically confusing situation.

Theoretical methods of quantum chemistry have reached a high degree of sophistication in
recent years. A good deal of this sophistication has been passed on to research chemists. Thanks
to such "black box” packages as GAUSSIAN [1], HONDO [2] or GAMESS [3] ab initio systems
of programs, computational chemistry is finding its way to the real world applications.

The simplest molecular ab initio methods, such as the Hartree-Fock and the second order
perturbation theory, are the most frequently used. These methods are not only the least expen-
sive but also the easiest to use. Application of more sophisticated methods requires much more
understanding of the theoretical techniques and more computer resources. However, real chemi-
cal processes, such as multiple bond breaking, chemical reactions or quasidegenerate situations,
are not easy to describe adequately using simple methods. There is a great need for reliable and
computationally inexpensive methods that could treat the more complicated chemical processes
in qualitatively and quantitatively right way. My hope is that at least some of the algorithms I
present in the subsequent parts of this work will find their way to the world of real applications.
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Part 11

Superdirect Configuration
Interaction method
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Chapter 2

Superdirect Configuration
Interaction method

The Superdirect Configuration Interaction (Sup-CI) method [39] is presented in this chapter.
A version in which third order contributions are computed [57] for a relatively small (10-100)
space of reference and correction vectors has been implemented using traditional approach to
computing of matrix elements and several numerical tests on benchmark problems are included.
Different points of view on the superdirect CI method as well as selection of the best "effective
first order spaces” and size-extensivity corrections in Sup-CI are discussed.

The MBPT like formulas for the matrix elements have been also derived, using the Symmetric
Group Approach (SGA) to CI and an algebra of circular operators, invented for this purpose by
Duch [56]. They are presented in the next chapter.

2.1 Introduction

Correlation energy, i.e. the difference between the exact non-relativistic energy and the Hartree-
Fock results, is hard to calculate if we want the dynamical part of it (the non-dynamical part
may be taken care of by small MCSCF or CASSCF calculations). From the practical point of
view we are usually not so much interested in obtaining the exact results as in qualitatively
correct description. What we really want to see in the case of stretched chemical bond is the
potential curve which is parallel to that experimentally obtained or at least to the FCI potential
curve. Such description should be possible with a small number of reference configurations to
take care of the non-dynamical part of correlation and third-order perturbative corrections to
include a substantial part of dynamical correlation.

In the configuration interaction method (CI) solution of the Schrédinger equation is obtained
by expressing the wavefunction in the form of a linear combination of N—electron functions, so—
called Configuration State Functions (CSFs). From a formal point of view this means, that the
Hamilton operator is projected into a finite subspace of the Hilbert space, spanned by the CSFs.
In this space one can find the elements of the matrix representation of the Hamiltonian, and
then solve the eigenvalue problem [31] (see also Sec. 1.4).

This conceptually simple method of describing the electron correlation in practice has very
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serious limitations, connected with the slow convergence and thus the length of the CI expansion.
Many schemes have been devised and employed in order to overcome these limitations. One may
divide them in 2 classes: improving the CI techniques to treat very long expansions, or selecting
CSFs to reduce the length of the expansion.

Since the Hamilton operator contains one and two-body interactions only it should be possi-
ble to reduce the N-particle problem to the 2-particle equations. The direct CI method proposed
by Roos [32] was the first step in this direction, getting rid of the N-particle matrix elements
but leaving the coefficients of the N-particle CSF's.

Direct CI has dominated development of CI algorithms enabling very long expansions in
terms of CSFs. It became a standard method since over two decades, with various implemen-
tations based on graphical unitary and symmetric group approach [33, 34]. In this scheme
solving the matrix eigenvalue problem is coupled with simultaneous matrix elements evaluation,
without explicit construction of the matrix H. The next step in this spirit is to avoid not only
construction of the matrix, but also of the long eigenvectors.

Several CI methods belonging to the second class, aiming at reduction of the length of CI
expansion, were formulated. In the simplest case they reduce the number of CSFs by performing
numerical selection to find those CSFs that contribute the most to the wavefunction sought. In
more complicated cases CSFs are not constructed as products of spinorbitals but are made
from more complex (two or more-particle) functions such as geminals or explicitly correlated
functions. In CI method Hamiltonian is always projected into the space of selected CSFs.

Projection into the space of CSFs build from explicitly correlated functions gives more accu-
rate results than projection into the space (of similar dimension) of CSFs build from one-particle
functions. However, computational complexity due to the complicated form of matrix elements
is increased when explicitly correlated functions are used [11].

Another possibility exists: projection into relatively small number of N-particle functions
constructed as linear combination of CSFs. This approach leads to various forms of contracted CI
[38] and to the Sup-CI method. It has been recently formulated by Duch [39] as an improvement
over the Connected Moment Expansion (CMX) [40, 41], and subsequently traced back to an
earlier (expressed in a different language, starting from quite different point of view) work of
Bendazzoli et.al, known as the FAST CI [42].

In the Sup-CI approach one avoids construction of both the Hamiltonian matrix and the
eigenvector, obtaining the energies and other properties from equations formulated directly at
the 2-particle level. The Hamilton operator is projected into a space of a few trial vectors,
such as Krylov or Nesbet correction vectors used in diagonalization methods. In this small
space (dramatically smaller in comparison to the space of CSFs in classical approach) matrix
elements are computed directly as sums of integral products over orbital indices (using MBPT
techniques), without explicitly generating an eigenvector.

The aim of the Sup-CI method is to combine the efficiency and simplicity of the many-body
perturbation theory with the robustness of variational methods, optimizing the tradeoff be-
tween the desired simplicity of the method and its potential for the best description of chemical
reactions involving breaking of molecular bonds. Since most chemical processes require mul-
tireference treatment the superdirect CI approach (at the lowest level) within a multireference
scheme is used. In essence one obtains variational results with perturbationally selected and in
some cases optimized zeroth-order multireference states, at the cost comparable to that of the
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third-order perturbation theory.

In the next section the essence of the superdirect approach will be summarized and the
theoretical details described. Some aspects of the implementation of the method are discussed
in the second section. In the third section some illustrative calculations on water, acetylene and
N Hy molecule bond breaking are reported.

2.2 Theory

2.2.1 Sup-CI ansatz

Starting from some zeroth-order solution |0) to the Schrédinger equation we may create a number
of correction vectors improving the quality of this vector

[V(0)) = Rv|0) (2.1)

where the operator Ry is an arbitrary function of the Hamiltonian or of some partition of
the Hamiltonian. In the simplest case we define Krylov, Nesbet and Mgller-Plesset first-order
correction vectors [31] as:

|K(0)) = Rgl0) = QoH|0) (2.2)
IN(0)) = Rn|0) = (Hp — Escr)™ QoH |0)
|M(0)) = Ra|0) = (Ho— Eo)”'QoH|0)

The Epstein-Nesbet and the Mogller-Plesset vectors are made from the Krylov vector di-
viding its elements by different denominators - in the first case diagonal elements Hp of the
Hamiltonian, in the second case elements of the Fock operator Hg. We could introduce more
vectors of this type, for example by adding some scaling parameter that will define intermediate
cases between Nesbet-Epstein and Mgller-Plesset partitioning, or by taking higher powers in the

denominator [42]

|M%(0)) = (Ho — Eo)~"Qol]0) (2.5)

According to Olsen [29] zeroth-order vectors of the following form should be useful:

|ON(0)) = (Hp — Escr)™'(0) (2.6)
|0M(0)) = (Ho — Eo)~'[0)

If the Hamiltonian is expressed via the unitary group generators [33, 34]
H =3 G0 Eyj + 5 3 (IR (Ey B — 61 Ex) (2.8)
iJ ikl

one can easily partition it into physically meaningful terms, defining for example core-valence
H(c—v), valence-valence H(v—v), core-external H(c—e) and valence-external H(v—e) operators:

H=H(c—v)+Hw-v)+ Hc—e)+ H(v—c) (2.9)

31



Correction vectors may be accordingly created for each of these operators (although in this case
selection of correction vectors for the best convergence of the final wavefunction remains an open
question) with the goal of improving and stabilizing the solution of the Schrédinger equation
projected into the space of these vectors:

H|V) = ES|V) (2.10)
where matrices H and S are defined in the space of the trial vectors:

{10) = Rol0), [K(0)), [N(0)), |M(0)) ...} (2.11)

2.2.2 Sup-CI from different perspectives

There are several ways of looking at the Sup-CI.

1. The original point of view [39] was to look at the Sup-CI as the next logical step from
classical CI through direct CI to complete reduction of equations to the single-particle level,
leading to non-iterative approximation to the MR-CISD. It was motivated by the use of the
expectation values of the Hamiltonian powers in the CMX expansion [40] on the one hand, and
by the desire to avoid very long CI expansions, leading to logistic problems with storage of the
bilion-term eigenvector [29].

2. Sup-ClI is equivalent to the first few iterations in a Davidson-like diagonalization method
in which more than one type of correction vectors may be used. In particular the use of the
Krylov vectors leads to the convergence characteristic of the Lanczos method and the use of
the Epstein-Nesbet vectors to the Davidson method [43]. The second iteration in Davidson
diagonalization gives the lowest-order Sup-CI results; the complexity of such calculation is of
the third-order or n®. Multireference Sup-CI corresponds, however, to a new diagonalization
method in which small matrix is created not only from the single new correction vector added to
k-th iteration correction vector —in case of full configuration interaction requiring n** operations
to compute elements of the new iteration vector and n***2 to compute the energy — but also
correction vectors constructed from H|[) for the most important |I) components. These new
vectors are constructed at the cost of n* operations only but computation of the elements of the
small matrix involving these correction vectors require in general n® arithmetic operations.

3. Sup-Clis also a generalization of variation-perturbation theory. In the variation-perturbation
theory variational results are obtained in the space of correction vectors obtained by perturba-
tion theory. Instead of using higher-order correction vectors more correction vectors of the same
order but of different type are added to the variational space, selectively exploring the space of
highly excited CSFs. Second-order perturbation theory wave function is defined in the space of
quadruply exicted configurations relatively to the zeroth-order reference function; in Sup-CI cor-
rection vectors are singly and doubly excited relatively to a number of CSF. The space of CSFs
explored in Sup-ClI is similar to that of the PTMR method [44] but the results are variational.

4. Perhaps the most fruitful point of view on the Sup-CI is to note that it belongs to the
contracted CI type of methods. The Hamiltonian operator is projected into a space of contracted
CSFs (CCSFs) to reduce the number of variational parameters: in the externally contracted CI
[38] all CSF's sharing the same internal orbitals are contracted into one contracted configuration
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state function (CCSF):

() (N-1) ) (N-2) )
Vecor) = Y _Cil®n)+ > CrY_CHeH+ > 1Y CiP|o7)
T T a T ab

] ab
Pt = ol|e}) (2.12)
Eo — (@[ H]2}")
The number of variational parameters left is equal to the number of internal paths for N, vV —1
and N — 2 electrons in the corresponding graph [33],[34].
In the internally contracted case all CSFs that do not contain any external orbitals are
combined into one reference function from which excitations are formed. The general form of
the internally contracted wavefunction is:

Wicer) = ColWo)+ Y CHUH + Y CHwe)
ia ijab
Ve = (EuEy + EojEy)|MCSCF) (2.13)

with the sign + depending on singlet or triplet coupling of orbitals a, b. The number of vari-
ational parameters is almost independent of the number of the CSFs in the MCSCF state.
Unfortunately full implementation of this idea requires computation of the 5-th order density
matrices [37].

In the Sup-CI contractions are formed in a way similar to the externally contracted case,
but disregarding internal-external division of orbitals:

Uscor) = > Cralel®r) =3 Cri > CHlo5))
I,k I,k ijab

Cili = (@ Ri|r) (2.14)

2]7

where k numbers different types of R operators.

5. We project the Hamiltonian into the small space of first-order correction vectors effective
in different iterative diagonalization methods. Convergence of the Sup-CI is therefore strongly
correlated with the convergence of the diagonalization methods. Effective Hamiltonians [45] aim
at projection of exact wavefunction onto a finite model space. Since "exact” refers to ”"exact in
a given one particle-basis”, i.e. to the full CI wavefunction, Sup-CI Hamiltonians may also be
regarded as effective Hamiltonians. The Sup-CI method is a particular method of finding the
effective Hamiltonian not by Bloch or des Cloizeaux formulation (in practice always solved by
perturbation theory) but by searching first for the effective spaces, i.e. best combinations of the
CSFs, and than solving variational problem.

6. From computational point of view the formulas in Sup-CI are of the 3-rd order and should
be similar to the 3-rd order CIPSI procedure [53]. Unfortunately such a procedure has not yet
been developed.

2.2.3 Convergence of the method.

Adding more correction vectors guarantees not only, by the variational principle, that the en-
ergy will decrease, but also serves to stabilize the method when some of the vectors do not give
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a proper correction to the zeroth-order state, for instance when low-order perturbation theory
breaks down. The Krylov vector plays such stabilizing role since it has no ”dangerous” denom-
inators, although its influence on energy is not significant. In practice if the space of reference
configurations describes the wave function in qualitatively correct way one type of correction
vectors is enough to achieve high accuracy and stable behaviour of the method at different
molecular conformations [57]. A single second-order correction vector may be more effective in
decreasing the energy than a set of first-order vectors but it is also much more expensive to
compute.

Convergence of variational series with the order of correction vectors may be quite rapid:
in [39] it is shown that taking sixth order Krylov vectors gives in case of calculations for water
around equilibrium geometry essentially exact results. For many molecules results of variation-
perturbation calculations are better than the results of perturbation theory in the corresponding
order. Using first-order Mgller-Plesset function the best linear combination with the reference
state (i.e. Sup-CI in the space {|0), |M(0))}) leads to the following formula:

o B By (B — By 4 A(in ) B3
T 2(ih1[1h1)

Variational correlation energy is expressed here in terms of the second and third order pertur-
bation energies and the norm of the first-order wavefunction. This is the simplest version of the
superdirect CI with a single correction vector obtained from perturbation theory.

Sup-CI energies are always better than the variation-perturbation results and may be com-
puted starting from the restricted as well as the unrestricted Hartree-Fock formalism. Variational
energies obtained from equation (2.15) are usually very close to, and sometimes even slightly
better than, the third order Mgller-Plesset energies (examples are given below). Although it has
been known for a long time now that variation-perturbation method is capable of high accuracy
the method has been rarely used, parhaps because it has been labeled as "not-extensive”. How-
ever, it is quite obvious that variational energies lower than the non-variational ones are more
accurate and are ”better” in the sense of being more uniform at different molecular conforma-
tions.

(2.15)

For some molecules single reference variation-perturbation energies F; are already lower
than the perturbation theory at the corresponding 2k + 1 order. For example, unrestricted MP3
correlation energy calculations [46] for lithium gave -32.21 mH and the variation-perturbation
result is F 1 =-32.68 mH, calculation on carbon C(5S) gave -64.10 mH and F;=-64.43 mH,
carbon C'(®P) gave -109.25 mH compared to Es=-109.34 mH, for BeH UMP3 correlation
energy is -70.10 mH and F;=-70.65 mH. The calculations for BH molecule around equilibrium
geometry in the DZP basis give Fy lower on about 2 mH than Fs and Fj lower on 0.8 mH
than Fs. Similar differences have been noted for calculations on the Be; molecule in 7s3pld
basis [57].

To test higher order convergence Sup-CI calculations for water in equilibrium geometry and
with the bonds stretch symmetrically to twice their equilibrium values have been performed, with
one type of correction vectors selected for each series of calculations [57]. For comparison with
previous calculations [41, 44, 47] 6-21G basis set was used. In Tables 2.1 and 2.2 effectiveness
of different correction vectors in variation-perturbation method is compared.
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Table 2.1: Convergence of variation-perturbation method, H,O.

Order MP V-P Krylov | V-P MP | V-P EN
2 120.865
3 124.167 110.016 120.482 | 119.868
4 129.017
5 129.505 123.078 129.252 | 129.205
6 129.940
7
8
9

130.016 127.180 130.008 | 130.009

130.063

130.076 128.713 130.077 | 130.078
10 130.082
11 130.084 129.456 130.084 | 130.084
12 130.085
13 130.085 129.775 130.085 | 130.085
14 130.085

15 130.085 129.922 130.085 | 130.085
Exact | 130.085 130.085 130.085 | 130.085

Calculation on water in equilibrium distance (from [39]), 6-21G basis set [47]. Results for different
correction vectors. Minus correlation energy given in millihartrees.

In this case convergence with Krylov vectors is rather slow (although much faster than con-
vergence of the CMX expansion [40, 41] using the same expectation values). The differences be-
tween Mgller-Plesset perturbation theory and variational results computed with Epstein-Nesbet
correction vectors are negligible, with Sup-CI based on Mgller-Plesset correction vectors con-
verging slightly slower. For stretched geometry convergence of variational series is much slower
(see Table 2.2), with Krylov vectors it is very slow and convergence of perturbative series is
quite erratic. As we shall see it is much better to use first-order correction vectors for a few
reference configurations instead of higher-order correction vectors.

It should be noted that higher order perturbation theory functions lead to slightly different
variational energies than the correction vectors obtained in iterative methods. For example,
in Table 2.2 the Mgller-Plesset (Epstein-Nesbet) variational correlation energy obtained from
the 3-rd iteration of Davidson method is -266.912 (-277.382 mH), and from the 4-th iteration
-290.635 mH (-292.932 mH), while the best energy obtained from the first and second-order
perturbation wavefunction is -269.849 mH (-274.979) and with the third-order wavefunctions -
288.870 mH (-292.003). This suggest that a diagonalization method based on Nesbet first-order
correction vectors used iteratively, as Davidson method does [43], converges as rapidly as the
second-order method based on the vectors obtained from perturbation theory.

Recently a number of papers devoted to the restricted Mgller-Plesset theory for open-shell
molecules and MCSCF reference functions appeared [48]. While multireference Mgller-Plesset
theory is formulated via iterative approach and cannot easily be reduced to the MBPT form

35



Table 2.2: Same as Table 2.1 but for bonds stretched to 2R,.

Order MP V-P Krylov | V-P MP | V-P EN
2 241.643
3 235.520 135.715 204.372 | 211.023
4 281.985
5 286.204 179.735 266.912 | 277.382
6 298.573
7
8
9

299.605 217.156 290.635 | 292.932

303.671

301.351 242.831 295.950 | 297.252
10 302.768
11 300.577 262.244 298.362 | 298.658
12 300.854
13 299.898 274.407 299.224 | 299.406
14 299.875

15 299.729 283.161 299.610 | 299.762
Exact | 299.864 299.864 299.864 | 299.864

the open-shell methods are in this respect analogous to the single-reference case [80]. Since
convergence properties of these new methods is similar results obtained by Knowles et.al should
be typical [48]. One may expect that using semi-canonical orbitals of Knowles et.al [48] will
significantly improve convergence of perturbational as well as variational series. However, one
can notice that even if perturbation series is divergent variational series may converge quite well.

For the 2B, state of N H; molecule at 2 R, geometry starting from usual ROHF Hamil-
tonian, as implemented in the GAMESS system [3], leads to the divergent perturbation series
(see Table 2.5), for example Eg in Mgller-Plesset series is -61625 Hartree and in Epstein-Nesbet
series is +0.055 Hartree). Despite this divergence of non-variational energies and similar diver-
gence of expectation values computed with the perturbative wavefunction (third order values
are +2.566 in the Mgller-Plesset and +0.12849 in Epstein-Nesbet case) as well as the diverging
norms of correction vectors using perturbative wavefunctions for variational expansion leads to
satisfactory convergence of correlation energy: with Mgller-Plesset vectors the first 3 energies
are: By = —0.1656, —0.1864, —0.1962 and with the Epstein-Nesbet vectors much better con-
vergence is obtained: F, = —0.1765, —0.2337, —0.2512 (exact result is -0.2643) [57]. It is clear
that when several types of correction vectors are included in the superdirect CI calculations
convergence should be reliable.

How can one improve convergence of the Sup-CI, especially for the open shell cases and ex-
cited states? It is not difficult to include simplified higher-order corrections using diagrammatic
techniques for summation of certain terms (like ladder diagrams) in computation of (0| R} H R%|0)
matrix elements. Although such summations have not been included in the calculations pre-
sented here, it has been verified that adding second-order correction vectors with pair excitations
only may significantly reduce the remaining error and such terms should be included in future
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versions of the method.

2.2.4 Size-extensivity corrections

Corrections for size extensivity [49, 50], although not an ideal solution, remove part of the error
due to neglecting higher order excitations in singly and doubly excited CI. It is worthwhile to
note that these corrections may be easily applied in the Sup-CI method. The variational energy
Fg, Eq. (2.15) may be corrected for size-extensivity errors using the correction formulas given
in [49, 50]. First, Cy coefficient should be computed:

Co = 1/% + (%’:)2 (1]1) (2.16)

The formula for Davidson correction is:

E3 (1]1b1)
AEpc =(1-CHE, = s1 2.17
po = 0)En E3 + EZ (Y1|n) (2:17)
Renormalized Davidson correction formula is:
1—C? E3
0 2

The formula for the Davidson-Silver correction is identical with the first term of the CMX
expansion [40, 41] and with the E[2/1] Padé approximant [51] for F3 and E3 energies:

1—C¢
202 — 1
= FE2/(By— E3) = E[2/1]

Esl + AEVDS = Esl + Esl (219)

The same formula is obtained as the linear approximation to the quadratic equation for the
variation-perturbation energy from which Fy in Eq. (2.15) was obtained.

Multireference versions of these formulas may also be applied to the Sup-CI results, including
the qubic correction [52]. Since in practice all these corrections gave very similar results in test
calculations the original Davidson correction, eq. (2.17) are always given [57]. However, it
is clear that corrections in Sup-CI will be significantly smaller than in MR-CI for the same
reference space. The reference energy is the same for both methods but MR-CI total correlation
energy is larger and the norm of the reference configurations in the final function smaller.

2.2.5 Selection of reference space

Selection of configurations for the zeroth-order state is of great importance. This can be done by
estimating energy lowering due to configurations at a given order of perturbation theory or their
coefficients in the corresponding wavefunction. The simplest approach, scaling like n* (where n is
the number of orbitals), estimates the importance of configurations by second-order perturbation
theory relatively to the Hartree-Fock state, and is capable of selecting only those configurations
that are no more than doubly excited relatively to the Hartree-Fock state. However, for some
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molecules this is not sufficient even around their equilibrium geometry, and in any case exploring
potential surfaces one frequently finds highly excited configurations dominating at stretched
geometries. Therefore a second-order method was used: small CIPSI calculations to construct
reference space iteratively are performed before Sup-CI.

Starting from some arbitrary zeroth-order state and performing second order perturbation
calculations one obtains (taking configurations with coefficients larger than a given threshold)
new reference space. Diagonalizing Hamiltonian matrix in the reference space the new mul-
ticonfigurational zeroth-order state is obtained and the whole procedure is repeated until all
important configurations are included. The final perturbation energy is an approximation to
the full CI limit. The CIPSI method has proved its usefulness for the study of medium-size
molecular systems [53]. It is closely related to various selected CI methods (cf. [54]). The
inexpensive CIPSI scheme (especially if it is done via intermediate projection algorithm [55]) for
constructing the reference space seems to be a reasonable choice for low order methods.

Second selection method was employed to test the effectiveness of the iterative CIPSI scheme
as a generator of reference CSFs. Reference configurations are selected as those corresponding
to the CSF coefficients in the renormalized first-order wavefunction larger than a given thresh-
old. It allows to select all important doubly excited configurations only. This method is not
really suitable for generation of reference configurations because it does not select higher-order
configurations, but it is the simplest and the least expensive therefore comparison with CIPSI
selections scheme was made in calculations for water.

2.3 Implementation of Sup-CI

One can develop the superdirect approach in several directions. In [39] estimation of higher order
Hamiltonian expectation matrix elements was mentioned. Another choice is to test an inexpen-
sive third-order method based on a relatively small zeroth-order space of CSFs. Diagramatic
version of such method, restricted to the case of several singlet reference configurations has been
developed by Bendazzoli et.al [42]. The Sup-CI may use larger reference spaces and different
correction vectors generated from arbitrary open-shell configurations selected using second-order
perturbation theory.

Matrix elements of H in the basis of correction vectors may be written down in the form
similar to the expressions of the many-body perturbation theory. General open-shell second
order formula was derived [56] as an example of application of the algebra of unitary group
generators and other elements appearing in the superdirect method are derived here (see Chap.
3) along the same lines. Taking only the first-order correction vectors the complexity of the
energy expressions is of the third order. For second order correction vectors elements of the
fifths order would appear — for general open-shell CSFs they would be very difficult to derive
and program. Since the final matrix is small it is easy to take care of the near-linear dependencies
among the trial vectors. In this way we obtain variational results without the need to store the
list of variational wavefunction coefficients, hence the name ”superdirect”.

The multireference superdirect method may be implemented in several ways. After the
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selection procedure the zeroth-order vector |0) is a linear combination of N,.; reference CSFs

ref

Z ") (2.20)

From this reference state linearly independent correction vectors RV|0> are generated, one for
each operator Ry . Assuming that Ro=1, taking MCSCF as the zeroth-order function and

) = ici|q>i>:ici1%i|0(c<0>)> (2.21)

CoIO(C(O))HClRlIO( M) + -.CLReo(C))

as the trial function for variational procedure Sup-CI method that is similar to the internally
contracted CI [38] is obtained. To increase the number of variational parameters L one can use
different types of excitations (core-valence, valence-valence, core-virtual, valence-virtual, one
and two-electron) forming the Ry operators.

Since the energy depends on the ') coefficients a better approximation is obtained by
optimization of all these coefficients to minimize the energy obtained from the (L41)-dimensional
generalized eigenvalue problem:

HC = ESC (2.22)

where H = ﬁ(C(O)) is the projection of the Hamiltonian into the space of the first order wave-
functions and H = H(C©) of the overlap matrix. Although in this formulation the dimension
of the eigenvalue problem is very small we have to solve the nonlinear optimization problem for
E(C(O)) and in practice there is no way to avoid computation of all matrix elements of the type:

Higy; = (wi| Ry H Ry|w;) (2.23)

where f{io,oj are the usual CI matrix elements.

The "direct optimization” in which all LN,.; coefficients C,go)

('; are taken as independent,
leading to larger H matrices requires smaller computational effort as the ”indirect optimization”
described above.

In calculations reported in the Sec. 2.4 three types of correction vectors are used: Krylov
vectors (suggested by the gradient optimization of energy functional) and first-order perturbation
theory corrections for both Mgller-Plesset and Epstein-Nesbet partitionings. Each reference CSF

is therefore associated with the following set of vectors:

{ Jwj) = Rolwj), [K(wj)), [N(w;)), [M(w;))} (2.24)

where j extends over all reference CSFs. From the computational point of view formulas for
<wZ|RkHRl|w]> matrix elements for all first order correction vectors are closely related, for fixed
?, j differing only in the denominators. Most of these matrix elements involve summation of two
indices only (if w; is quadruply excited relatively to w;), some four indices and only diagonal
(w; Ri|H|Ryw;) elements are of the third order (i.e. involve six-fold summations). Therefore one
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may expect approximately linear scaling of the timing of the Sup-CI program with the number
of reference configurations. The overall complexity of the method should be N, sn°.

The timing should be faster than a single iteration of the MR-CI procedure when computation
of all matrix elements is programmed in the superdirect way (i.e. involving only summation
over orbital indices, without reference to the MR-CI wavefunction). It is easy to generate
more variational parameters increasing accuracy of the method without significantly increasing
computational complexity: separating Hamiltonian operator according to Eq. (2.9) we get more
correction vectors but no new matrix elements, increasing only the size of the small matrix in
final diagonalization.

So far we have discussed calculation of energies only. In principle calculation of properties
via Sup-CI method is equally simple: since we do have a compact wavefunction it is enough
to derive appropriate matrix elements. Since the wavefunction in Eq. (2.22) is expressed as
a combination of non-orthogonal functions contribution of a given function to the norm of the
wavefunction is calculated as:
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Finally let us stress that the Sup-CI method has to converge in a monotonic way to the exact
energy when the number of variational parameters (reference configurations) is increased. The
real convergence of the method is tested in a series of calculations described in the next section.

2.4 Test calculations

I would like to stress that all calculations reported here have not been yet done using the
efficient formulas for matrix elements, presented in the next chapter. Their efficient implemen-
tation requires more time than the test calculations and is a matter of a future work. Instead
the modified SGGA-CI program [34] has been used, extended to give perturbation theory and
variation-perturbation results [44] from 4 iterations of the CI procedure. Energies are computed
up to 8-th order and wavefunctions are computed up to 4-th order. The program is also capa-
ble of computing CIPSI and Sup-CI results, calculating matrix elements <wZ|RkHRl|w]> of the
Hamiltonian, although not so efficiently as the many-body version should compute them. All
reported results are obtained with the properly spin-adapted CSFs. GAMESS system of pro-
grams [3] was used for generation of orbitals. All calculations were run on a personal computer
PC-486 and some on a notebook computer PC-486 and are described in a more detailed manner
in the ref. [57].

In some calculations even higher order perturbation or variation-perturbation calculations
fail if the single reference start is used. For example Sup-CI at 7-th order (with third order
correction vectors) gives for calculations on water (reported in details below), with the bonds
stretched to twice their equilibrium distance, an error of the order of 10 mH with respect to
the full CI limit, whereas at equilibrium geometry the error is 1/10 mH [57]. In such cases
perturbation theory converges very slowly and the number of iterations in CI or CC procedures
is quite large. It shows the importance of well defined zeroth-order state.
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In order to check how the present inexpensive approach is capable of describing bond stretch-
ing processes, the multireference superdirect method on rather difficult cases, stretching two
bonds in water and and an open-shell N H; molecule and the triple carbon—carbon bond of
acetylene, is tested. These are rather challenging computations for the low-order methods.

2.4.1 Water

Some Sup-CI results have been already presented in Tables 2.1 and 2.2, in which high-order
convergence rates for Mgller-Plesset perturbation theory and variation-perturbation results are
compared in calculations on water in 6-21G basis set. Multireference Sup-CI calculations on
water were also done using the same double zeta basis set as in the benchmark calculations of
Saxe et.al [58], for 3 geometries, with the bond length R., 1.5 R., 2 R. [57]. The geometry
of Bauschlicher and Taylor [58] is employed and, for comparison with calculations of Duch and
Diercksen [44], the lowest orbital is not correlated.

In the first set of calculations configurations with coefficients larger than a given threshold
in the first order Epstein-Nesbet function were included in the reference space (this partitioning
gave always larger reference spaces than Mgller-Plesset). This choice allows us to compare
CIPSI selection scheme with the simplest second-order selection scheme. Two values of selection
threshold are used, typical for CIPSI and MRD-CI calculations: 0.05 and 0.03. Depending on
the respective geometry our reference space is composed of 10, 18 and 15 reference functions
for the smaller threshold and 26, 34 and 26 reference CSFs for the larger one. Since SGGA
program treats simultaneously all CSFs differing only by spin couplings and sharing the same
orbital configuration some open-shell reference configurations are associated with more than
one CSF (only one of them has to give large contribution). After some experimentation, the
following correction vectors are finally included for each reference configuration |I): Epstein-
Nesbet |N(I)), Mgller-Plesset |M (1)) and a vector

|D(I)) = (Hp — L)~ Hp|N(I)) (2.26)

where Hp is the diagonal part of the Hamiltonian. Thus the size of the small matrix that
is diagonalized is equal to 4 times the number of reference functions. In practice Epstein-
Nesbet correction vectors recovered most of the correlation energy, with other correction vectors
contributing no more than 1 mH in all cases, with their total contribution to the wavefunction
norm being not larger than 0.001.

In this small space, using only first order correction vectors, very encouraging results were
obtained — for every geometry more than 96.5% with the larger threshold and more than 95.5%
of the full CI correlation energy with the smaller threshold was recovered. One cannot expect
that the dynamical correlation energy will be well reproduced for this case but as one can
see from Table 2.3 and Figure 2.1, especially with the larger number of references (smaller
threshold) the results are comparable to the 5-th order MBPT results, with the error of 2.6, 4.5
and 11.2 millihartree at R., 1.5 R., and 2 R. geometries respectively. Multireference Davidson
corrections were also computed, giving in this case significant reduction of the error to 1.5, 3.1
and 5.7 millihartree, or more than 98% of correlation energy at all points.

One should stress that the first set of calculations was done only for comparison as the
iterative CIPSI scheme of reference space selection is much better. It allows to take into account
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Table 2.3: Results for water in DZ basis set

Method R. 1.5R, 2R,
FCI -76.143399 | -75.992471 | -75.886986
Escf 137.7 204.4 307.6
E2 8.2 20.2 50.5
E3 7.6 27.2 74.3
Fo 12.8 20.4 103.6
CI(SD) 77 22.6 60.6
E4 1.1 6.4 15.2
E5 0.9 5.1 15.9
Feo 13 8.3 35.0
E6 0.1 2.0 3.7
CI(SDTQ) 0.2 1.1 4.2
E7 0.1 1.0 -0.9
E.z 0.1 17 12.0
E8 0.0 0.5 -0.7
Superdirect and CIPSI results
S99 5.9 7.0 14.1
+ Davidson corr. 3.4 4.5 7.0
S90S 2.6 4.5 11.2
+ Davidson corr. 1.5 3.1 5.7
CIPSI 0.05 -7.2 -2.9 -2.7
S20% s 5.9 5.8 9.3
+ Davidson corr. 3.4 3.8 6.4
CIPSI 0.03 1.5 -1.0 2.3
S20% o1 2.6 3.6 3.2
+ Davidson corr. 1.5 2.7 2.1

Geometry from Bauschlicher and Taylor [58], 1s orbital frozen. Energy differences in millihartrees, with
respect to the full CI energy (except first row). Perturbation theory results and variation-perturbation
results Fyj, are obtained with the Mgller-Plesset partitioning. S%?2 ., means Sup-CI with the threshold
0.03 and modified CIPSI reference selection scheme, S%%5 denotes Sup-CI with the threshold 0.05 and
selection using first order wavefunction [57].

the most important configurations at the lowest possible level — using second order perturbation
theory. However, we cannot expect that Sup-CI will remove the inadequacy of the reference
space completly. The second set of calculations was done using modified CIPSI algorithm to
construct the reference space. Epstein-Nesbet or Mgller-Plesset first order correction vectors
are built from the zeroth-order vector, obtained from the previous iteration by diagonalization
of the Hamiltonian in the former reference space. In case of Epstein-Nesbet partitioning many
configurations relatively strongly interact with the Hartree-Fock function (in comparison with
the Mgller-Plesset case). That implies selection of larger number of configurations already in
the first iteration. Since Epstein-Nesbet and Mgller-Plesset correction vectors are subject to
intermediate normalization we compute their norm, storing at the same time information about
all configurations with coeflicients larger than the threshold, and renormalize coeflicients of
these selected configurations at the end of CIPSI calculations. Since renormalization reduces
their magnitude some of the selected configurations are dropped. The full CIPSI vector is never
stored, only the largest components.

Moreover, dropping from the reference set configurations already selected is not allowed if
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their coefficient became smaller than the threshold in the next iteration. Tests performed with
such an option showed that cyclic solutions were possible. For example, 2 CSF's selected in the
first iteration gave 8 CSFs in the third iteration, but this time renormalization will bring the
number of CSFs with coefficient above the threshold back to the same 2 configurations: large
number of reference CSFs leads to a large number of singly and doubly excited CSFs in the
CIPSI wavefunction, and their combined weight reduces the norm of the reference configurations
in the renormalized wavefunction. Increasing the number of CSFs until no new important
configurations are found escapes from this cyclic atractor and leads to very rapid convergence,
with 2-3 CIPSI iterations being sufficient for selection.

As one can see from Table 2.3 and Figure 2.1, the errors at different geometries are quite
uniform with this selection scheme. In the tables F, is the Mgller-Plesset MBPT(n) energy;
Epstein-Nesbet energies are in general worse (for 2R, divergent). With both thresholds, T=0.05
and T=0.03, energies are remarkably parallel to the full CI results. For T=0.05 the errors are
5.9, 5.8 and 9.3 mH and for T=0.03 they are reduced to 2.6, 3.6 and 3.2 millihartree at K., 1.5R,
and 2R, geometries respectively. With the Davidson corrections we have in the later case 1.5,
2.7 and 2.1 mH. The large improvement of results (comparing to the previous selection scheme)
for 2R, was obtained because new quadruply excited configurations appeared in our reference
set. Iven for a larger threshold 0.05 the superdirect results are quite good and for stretched
bonds better than MBPT(5) and similar to CI-SDTQ.

Figure 2.1: Results for water in D7 basis set, three geometries
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With the threshold 0.03 the accuracy of the description of dissociation is better than CI-
SDTQ and much better than the MBPT(5). This time the maximum dimension of the Hamilto-
nian matrix is equal to 160, but almost as good results are obtained from 80-dimensional matrix
with Epstein-Nesbet correction vectors only. Norms of different types of correction vectors in the
final wavefunction give an idea about the relative importance of these corrections. For R, with
0.03 threshold for selection of reference configurations by CIPSI 26 configurations are selected,
giving the following contributions to the norm of the wavefunction:

|@pp|* = 0.9517; |®R.s|* = 0.0287;
|®EN|? = 0.0194; |®ap]* = 0.0002; |®p|* = 0.0001

and the contributions to correlation energy: -78.485 mH from the reference space, -55.851 mH
from Epstein-Nesbet correction vectors, -0.475 mH from Mpgller-Plesset vectors and -0.265 mH
from ®p vectors. For 2R, stretched bonds 39 CSFs are selected with 0.03 threshold, giving the

norms:

@ 5p|2 = 0.5754; |Bpes|? = 0.4043;
|®pn|? = 0.0199; |®ap]* = 0.0002; |®p|* = 0.0002

and the contributions to correlation energy: -253.457 mH from the reference space, -50.160 mH
from Epstein-Nesbet correction vectors, -0.453 mH from Mgller-Plesset vectors and -0.409 mH
from ®p vectors. In this case the weight of the Hartree-Fock solution in the final norm is very
low, making serious problems to all single-reference methods. For the 2R, case the selection
procedure brings some quadruply excited configurations into the reference set from the CIPSI
wavefunction. These configurations are of great importance for the performance of the method.

In Table 2.4 one may see the comparison between CIPSI and Sup-CI results for water in
the same DZ basis set, but with all electrons correlated, in the original geometry of Saxe et.al
[58], used also by Cimiraglia and Persico and by Evangelisti, Daudey and Malrieu [53] in their
studies on the convergence of CIPSI algorithms. CIPSI results of this work are given in Table
2.4 and Fig. 2.2 and are similar to the results of [53]. Smaller CIPSI errors in the Epstein-
Nesbet partitioning are due to the use of spin eigenfunctions by the SGGA program instead of
determinants used by the original CIPSI program. The given here CIPSI energies are obtained
with the Mgller-Plesset and Epstein-Nesbet partitioning techniques, while Sup-CI energies use
both type of correction vectors. For Mgller-Plesset partitioning the Fgy single-reference energy
has been corrected by the correlation energy obtained by diagonalization of the Hamiltonian in
the reference space instead of the baricentric energy [53].

Results presented in Table 2.4 compare the rate of convergence of the perturbative CIPSI
method and variational Sup-CI method for growing number of the reference configurations.
Good agreement of CIPSI for 0.03 threshold is rather fortuitious: we have verified that even
for 0.001 threshold (66 reference functions) the error of the CIPSI method is still around +0.7
mH, with 0.0001 threshold (196 reference functions) it is -0.02 mH but decreasing the threshold
to 0.0000125 (751 reference functions) still leads to an error of 40.6 mH. Similar behaviour is
observed at other geometries.

Thus behaviour of CIPSI even at the very low threshold levels is not predictable. In contrast
to this erratic behaviour much better convergence is obtained with variational Sup-CI procedure
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Table 2.4: CIPSI, CASPT2 and Sup-CI results for water at equilibrium

\ Threshold | 05 | 005 | 004 | 0.03 | 0.02 |

No. of refs. CIPSI-MP 1 4 7 15 37

A E(CIPSIMP) 8.551 | 14.967 | 15.581 | 14.385 | 9.572
Refs. CIPSI-EN & Sup-CI 1 9 13 26 50

CI in the ref. space 148.028 | 107.282 | 94.692 | 71.793 | 47.695

A E(CIPSIEN) -30.650 | -6.404 | -3.239 | 1.400 | 0.355

A E(Sup-CI) 12.370 | 6.377 5.152 | 3.071 | 1.463

A E(Sup-CI)+Dav. corr. | 7.379 3.478 2.940 1.796 | 0.984

CASPT2 el./orb./refs 4/4/12 | 6/6/142 | 8/8/492
8.9 9.1 3.1

C: CIPSI; S: Superdirect CI

Results from [57]. Geometry from Saxe et.al [58]. Energy differences in millihartrees, with respect to the
full CT limit of -76.157866. CASPT2 results from [59], number of electrons in active orbitals and number
of reference CAS configurations is given.

— it is not a priori obvious, because Sup-ClI is variational but third-order while CIPSI is non-
variational but of the second order. There is no problem in Sup-CI with overshooting the full
CI limit (as is the case with CIPSI for Epstein-Nesbet partitioning, in general more realiable of
the two partitionings used), because the method is variational.

One could also compare these results with those of the CAS-PT2 method developed recently
[59] and similar second-order calculations of McDouall et.al. [60]. Three different CAS spaces
were selected, corresponding to 12, 142 and 492 reference CSFs. The errors at equilibrium for
the first two CAS spaces are around 9 mH and in the largest case, for CAS with 8 electrons in
8 orbitals, are reduced to about 3 mH.

As one can see in Table 2.4 and Figure 2.2 Sup-CI errors are reduced to such level with
much smaller number of reference configurations. Numerical selection of reference spaces is
much more effective than taking all CAS configurations. Already with 25 numerically selected
reference CSI's the same accuracy is achieved using Sup-CI method as with the 492 reference
CSFs in the CAS-PT2 method. The variation for different points along the potential surface is
also smaller, although RHF orbitals are much worse than the corresponding CAS orbitals. The
accuracy of Sup-CI with the CAS orbitals is much better, as we shall also see in case of the
N Hy calculations. In fact there is no reason why CAS-PT2 should not behave in the same way
as CIPSI with CAS space as reference.
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Figure 2.2: Comparison of convergence of Sup-CI and CIPSI methods
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Errors of Sup-CI and CIPSI relative to FCI correlation energy for dif-
ferent thresholds. Results from calculation on water in the DZ basis set
and the equilibrium geometry.

2.4.2 Acetylene

Calculation on acetylene was done in STO-3G basis, with carbon 1s orbitals frozen. Acetylene is
much more difficult case because the presence of the triple bond complicates description already
at the equilibrium geometry.

Increasing the equilibrium bond length by half already decreases the coeflicient of the SCF
function in the normalized first order wave function to 0.9 and to 0.78 in the final CIPSI nor-
malized first order function. The Davidson diagonalization procedure in MR-CI converges very
slowly in this case, therefore the superdirect results will also be slowly convergent and rather
far from full CI. Using the second-order wavefunction in the superdirect procedure with a single
reference (at a cost comparable to the full 5-th order of of perturbation theory) still gives an
error of 45 mH and going to third-order function still misses almost 18 mH.

However, in spite of this poor reproduction of the dynamical part of correlation energy by the
single reference methods and the failure of CIPSI at thresholds 0.05 to 0.03 to obtain accurate
correlation energy Sup-ClI results are quite good indeed. The results are closer to the full CI
only in the case of CIPSI selection and they remain nearly constant for both geometries, giving
an error of 3.9 and 5.8 mH at R. and 1.5R. geometries respectively (or 1.5 and 2.3 mH with the
Davidson correction).

One can find more details on these calculations in ref. [57]. We shall look in the next
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paragraph at the superdirect CI results for open-shell system.

2.4.3 NH,

Calculations for 2By and 2 A; open-shell states of N Hy will be briefly reported in this subsection.
This time the reference benchmark were calculations done by Bauschlicher et.al [61]. The same
double zeta basis set and geometries have been used (with ROHF energies reproduced within a
few pH). For 2 By state the SCF reference configuration is 1a22a?3a1b1163 at all geometries. For
2 A, state all geometries correspond to the 3a; — 1b; excitation relative to the 2By configuration.
The lowest orbital was frozen in these calculations.

Figure 2.3: Results for N H, in the DZ basis set, 2By state, three geometries
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All results are summarized in Table 2.5 (*B; state) and Table 2.6 (*A; state). The su-
perdirect results converge quite well and are remarkably stable, giving at all geometries almost
the same errors (see Fig.2.3 and Table 2.5). Such stable behaviour of the Sup-CI results for
stretched geometries is rather surprising, because convergence of the Davidson procedure in full
CI calculations is very slow, giving for 2R, after 10 iterations an error of 0.27 mH. Results at
the 0.03 threshold level are already quite close to CI-SDTQ, and the error after adding David-
son correction is even lower than CI-SDTQ. The coefficient of SCF function in the CI-SDTQ
function is in this case 0.71 — it means that the ROHF description is really poor.

Perturbation theory with the standard partitionings (Mgller-Plesset and Epstein-Nesbet)
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Table 2.5: Results for N H,, 2B, state, DZ basis set.

Method Re 1.5Re 2R,
FCI -55.646028 | -55.534809 | -55.449427
MBPT results
E2 -12.1 -31.5 -99.4
E3 7.7 32.2 121.5
E4 -2.6 -20.6 -166.0
E5 1.4 14.4 165.2
Variational perturbation results
E., MP 19.5 38.2 98.3
E., EN 3.6 29.9 87.8
E. MP 19.1 36.4 774
E. BEN 0.8 5.4 30.6
E.; MP 17.6 355 68.1
E.; EN 0.1 0.9 13.1
Variational results
Escf 102.2 161.0 264.3
CI(SD) 16 16.4 55.1
CI(SDTQ) 0.1 0.5 2.6
Superdirect and CIPSI results
5005 6.7 6.6 6.7
+ Davidson corr. 3.7 3.8 4.2
CIPSI 0.05 -8.2 1.6 6.3
50 03 3.5 2.9 3.6
+ Davidson corr. 1.9 1.8 2.1
CIPSI 0.03 -1.0 3.2 6.2

Geometry from Bauschlicher et.al [61], 1s orbital frozen. Results from [57]. Energy differences in milli-
hartrees, with respect to the FCI energy (except first row). Perturbation theory results in Mgller-Plesset
partitioning are divergent for all 3 points, and in Epstein-Nesbet partitioning, as given below, diverge
only for 2R, case. Modified CIPSI scheme for selection of the reference configurations used.

diverges for open-shell systems, although low-order results have deceptively reasonable values.
In a very similar calculation for N Hy, 2By state in STO-3G basis set Nobes et.al [62] showed
that for 2R, the contribution of 25-th order is still larger than 0.1 mH for every tested method
i.e. different versions of RHF based MP theory and UHF based MP theory. Results in Table
2.5 show also how dangerous it is to believe in the results of the low-order perturbation theory.

As one can see from Table 2.6 the ertors are smaller for 24, state, except for 2R, geometry
where ROHF becames quite inadequate as a zeroth-order description. The Davidson procedure
converges even slower than in the previous case: after 10 iterations the error is still 2 mH. CIPSI
results with thresholds 0.05 and 0.03 are also quite poor, indicating that the reference space
is still too small. In spite of such slow convergence Sup-CI with the threshold 0.03 gives an
error of 4.5 mH (50 references), a significant reduction from 14.2 mH error at 0.05 threshold (16
references).

This example shows that large reference space may compensate even serious inadequacies of
the single-particle description. Nevertheless, one should try to improve the method to include
more correlation in smaller reference space. An obvious way in this direction is by better selection
of the molecular orbital space: using the simplest valence CAS-SCF orbitals one can reduce the
error for 2R, geometry, 2By state in calculations with the threshold 0.05 from 6.7 mH (4.2 mH
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Table 2.6: Results for N H,, 2A; state, DZ basis set.

Method Re 1.5Re 2R,
FCI -55.603404 | -55.449846 | -55.355766
Escf 98.0 138.3 200.7
MBPT results
E2 -13.6 -26.9 -20.7
E3 8.1 23.6 14.1
E4 -3.1 -14.0 -20.3
E5 1.8 10.1 45.5
Variational perturbation results
E., MP 26.9 60.2 132.4
E., EN 8.1 21.0 29.8
E. MP 23.3 50.3 108.8
E. BEN 0.8 3.4 19.6
E.; MP 22.4 50.0 105.8
E.; EN 0.1 0.6 8.9
Variational results
CI(SD) 43 12.0 32.6
CI(SDTQ) 0.1 0.4 2.1
Superdirect and CIPSI results
5005 a7 5.8 14.2
+ Davidson corr. 2.3 3.4 11.4
CIPSI 0.05 -3.9 -1.1 14.9
50 03 27 2.3 2.5
+ Davidson corr. 1.5 1.5 3.3
CIPSI 0.03 0.9 1.6 8.0

Geometry from Bauschlicher et.al [61], 1s orbital frozen. Results from [57]. Energy differences in mil-
lihartrees, with respect to the FCI energy given in the first row. Modified CIPSI selection scheme is
used. Perturbation theory results are given in Epstein-Nesbet partitioning, Mgller-Plesset energies are
divergent at all geometries.

with correction) to 1.6 mH (0.9 mH), and for the 0.03 threshold the error drops from 3.6 mH
(2.1 corrected) to only 1.3 mH (0.7 mH). Indeed, all results presented in this paper are much
more accurate if CAS-SCF or simple MC-SCF orbitals are used, but the goal here was to test
the Sup-CI method performing the simplest (and still the most common) calculations rather
than to present the best results.

2.5 Discussion

The results reported in the previous section are very encouraging. Comparing these results to
those of FAST CI approach of Bendazzoli et.al [42] we note that adding new types of correction
vectors and relaxing restrictions on the types of reference CSF's gives results that are superior
to all single reference methods, including CI and many-body perturbation theory. On the other
hand the method properly programmed should be an order of magnitude more efficient than
multireference CI giving results of similar quality. The work is in progress now on a black-box
Sup-CI program that should be as easy to use as perturbation theory. Explicit formulas for
matrix elements are rather lengthy and they are given in a compact notation in the appendix.
The most efficient approach to their implementation is a matter of investigation.
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CIPSI procedure for selection of the reference space applied at the preliminary stage of
potential energy calculations will identify all relevant configurations and allow to fix one reference
space for all geometry points used, increasing reliability of calculations. Such a combined CIPSI-
Sup-CI procedure may be very useful for computations of molecular properties and potential
energy surfaces. The calculations on water and N Hy convince that convergence of the variation-
perturbation method in higher orders is superior to the convergence of the perturbation series.

Since the method is variational one may increase the number of first-order correction vec-
tors obtained from different reference CSFs or introduce higher order corrections to improve
the results. The latter one seems to be however difficult and one may think of using approxi-
mate second-order correction vectors, for example by allowing only pair—pair interactions in the
Hamiltonian used to create second-order correction vectors.

Selection of the one-particle basis set in the variation-perturbation method has been discussed
by Bendazolli et.al [42]. Their conclusion was that MCSCF orbitals are the proper choice.
Parametrization of the Hartree-Fock operator shows that the convergence rate of low-order CI
methods may be substantially increased. Indeed, preliminary studies of HF method with scaling
parameters for Coulomb and exchange integrals (g-Hartree-Fock method and A\ method [63]
suggest, that the canonical HF function may be the worst choice in all cases except for single
reference CISD. Although introduction of A parameters to the HF equations is trivial it is not
clear how to predict a priori their best value. Orbitals obtained in this way may also lead
to erratic convergence of perturbative series, but that should not influence variational Sup-CI
results.

The biggest problem that remains in Sup-CI as well as MR-CI is the size-extensivity error
due to neglecting of the higher-order excitations. Although a posteriori corrections applied to
Sup-CI energies remove a part of this error it is desirable to find more accurate corrections for
this method.
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Chapter 3

Matrix elements in the Sup-CI
method

The outline of the SGA approach and an algebra for the Sup-CI matrix elements are presented
in the first two sections of this chapter. The algorithm based on these techniques is described
in the fourth section and applied then to the derivation of the MBPT-like expressions for the
matrix elements occuring in third order Sup-CI. Some of the formulas are explicitly given.

3.1 Symmetric group approach to CI methods

In the direct CI (DCI) methods one avoids storing the CI matrix. The product of this matrix
and the vector of CI coeflicients, which is formed in any diagonalization procedure directed at
diagonalizations of large CI matrices [43] is constructed directly from the list of two electron
integrals [32]. It requires however sophisticated mathematical tools to implement such an algo-
rithm in an efficient way. The formal problems appearing in DCI schemes have been solved by
Paldus and Shavitt using the Unitary Group Approach (UGA) [33] and by Duch and Karwowski
within the Symmetric Group Approach (SGA) [34]. These formal developments may also pro-
vide a tool for deriving the MBPT-like formulas i.e. expressions in terms of sums of products
of two electron integrals for the matrix elements between contracted functions, appearing in the
superdirect CI mode [56].

In the following we shall briefly recall the basic principles of the SGA, which is then used to
evaluate matrix elements occurring in the third-order Sup-CI method.

3.1.1 Hamiltonian and its symmetry

The non-relativistic spin-free electronic Hamiltonian (1.3) may be represented in the finite
Hilbert space H" in the following form [34]

k k
= 3 (i) By + 5 S By — ) (3.1)

g ikl
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The summation indices 1,j,... refer to orthonormal orbitals {|¢;) le, which span the one-
particle orbital space H.. The one- and two-electron integrals are defined as follows

(ilj) = (oW (1)]¢i(1)); (ijlkT) = (Si(1)(Sr(2)lha( L, 2)[61(2))]65(1)) (3.2)

The operators Ej; (for simplicity of notation we shall often simply write Ej;) are called the
replacement operators since they replace |¢;) by |¢r) when acting on a product of orbitals

N
By = Z | P (1)) (Du(?)] (3.3)

They are generators of the unitary group U(k) which is an invariance group of H.. This fact
forms a basis for the UGA approach to the CI methods [33]. The replacement operators satisfy
the following commutation rule

[Eijs i) = oj kit — 83y E (3.4)

and may be expressed in the second quantization language in terms of anihilation and creation
operators F;; = 3" a;»';ajg.

Since all kinds of spin operators commute with H the total spin S and its projection M are
good quantum numbers and the eigenfunctions of H should be chosen also as eigenfunctions of
52 and 5. Tt imposes additional restrictions on the variational coefficients of the CI expansion
in terms of determinants i.e. determinantal basis of H". They may be taken into account by
an explicit expansion in terms of conveniently chosen spin adapted basis. Such a basis consists
in general of the linear combinations of a number of Slater determinants corresponding to a
given set of orbitals and differing only in their spin parts, referred to as the configuration state

functions (CSF¥s) [31]. The CSFs will be denoted |A; SM,[). They fulfill equations

PIN; SM, 1) = o(P)|A; SM, 1) (3.5)
SN SM, 1) = 5(S + 1)|A; 5M, 1) (3.6)
S.N; SM, 1)y = M|X; SM, 1) (3.7)

where P is a permutation operator of electron coordinates and o(P) is its parity. A stands
for a set of the orbital indices used to construct a given CSF or in other words for an orbital
configuration. The index [ = 1,... f(5,s) distinguishes independent eigenfunctions of 52 and
5. belonging to the same values of § and M. Their number depends on the number of singly
occupied orbitals s in A and is given by f(9,s) = (s!(25 4 1))/(a(1 —a)!); a = s/2 — 5 [34].

The CI expansion for the kth state characterized by given S and M numbers is then written
f(S,S)
(W3 SML k) =" > CMEA M) (3.8)
A=

Equivalently we may say that the Schrédinger equation is projected onto a proper spin adapted
(S, M )-subspace of the Hilbert space H™

N/2 S

= @ p HYS M (3.9)

S=[0,1/2] M=-58
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Another basic invariance property of the Hamilton operator considered here is associated
with the indistinguishability of electrons. It implies that the Hamiltonian (1.3) is symmetric in
electron coordinates and as a result it is invariant with respect to the symmetric group Sn. The
antisymmetry of the N-electron fermion functions (1.2) is equivalent to the assumption that
they should transform according to the one-dimensional, so-called sign representation of Sy.
This is already taken into account in eq. (3.5).

The molecular electronic Hamiltonian (1.3) may be also invariant with respect to a certain
point group G if we fix the distribution of the nuclei. Then a symmetry adapted CSF (SACSF)
has to transform according to an irreducible representation I' of the group G'. In the following
we shall assume that the considered point group is abelian i.e. all irreducible representations
are one-dimensional and each CSF corresponding to a given orbital configuration of a proper
symmetry spans such a representation. Thus for a given T', the set of SACSFs [A'; S M, l)is a
subset of CSFs |A; SM,[). In general case each SACSF would be rather a linear combination of
CSFs [31]. For simplicity we shall further drop the point group symmetry label.

3.1.2 Separation of the spin part

The SGA specific step consists in construction of separate N-particle orbital and spin spaces
(before the antisymmetrization is performed) [34]. The total one-particle Hilbert space H' is a
product of the k-dimensional orbital space and two-dimensional spin space Hl = {]6;)}i=1 2

H' =M. @ H: (3.10)
Then one may construct the N-particle space as
HN = A[HY @ HN) = A[(H o) @ (H o) (3.11)
Equivalently, we shall assume that the N-electron CSFs are of the form
1A S M, 1) = EXA[A)S M, )] (3.12)

where |SM,l) € HY is the pure spin function being an eigenfunction of 52 and S, and |A)
is a spin independent orbital function defined as a product of N (orthonormalized) orbitals
corresponding to the configuration A, sy of them being singly and d), doubly occupied. The
antisymmetrizer operator and the normalization constant are respectively given by

A=— 3 oP)p; £\ = (N1/20)1/2 (3.13)

In the following we shall assume that the spin functions are geminally antisymmetric spin
functions i.e. they are antisymmetric with respect to the transpositions within doubles. In other
words the spins of those electron pairs that correspond to doubles are coupled in the N-electron
spin functions to two-electron singlets, insuring the antisymmetry of the resulting CSFs [34].
For the remaining sy singly occupied orbitals one has f(S,s) different coupling schemes i.e.
with each orbital configuration A there is associated a vector of spin functions |SM) with the
components |[SM,l), [ =1,...f(5,s).
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Figure 3.1: Branching diagram for N=5, solid lines: S=1/2
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All the spin functions that span the N-particle spin space or the different coupling schemes
within a given set of spins may be characterized using the so-called branching diagram [34]. Each
path on this diagram, passing from the (0,0) node to a given (N, 5) node uniquely represents
certain spin function |SM,l) € HY, 1 = 1,...f(S,N). The projection of the spin M does
not influence its shape. The numbers in the nodes indicate a number of possible paths (spin
functions) from the origin (0,0) to a given node. An example of the branching diagram for
N =5 electrons is displayed in the figure 3.1.

It should be noted that the spin functions coupled according to the branching diagram are
not the geminally antisymmetric functions. To get the latter ones one may use the so-called
reversed branching diagram, introduced by Duch [34].

Let us consider now the permutational symmetry of the pure spin functions. For each P € Sy
the N-electron spin space HY is closed under its action. More specifically, since the 52 and S,
operators are symmetric in the coordinates of the electrons they commute with an arbitrary
permutation. Thus for each P € Sy the new function P|SM,[) is an eigenfunction of 52 and 5,
with unchanged eigenvalues S(S 4+ 1) and M. It is in general a linear combination of the spin
functions.

Thus we may use the permutational symmetry and irreducible representations of Sy to
classify also the spin functions and for further factorization of matrix representations of the
spin-free Hamiltonian. In fact such a factorization, as indicated in eq. (3.9) follows from the
corresponding decomposition of the spin space.

A linear space that carries a (irreducible) representation of a group G is called a (irreducible)
G-module. The HY space is a reducible Sy-module. It may be decomposed into a direct sum
of irreducible Sn-modules HﬁV(S,M) characterized by the total spin and the spin projection
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quantum numbers
N/2 S

HY= & P HY(S. M) (3.14)
5=[0,1/2] M=-S
Alternatively, spin functions belonging to a pair of S, M (S > |M]) quantum numbers form
a basis for an irreducible representation of the symmetric group Sy or more precisely of an
irreducible Sny-module HﬁV(S, M). The irreducible representation that is carried by this module
is associated with the matrix representation i.e. the set of matrices {UY(P); P € Sx} where

UY (P = o(P)(SM,k|P|SM,I) kdl=1,...f(5 N) (3.15)

It may be easily proved [36] that these representation matrices are M-independent. For orthog-
onal spin functions these matrices are also unitary.

3.1.3 Hamiltonian matrix elements

Due to the separation of the spin and orbital parts in the CSFs one may perform separate
integration over spin and orbital variables in the resulting Hamiltonian matrix elements. For
the future use it is convenient to consider matrix elements of the powers of the Hamiltonian H?

HY i = (X SM, k| HP|u; SM, 1) = ExE,(SM, k[N ATHPA|p)|SM, 1) =
EEL/(NY) D7 a(PY(SM,EIP|SM, (A H?P|p) (3.16)
PesSy

where we have used the fact that At = A and A? = 1/(N!)A.

The last formula may be expressed in a somewhat different manner, following the proposal
of Karwowski [35]. Let Il be an invariance group of |A) generated by the transpositions within
doubles in A and let Dy stands for its dimension. Then for two orbital configurations A and p
and a given permutation P one may define a subgroup of Sy called the double coset 11, PII,,.
Every group may be decomposed into a number distinct double cosets having no elements in
common.

The antisymmetrizer may be also decomposed into the double cosets contributions [34]

. 1 DS
= — P #
A= 3 Zq:"( DD,

> vPrT (3.17)

velly; 7€lly,

where the summation runs over distinct double cosets 11\ P,II,, of the dimensions Diw generated
by P, . Moreover one may replace the permutations acting on the electron coordinates in the
orbital integrals by their hermitian conjugate i.e. the same permutations but acting on the
orbital indices. Assuming that spins associated with the doubly occupied orbitals are coupled
to singlets (Singlet Coupled Pairs - SCP) and the spin functions are generated according to
the reversed branching diagram, the full representation matrices may be replaced by the small
rectangular blocks [UY(P,)]79 defined by the sets of singly occupied orbitals in |\) and |u)
respectively.
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Finally one gets in the matrix block notation for k = 1,...f = f(S,sy) and [ =1,...¢9 =
f(Sv SM)

Hp

Oy = 27 TS DY UG (PP A7) (3.18)
q

As have been proved by Kotani et. al. [36] further (and essential) simplification is possible
since all [UY(P,)]// blocks may be reduced to U% matrices, corresponding to appropriate per-
mutations of singles only. The final numerical factor appearing in eq. (3.18) takes simple form
and may be tabulated for several different cases and in practice absorbed in the definition of
representation matrices [34].

From the practical point of view it is crucial that only at most one of the permutations P,
in eq. (3.18), called line-up permutation leads to complete coincidence between |P,A) and each
chain (product) of replacement operators Y|u) occurring in HP, giving non-zero contribution in
terms of products of electron integrals. For such a permutation one has to find then the proper
spin integral i.e. relevant matrix [UZ"%*(P))}/9, $par = maz(sy, s,). Several very efficient and
suitable procedures for evaluating the relevant matrices of the representations of the symmetric
group have been proposed by Duch and Karwowski [34].

3.2 Circular operators

Let us introduce for further considerations the following convention distinguishing the occupation
of the one-particle functions (orbitals) in the N-particle functions by the respective indices:

arbitrary unoccupied | singly occupied | doubly occupied

Ninder = 07 17 2 Ninder = 0 Ninder = 1 Ninder = 2
67f7g7h a7b7c7d 87t7u7/v i7j7k7l
m7n7p7q w7$7y72

Let Tcfgp...pg denote the product (chain) of replacement operators
Y etghomnpg = EeEgn - EpnEy, (3.19)

and let T denote a chain with non-specified indices. If the subsequent orbitals we excite from
are the same as those we excite to in the nearest right hand side neighbor, regarding additionally
the first and the last index as neighbors, we shall call such a chain of replacement operators a
circular operator and denote & yp,...mng

gefh~~~mne = Teffhnmnne = Eefth T 'EmnEne (320)

Notice that each index must appear even number of times in T if it is to be a circular operator.

The sums over all indices of circular operators are known as the Casimir invariants of the U(k)

group. The first Casimir invariant >, E.. gives IV acting on any N-electron orbital function.
Consider now matrix elements of the type

T = [UF (P17 (P AT ) (3.21)

56



where v is an appropriate product of one- or two-electron integrals associated with a chain
T occuring in the H?A)( ) The matrix elements of the powers of the Hamiltonian (3.18) are
in general sums of a number of such terms. The necessary condition for non-vanishing of the
T is the same occupation scheme in [\) and Y|u) i.e. any of the (singly or doubly occupied)
orbitals appearing in | P,A) must also appear (as singly or doubly occupied respectively) in T|u).
If the occupation schemes are the same one may choose a permutation P, such that it leads to
complete coincidence between |P,A) and T|u).

Let us restrict now to the diagonal matrix elements. If |A\) = |u) we shall use |0) to denote
the total, orbital or spin N-electron function (or their set associated with given S, M numbers)
depending on the context. Thus we shall write

(0| HP)0) = Z’y YO|P(1)[0)(P(1)0|T0) = Z’y )(0|P(T1)|0) (3.22)

where all the numerical factors as well as the sign factors are absorbed either in v or in the spin
integrals and ) s denotes summation with T giving vanishing contributions (P(Y)0|T0) = 0
excluded. According to our previous considerations (0| P(Y)|0) means square matrix block. The
above equation is a good starting point for the derivation of the matrix elements occurring in
the Sup-CI method.

Let us notice that the summation over distinct chains of replacement operators giving non-
vanishing contributions to the matrix element in eq. (3.22) may be expressed as a sum over
circular operators only. Indeed, if T is to give a non-zero contribution it cannot change the
occupation of any orbital in |0) i.e. each index m must appear 2i times in T, 7 times as left
index F,,, and 7 times as right one F,,,. It means that commuting the replacement operators
one may end up with the circular chain. The additional terms that may appear by applying the
commutation rule (3.4) are of two types

BB e Brges BB — B (323)

and may be then also permuted to the circular form. Thus we may write

QU710 = 27(T) T OIPEI) (3.24)
£(7)

where the second sum runs over all circular operators arising from a given chain Y. This will
be our general strategy: to specify all non-vanishing chains of operators in the orbital integral
and then transform them to sums of circular chains. Now, we must learn what permutation
is generated by a given circular chain. Then in the final step a proper spin integral may be
evaluated.

Some general properties of the circular operators may be directly derived from the com-
mutation relations (3.4). As noticed by Duch [56] they provide a tool for an alternative and
convenient reduction of the diagonal spin integrals to the occupation numbers or to the permu-
tations associated with a chain of operators involving singly occupied orbitals only.

Let us first distinguish closed circular operators involving any orbital index twice only i.e.
through a single pair: excited from, excited to (when expressing the circular operator explicitly
in terms of replacement operators). An arbitrary circular operator may be expressed in terms
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of closed circular operators only - as a product of closed circular operators or simply product of
closed chains or a sum of a number of such products:

gefhemmne = gefhege...mm; gefh~~~fg~~~mne = gfhe~~~fgefg~~~mne + Ecpntn. mne (3.25)

For the closed chains the following general rule is valid
Eepomeme = Emecmefom + Eefone — Emecnem (3.26)
In the simplest case one gets for instance
Eepe = Epef +Ece —Epp = Epey + Ne — Ny (3.27)

where 1. = 0,1,2 denotes the occupation number operator for the orbital |1.) with values
ne. = 0,1,2. Since excitation from unoccupied or to doubly occupied orbitals are forbidden we
have also in general

Eanal0) = E.0]0) = 0 (3.28)

where indices @ and ¢ refer to unoccupied and doubly occupied orbitals in |0), respectively.
Notice that |0) may be here either pure orbital function or the total function.

Using eqs. (3.26) and (3.28) one then easily finds for the matrix elements that the unoccupied
orbital indices may always be simply removed

(0&eaberc|0) = (0]Ee..c]0) (3.29)

whereas the doubly occupied indices always contribute through the terms of the type (0&;:...;:]0)
only and may also be eliminated

(01&4:10) = ny = 25 (01€:5:]0) =y —ns =1 (3.30)

<0|gzst2|0> = <0|gstis + giti - gsts|0> =1- <0|gst5|0> (331)

In this way all expressions for the diagonal matrix elements of the closed chains may be reduced
to the matrix elements of the chains involving singly occupied indices only.

When eliminating the indices of the doubly occupied orbitals we had to evaluate the spin
integrals appearing in (0|&;|0) and (0]&,;]0). Since such chains introduce identity permutation
only they always give spin integral equal to one (as many times as a given orbital occurs in |0)).
The non-trivial spin integrals will appear when considering the chains (0|&s;...s]0). We have to
describe the permutations associated with such circular operators.

Acting on the orbital product - --|ts) - - -[1¢) - - - with Eg one may verify that [56] this op-
erator is equivalent to:

Eots = 1+ (5,1) (3.32)

where (s,t) denotes the transposition of sth and #th orbitals. For longer chains:
Estus = (1 + (S,t))(l + (57 u)) (333)
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gsmws = (1 + (Svt))(l + (87 u))(l + (87 w)) (334)
Let us then denote by (s,t), (s,t,u) etc. the appropriate spin integrals

(s,1) = (0[(s,1)|0) (3.35)

(51, 0) = (015, £)(5, 0)[0) = {0](s, £, w)]0) = (5, £){s, ) (3.36)
where now |0) stands for the set of spin functions and (s, t)(s, u) is a product of two (represen-
tation) matrices. Thus finally we obtain

(01€st50) = 14 (s,t);  (0]Estus|0) = (14 (s, ) )(L+ (s, u)) = 14 (s, t) + (s, u) + (s,t,u) (3.37)

and in general

(0] sturns|0) = (14 (5, 8))(1+ (5, 0)) -+ (1 + {5, w)) (3.38)

i.e. the diagonal elements of the circular operators with more than two different indices may
always be expressed through the elements of operators with lower number of indices.

The basic integrals (s,t) corresponding to the transpositions of spins numbers s and ¢ are
equal to £1 in the determinantal basis. In case of spin adapted basis they are appropriate
representation matrices of the transpositions (s,?) and are easily calculated from the branching
diagram [34]. Now, we are ready to apply the above derived machinery to the calculation of
the matrix elements occurring in the Sup-CI method with the arbitrarily complicated reference
functions in the spin adapted basis.

3.3 Matrix elements in the third order Sup-CI

In the following all types of the relevant matrix elements will be specified. In the multireference
third order Sup-CI method we need formulas up to the third order i.e. matrix elements of the
type: o o

Hik,lj = <wi|RkHRl|wj>; Sik,lj = <wZ|Rle|w]> (3.39)
where indices 7, j mean different reference (open shell) functions and &,/ mean different 'resolvent’
operators, which may take one of the following forms

Ri=1; Rrg=QoHl; Rx=DxQol (3.40)
where in the latter one (X = N or X = M where N refers to the Epstein-Nesbet scheme and
M refers to the Mgller—Plesset scheme) the respective perturbative denominators appear

Dy = (Hi— Escr)™"; Dy = (Hy — Eo)™ (3.41)

From now we shall use |0) and |0') to distinguish different reference functions and Ry, R, for
different resolvent operators (except the identity operator }A{I)

Those elements that contain Hamiltonian in the first power are the usual CI matrix elements
derived in SGA formalism by Duch and Karwowski [34]. We shall distinguish ’diagonal’ type of
the matrix elements considered, for which |0) = |0’) but the resolvent operators (i.e. denomi-
nators) may be different. The non-diagonal type is defined by |0) # |0’). In the diagonal case
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HoRg, R,0 with the second power of H (i.e. when Ry = I, Ry # I) one gets PT2-like or E*-like
(i.e. involving fourth-fold summations) formula and with the third power (Ry # I, Ry # I)the
third order or k%-like formula. In the non-diagonal case the complexity of the evaluation of those
matrix elements is certainly lower since more indices in the summation are fixed.

Table 3.1: Matrix elements types in the third order Sup-CI

compl. || ordinary CI type non-diagonal diagonal
< nt Hor 10; Hor 1o | Hor,R,0'5 SoRy,Ry0!
SOI,Rlo; SOI,R10' HORl,RQO’(SA,S,G)
nt HoRl,RQOI(z) HOI,R10§ SORl,RQO
n® HoRl,RQO

For the future use it is useful to distinguish more precisely different categories of the matrix
elements of the general form (3.39). They are gathered in Table 3.1. The non-diagonal type
matrix elements are specified (if useful) by the relative excitations of the ket function with
respect to the bra function e.g. 0'(5,6) means all reference functions |0’) which differ by 5 or 6
orbitals with respect to |0) (quintuply or sextuply excited configurations).

3.4 Algorithm and formulae

The formula for the diagonal matrix elements of the second order type i.e. Hor g0 (thus Sor, r,0
as well) has been derived by Duch [56], using techniques presented in the previous subsections.
This formula does not include some simple one- partlcle terms, but they may be easﬂy added. We
shall derive now the third order diagonal formula <0|R1HR2|0> Notice that if Ry = Ry = Ras we
get the core of F3 MBPT formula. Then, the non-diagonal matrix elements will be considered.

3.4.1 Contractions

In the following we shall divide the set of arbitrarily occupied indices into two subsets - of those
that we may excite from (ninde = 2,1): €, f, m, n; and of those we may excite to (nider = 1,0):
g,h,p,q. Let r stands for an arbitrary orbital index. Furthermore, since we shall explicitly
differentiate the possible relative occupation schemes in all intermediate projections it should
be recalled [34] that one may extract from the definition of the Hamiltonian those terms which
do not vanish between CSFs differing by a certain number of orbital indices. Denoting by
Bo, BS?, B9" the parts of H (including the one-particle terms) connecting states differing on
0,1,2 orbitals ((0]---]0); |9); ef>) respectively, one gets [34]

By = %Z(@dee)ne( ne — 1)+ Z (ee| ff)itetiy + (eflef)(EepEpe — ite)] + Z(de)ﬁe (3.42)

[ e<f
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BY = (eglrr)(iv, — 850 ) Eeg + > (er]gr)ErgEe, + (elg) Eey (3.43)

r r#e,g
By = 97 5eron (eg| fh)Eeg B g + (1 = 8¢ )(1 = 6g1)(ehl fg) EenEy, (3.44)

Let us now consider the most complicated matrix element of the diagonal, n® type

(0| R1H R2|0) = > N D1(L)Do( K){O|H|L)(L|H|K)(K|H|0) (3.45)
LA0K#0

where L, I{ denote N-electron basis function (CSFs) and are subject to the conditions L € SD(0);
K € SD(0)N SD(L) i.e. are at most doubly excited with respect to |0) and |L) respectively.
D;(L) are appropriate denominators.

Dividing the intermediate sums into contributions coming from the singly and doubly excited
configurations one may rewrite the r.h.s. of the eq. (3.45) as

> D1 NOIBo LY { Y. Do(I)(L|Bo| K )(K | By 0)+

LeD(0 KeD(0)nD(L)
Y. Da(K)(LIBK)(K|B2]0) + Da(L)(L| BolL)(L|B20) }
KeD(0)nS(L)

For simplicity contributions from the singles with respect to |0) are for a moment omitted. The
most complicated term in the above expression is

= > > Do(K)Dy(L)(0|Ba| LY (L| B2 K ) (K| B|0) (3.46)
LeD(0) KeD(0)nD(L)

or in the more explicit notation

mn e h mn wUwWz h Hghe
S1="3" 350N DD 0| By e (52, | By |9k (98 B o) (3.47)

m<n p<gelf g<h

Because the non-vanishing contributions come from the double excitations only |g?> € D(L),
L =24 ) among indices e, f, g, h one pair only may differ from the indices m,n, p,q. This gives
six possible contractions of eight orbital indices, reducing the sums to 6-fold only:

e=m, f=n P,q,9,h
g=p, h=gq e, f,m,n
e=m, g=p for which u,v,w, z are respectively f,q,n,h
e=m, h=gq f.p,m,g
f=mn,g9=p e, q,m,h
J=mn, h=q €,p,m, g

Finally, 51 may be rewritten as

S1= 0 ST Do) By o,

m<n p<q
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mngh| f h Hghmn efmn| pefmn HPge
{20 Do BN ) (31 B 0) + 2 D5 B ) (1 By 0) +
9<h e<f

+ 3D [ DFPIB ) (b4 BETC|0) 4+ D5 BRI (29) (4] BST"0)+
e g

DB ) G BYN0) + D5 BN (241BY 1 0) ] ) (3.48)

The third part of the above expression has been obtained due to the exchange of the summation
indices. Notice that the summations over e and ¢ are not completely free — they cannot be
the same as their counterparts in the first intermediate configuration |24} e.g. D3""¥ implies
that e # n, ¢ # ¢ whereas D3"? implies that e # m, g # p. On the other hand e may be
equal to n (n # m) and/or ¢ may be equal to ¢ (¢ # p) in the latter case, implying that the
overall complexity of such terms is lower than n® (although they still involve two doubly excited
configurations being also doubly excited with respect to another). In the next section we shall
extract all the terms with some of the summation indices occuring many repetetively. Recall also
that any orbital configuration |?2) represents a number of CSFs with different spin couplings.

Table 3.2: H? diagonal matrix element — CSC

For explanation of symbols see text below.

< O0|R1HR3|0 > =
d1(m,p)d2(m,p) <|bl(m,p)b0(m,p)bl(p,m)[> +
di(m,p) [ d2(e,p)<|bl(m,p)bl(e,m)bl(p,e)]|>
+02(m,g) < [b1(m, p) b1 p,g )bl g, )] > ]+
A1, p) 42 1, £, ) < [ DL, p ) DI S, 1) b2 py By, )] >
+d1(m,p)d2(e,g)<[bl(m,p)b2p,e,m,g)bl(g,e)| >+
d1(m,p) [d2(e, f,p,h )< |bl(m,p)b2(e, fym,h)b2(p, h,e, f)| >
+d2(m, f,9,h ) <[bL(m,p)b2p, f, 9,0 )b2 g, h,m, f)] > ]+
d1(m,n,p,q)d2(m,n,p,q) <|b2(m,n,p,q)b0( m,n,p,q)b2(p,q,m,n )| >
+d1(m,n,p.q)d2(n,q) < [b2(m,n,p,q)bL(p,m)bl(g,n)|>
+d1(m,n,p,q) [d2(e,n,p,q) < |b2(m,n,p,q)bl(e,m )b2( p,q,e,n)|>
+d2(m,n,g,9) <|b2(m,n,p,q)b1(p,g)b2(g,q,m,n)|> ]+
d1(m, n,p,q) [d2(m,g) <[b2(m,n,p,q)b2(p,q,n.g)bl(g,m )| >
+d2(e,p)<|b2(m,n,p,q)b2(q,e,m,n)bl(p,e)|> ]+
dl(m,n,p,q) [d2(e, f,p,q) < |b2(m,n,p,q)b2(e, fym,n)b2p,q,e, f)] >
+d2(m,n,g,h)<|b2(m,n,p,q)b2(p,q,9,h)b2(g,h,m,n)|>
+d2(e,n,g,q9) < |b2(m,n,p,q)b2(p,e,m,qg)b2(g,q,e,n)|> ]

The complete expression for < 0| Ry H R2|0 > with contributions of the singles and all possible
contraction schemes is given in Table 3.2. A compact summation convention (CSC) is used
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in this table and in all automatically generated expressions i.e. generated by means of the
symbolic algebra program written for this purpose in the Maple language. According to this
convention all sums are associated with the ordered orbital indices occuring as arguments of the
denominators functions. We shall use a simplified notation: D" = di(m, p); B]"" = b1(m, p);
DI = di(m,n, p,q); BY™ = b2(m,n, p,q). Thus for example

K3

d1(m,p)d2(m,p)-- — ZZdl m,p)d2(m,p)-- (3.49)

dl(m,p)d2(e, f,p,h)--+ — ZZ Z Zdl m,p)d2(e, f,p,h)--- (3.50)

m p e<f h

dl(m,n,p, Q)d2(67f7p7Q) T Z Z Z dl(m,n,p, Q)d2(67f7p7Q) U (351)
m<np<qgelf
dli(m,n,p,q)d2(e,n,g,q) - — Z ZZZdl m,n,p,q)d2(e,n,q,q) - (3.52)
m<nplg €

The general rule is clearly visible from the above examples. Certainly, orbital indices we excite
from and we excite to have to be different - otherwise contributions are already included in the
formulas involving lower rank B; operators. Furthermore, some terms in CSC represent actually
a number of terms according to the following rule: if there is one contracted index among the
indices we excite from or we excite to in the second denominator (i.e. an index equal to any
index occuring in the corresponding part of the first denominator) it generates two terms with
two different contractions when the first denominator contains two indices in the corresponding
part. For example

d1(m,n,p,q)d2(e,n,g9,q) < |b2(m,n,p,q)b2(p,e,m,g)b2(g,q,e,n)|> =
d1(m, n,p,q)[ d2(e,n,g,q) <[b2(m,n,p,q)b2(p,e,m,g)b2(g,q,€,n )| >
+d2(e,n,p,g)<|b2(m,n,p,q)b2(q,e,m,g)b2(p,g,e,n)|>
+d2(m,e,g,q)<|b2(m,n,p,q)b2(p,e,n,g)b2(g,q,m,e)|>
+d2(m,e,p,g) < |b2(m,n,p,q)b2(q,e,n,g)b2(p,g,m,e)|>]

Finally the expression for S1, eq. (refslcontr), in the CSC notation is

51 = di(m,n,p,q)[ d2(e, f,p,q) < |b2(m,n,p,q)b2(e, fym,n)b2A p,q,e, f)] >
+d2(m,n,g,h ) <|b2(m,n,p,q)b2(p,q,9,h)b2( g, h,m,n )| >
+d2(e,n,g,q)<|b2(m,n,p,q)b2(p,e,m,g)b2(g,q,e,n)|>]

The formula for (0| Ry H R,|0), with all the contractions and the terms represented in the CSC
implicitly expanded, is given in the Appendix (in Table 8.1).

Notice that expressions in Table 3.2 do not include the intermediate projections since for
every chain of operators with a certain contraction scheme one may replace the product of
integrals

(0] By P2 |pa y(pa | BE%"|9h (ol | BSM™(0) (3.53)
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by a single integral
0 anqupqgthhmn 0) = (0 anpqupqghithmn 0) =
(0] By 2By 0) = (018, 2 2 0) =

= (0] By 29| \(pa | BEa9™ gk y(ah | Bgr ) (3.54)

2 m

The last step follows from the fact that only CSFs associated with the orbital configurations
given by the respective B, operators survive in the identity operators resolved in the basis of all
CSFs. As a result all the intermediate states may be simply removed in all contracted chains
of operators, but diagonal elements of higher order operators (involving up to 12 replacement
operators) have to be computed.

3.4.2 Chains

According to our general strategy, as specified by the equation (3.24) we shall now expand
explicitly all the chains of operators to transform them further to the circular chains. In order
to apply the commutation rule (3.4) one has to first extract all repetitions of indices. They
occur due to summation over pairs e.g. 3, and due to the presence of the singly occupied
indices one excites from and excite to as well. The latter ones will be called: from/to open shell
contributions (FTOS).

Consider first summations over pairs of indices. Any such summation generates certainly
two sums with the different chains of orbitals involving p < ¢ and p = ¢ respectively. Thus
for example }°,, <, 30 ,<, > c<s generates eight (23) sums with the distinct chains of operators.
The corresponding pairs of indices must be different by the definition of the doubly excited
configurations [5%,) and |27). TFurthermore for the doubly excited configurations (relatively to
each other) e # m,n and f # m,n and there are no other repetitions. The same concerns

ngn Zpgq Zggh‘

Table 3.3: S1 expanded with respect to the repetitions of indices — FTOS not included

§1=
d1(m,n,p,q) [d2(e, f,p,q) +d2(e,e,p,q)
+d2(m,n,g,h) +d2(m,n,g,9) +d2(e,n,9,9)
+d2(n,n,9,q9) +d2(e,n,q,q) +d2(n,n,q,q)] +
d1(m,m,p,q) [d2(e, f,p,q) +d2(e,e,p,q)
+d2(m,m,g,h) +d2(m,m,g,9) +d2(e,m,g,q) +d2(e,m,q,q)] +
d1(m,n,p,p)[d2(e, f,p,p) +d2(e,e,p,p)
+d2(m,n,g,h) +d2(m,n,g,9) +d2(e,n,g,p) +d2(n,n,9,p)] +
d1(m,m,p,p)[d2(e, f,p,p) +d2(e,e,p,p)
+d2(m,m,g,h) +d2(m,m.g,9) +d2(e,m,g,p)]
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The third 6-fold summation, namely >, <, >,<, 2 . >_, is more complicated. As specified
in (3.48) it is associated with four contraction schemes of the type

(O1By ™ ot ) (b, | By |22 ) (221 B |0) (3.55)

In the above case one gets for the e, g indices the following constraints only: g # e; e # m; g # p.
Thus one has to take into account additional possibilities:

e=nifn#m; g=qifq#p; (e=nand/org=yq)if (n #m and ¢ # p)

Finally it gives nine different sums (442+2+1 instead of four sums only) as long as we omit the
FTOS type of repetitions. Similarily, one can expand the three other chains associated with the
considered summation. At that level S1 has the expansion as given in Table 3.3. All integrals
are dropped for simplicity.

Recall that according to the CSC convention the d1( m,n,p,q)d2(e,n,g,q) term repre-
sents four distinct chains of the replacement operators with the same summations indices
whereas d1( m,m,p,q)d2(e,m,g,q) as well as d1(m,n,p,p)d2(e,n,g,p) represent two as-
sociated chains.

As we have seen before each of the four chains of operators represented in CSC by the single
expression d1( m,n,p,q)d2( e, n,q,q) generates additional chains with e and g indices equal to
some (depending on the case) of the m,n and p, ¢ indices respectively. Therefore, each of the
five additional terms in Table 3.3 represents a number of terms that may come from the four
distinct chains and the CSC must be extended to take that fact into account.

The new terms arise according to the following rule: if there is a pair of contracted indices
(we excite from or we excite to) in the second denominator and both indices in this pair are the
same it generates two terms when the corresponding pair in the first denominator consists of
the different indices — in the second term the different index from the corresponding pair in the
first denominator replaces the original one. For example

di(m,n,p,q)d2(n,n,g,q) =dl(m,n,p,q)[d2( n,n,g,q) + d2(m,m,g.q)] (3.56)

where any of the two terms on the right hand side still represents two distinct chains according
to the previously defined rules of the CSC. Thus, the explicit expressions are

di(m,m,p,q)d2(e,m,q,¢) = dl(m,m,p,q)[d2(e,m,q,q) + d2(e,m,p,p)] (3.57)
d1i(m,n,p,q)d2(n,n,g,q) =

di(m,n,p,q)[d2(n,n,g,q) + d2(m,m,g,q) + d2(n,n,p,g) + d2(m,m,p,g)]  (3.58)
d1i(m,n,p,q)d2(n,n,q,q) =

d1(m,n, p,q) [d2(n,n, ¢, q) +d2(n,n,p,p) + d2(m,m,q,q) + d2(m,m,p,p)]  (3.59)

As mentioned before there are some other possible repetitions due to the presence of the
singly occupied indices i.e. the FTOS cases. Consider first the following term

dl(m,p)d2(e,g)< |bl(m,p)b2(p,e,m,g)bl(g,e)|> (3.60)

65



appearing in the expression for the (0| R1H R3|0) (see Table 3.2). It corresponds to two singly
excited configurations |P ) and |?) being doubly excited with respect to each other. Since the
only restrictions that exclude double occurring of the indices are: p # m, g # e, e # m and
g # p in the open shell case we have to take into account the possible repetitions e = p = s
and/or ¢ = m = t. Thus when distinguishing all the distinct sets of the orbital indices involved
we get except the term (3.60) itself (with all indices different) three other terms

A1(m, )42 5,9) < [b1(m, s)b2 5,5, m. ) bl(g,5)| >
A1(1,p) 02 1) < [DL(Lp ) b2 poest )DL 1 )] >
d1(t,s)d2(s,t)<|bl(t,s)b2(s,s,t,t)bl(t,s)|>

They are graphically represented by the respective diagrams on the Fig. 3.2. Solid and dashed
lines are used to distinguish excitations defining the two different configurations. The arrows
points the nodes (indices) we excite to.

Figure 3.2: FTOS for single excitations
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For the doubly excited configurations, being also doubly excited with respect to each other
i.e. for the terms occurring in the expression for 51 one gets unfortunately as many as 20
additional terms which are gathered in Table 3.4.

A large number of such terms follows from the fact that they arise independently from
the different chains of indices in Table 3.3. For each distinct chain and associated summation
scheme one has to consider all possible appearances of the indices that involve excitation from
and excitation to. In order to simplify this procedure one may again introduce a graphical
representation of the different FTOS terms as given in Figure 3.3. Actually the number of terms
that arise from the graphs in this figure is equal to 36 but some of them are equivalent i.e. they
involve an equivalent chain of indices for the same summation scheme. Let us learn how to
generate different FTOS contributions from those graphs.

As an example the term d1(m,n,p,q¢)d2(e,n,g,q), m # n and p # ¢ is taken. As we know
it corresponds to four chains. For each chain we get three different FTOS terms since for two
free indices there are three possible situations: one or another index or both of them being singly
occupied. Thus we get

di(m,n,s,q)d2(s,n,9,q) — ZZZZ — A

m<n s q

d1i(t,n,p,q)d2(e,n,t,q) — ZZZZ — B

n plg €
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Figure 3.3: FTOS for double excitations
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di(t,n,s,q)d2(s,n,t,q) — ZZZZ — C
13 n s q

for the term d1(m,n,p,q)d2(e,n,g,q) itself. Notice that in the first of the above terms the
summation indices are subject to the following restrictions: ¢ # s and g # ¢ - otherwise the
relative excitation would be different from two and g # s by the definition of the doubly excited
configuration [22). Thus there are no more chains represented by this term according to the
CSC (one free index ¢, g # s). It concerns the two remaining terms as well.

For d1( m,n,p,q)d2(m,e,g,q) we get in turn

di(m,n,s,q)d2(m,s,g,q) — ZZZZ — D

m<n s

d1(m,t,p,q)d2(m,e,t,q) — ZZZZ — B

m t p<qg e

d1(m,t,s,q)d2(m,s,t,q) — ZZZZ — H(E74)
m ot s q

X (P22 ) denotes a diagram X with the simultaneous exchanges of the indices m < n and
p < ¢g. One may easily verify that this operation generates non-equivalent diagrams only if
it involves terms with the summation over pairs. Thus, for example H(272 ) = H. On the
other hand since the second term involves summation over pairs F(277 ) # F. Indeed, in

m+<n

FE=d1(t,n,p,q)d2(e,n,t,p) the index p (and not ¢) is distinguished with respect to the sum
> p<q i the second denominator. Analogously, we get for d1(m,n,p,q)d2(m,e,p,g)

dl(m,n,p,s)d?(m,s,p,g) B ZZZZ B A%_ﬁn)

m<n p s

d1(m,t,p,q)d2(m, e, p,t) — ZZZZ — B9

m t plg ¢
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dl(m,t,p,s)d?(m,s,p, - ZZZZ - Cfrz_ﬁn)zc

m 1 P s

and for d1(m,n,p,q)d2(e,n,p,g)

dl(mvnvpvs)dQ(Svnvpvg) B Z ZZZ - D frz_;?n)

m<n p s

d1i(t,n,p,q)d2(e,n,p,t) — ZZZZ — F

n plg €

di(t,n,p,s)d2(s,n,p,t) — ZZZZ — H
1 n P 5

All the remaining terms may be obtained by joining in all possible manners the (not singly
occupied) vertices and applying the exchange of indices m < n and p < ¢. Only the terms
non-equivalent to any other previously obtained have to be included. In the alphabetical order
we get first 6 terms from A and from B as well. Notice that the diagrams F' and G arise from
A and B respectively absorbing two additional terms in both cases - they are distinguished in
order to illustrate how the new terms may arise by joining the respective vertices. Then we get
2 terms (1 independent) from €, 6 (2 independent) from D and £ as well, 4 (2 independent)
from F and G and 2 (1 independent) from H.
Some examples of equivalent terms are:

A(m =n) = D(m = n); Alg=q) = F
Am =n,.g=q)=Am=n.g=q) (L) =F(m=n)(L) = Fim=n)=Dim=ng=q)
PO = GO =G

All the distinct FTOS terms in the 51 expression are explicitly given in Table 3.4.

Table 3.4: FTOS terms in S1

SI(FTOS) =
dl(m,n,s,q)d2(s,n,g,q) +dl(m,m,s,q)d2(s,m,q,q) + dl(m,n,s,q)d2(m,s,9,q) +

d1(t,n,p,q)d2(e,n,t,q) +d1(t,n,p,p)d2(e,n,t,p) +d1(t,n,p,q)d2(e,n,p,t) +
d1(t,n,s,q)d2(s,n,t,q) +d1(t,n,p,s)d2(s,n,p,t) +

di(m,n,p,s)d2(s,n,p,g) +dl(m,m,p,s)d2(s,m,p,g) +dl(m,n,p,s)d2(m,s,p,g) +
dl(m,n,s,q)d2(s,n,q,q) +dl(m,m,s,q)d2(s,m,q,q) + d1l(m,n,s,q)d2(m,s,q,q) +
d1(m,t,p,q)d2(m, e t,q) +d1(m,t,p,p)d2A m,e,t,p) + d1(m,t,p,q)d2( m, e, p,t) +
d1(t,n,p,q)d2(n,n,t,q) +di(t,n,p,p)d2(n,n,t,p) +d1(t,n,p,q)d2(n,n,p,t)

In contradistinction to the case of doubly excited configurations one gets only a few terms
in case of one singly excited and another doubly excited configurations. As a matter of fact the
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FTOS terms arise only if those configurations are doubly excited relatively to each other. They
may be obtained from the D and F diagrams while removing the ¢ and e vertices respectively.
Thus we have only four such terms.

All the distinct chains of indices associated with appropriate summation schemes are gathered
in the Appendix - see Table 8.2. When all chains of the different indices (and thus of the
replacement operators) are uniquely defined one may use the commutations rules (3.4) to make
those chains circular. Substituting the definitions of all quantities involved one gets an expression
in terms of sums over orbital indices with some chains of the replacement operators.

3.4.3 Factorizations

The most straightforward strategy would be now to extract all possible circular chains of the
replacement operators and to evaluate for all the different occupations schemes the corresponding
spin integrals. This simple approach leads however to a large number of final spin integrals that
have to be considered. Moreover these integrals would involve long cycles and require significant
effort for the computation of the representation matrices. In the following we shall demonstrate
how to reduce complexity of the above direct approach by means of various conveniently chosen
intermediate states and resulting factorizations of the spin integrals.

Let us consider the first term in the expression (3.48) for S1 which we shall denote S1¥1,
expanding explicitly the second and the third B, operators

S181= 3" 3 DI"PH0| By ) (51, Al0) (3.61)
m<n p<q
where using 6., = 1 — 65, and 6}/, = —(zy + 0u2)
A = 2%mn Z Dy (pg|qg)(gm|gn)Engngnggn + Z ngghB (3.62)
g g<h
B = (pglah)(gm|hn) EpyEqp By Epn + 65, (pglah)(gnlhm) By Eqn Egp Epm +

+ 6]')q(ph|qg)(gm|hn)EpthgEnghn + 67’71716]’)(1(ph|qg)(gn|hm)EpthgEgnEhm

One has to distinguish in the above expression different repetitions of indices, as specified in
Table 3.3. As an example we may first expand explicitly the term involving the second chain of

A for n # m and ¢ # p which is

S 30> DR (pglgh)(gm|hn) (0] By Epg Eqh Egr Epnl0) (3.63)
m<n p<g g<h

where according to the definition of B]"""? the integral splits in two products of the two-electron
orbital integrals and spin integrals

<0|B;nnpqEAngAthAngAhn|0> =
(mp|nq)<0|EmpEanngthnghn|0> + (mq|np)<0|quEanngthnghn|0> (3.64)
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All the indices involved in the definition of the above spin integrals are different and we may
transform them into integrals with circular chains. The results are

<0|EMPEanngthnghn|0> = <0|gmpgmgnqhn|0> (3-65)

and respectively

<0|quEanngthnghn|0> = <0|gmqhnpgm - gmthgM|0> (3-66)

The above expressions, which are not so simple in general case, may be generated automatically
using special function written for this purpose in the Maple language. It is a part of the general
program for evaluation of the matrix elements appearing in the Sup-CI method. The Maple
code of this function is given in the Appendix since it has potentially wider applications.

The integrals in eqs (3.65), (3.66) are quite complicated. Nevertheless the main problem is
associated with the large number of possible occupation schemes that have to be considered. For
each distinct summation scheme defined by a certain contraction and certain repetitive occurring
of indices we have to take into account all partial sums involving different occupation schemes
separately. Otherwise the spin integrals could not be evaluated using the technique described
previously.

We have three pairs of the summation indices in the case considered above, for which the
possible occupations are:

m, n — (2,2); (2,1); (1,1)
P ¢; g, h — (1,1); (1,0); (0,0) (3.67)

The assumed order of orbital indices is the following: first the doubly occupied indices, then
the singly occupied and the unoccupied ones, which are later than the singly occupied. Thus,
from the expression (3.63) we get 27 partial sums that have to be separately treated since they
involve integrals with different indices being doubly or singly occupied or unoccupied. These
sums run certainly over the respective subsets of all indices e.g. the occupations (2,2)(0,0)(0,0)
are taken into account through the partial sum

DD IEE (3.68)

1<ja<be<d

where according to our convention ¢, j designate doubly occupied indices and a, b, ¢, d unoccupied
indices respectively.

Consider now another extreme case when m = n, p = ¢, g = h and the associated chain of
operators is:

1 PPN .
§<0|EmpEmpEngngnggm|0> (3.69)
Making it circular we get

1

§<0|gmpgmgmpgm - gmpgmggpg + gmpgmgmgm + gmpgmgmpm - QEmpgmgpgp - 25mmTﬂ|0> (370)

The number of possible occupation schemes is however equal to one in this case.
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The total number of partial summations that have to be extracted is equal to 274274941 =
64. They arise as follows: 27 terms for all indices different, 9 terms for each set of six indices
with one pair of equal indices and all the remaining being different e.g. m = m, p < q, 9 < h
(3%9 = 27), 3 terms for each set with two pairs of equal indices (33 = 9) and 1 term for three
pairs of equal indices. Similarly one gets 64 partial summations that has to be extracted from
the second general contraction scheme in the expression (3.48) for S1

DD DD IEEE (3.71)

m<np<gelf

For the third contraction scheme

SYYY- (3.7

m<np<q €

situation is more complicated since as we have seen some additional repetitions appear (e.g.
of the FTOS type). Despite the fact that some repetitions occur and the number of possible
occupation schemes is limited the total number of the resulting partial summation that have
to be separately considered is unfortunately large because of large number of such additional
terms. While excluding these additional repetitions (i.e. assuming that e # ¢ and both e and
g are not equal to any other summation index) one gets again 64 partial summations. When
m < n, p < ¢ the possible occupations are

m, n — (2,2); (2,1); (1,
P, q9 — (171)§ (170)§ (070)
e, g — (2,0); (2,1); (1,0); (1,1) (3.73)

giving 36 partial summations. For m = n, p < ¢ and m < n, p = ¢ one gets 12 summations in
each case and for m = n, p = ¢ there are 4 summations.

There are five (one with all indices fixed) additional summation schemes with associated
chains of operators when relaxing constraints for the summation indices e and g - see Table 3.3.
They are the following

di(m,n,p,q) [d2(n,n,9,9) + d2(e,n,q,q) +d2(n,n,q,q)]
d1(m,m,p,q) d2(e,m,q,q)
d1(m,n,p,p) d2(n,n,g,p) (3.74)

One may easily check that they generate respectively, 18, 18, 0, 12 and 12 partial summations.
One may also verify that 20 additional contractions with repetitive occurring of singly occupied
indices of the FTOS type generate 80 partial summations. Thus finally 51 generates as many
as 192 4 60 4+ 80 = 332 partial summations in the direct approach described above. Fortunately,
as we have seen the number of FTOS and other additional terms is large in the case of 51 only,
and all other terms give rise to a small number of partial summations.

There is however an alternative solution to the ’direct approach’ described above, which
allows for significant reduction of the number of different partial summations that have to be
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separately considered. Introducing two ghost orbitals a,b (n, = ny = 0 for every function
corresponding to |0)) one may write down the identity:

Eij = Ei Ey; (3.75)

Let us come back to the expression for S1¥;. Using eq. (3.75) one may shift ¢,k indices to
gather them in every chain of the type E,,Ep By, By . For example

EpgEogEgmEgn = EpaEag By Evg Ego Eam By Evp = Epa By Eag By Ega Egy By By (3.76)
Inserting then identity operators as specified below one gets
<];rgn|EAngAngAngAgn|0> = <]r)rgn|EpaEqbiEagEnggaEgbiEamEbn|0> =
= (Sl Epa Fop L)t Bag Bog Ega Egp 175t | Bam Eivn]0) =
= <%n|EpaEquamEbn|0><?r?n|Ea9EnggaEgb|%fn> (3.77)

provided that all functions associated with a given configuration are taken into account.
From the above follows that

SISy =) Y DI

m<n p<q

<0|B;nnpquaEquamEbn|0> x{ 2%pamn ZD;rmgg(pg|qg)(gm|gn)<0/|EagEnggaEgb|0/>+
g

+ 57 DY (pglah)(gm| b)) Eag Eon Ega B |0+ 65, (phlag ) (gmlhn)(0| B Evg Ega Enp|0') ] 1+
g<h

(0] BY " By By Ean i 0)6L,, % S~ DY [(pglqh)(gn|hm (0| Eug v Ego B 07)+
g<h

8, (Phlag)(gnlhim ) (0| Ean Evg Ega Erp|0) ] } (3.78)

where [07) = |20 ).

Since the integrals with m, n, p, ¢ and g, h indices involved are separated one may significantly
simplify evaluation of the $1Y; term. Notice that in all different products of orbital and spin
integrals the terms resulting from integrals of the type <0|B;nnpquaEquanEbm|0>, defined by
the occupation of m,n,p, ¢ indices only, are multiplied by a factor which involves summation
over g < h and one of the following spin integrals

(0| Eap By Ego Erp|07; (0| Eag Eyn Ega Enp|07); (0| oy g Ega 24|07 (3.79)
which are equivalent to
<0/|gahbga - gahga|0/> = A7 <0/|gagagbhb|0/> = B7 <0/|gagagbgb + gagba - gaga|0/> =C (380)
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respectively. Because n, = n;, = 1 in |0’) we have 3 possible occupation schemes in case of A
and B with the corresponding values of the integrals.

Mg, N A B
0,0 (a,b) 1
1,0 <a,b>—|—<a,b,g> 1+< 4 >

L1 (14 (e, )1+ (e, 9))(a,b) (14 (a,9))(1+ (b, 7))

Let A;, B; denote the value from the ith row of this table. Notice that for instance Az may
be rewritten as (1 + (a,t))(1 + (a, s)){a,b) since in this case both ¢ and h are singly occupied
indices (¢ = s, h = t). There is only one possible occupation scheme in case of the third integral
(', namely n, = 0 and therefore g = ¢ where ¢ denotes unoccupied index. Thus

= <0/|gaagbb + Euba — gaa|0/> =1+ <a, b> (3.81)

In light of the above it is clear that we may separately extract four partial summations from
the sum over pair g < h and evaluate easily the spin integrals A, B or €' playing then a role of
a numerical factor in each partial sum. Thus, the expression for S1%; (3.78) reads

S1Y; = Z ZD;rmpq<0|B;nnpquaEquamEbn|0> X

m<np<g
X { 2%wmn 37 DY (pelge)(emlen)C
&

+ > D5 (pelgd)(em|dn) By + 8, (pd|qe)(em|dn) Ar] +
c<d

+ 22> DF M [(pslgd)(smldn) By + b, (pdlgs)(smldn) As] +
d

+ > Dy (pslqt)(sml|in)Bs + 6,,(ptlgs)(smltn) As]} + R (3.82)
s<1

where R designates the remaining terms which may be reduced in the same way.

Now, we may separately consider different occupations of the indices m,n,p,q. We shall
illustrate how to extract the subsequent partial summations using as an example the first of
two different integrals of the type <0|anpquaEquanEbm|0> appearing in eq. (3.78). Let [7"P4
denote [P = 37 p<q<0|anpquaE b Eam Epn|0). Four cases have to be distinguished
generating 16:1—|—3—|—3—|—9 separate summations:

l.m=n=1%p=g=-c
This certainly induces only one partial summation

Iiicc _ Z Z ZC|ZC 0|EZCEzcEcaECbEMEbZ|O Z Z ZC|7/C

2.3)m=n=1 p<q(m<mn; p=q=crespectively)
Here occupation of one pair of indices is specified and three different partial summations (in both

cases) arise: 37, 3 g3 2 2o 2og and 37530 o (i oes 00 20s 2o and 30, 7, respectively).

Notice that once the distinct chains with m = n or p = ¢ are specified we may gather terms
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corresponding to partial summations >, > >, and >, >, > . We skip the explicit forms of
the integrals involved.

4. m<n; p<yq
Nine partial summations arise with integrals that may be easily derived from the general formula
et = (mp|nq)<0|EmpEan EquamEbn|0> + (m‘]|np)<0|quEanpaEquamEbn|0> =
= (mp|ng) X (EmpamEngn) + (Mmalnp) X (Emgbnpam = Emgbpam) =
= (mplng) X (EmnpmEngn) + (manp) X (Emgnpm — Emgpm) (3.83)

These partial summations are:

2.0 220 2

252;52222222

where the summations over subsequent singly occupied indices are subject to the following
restrictions w # s,t; w # s,t; t # s.

The complexity of the problem decreases when using the factorizations of the type of eq.
(3.77). Instead of 64 partial summations, implied by the different combinations of the occupation
numbers for the orbitals m,n,p, ¢, g, h, with different spin integrals to evaluate one can consider
only 16 partial summations for the indices m,n,p,q and then 4 summation for the pair g, h.
Moreover, thanks to factorization the longest chain has only 5 indices Esty05 instead of 7. Similar
reduction of complexity may be achieved by various factorizations for all summations and spin
integrals considered here.

Recall that the second general contraction scheme in S1 (see (3.48)) which shall be denoted
S1¥5 has the following form

S1%, = 3" 3" DI By R (P2 | A|0) (3.85)

m<n p<q

where the quantity A is defined as

A = pqngD%pq (emlen)(pelqe) Eep Eey EpeEge + > D3P B (3.86)
e<f
B = (em|fn)(pelaf) EemEpnbpeLys + 8, (en] frn)(pelaf) Ecn B Epe Bgs +

+ 6;911 (€m|fn)(Pf|‘]€)EemEfn prqe + 57/7m pq (en|fm)(pf|qe)EenEmeprqe

Consider now as an example the following term

S 3 DI B ) (b S DS (eml fr)(pela f) Een EpaEpe Eys|0) (3.87)
m<n p<yg e<f
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Inserting again two ghost orbitals @ and b and applying the commutation rules (3.4) to gather
indices m,n,p,q and e, f we get

EemEanpequ = EeaEamEbebnEpaEaeEqubf =

= EpaEqueaEbeaeEbebnEam - A-B+C (3.88)
where
A = EpnEpEeEpEy EyEy, (3.89)
B = EpEoEpEoy By By (3.90)
C = BB EnE. EyE,, (3.91)

Let L designate the longest chain in eq. (3.88)i.e. L = EpaEquSaEbeaeEbebnEam. Inserting
then identity operators and retaining the non-vanishing projections only one gets

FLILI0) = (| EpaEglir,) (or, |EeaEbeaeEbf|ab Yool Eam E|0) =

= (OB E quamEbn|0>< | Eea By Eac Eyglin,) (3.92)
E1410) = LB Ep0) (G Eea ko iy Eae Byg[5) (3| Ey|0) =

= (3 Ep By By |0) (| Eca E gy Eqc Evgl),) (3.93)
(B IBI0Y = (B0 Bl Y (| Eea B g Eac Byl ) (| Egn B |0) =

= (Lo Egn B 0) (3 | Eca B gy Eoe By p|322,) (3.94)
FLICI10) = L Epm| N BB gy B By g |2)(4] Eqn 0) =

= (O By Egn0) (& Eca gy Eac Eng|2) (3.95)

Although the number of the resulting spin integrals involving the separate pair of indices e, f
is larger than for S1%; their structure is very simple for n, = 0 or/and n;, = 0 in a given
|0"). Finally, again only 16 partial summations appear involving separately treated 4 partial
summations for pair e, f.

Let us consider now as the last example factorization of the third term in expression for 51
(3.48), namely the term associated with the general contraction

> ZZZ (3.96)

m<np<lg €

As previously we may demonstrate that the pair e,¢ may be separately treated introducing
proper intermediate projections. The chains that have to be considered are now of the type

(O1By ™88, ) (b Eern Eipy Eige £ 10) (3.97)

This time the ghost orbitals are inserted as follows

EemEnggeEqn = EeaEamEpaEagEngbeEqn =

= EpaEeaEagEngbeEamEqn - A (398)
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where
A=FE LyyEyby By By (3.99)

Thus, inserting the intermediate projections one gets

<£r?n|EpaE6aEa9EngbBEamEqn|0> = <Z;r?n|EApa ?r?n><?r?n|E€aEa9EQbEb€ ?r?n><?r?n|EamEqn|0> =

= (0 EpaEan Lgnl 0) (i Eea Lag Eg v, (3.100)
(P A10) = (0| Eea Bag Egy Eve 02, ) (01| B Eya0) =
= (0 By En0) (5| Eca Eg Egy Epe 1) (3.101)

Let us finally remark that the above technique may be mechanized. One can easily specify
which indices should be gathered. Then, using the commutations rules one gets the desired
chains with chosen indices separated. A few rules, except for presented above, for inserting the
ghost orbitals depending on the case, are sufficient. All other terms (i.e. not only those included
in S1) may also be factorized in a similar way. Nevertheless, from the computational point of

view, one may gain little when factorizing terms of complexity lower than n®.

3.4.4 Non-diagonal elements

In the following subsection we shall briefly discuss the evaluation of expressions for the matrix
elements in the non-diagonal (in the sense defined in Sec. 3.3) cases. As displayed in Table 3.1
the different types of the non-diagonal matrix elements in the third order Sup-CI are

compl. type
4 . .
<n Hop ri05 SoRy,Ro0'; HORl,RQO’(3,4,5,6)
4
n HoRl,RQO'(z)
5
n HORl,RQO’(l)

The most complicated type i.e. Hyg, p,o1) involves H-fold summation. All these matrix
elements may be derived using the same machinery as in the diagonal cases. Only minor revisions
are necessary provided that one is able to transform evaluation of the general non-diagonal spin
integrals into evaluation of diagonal integrals considered previously.

The reduction of the non-diagonal expressions to the diagonal ones is based on the following
observation. Let (' denote a certain chain of replacement operators. Then we may consider
evaluation of the integral

(O[C]3,) (3.102)

There is a number of spin functions associated with the configuration |2 ) (defined with respect
to certain configuration |0)). Since Epm generates in general different set of functions when
acting on |0) [56] we cannot simply replace (0|C'|2,) by (0|C E,,,|0). Relatively simple solution
to this problem may however be found. Acting with Ememp on |2} and inserting identity one
gets

By Enpltn) = Epn1Eplt) = (01 Biplt) Epra0) (3.103)
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Inserting another identity
1B Brpltn) = Gl By Enpll) ) = (01 Bl ) Eprn] 0) (3.104)

Let us denote now the relevant spin integrals as A(1) = (2| Epp Empl|2) and B(1) = (0| Ey,|2).
Recall that these integrals are in fact (representation) matrices of the dimensions determined
by the number of spin functions associated with a given orbital configuration. Since A(1) is a
square matrix it can be reverted. Thus, we finally get that

[5,) = A1) B(1) Epn|0) (3.105)

where the right hand side is certainly a vector of the same dimension as the left hand side
vector. The generalization of the above trick to doubly excited functions |P? ) and higher excited
configurations is straightforward. At most sextuply excited functions (relatively to each other)
may appear in the third order method. Thus, the longest non-diagonal integral involve six
replacement operators

B(G) = <0|EMP e 'Enq|]¢)r;....?n> (3.106)

The non-diagonal elements Hog, Rr,o/(;) correspond to a pair of reference functions |0) and
|0’(4)) which are i-fold excited with respect to each other. The number of reference functions is
limited and their relative structure may be used to evaluate all integrals of the type B(i) and
tabulate them in the simple loop over pairs of references in the preliminary step of the procedure.
The integrals B(7) are simple (all occupations are fixed) and may be evaluated directly from the
definition or in another convenient way. Thus, the problem of evaluation of general non-diagonal
integrals reduces by means of (3.105) to evaluation of a limited number of simple integrals of
the type (3.106).

We may specify now how to modify the expressions for diagonal type of matrix elements
considered here in order to extract the formulas in non-diagonal cases. Let us turn to matrix
elements of the type N = Hoj g or(;)- In this case ¢ = 1,2,3,4. Dropping for simplicity the
denominator associated with R; we may write more explicitly

ND = > (0| H|KY{(K|H|0") (3.107)
KeSD(0); KeSD(0Y)

where |0’) is at most quadruply excited with respect to |0). Let the chain of replacement
operators corresponding to the configuration |0') defined with respect to |0) be denoted by
C(0"). For example C(|2,)) = Eppm. The relevant matrices shall be denoted by B(0’) and A(0').
In the above notation

ND = > A(0)TEB(0") (0| H|K)(K|HC(0)|0) (3.108)
KeSD(0); KeSD(0)

Thus, for a rectangular problem we may first find the square diagonal representation matrix (or
integral as it has been called throughout above considerations) D and then transform it into a
rectangular one by the matrix multiplication A= BD. This means that it is sufficient to consider
diagonal integrals D.
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In case of matrix elements of N D type we have specifically four cases that have to be taken
into account. When |0") is quadruply excited with respect to |0) summation over K reduces to 36
doubly excited configurations which involve two pairs of indices defining |0") with respect to |0).
If |0) is triply excited with respect to |0) only one pair and one index in the relative definition
of |0") are fixed. Therefore, except for 9 singly excited configurations and 9 doubly excited
with all indices involved in the relative definition of |0’) gathered in two short summations, two
other summations over one free index (belonging to the set of occupied or unoccupied indices
respectively) and the other three indices involved in the relative definition of |0’) will appear for
the doubly excited configurations.

When [0') is doubly excited with respect to |0) we may extract the different summations
schemes and the corresponding chains of operators from the formula for the diagonal matrix
element derived previously

D= ) > (O H|LY(L|H|K)(K|H|0) (3.109)
LeSD(0) KeSD(0); KeSD(L)

Notice that removing the first summation i.e. the first denominator in the CSC convention
employed in the previous section and the first integral (0| H|L) we get

> (LIH|K)(K|H|0) (3.110)
KeSD(0); KeSD(L)

which is equivalent to N D if we fix the vacuum level at |0") and if we insert C'(0") and multiply
by A(0")~1B(0). This means that simply removing the first denominator and the first integral
i.e. involving the first B, operator in the diagonal type of formulas one gets the formula for
ND.

Consider now another type of non-diagonal elements, which is of complexity n° if 0’ is singly
excited with respect to |0)

> > (O|H|LY(L|H|K)(K|H|0") (3.111)

LeSD(0) KeSD(0'); KeSD(L)

Formulas for such matrix elements may be also derived by simple modifications of the diagonal
formulas. As previously, we have to insert the corresponding chain C(0') and multiply by
A(0")~'B(0). However, instead of removing some parts of the diagonal formulas we shall only
restrict summations occurring in the diagonal case this time. Let for example |0') be a doubly
excited with respect to |0) configuration. Then, the summation over configurations K subject
in general to conditions K € SD(0'); K € SD(L) may be separated into the following cases:

1. K € SD(0) - this part may be extracted from the diagonal formula by restricting the
summation over K, defined in CSC by second denominator, to configurations involving at least
two indices of |0’) when K € D(0) and at least one index of |0) when K € 5(0). Notice
that since we had only two free summation indices in K € SD(0); K € L(0) in the diagonal
formula there are no longer free indices and 6-fold summation reduces to 4-fold summation with
different chains of operator depending on the actual contraction of indices between K € D(0)
and |0') € D(0). In case of singles there was one free index in the diagonal case which is now
absorbed as well i.e. it becomes equal to one of indices defining [0').
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2. K € TQ(0) - since K € SD(0) and in turn |0') € D(0) the relative definition of K
with respect to |0) must involve two pairs of indices defining |0’} with respect to |0). Thus we
have only one pair (for K € T(0)) or two pairs (for K € Q(0)) of not fixed indices with the
contractions resulting from the restriction X' € SD(L). Considering doubles only i.e. when
K € Q(0); K € D(0') and L € D(0) one has: if L and |0’) have no indices in common L can
contribute to (3.111) only through K being composition of |0") and L, if L and |0’) have some
indices in common L contributes to (3.111) through configurations K involving the indices of L
that are not in common. In consequence all the summations are at most 4-fold.

The above restrictions may be easily taken into account in the procedure for generating all
different contractions in the diagonal case. All non-diagonal matrix elements may be treated
according to the above presented general prescription. One should remark that although the
resulting chains of replacement operator are in general longer, the subsets of not fixed indices
are smaller and in fact these integrals are much simpler than the integrals considered previously,
corresponding to the diagonal type of matrix elements.

3.5 Discussion

As we have seen the evaluation of general open shell third order Sup-CI formulas is quite com-
plicated. The number of terms that arise is large and their structure may be quite complex.
Developing the Sup-CI (Fast CI in the original work) method for a limited case of several singlet
open shell functions Bendazzoli et. al. [42] had to consider 63 MBPT diagrams. For an arbi-
trary reference functions the problem is certainly more complex. Nevertheless, one can manage
this problem using symbolic algebra program based on the algorithm described in this chapter.
Various intermediate projections may decrease the number of different partial summation that
have to be considered. Graphical techniques may simplify evaluation of some terms.

Additional effort is however required to develop further the Maple code for generating Sup-CI
matrix elements. First of all one should look for a possible occurring of equivalent summation
schemes to gather more terms together and reduce the number of separate terms. This is crucial
for an efficient implementation of these formulas.

It seems that the algebra of generators [56], described in the first part of the chapter and
then used to evaluate the relevant matrix elements, would not be useful in orders higher than
third. This is because this technique requires explicit extraction of different occupation schemes
to find the spin integrals. The number of possible occupation schemes may be very large in
higher orders in general open shell case. One could certainly restrict oneself and consider only
reference functions of certain simplified structure. The other possible direction of the future
development is to include only some higher order effects, which would not require significant
effort. Such possibility has been already suggested in Chap. 2.
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Chapter 4

Dressing of CI matrices as a bridge

between CI and CC methods

4.1 Introductory notes

The Coupled Cluster approach to the correlation problem [64] offers a rigorous and elegant
solution. Assuming the exponential parametrization of the wave operator

Q= (4.1)

one obtains immediately for a system composed of two subsystems A and B a multiplicatively
separable wave function provided that the cluster operator is additively separable

TAmB = TA + TB (4.2)
and a separable zeroth order description is used
|0A~~~B> = |0A>|0B> (4.3)

Assuming also that the molecular orbitals are localized either on A or on B one avoids problems
with antisymmetry. As a result of (4.2) and (4.3) one obtains additively separable energy and
the CC method is size-consistent:

Fi.p= <0A~~~B|(ﬁA + ﬁB)eTA"'B|0A...B> =

= (04]H4¢T4]04) + (0p|Hpe™?|0B) = E4 + Ep (4.4)

The additivity of cluster operators (4.2), even truncated at arbitrary level of excitations, is
insured by the connectedness of the T" operator, the condition stating that in the definition of T’

T=Ty+To+-+1Ty (4.5)

there are no disconnected terms i.e. parts which could be resolved into products of two or more
lower T} operators [19]. At separation it insures that the cross terms, involving excitations on
both systems, will vanish and the eq. (4.2) holds.
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This special feature of the CC method is probably even more transparent when associated
with the MBPT linked diagram theorem [18]. Instead of eq. (1.25) one may directly project the
Schodinger equation

(H — (Wo| | ¥0))|¥) = AE|¥) (4.6)

against |¥p) and excited determinants, obtaining an alternative set of equations for the energy
and amplitudes. While restricted to T} and T3 they have the following form

. N 1. -
AE = (Uo|Hn(1 + Ty + §T12 + T3)|¥o) (4.7)
a a |7 r 1 2 r T 1 3
e AE = |Hy(14+ T + 5T1 + T+ 11T, + 5T1 ) Wo) (4.8)
- B S RS PO P
(thin Tt =t )AL = CLlHN (U + Ty4 ST+ To+ Tl 4 51T 4+ 51Ty + 515 4 17| o)
(4.9)

which is equivalent to that of the explicitly connected equations because all disconnected terms
(i.e. having a disconnected diagramatic form) on the right hand sides of eqs. (4.8) and (4.9),
occuring due to quadratic terms of the type Tzz, will exactly cancell the energy dependent left
hand sides [25].

For any arbitrarily chosen level of truncation of the cluster operator T the strict cancellation
of the terms defined above may no longer take place, but the connected cluster theorem says
that only connected terms (i.e. having a connected diagrammatic representation) need to be
considered, implying that only linked terms will appear in the expression for the energy and
thus finally insuring the size-extensivity [26].

The relevant terminology might be confusing. Here the convention used by Lindgren [17]
is employed. The terms linked and unlinked refer to closed energy diagrams whereas terms
connected and disconnected refer to diagrammatic representation of operators (e.g. of the wave
operator) in the second quantization language. Thus, by an unlinked diagram one means a
diagram which does contain a closed disconnected part, and by a disconnected one a diagram
which has open disconnected part.

In contrast the CI linear expansion does not insure the size-extensivity, when truncated at
some level. For a system of NV non-interacting H5 molecules one obtains non-linear dependence
of the energy with respect to N (in the limit N — oo the energy is proportional to v/ N) [23].
By projections of eq. (1.15) one is led to the following set of equations for the energy and
CI coefflicients (V&ihen limiting the expansion to the singly and doubly excitated determinants

Qor=14+C1+Cy)

AE = (Wo|Hn(1 4 Cy 4 Cq)| W) (4.10)
2 AE = (Y HNn(1+ Cp 4 Cy)| W) (4.11)
i AE = (%1 Hn(1+ C1 + C3)| o) (4.12)

Because, as was pointed out before, the left hand side terms have wrong dependence on the
number of electrons it is crucial to cancel them at least approximately to correct the improper
behavior of the CI method. Such a cancellation is only possible by implicit mixing of different
categories of excitations e.g. for CID it is necessary to account for some effects of quadruples to
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restore correct scaling. In fact this is what all methods that have been devised to modify the CI
method for size-extensivity do, starting from the simple a posteriori Davidson-like corrections
[49] to CC type procedures such as the Quadratic Configuration Interaction (QCI) method [68]
[70] or differnet CEPA type modifications [71] that incorporate to some extent the CC terms of
the type T22 and may restore strict size-extensivity.

The methods presented in this chapter certainly follow the same direction. They generally
employ the Coupled Cluster assumption saying that one can reasonably approximate the higher
excitations effects in terms of products of lower rank excitations and they use the fact that the
cluster assumption coupled with the exponential form of the wave function leads to a cancellation
of unlinked effects.

Since the CC approach has natural links with MBPT [19], the second quantization language
is the most natural for CC methods. However, since algorithms directed at CI method are
considered in this thesis and moreover, in most cases multireference schemes, the choice to use
consequently the second quantization formalism seems not to be the most fruitful. Adding some
CC derived terms to the corresponding CI matrix (which is actually the definition of a dressing
of CI matrices) may confuse readers used to the MBPT language but hopefully this shall not
become a serious obstacle in understanding this part of the thesis.

Another general remark should be also made before we go further. Recall that for size-
consistency we have to insure first of all the correct separation of a reference |045)

TAB—00

|0AB> — |0A~~~B>:|0A>|0B> (4.13)

which is the case of a single RHF reference determinant when the molecule dissociates into
closed shell fragments or UHF reference determinant otherwise (at least in some cases). The
UHF introduces a spin contamination and therefore in general is not a proper choice [21] [16].

The separability of electronic states is not a trivial question, except the simplest (and rather
rare) case when a ground, closed shell state dissociates into two ground, closed shell states of
the fragments [16]. The situation gets complicated when multireference description is inevitable.
If at least one of the dissociation products requires multireference description the model space
for AB system (S4p) no longer consists of a single reference function as well, and is usually
built as a proper spin and symmetry subspace of the Complete Active Space (CAS) i.e. a set
of all determinants obtainable by excitations of valence electrons within valence orbitals. The
active (valence) one-particle space is chosen to provide qualitatively correct description of the
separation into fragments [16]. The last requirement may imply very large model spaces in a sense
of the model spaces occuring in the theory of effective Hamiltonians. Intermediate Hamiltonians
used later here impose the corresponding CI spaces as model spaces. But even keeping relatively
small complete model spaces one may face the so-called intruder states problem due to the lack
of a good energy separation between states derived from the model space states [45] [87] (by
switching on the dynamical correlation) and other states.

The CAS zeroth order description is separable [16] i.e. for each reference space state |mi‘}‘33>
there exist subsystem states |pi“‘> and |q}§B> such that

Sa.. s s
|mA’.4..BB> = |PAA>|QBB> (4.14)
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where |mi’f‘.jBB> is defined by the separation process

Im 5P ) T ) (4.15)

Introducing the dynamical correlation one may however face convergence problems due to the
possible occurance of avoided crossings at some conformations. Thus, when we consider a given
state [map) of the AB system, derived from its reference space counterpart |mi’}‘33> our method
may not converge at all or may ’jump’ to a potential curve of another (nearly crossing) state,
excluding anyway the correct dissociation.

In the subsequent considerations a number of various (size-consistent) modifications of CI
method shall be presented. In all these cases the size-consistency i.e. additivity of the energies
at large separation is formally verified, at least for some special structure of the model spaces (in
particular separable reference spaces are required - see next section). I would like to stress that
this does not mean that the methods are also size-extensive. By the physically oriented definition
of size-consistency [22] one may escpape from the inherently MBPT linked diagram theorem and
difficulties that appear when using the MBPT language because of the self-consistent character
of the new proposals. It means however that size-extensivity (defined as a lack of unlinked
terms) is not verified.

Showing that a (projected onto a supersystem model space) product of subsystem solutions
for a pair of subsystem states p and ¢ is also a solution of the equations for the supersystem with
an additive eigenvalues we formally demonstrate the size-consistency. This concerns however
only the states derived from the reference space and not some arbitrary states. When tracing a
given root number k for AB problem one should remember that it may be an intruder state, for
which the demonstration is not valid and one may obtain a non-additive result for it. Another
difficulty arises in connection with the above mentioned convergence problems and possible
switching between two solutions. One should not forget about these restrictions when considering
the separability condition as implying smoth dissociation of a set of states of system AB.

We shall use the following notation in the current and three next chapters. The capital
letters I,.J,... will designate N-electron states playing the role of reference functions. The
indices 1, j, k,[ shall designate many-electron states if used to specify state functions (usually
some excitations with respect to the reference functions). The indices m,n,p, ¢ and a,b, ¢, d will
refer to occupied and virtual (one-electron) spin orbitals respectively. Thus consequently the

sab

excitation operators €%’ and é; are defined as follows

Enal0) = [570,); é

mn

0) = |i) (4.16)

When considering multireference situations in the spirit of the Hilbert space approach (see Chap.
5) the é; excitation operators will be by default defined with respect to the vacuum given by the
reference function |I) they act on é;|I). Otherwise, the vacuum level will be explicitly defined
by second subscript e.g. é;7. In both cases such excitation operator designates the relative
excitation, which generates |¢) when acting on |I).
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4.2 Self-consistent state-specific intermediate Hamiltonians

In the theory of effective Hamiltonians one defines a small subspace of the total Hilbert space
M C HN of projector Pys, which is called a model space

HN = M @ Mg (4.17)

where Mg is a complementary space and in practice k = dim(M) << dim(H"). The choice of
a model space corresponds to the choice of k lowest roots of the exact Schrédinger equation

H|U) = E|¥)  i=1,....k (4.18)

for which we want to reproduce exact eigenvalues F; in the model space i.e. to built an effective
Hamiltonian Heg having the same eigenvalues when acting on projection of the exact states onto
the model space

Heg Prp|V5) = E; Py |V5) r=1,....k (4.19)

Introducing the so-called wave operator Q
|U) = QPy |y i=1,....k (4.20)

one gets for the effective Hamiltonian ﬁeg = PMﬁQ Using then Bloch equation (see table below
the Fig. 4.1) one may find the wave operator, hence the effective Hamiltonian and diagonalize
it in the model space to find desired eigenvalues [74] [45].

In practice the above procedure is only applicable when we have reasonable starting approx-
imation to exact eigenstates. Thus we define a set of k functions |®;), which span the model
space M of projector Py = >oiz1. k| ®:){®] and from the formal point of view M must be cho-
sen in such a way to insure that the projections of the exact eigenstates will be non-vanishing
and lineary indepenedent [45]. To obtain reasonable results those projections should be also
reasonable zeroth order approximation to the exact states.

The effective Hamiltonians may be safely applied only when the model and outer space are
well separated energetically [87]. Otherwise they suffer from the intruder state problem. To
avoid this problem Malrieu et. al. [87] have proposed intermediate Hamiltonians, which are
effective Hamiltonians that are supposed to reproduce only a part of the exact eigenvalues F;
when diagonalizing the intermediate effective Hamiltonian Hj,, in the model space M. Tracing
only well separated roots should in principle avoid convergence problems connected with the
presence of intruders.

The outline of the intermediate Hamiltonian theory may be summarized as follows. The
model space M is divided into the so-called main model space M,, (of the dimension [ < k) and
its orthogonal complement M;,; called an intermediate model space

M =M, & M. (4.21)
and then one tries to built an intermediate Hamiltonian f{mt satisfying

f{thM|\IJZ> = EZPM|\IJZ> 1=1,.. .,l <k (4.22)
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Figure 4.1: Effective Hamiltonians vs Intermediate Hamiltonians
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One may introduce a counterpart of the wave operator, denoted in the original work by R [87]
and find some necessary conditions that have to be satisfied by R. However, these cinditions are
not sufficient for a unique definition of R [87]. This formal drawback paradoxically may open
a way for variuos interesting proposals that would use the theory of intermediate Hamiltonians
as a general frame, say general heuristic scheme.

Various dressing procedures aiming generally at making differently truncated CI schemes
size-consistent have been recently proposed by the group of Toulouse [115]. Some of them as
well as several new ones are presented here. They take benefit of some degree of freedom which is
present in the theory of intermediate Hamiltonians and fix their form by introducing a dressing
operator which is supposed to account for the outer space determinants effects. This in turn
opens a way to very flexible procedures taking into acount CC type non-linear terms.

Modifying CI equations in the dressing procedures we shall define a model space as the
corresponding CI space and then distinguishing one or a few lowest roots we shall define a
proper main model space. An intermediate Hamiltonian Hipy is postulated to take the form

Hipy = Pyp(H 4+ APy (4.23)

where the dressing operator A is defined by the equation (4.22) [114]. Now we may adjust the
general definitions to particular situations considered in this work.

In the following we shall consider a multireference space 5 spanned by the reference deter-
minants I. We shall also consider the determinants ¢ which do not belong to 5., obtained by
the single and double substitutions on the references. These determinants span a space s. The
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corresponding projectors are

Ps =" 1)1 (4.24)

Ies
P, =Sl (4.25)
1€s
The determinants i may interact with one or several reference determinants ((i|H[I) # 0),
depending on their nature and the structure of the reference space. Hereafter the model space
will be chosen as the union M = 5 & s and the associated projector will be labeled Psg;.

For the state |¥,,) (ground or excited state) one can write its expansion in terms of the
N-electron basis {|I), |7), |a)}ies, ies, agsas

)= CTI+ ) el + Y ellle (4.26)

Ies 1€s a@Shs

Now, we would like to define an intermediate effective Hamiltonian Pg@s(ﬁ + Am)f)g@s, where
A" is a dressing operator, such that

PSGBS(IA{ + Am)jDSGBs|\IJTrL> = EmPS®s|\IJm> (427)
|¥,,) and E,, being the exact eigenstate and eigenvalue
H,,) = EpnlV,,) (4.28)

As usually for the intermediate effective Hamiltonians [87], we demand the exact energy when
acting on the projection of the exact eigenvector onto the model space. The state-specific
intermediate Hamiltonians are only required to give one exact root (one-dimensional main model
space). It should be stressed that contrary to the usual effective Hamiltonians the model and
the reference space are different.

Inserting (4.26) into (4.28) and multiplying by (| on the left hand side we obtain

ZH[JC}H—I-(H[[—ETH)C?L—I-ZH[Z'CT =0 (4.29)
Jes 1€s
JEI

which is the Ith row of the matrix representation of the eigenvalue problem (4.28). Since the
elements (I|H|a) = 0 this equation is the same for H and for Psg,H Psgs, so that there is no
dressing to introduce in the PgH Psgs block of the matrix

PsA™ Psgy = 0 (4.30)
Multiplying (4.28) by (¢| belonging to the space of the singles and doubles, the eigenequation
becomes
> HCF + ZH” ¢ —Ep)el"+ Y Hicl =0 (4.31)
Ies # agSPs
FET

To obtain a correct dressing one has simply to transform the last summation of the above
equation into a proper matrix element of a dressing operator and include it in one of the first
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Figure 4.2: Self-consistent Intermediate Hamiltonians
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three terms (i.e. effectively shift the last summation to the model space). One may for instance
define a diagonal dressing [89]

A= () Higel)(e)™! (4.32)
agSPHs
AT =0 ifi# ] (4.33)

such that Pg@s(ﬁ + Am)f)g@s has ]35@5|\Ilm> as the eigenvector for the energy F,,.
Another dressing operator is obtained assuming that one can write the coeflicients of the
outer space determinants as a sum over references

=y (4.34)
Jes

Then one may define a dressing of the first columns of the matrix [105] (more precisely of the
Psgs H Ps block)

J=0Y Higc)(cr)™ (4.35)
agSPHs
A =0 (4.36)

The two dressings lead to a common eigenvector of Pg@s(ﬁ+Am)Pg@s and Pg@s(ﬁ+A/m)Pg@s,
namely |\ilm> = ]35@5|\Ilm> with the eigenvalue F,,, but all other eigenstates are different. It
should be emphasized that postulating different forms of dressing we actually impose additional
conditions that allow to define an intermediate effective Hamiltonian uniquely [89].

The above proposal is purely academic if one does not have a reasonable evaluation of the

m

coefficients ¢}

of the outer space determinants. Remember that these determinants are here
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triples and quadruples with respect to at least one reference I € 5 and singles or doubles with
respect to some of the singles and doubles ¢ € s.

The strategy to approximate the outer space coefficients will be grounded on the CC as-
sumption saying that higher-body effects may be reasonably described in terms of two-body
(and one-body) cluster amplitudes.

Before we go into details, let us only notice that the above defined dressing operators, given
in the matrix representations by eqs. (4.32) and (4.33) or by eqs. (4.35) and (4.36) may be
postulated to take an operator form

A™ = P,HO™ P (4.37)

where the operator & generates the outer space determinants. Then one may assume that all
a’s will be generated with respect to a selected reference |0) only or that they are generated
succesively with respect to all references. Certainly in both cases we may go into limit of one-
dimensional reference space when these two choices become equivalent. In the first case one may
thus write

O = wia)(o) (4.38)

agSPHs

whereas in the second (assuming (4.34))

> D while)d] (4.39)

agShs IeS

In consistency with the matrix representations the ’amplitudes’ are given by

m m
C CoT

wlt = ﬁ and  w]j === (4.40)

and may be exponentially factorized as in the Coupled Cluster theory.

4.3 CEPA method as a dressing of CI matrix

We shall leave now the deductive perspective for a while and recall the known fact that Cor-
related Electron Pair Approximation (CEPA) type methods [71] [73] may be formulated in a
self-consistent manner in terms of the pseudoeigenvalue problem, to use the usual CI machinery
for practical implementations [73] [72]. In the following we shall restrict the discussion to the
CEPA(2) method [73].

The simplest reasonable structure of the cluster operator leads to CCD approximation, first
introduced by Cizek under the name Correlated Pair Many Electron Theory (CPMET) [64].
In the traditional formulation of CCD/CPMET method the equations for the amplitudes of
doubles are usually written in the following form [6]

mnl 10) + 32 Gl lpgdens + Y0 D0 (ol HInng) e % oy =

p<qc<d p<g  c<d
pg#Emn cd#ab
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= Eock, + > D (0l H [y ecd s (4.41)
P<q c<d

where c“b

sz denotes a sum of 18 different products of the coefficients of doubles into wich a
given quadruple may be factorized with proper signs defined by the antisymmetry requirement
[6]. The above equation is certainly equivalent to eq. (4.9) if we put there Ty = 0.

Different CEPA methods corresponds to different approximations of the left hand side non-

linear term LN =Y ,eq 3 ccq (20 | H |20 ) cab o c¢?. The CEPA(2) method for instance is

pgFEmM”N cd#ab mned
defined by [73]
LNCEPA®) = cab 5= N 0] (4.42)

p<qg c<d
pgFEMnN

Notice, that the restriction on the summation over virtual spin orbitals (particles) is released.
This is due to the definition of the pair energy €;;

c<d

which is defined as a sum over all excitation from a given pair m,n of occupied indices. Using
eq. (4.43) one may ﬁnally write the equation for CEPA(Q) amplitude

S LHI0)+ DD JH S St = (Eo + € )i, (4.44)

p<qc<d
It is clear already here that the term LNYFPAR) (4.42) is to be added to the ith line
(|9) = |28.)) of CID matrix to obtain an equivalent set of equations. Certainly when we start

from the pure CI coefficients they do not satisfy such dressed equations. However the pure CI
coefficients define first approximation to the CC amplitudes and non-linear term LNCEPA®),
At convergence of this self-consistent process one obtains the CEPA amplitudes that satisfy eqs.
(4.44). Thus the CEPA(2) dressing of the CID matrix may be viewed simply as a way of solving
(by a pseudoeigenvalue formulation) CEPA(2) equations.

In fact the pseudoeigenvalue formulation was used for solving CEPA equations in a self-
consistent manner already in the seventies [73]. Let us illustrate it using as an example work
of Alrichs [72]. Following ref. [72] we may introduce now a matrix block notation, which may
be used to study the relationship between CEPA and CID. Let the index u denotes a pair of
occupied indices p = mn. Then by Hy, we shall denote a block vector Ho, = (Houy s - - Hoprn)
where m is equal to the number of excitations from pair p and by H,, a block matrix

Hm 1 Hm Hm
H,, = :
H i i
Using this notation we can rewrite the CID and CEPA(2) equations. Let the total number of
pairs will be equal to n. The CID eigenvalue problem He = F;c is equivalent to a set of coupled

matrix equations [72]

Eo  Hoy 1 1 0
ct Eo + € ct == ct ¢t nct 4.45
(HMO HW)(CM) o )(Cu) y;(ﬂwcv_%%) (.45)

n
vEW
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where Fo; = Fo+ ), fo; fo = Houcff. The corresponding CEPA equation is different by the
absence of the 'wrong’ term ), €,¢, and reads

Eo HO“ 1 _ cepa 1 _ 0
( HMO H;m ) ( Ciepa ) (EO +€M ) Ciepa = Z Hm,clc,epa (4.46)

v=1,n

vEW

Comparing eq. (4.45) and eq. (4.46) one immediately notices that the latter one is a result of
a diagonal dressing of CID matrix by the quantities A, =3, €, More precisely all diagonal
elements in every block H,, obtain one common shift A,,.

Thus the CEPA(2) equations in the form of (4.46) form a basis for an iterative proces:
starting from the CID equations one may evaluate the CI approximations to diagonal shifts
Afjp =2 utu €%, solving then such dressed equations one obtains next approximation etc. At
convergence one obtains CEPA solution.

In the Alhrichs’ original work the iterative process goes through a ssries of small diagonal-
izations for pair problems. One starts from IEPA approximation (for which the left hand side
of eq. (4.46) is simply equal to zero) and then adds the terms that couple different pairs i.e.
the set of CEPA equations may be solved by a self-consistent dressing of IEPA small (pairs) CI
problems. For this special case such approach might be more convinient, but going beyond the
pair approximation one may no longer use it. Dressing of a total CI matrix is more universal
(although for very large CI problems one may be tempted to use again small diagonalizations
dressed in a more refined manner - see next section)

4.4 Size-consistent self-consistent CI or exact CEPA method

In light of the above considerations dressing appears as a particular method of solving CEPA
equations. This is true and is interesting by itself: machinery developed for solving the CI
eigenproblem [43] is very stable even in badly degenerated situations and one may take benefit
of that when facing convergence problems with the standard methods of solving various non-
linear CC equations.

However, reversing this logic one gains a lot of freedom. Starting from a given CI approx-
imation one may look for different kinds of dressing that may restore size-extensivity or an
approximate size-extensivity. This may lead to new formal developments which are somewhere
between traditional CC and CI approximations similar (or even superior) in the quality but less
complex than traditional CC methods [115].

Certainly the problem of adding some pertubative or non-linear CC type terms to CI equa-
tions to make such modified CI method size-extensive has been considered many times for the
last two decades. Of course, doing that one looses the property of variational upper bound of
the resulting energy [20]. Satisfying one formal requirement another one is spoiled and it seems
that there is no escape from this contradiction.

The first proposals to make CI method approximately size-extensive were guided by a per-
tubative analysis and in the case of CISD approximately accounted for the so-called renormal-
ization term in the fourth order of MBPT which gives rise to diagrams that should be excluded
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in the linked diagram expresion for the fourth order MBPT energy. This leads to various forms
of a posteriori (Davidson-type) corrections [49].

Including some quadratic terms arising from T22 one obtains various CEPA methods [71].
Adding singles and higher excitations one may consider at each level all terms that are necessary
to restore size-extensivity of the corresponding CI. The Quadratic Configuration Interaction
(QCI) method proposed by Pople et al [68] belongs to this family of methods. In the ref.
[70] one may find the review of single reference 'dressings’ of this type. Nevertheless all these
computational schemes use traditional CC machinery i.e. a set of non-linear equation (comparing
to the traditional CC approximation some terms are omitted) is solved using Reduced Linear
Equation (RLE) or other methods [69]. It seems that except the recent efforts of Malrieu
et. al. [86] [115] [85] [105] such trials have never been systematically studied in terms of the
pseudoeigevalue problem with the use of CI machinery and additional freedom in choosing terms
for a dressing.

In the family of dressings proposed by the Toulouse group the first was Size-consistent Self-
consistent Configuration Interaction ((SC)2CI) method [86]. It will be briefly recalled in the
remaining part of this section.

Let us first consider purely single reference case i.e. let the reference space S consists of
one closed shell determinant |0) only. The s space is assumed to contain all single and double
excitations from |0) and the relevant outer space determinants |a) are triples and quadruples.
Thus we shall dress single reference CISD matrix. The dressing concerns the ground state only
(it is state-specific dressing), so that we shall also assume that |0) is a reasonable approximation
to the ground state. In the following the state index m will be omitted.

The diagonal dressing of eqs. (4.32) and (4.33) is employed in the ref. [86]. Further, it is
assumed that the outer space determinants coefficients may be approximated by the products
of the coefficients of determinants belonging to s. Thus we write

Co = €C5 (4.47)

for |a) = é;€;|0) where é; and é; are defined by |j) = €;]0) and |i) = é;]0) respectively for some
determinants 7,j € s. Assumption (4.47) leads to the following form of the diagonal dressing
(4.32)

Aii=( Y Higeo)(e)™h = > Hojey (4.48)
agSPHs o

€;€;#0

since H;, = (0 Téi|f{|éjéi0> = Hy;. When the intermediate normalization is assumed

Eeprr = Z Hgjc; (4.49)
J

and the dressing of eq. (4.48) reads E.... + E PV; where EPV; denotes a sum over contributions
from the conjoint or Exclusion Principle Violating (EPV) terms

EPVi=— Y Hyjc; (4.50)
éJéJiZO

From the practical point of view it is sufficient to calculate efficiently the EPV contributions.
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Restricting ourselves to double excitations in s space only we may compare the (SC)*CID
dressing directly with that of CEPA(2) presented in the previous section. The latter one for the

ith row, |i) = |2°) reads (compare eq. (4.42)
cepa rricdy cd
AP =3 S (0[H S (4.51)
p<q c<d
pgFEMnN

The new dressing takes into account all EPV effects
AFTH AT = 3T (Ol (1.52)
p<q
pgFEMnN

and therefore the (SC)2CID method may be regarded as an exact CEPA method. As the two
dressings differ only by EPV terms all the unlinked effects are removed in both cases and the
(SC)?CID method is strictly size-extensive [86]. Notice also that for a two electron system

Agfc)%id vanishes. The CID is equivalent to FCI in this case and should not be dressed. Thus
the (SC)*CID method has correct behavior in this limit similarly as the CEPA(2) method - the
difference given by eq. (4.52) is equal to zero in such a case.

The form of the (SC)2CI dressing (eq. (4.48) remains unchanged when also single excitations
are included as well as some selected higher excitations appear [86]. The (SC)*CISD method
is a particular case of MR(SC)2CI procedure considered further. Therefore the proof of size-
consistency of the MR(SC)2CI method, given in Sec. 5.2, is applicable to (SC)*CISD method.

In a general case with some selected singles, doubles and higher excitations with respect
to |0) generated as singles and doubles with respect to a set of references |I) € 5 (|0) € 9)
one still may treat all those excitations as derived from the ground state determinant only. It
corresponds to the choice (4.38) of the parametrization of the dressing operator. The dressing
has now the form

Aii=( Y, Hiaco)(e)™ = > Hojc; (4.53)
agSPHs J

£18,#0; £;6,10)¢Ses

or equivalently

Aii = Feorr + EPV; + R; (454)

where the term R; takes care of possible redundancy effects

Ri=— > Hc (4.55)

¢;e:l0hesms
The outer space sextuple excitation for instance will appear in the dressing of model space
quadruples with the coefficients being products of quadruples and proper doubles (i.e. defined
by the decompositon of our sextuple including a given quadruple) coeffients. For selected CI
procedures the dressing is selected as well i.e. we may only dress by this part of interacting outer
space determinants which are obtainable as products of model space excitations. Because some

95



higher excitations are present in the model space one has to take care of possible redundancies
R;: e.g. product of two doubles may also belong to the model space.

In general case the method may no longer be strictly size-extensive. For such Selected
(SC)2CT procedure one can however show (see ref. [86] and further erratum in ref. [85]) size-
consistency as long as the selection procedure introduces only localized excitations consistently
for the super- and sub-systems i.e. when a given 04jp appears in the supersystem expansion jp
is also selected in the separate treatment of B. Let us finally remark that in such generalized
(SC)2CT method one may in fact work in a multireference space with a distinguished role of
one of references (single reference dressing of MRCI matrix). Thus, according to the typology
presented in the first chapter the (SC)2CI method belongs to SR(MR) family.

The results of applications reported so far (mostly using the multireference i.e. SR(MR)
variants) show that the (SC)?CI method offers an interesting alternative to CCSD method for
describing the PES of closed shell systems. It gives results of comparable quality and remains
stable even for extremely stretched bonds where CCSD usually fails [86] [75]. The Selected
(SC)2CI method takes into account the most important linked contributions arising from 73
and other products of T, and T, which are included in the CCSD scheme, provided that the
selection procedure introduces the most important triple and quadruple excitations (in this way
certainly also Tg, Ty contributions from those selected triples and quadruples are included).
Actually all those linked contributions may also be included in the full CC type dressing as we
discuss in Sec. 4.6.

Regarding the practical implementation, one does not perform explicit summation over all
EPV contributions (the number of which is approximately proportional to n, n being the size
of the basis set). One takes benefit of a trick proposed in the previous work for the infinite
summation of EPV diagrams [113]. One-, two- and three-indices arrays store the contributions
to the correlation energy of each spin orbital r

e1(r) =Y ci(0|H|i) (4.56)
i(r)
of each pair of spin orbitals r, s
ea(r,s) = > ¢;(0|H|i) (4.57)
i(r,s)
and of each triplet of spin orbitals r, s, p
es(r,s,p)= > ci(0|H|i) (4.58)
i(r,s,p)

where summations over all determinants 7 are restricted as follows: i(r) indicates that only
determinants ¢ defined by é; involving r are taken, i(r, s) is resricted to é; involving r and s and
respectively i(r, s, p) is resricted to é; involving r, s and p. Using these quantities, the calculation
of the EPV; term becomes straigthforward since it only requires summations over the holes and
particles of |¢) = |2 )

EPV, = —e1(m) —e1(n) — e1(a) — e1(b) + ea(m,n) + ez(a,b) + ex(m,a) + ex(m, b)+
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ea(n,a)+ ez(n,b) — es(m,n,a) — es(m,n,b) — es(m, a,b) — es(n,a,b) + Hoic; (4.59)

The above trick is used in all methods introduced in the subsequent chapters whenever the EPV
contributions have to be evaluated.

It is worth noting finally that IEPA small CI problems may also be dressed in the same
manner. For a given pair p the model space is then defined by all determinants a pair p
consists of. All these determinants obtain then exactly the same dressing as in (SC)*CI method
including all EPV contributions. The only difference concerns the ground state determinant
which is dressed in the diagonalization for the pth pair by an effect of outer space determinants
i.e. by the quantity Afjy = E.orr — €,. The mutual dressing of small CI problems provides a full
set of the coeflicients of the doubles.

4.5 Functional form of a dressing or generalized CPF method

We have been assuming so far that the dressing concerns the Hamiltonian matrix H in the
eigenvalue problem Hc = Fc. Introducing a generalized eigenvalue problem

Hce™ = E,,Se™ (4.60)

one may however consider a dressing of the overlap matrix. Let us recall that the term we
want to effectively take into account by the dressing is 3 g4, Hiacy. Defining an effective
state-specific change (dressing) of the diagonal elements of the overlap matrix

Mo =1—( Y Hiel)/(Epcl) (4.61)
agSPHs

one reproduces the exact ith row of the matrix representation of the eigenproblem (4.28) in the
normalized basis as ¢th row of (4.60)

Z HZ[C?L + ZHZ']‘C? + (H“ - F, eHSZ»T)c;” =0 (4.62)
Ies JEs

i#

Notice that using the definition of the diagonal dressing A’} one is led to

efgm —1 - AT/E, (4.63)

K3

So far the dressing A remains unspecified and may take different forms i.e. single or multiref-
erence, CEPA or total CC type, as discussed in the next section.

Let us first consider the single reference situations i.e. we shall in general assume that the
outer space determinants coefficients are defined with respect to a certain determinant |0) as
specified by eq. (4.38). This includes all versions of the (SC)2CI dressing for SRCI as well as
for MRCI matrices when the redundancy contributions have to be substracted

Aii = Feorr + EPV; + R; (464)

For the single reference ground state dressing of the (SC)?CISD method we simply had A;; =
Eeorr + EPV,. Assuming that the zero of the energy is equal to Ey = (0| H|0) one may write

eHSii = _(EP‘/Z + Ri)/ECOTT (465)
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Let us recall that the expectation value of the energy F,, = <\Ilm|IA{|\IJm>/<\IJm|\IJm> for the
single reference ground state in a CI model space S @ s may be rewritten in the intermediate
normalization (with respect to Fp) as

B - (Po|H — Eo|Po) _ (04+ V. |H — Folo+ V,) (4.66)
(®o|®o) L4+ (W |V,)
where |®g) = Psgs|Vo) = |0) + |V,).

The Coupled Pair Functional (CPF) method [76] and its further generalizations to multiref-
erence situations the Averaged Coupled Pair Functional (ACPF) [99] modify the norm (V¥ |¥,)
to achieve approximate size-extensivity of CISD and MRCISD method. This is based on the
observation that the effect of higher excitations (necessary to restore size-extensivity) manifests
in a partial cancellation of the norm denominator in (4.66). In other words the outer space effect
may be effectively taken into account by a proper change of the normalization [76].

In the CPF method one defines pair functions (in the usual CEPA sense) and then norm of
each pair function is multiplied by a factor g, chosen to satisfy certain limit conditions. In the
original work [76] the numerator of eq. (4.66) is divided into parts coming from different pairs
and then denominator is actually modified by g¢,, factors depending on the relation between
pairs g and v. For the non-interacting pairs the uv (¢ # v) cross terms must vanish and by the
requirement of a correct description of two electron (pair) systems and supersystems of identical
non-interacting pair systems one is led to the choice

1 2

f— = — = — 4-67
=9= =y (4.67)

where n, denotes number of pairs 2n, = N and N is the number of electrons. The averaged
common factor ¢ = 2/N was used in the ACPF methods where the notion of the electron pair
is no longer employed and the method may be defined for MRCISD functional with respect to a
multireference zeroth order energy [99]. In the single reference case the difference between CPF
and ACPF comes simply from the less refined statistical limit employed by the latter method.
The single reference ACPF energy functional reads

04 U |H — Eol0+ ¥,)
1+ g(W.|V.)

Both CPF and ACPT functionals are not bounded from below by the lowest eigenvalue of H
but they are bounded by some finite real numbers [99].

Notice that in analogy to CPF or ACPF functionals one obtains a pseudofunctional form
(since g; are depenedent on ¢;) of the (SC)2CI or other single reference dressing while taking
into account the effective change of the overlap matrix

0+ Cﬂ|H — Fol0 + > ¢jj)
L+, gic?

Summations over ¢ and j indices run in generally over determinants belonging to S & s space
except that the ground state determinant and the factors g; are given by

preeify,] = |

(4.68)

Fci [Ecorr] = (469)

gi = NS = —(EPV: + R;)/Ecorr (4.70)
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with R; and E? terms equal to zero in case of (SC)2CISD dressing since |¥.) contains only
singles and doubles with respect to |0).

Let us verify the limit behavior of g; factors defined in this way. For this purpose we shall test
the (SC)2CID dressing for a system of n, identical non-interacting closed shell electron pairs (e.g.
separated Ho molecules). Thus, let the determinant |i) = |2°) belong to a pair g = mn. Then
certainly all excitations in u are not possible on ¢ whereas charge transfer excitations involving
indices of different pairs have vanishing matrix elements and we simply have EFPV; = ¢,. The
supersystem correlation energy is equal to the sum of localized pair energies and finally

=i _ e 2 (4.71)
ECOTT Zy};l € N
one gets the ACPF factor as expected. Let us notice that CEPA(2) dressing would lead to the
same limit. It shows that limit requirements used in ACPF are very weak. On the other hand
puting all EPV’s as zero (CEPA(0) approximation) one gets the functional form of CEPA(0)
found already by Cizek [76] [64]

FeePO[§ ] = (0 + U |H — Epl0+ ¥.) (4.72)

Although the CPF renormalization is more refined than the ACPF one it also averages the
exact determinant specific contributions g; = EPV;/F.y.». For heterogeneous electronic systems
the g; factors may vary within a given pair since they may involve excitations on orbitals of very
different importance. This suggests the following generalization of the CPF method (which goes
in the opposite direction comparing to the MRAQCC method [106]) referred to as Generalized
Coupled Pair Functional (GCPF)

(04 U |H — Eol0+ ¥,.)
1+ Zigz(O)C?

FEPIY] = (4.73)

(0)

where the determinant dependent ¢;/ factors are fixed as numbers before the dressing procedure
(i.e. evaluated from the CI coefficients) or after the first or subsequent iteration of the dressing.
It means that one has to diagonalize the CI matrix first (dressed or not) and then use such
evaluated gz(o)
pseudofunctional) form of dressing differing from the CPF one by the fact that all diagonal
elements of overlap matrix are different. It means that the density matrix and gradients may
be evaluated analogously, as described in ref. [76]. Let us notice that g; quantities should
not strongly depend on the dressing steps since they are relative quantities. Fixing them from
the pure CI coefficients (by simple evaluation of EPV contributions) should not bring large
error. The merits and limitations of such a scheme have to be however confirmed by numerical
applications.

The generalized CPF method is different from the original CPF by determinant-specific
change of the norm. Simultaneously one avoids restrictions to pair and single reference closed
shell theories as in ACPF. By considering the definition of eq. (4.70) it is clear that we may add
for instance linked CC type corrections as well. The possibility of generalization to multireference

factors in the GCPF step. In this way one obtains a functional (and not only

situation becomes more transparent when one comes back to the general notation and writes

gm = cfigm (4.74)
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where 6™ = 1 — A7 /FE,.. Then assuming that the outer space coefficients may be factorized
into parts coming from different references - in consistency with eq. (4.39) one may write

AT =3 1c5 Al? ;. The diagonal element of the effective overlap matrix may be written as

eHSgL = (Egrobrr - Z AZLJ)/E?OLTT (475)
Ies

provided that the zero of energy is taken as EC , obtained by the diagonalization in the reference
space §. This means that we introduce a new basis in the reference space |I,,) = S eq C7HT)
where the C7' coefficients come from the diagonalization. Then we shall employ (as in mul-
tireference version of ACPF) the MRCI expectation value for the energy (with respect to E2,)
[99]

<(I)m|f{ — E?n|(1)m>

Egrobrr = =
(| Pn)

L+ (Qs(1)|Qs(1,)) + (Y ver)
where this time |®,,) = Psas|¥,) = |I.)+ |Qs(I,)) + |¥.) and Qs(I,) denotes an orthogonal
complement of |I7/n> in the 5 space. Introducing the reference dependent and state dependent
dressing of eq. (4.75) one may write in general

L4+ (Qs(I)Qs(IL)) + Ties g2

FEPIQ (T,

m

where the functional Fg%’f is state dependent since the renormalization factors g/ are state-
specific. If all the coefficients ¢/* are assumed to be equal 2/N we again get the ACPF functional
in its multireference version.

One should mention that it has been shown [67] [66] that even keeping the coefficient depen-
dent factors g;, which is equivalent to some CEPA or CC approximations, one may also define
a functional which furnishes the starting equations (of the CEPA or CC type) when making it
stationary with respect to variations of the coefficients. Nevertheless, it can be only done by
the introduction of new parameters (Lagrangian multipliers) [67], which make the calculations
of derivatives very expensive [66].

4.6 Coupled Cluster type of dressing

So far we have considered different approximations that may be located somewhere in between
CI and CC approaches. It has been however suggested [104] that also the CC method itself
(truncated at some level) may be transferred into a dressed CI problem. Speaking more precisely
the CC non-linear terms may be all (and not only partially as in CEPA type dressing) added
to the corresponding CI equations. In principle CC method equations may be solved by a self-
consistent dressing of the corresponding CI matrix or, in other words, by a pseudoeigenvalue
formulation.
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Let us recall that in the CEPA method (dressing) actually only single product ¢;¢; (|¢) =
22,0, 17) = |53)) of the coefficients is taken into account. Including the whole non-linear term
on the left hand side of eq. (4.41) one obtains the CCD equation through a pseudoeigenvalue
problem with the following dressing

B (@) Y X R e et (4.75)
p<q c<d
pgFEmMn cd#ab

or in equivalent notation

A= ()™ (o) > (=) Fidege (4.79)
Gald=l  Pgeaio=la)
where Pf denotes the permutation which leads to coincidence between €;€;|0) and |a).

In the ref. [104] a column dressing rather than the diagonal one is employed to avoid division
by ¢; . The results obtained in such way are equivalent to the traditional CCD with the accuracy
of 1 puH at all conformations (for which the traditional CCD method converges) of T-shaped
Liy cluster used to test the numerical equivalence of those two methods of solving the CCD
equations. Moreover through an eigenvalue problem formulation it is possible to get results
when near degenaracies appear and the usuall methods for solving non-linear equations diverge
[104].

In order to generalize the above procedure to CCSD one has to clearly distinguish the CI
and CC amplitudes: ¢; and t; respectively. For the exact state |¥p) and for the exact CI
coeflicients and CC amplitudes one gets a well-known cascade of equations defining amplitudes
of the subsequent k-body operators t; from the coefficients ¢; and the amplitudes of I-body
operators (I < k).

ch =t (4.80)
C?ri)n = t?fi)n + t?nts)% - t?ntf:a (481)

As long as the s space consists of doubly excited determinants only the CID coeflicients are
good approximations to CCD amplitudes t%)n(o) = c?r?n(dd) and we actually do not need introduce
different notation - the working equations define the amplitudes we deal with. In case of CCSD
approximation we write in turn

12 (0) = (o (e) (4.82)
t%?n(o) — b (e) _ tfn(o)t% ©) tfﬂ(o)ti (0) (4.83)

mn

to reformulate CCSD equations into the dressed eigenvalue problem. The set of eqs. (4.83) has
to be solved after each iteration of the dressing procedure. Then the new dressing by the outer
space triples and quadruples may be evaluated. Since the singles and triples are now present
the dressing may be written in general as

P IVUR EPURUE B 1.
Ay = ()7 G| H(T Ty + ng + 5TET2 + §T22 + IT14)|0> (4.84)
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instead of (4.79). When the self-consistency is achieved we end up with the CCSD amplitudes.

As pointed out in ref. [104] the above procedure may be generalized to CCSDT and higher
levels. Thus any single reference CC approximation may be transformed by the dressing of the
corresponding CI matrix into an intermediate effective Hamiltonian pseudoeigenvalue problem to
solve its working equations. Notice also that adding the linked terms arising from the quadratic
terms of eq. (4.84) to the (SC)*CI dressing considered in the previous section in the context of
GCPF methods one obtains a pseudofunctional form of the CC dressing. Fixing ratios

g9; = (ECOTT - Aii)/Ecorr (485)

at some iteration one gets an approximate functional form of the CC method through an effective
change of the norm of the CI energy functional.

Let us now consider the reverse situation. Starting from an arbitrary CI space S¢ s we define
it as a model space of certain intermediate effective Hamiltonian which is supposed to reproduce
the exact ground state energy. In order to built this effective operator we shall exponentialize
the model space expansion ]35@5|\IJO> to take into account the effect of outer space determinants
also exponentially factorized. In other words we shall define CC approximation adjusted to a
given CI problem. Thus, we shall assume the following

o) = ©)0) = 7o) (4.86)

where the cluster operator T defined as

T=( > tér+> tié)+ > tabo =Tsas+ Tou (4.87)
1€, 140 i€s ogSes

will be truncated in the following way

Tyt = 0; T = Tsas (4.88)

instead of the traditional truncation according to the excitation level.
The coefficients of the model space determinants in the expansion of |¥y) are defined by

¢; = (ieT]0) = (ileT=2+|0) (4.89)

Eqs. (4.89) are certainly equivalent to the hierarchy of eqs. (4.80), (4.81) restricted to S & s.
Hence all the model space cluster amplitudes {¢7}res, 1205 {{;}ics are uniquely defined by the

CI coefficients of Psq,|Wo). The outer space coefficients ¢, = <a|eT|0> are approximated in
terms of model space decompositions since we truncate the cluster operator to the model spaces
T = TS@S

ca = (alelses|0) (4.90)

Multiplying eq. (4.86) by 1 we get
|Wo) = Psgs0]0) + Pour|0) (4.91)
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Notice that the exponentialization of the second term of the right hand side of eq. (4.91) means
that we epxonentially factorize our dressing operator (4.38) since the term P,,;{) corresponds to

O = wia)(o) (4.92)
agSPHs

Since we know the approximate form of the outer space coefficients the dressing term which
should be added to the diagonal of (S & s)CI matrix is evident. The ¢th row is for instance
dressed according to eq. (4.32) for instance. All outer space determinants « that interact with
i and do not belong to S @ s contribute to the dressing with coefficients given by (4.90).

Certainly, in practice we start again from the pure (5 & s)CI coefficients as zeroth order
approximation to the corresponding amplitudes (through the cascade of eqs. (4.89)) to evaluate
the first dressing correction etc. until self-consistency is achieved. The size-consistency of such
formulated procedure will be discussed in Part C of this chapter. This solution has been recently
proposed by Adamowicz and Malrieu [111].

The single reference CC methods such as CCSD, CCSD(T) (CCSD with perturbative inclu-
sion of Triples) are very efficient and routinely used in atomic and molecular calculations. The
CCSD(T) method works well not only when dealing with well defined single reference case but
often is able to reproduce reasonable PES [25]. Nevertheless when some double excitations be-
come important (have large amplitudes) during changes of conformation it may diverge. In such
situations, using the corresponding CCdCI procedure one may take benefit of the Davidson-like
diagonalization procedures to obtain solutions in extreme regimes where the traditional ways
of solving the CC equations fail. Moreover, various single reference dressing schemes appear to
be very flexible and allow introducing lower approximations combined with CI spaces generated
with respect to a set of references to account for the non-dynamical correlation.

However, in degenerate situations there is no escape from the inherently multireference de-
scription. The MRCC methods still face problems and are expensive. Therefore different mul-
tireference dressing schemes are of special interest.
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Chapter 5

State-specific size-consistent
multireference procedures

Using the theory of state-specific self-consistent intermediate Hamiltonians several dressings of a
Multireference (MR) Singles and Doubles Configuration Interaction Hamiltonian matrix, which
insure size-consistency (in the sense defined in Part A of this chapter) are proposed here. These
methods are based on a Coupled Cluster (CC) type of factorization of coefficients of triples
and quadruples. The most refined approach leads to a dressed CI formulation of a state-specific
MRCC method [105]. Simpler dressings lead to revised formulations of the recently proposed MR
Self-consistent Size-Consistent CI algorithm [85] and its lower approximation of the MRCEPA(0)

type [91].

5.1 Introduction

The research on the multireference post Hartree—Fock methods is probably the most active in the
contemporary Quantum Chemistry. The study of bond breaking and thus chemical reactivity
must necessarily use such approaches. The well established perturbative or non-perturbative
single reference methods may be safely applied to the ground state near equilibrium. Most of
the excited states also demand a multiconfigurational zeroth order description and the study of
excited potential energy surfaces requires very flexible approaches.

Generalization of the CI method for multireference cases is straightforward and the multiref-
erence configuration interaction (MRCI) method has been the most popular tool in molecular
spectroscopy for a long time. In the MRCI method one may in principle remove an essential
part of the extensivity error (due to the inclusion of higher order excitations), but it still suffers
from the lack of rigorous extensivity, which is crucial when we deal with extended systems. The
usual aposteriori Davidson-type corrections that take into account to some extent the unlinked
contributions which should be removed [49] can only partially resolve the problem and many
attempts have been made to modify the method to obtain nearly extensive results (for recent
review see ref. [66]).

On the other hand the coupled cluster approach is more difficult to generalize to the mul-
tireference situations than the CI method. Several Multireference Coupled Cluster (MRCC)
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methods have been developed [65] and increasing number of applications to atomic [77] and
molecular [77] [84] [97] systems is encountered in the recent literature. However, the computa-
tional complexity of these methods is very high and they are still facing many specific problems,
as for instance the generalization of the Fock space methods to an arbitrary open shell reference
state [78].

One should also mention another very active and rapidly growing field, namely the research
on multireference perturbation theory (MRPT) [80]. Unfortunately MRPT methods become
expensive already at third order, although second order results on huge CAS reference spaces
are routinely available [81] and offer an interesting alternative to those of MRCC and MRCI.
Nevertheless these methods are irrelevant in our present considerations.

Additional complexity that inevitably occurs in MRCC theories follows from the lack of the
unambiguously specified separation of hole and particle states. One can in general introduce a
fixed vacuum state (e.g. one of the references) for all reference functions or a reference-dependent
vacuum with independent (although coupled) expansions with respect to each reference. As a
result the genuine MRCC theories may be classified according to the above distinction, imposing
different definitions of the wave operator {2 [65]. Moreover both schemes are inherently of the
multistate character. In the so-called Fock space approach (referred to also as the valence
universal CC approach - VUCC) one has to consider a manifold of states with different number
of valence electrons [79], while in the Hilbert space approach (state universal CC approach -
SUCC) all states (with a constant number of valence electrons) corresponding to the different
linear combinations of reference functions must be simultaneously handled [83].

In light of the above remarks the research on the single state or state-specific approximations
is of a great practical meaning. Several such MRCC schemes have been originally proposed (see
ref. [92]). They employ in general the state-specific wave operator acting on a single reference
state but of the multideterminantal form.

Aforementioned procedures that rely on the underlying configuration space and try to modify
MRCI method in order to obtain extensive results form another group of methods, which may
be viewed as a group of approximate MRCC methods of the MRCEPA type [82] [66]. All those
schemes are grounded in the cluster assumption and inherently use the CC factorization of the
coeflicients of triples and quadruples, reproducing to some extent the hierarchy of single reference
CEPA methods. They are state specific similarily as the CI method.

The computational schemes presented in the subsequent parts of this chapter are aiming
at obtaining a general state-specific MRCC theory starting from the recently proposed MR
"dressed” CI method (MR(SC)2CI) [85], which may be considered as an exact MRCEPA proce-
dure. The previously formulated single reference counterpart referred to as the size-consistent
self-consistent CT method ((SC)?CI) [86] insures the extensivity by a proper cancellation of un-
linked effects. It was shown [90] that adding the linked effects (arising from the triples and
quadruples as in CCSD method) one may eventually end up with a ’dressed” CI formulation
of the corresponding SRCCSD approximation. As in the single reference case it is possible
to include the linked contributions of triples and quadruples as well, obtaining ’dressed’ CI
formulation of a state-specific MRCCSD type approximation.
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5.2 Multireference Self-consistent Size-consistent Configuration
Interaction method

The recently proposed state specific self-consistent dressing of a multireference CI matrix and
a simplified scheme of MRCEPA(0) type have been implemented by the author of this thesis
and tested on a series of benchmark problems (Hy, HoO, C HJ) [91]. The proof is given that
this method is size-consistent provided that the reference space is separable (i.e. it contains all
products of localized reference states). The structure of the method and its results are compared
to those of other size-consistent multireference schemes. Its formal derivation in terms of CC
expansion shall be presented in Sec. 5.3.

5.2.1 Theory

For a long time the multireference configuration interaction (MRCI) methods and especially
the MRCISD, limited to the single and double excitations from the references, have been the
most popular tool in molecular spectroscopy. The method is flexible and robust but it is not
size-extensive nor separable. It would be worth to find a strategy insuring the size-extensivity
and the separability of a modified MRCI algorithm.

The recently proposed self-consistent dressing of the CI matrix which makes the ground
state description size-consistent [86], has been recalled in Chap. 4. However, the dressing was a
single reference dressing with the ground state single determinant |0) playing special role and a
generalization was needed. Its principle has been given in a recent paper [85] and its content is
briefly described below.

A) The method

The references are labeled I,J, ... and define a reference space S of projector Ps. The singles
and doubles with respect to references are labeled ¢,7.k, ... and define the space s of projector
P,. The method uses the concept of intermediate state-specific Hamiltonian [87] according to
the general prescription given in Chap. 4. Here the MRCISD matrix is dressed to account for
some non-linear terms. The diagonal dressing operator A (A;; =0, ¢ # j) is employed, taking

in the MR(SC)*CI method the following form (for the desired state |¥,,))

AT =Y (W] + EPV(i, )™ + R(i,1)"™)pl]; (5.1)
1

where 177" designate the effective energy shifts of the references

7 =0 " H)Cr,) (5.2)
1€s
whereas the terms
EPV(i, )" =—( > f'Hier)Cr,n (5.3)
ékﬁ?:O
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R, =—=( >, fHren)Ch, (5:4)

ék|i>eéS®s
take care of all exclusion effects (EPV) and redundancy effects (R) respectively [85]. Each
determinant 7 receives a parentage ratio p; from all references |I) according to the following

definition
H;;1Crpp,

= e
Y Y HigCum
This parentage relies on the first order perturbation arguments with the function ]35|\Ilm> taken

as the zeroth order function [85]. The coefficients Cr,, and ¢7* are here those of the solution of
the dressed MRCISD eigenequation

W) = D Crnll) + D e"i) (5.6)

Ies 1€s

(5.5)

Further, the state index m will be conveniently put as superscript or subscript, depending on
the number of other super- and subscripts.
The effective Hamiltonian matrix to be diagonalized is the dressed matrix

PS@S(ﬁ+ Am)PS@S (5.7)

Of course A™ is dependent on the coeflicients and the method is iterative. Notice that the
method is uncontracted since it does not fix the components of the wavefunction in the reference
space.

B) MRCEPA(0) type approximation

The above procedure may be viewed as a generalized multireference CEPA method, which takes
into account all EPV effects. Actually the correct treatment of EPV and redundancy effects
is either time or memory consuming and usually these terms are approximated to some extent
[98] [107] [106]. Indeed, it sometimes happens that neglect of some of these effects may lead to
accurate results due to a compensation of errors (namely with the neglect of higher order effects
such as the linked effects of the triples). If we forget the EPV terms in eq. (5.1) we obtain a
method that may be considered as an MR-CEPA(0)

AT =S "(hE + R, 1)™)pl (5.8)
I

For practical efficiency one may be tempted to neglect also the redundancies and use
A" = Zh}n piT (5.9)
I

The neglect of the redundancies may introduce undesirable but rare unlinked effects.

Notice that when the effect of the dressing is calculated using the eigenvector |¥Z) of the
undressed MRCISD matrix (at first iteration of the dressing procedure), we obtain a generalized
Davidson-like correction

AE™ = (W AT W) = 37 Al el (5.10)
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C) Generalization of the proof of size-consistency

Ref. [85] has only given a proof of size-consistency (called in ref. [85] separability) of MR(SC)*CISD
method when localized MQ’s are used and when the reference space involves only excitations of
one subsystem. Actually it is possible to prove a more general theorem, stating that the method
is separable (i.e. size-consistent according to the definition given in Chap. 1) if and only if the
reference space is 'separable’ i.e. it contains all products of subsystem references, insuring that
any function belonging to 5 space is multiplicatively separable.

The MO’s are supposed to be localized on non interacting subsystems A and B. Let us call
I4 and Jp the references for independent description of A and B, 54 and S the corresponding
reference spaces. A separable model space for the supersystem is a space built of all determinants
I4JB

Sap=54® 5B (5.11)

The SD space s4p may be then written as a direct sum
sAB = (54 @ 5B) @ (54 © sp) (5.12)

i.e. it is composed of determinants of the forms ¢4Jg and 1455, where t4 € s4, jB € sg. Notice
that the determinants ¢4jp do not appear in the SD space for the supersystem. Although 7455
determinants, where i4 and jp are single substitutions in subsystems, are formally doubles,
bAut they do not interact with references [4.Jp of the supersystem A---B i.e. <iA|<jB|fJA +
Hg|l4)|JB) = 0.

Consider now two eigenstates |¥2') and |[WP) of the dressed subsystems corresponding to the
pth and ¢th roots, with EZ‘;‘ and Ef respectively, and let us form their product [U2P) (projected
onto the supersystem model space Map = Sap & s4B)

U57) = Paa |97 197) (5.13)

We shall prove that this function, with coefficients satisfying (further we shall omit the upper
indices for subsystems)

AB  _ A ~B . AB  _ A ~B . AB  _ ~A B
CIAJBJH - CIAJ?CJB#J’ Ciadpm = CZAJ?CJB#J’ Clajpm = CIAJ?CJB#J (5'14)

is an eigenfunction of the dressed supersystem MRCISD matrix with an additively separable

energy
ENP = E}+ EP (5.15)

Hence, we shall prove that |¥AP) corresponds to a certain (size-consistent) root m (with EAB)
of the supersystem eigenvalue problem.

Acting on such a trial function the dressing operator (5.1) may be expressed in a special
way. For simplicity of notation we shall write the diagonal matrix elements with a unique index
between square brackets (e.g. Ay = Ay;). From egs. (5.2) and (5.14) it follows that

hi\ gy = hy, + 05, (5.16)
Using in turn eq. (5.5) it is easy to show that

Pl ads)(Iads) = Pial, (5.17)
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Then using eqs. (5.16) and (5.17) one may demonstrate that

m,AB

iade] = O s (5.18)

To prove it notice that determinant i4.Jp has only parents of the type I4Jp and due to (5.17)

A@?ﬁg =Y (W7 g, + EPV(iadp, 1aJB)™ + R(iaJp, 14J8)")p! |, (5.19)
I
Moreover
EPV(iaJp,IaJg)" = EPV(ig, I4)° (5.20)
R(iAJB,IAJB)m = R(iA,IA)p (5.21)
Therefore

Afe = SO, 4 By EPV(ia L) + Rlia L")l

Ty
= A@A] + thB (5.22)

since 32, pf 7, = 1.
The subsystems eigenequation for ¢4 and Jp are respectively

(Hig + AL = BN, + 3 Hiy, CF 4 > Higjuef, =0 (5.23)
I JaFia
(H[JB] - EqB)CgB + Z HJBKBC}](B + ZHJBkBCZB =0 (5.24)
Kp#Jp kp

the last term in eq. (5.24) being h% . Multiplying eq. (5.23) by €] and eq. (5.24) by ¢f, and
adding them one obtains the eigenequation for the determinant i4.J/p and the eigenstate m in
the dressed supersystem matrix

m,AB AB
( [taJdB] + A[ZAJB] Em ) ZAJB m T ZHZAIACIAJ& +
Ty
+ Z HJBI\BC:‘L;I&Bm‘I' Z HZAJA fABi]B, =0 (5'25)
Kg#Jg JjaZia

provided that relations (5.14) - (5.15) hold. Hence our trial function is an eigenfunction of the
dressed supersystem hamiltonian with the eigenvalue E4P = E;;‘ + Ef. O

Notice that if some of the determinants /4./p are not included in the reference space (non-
separable model space) determinants ¢4./p are dressed in a way that breaks the separability
because of inconsistent parentage in the super- and subsystems.
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5.2.2 Computational aspects
A) Practical implementation

Some aspects of the practical implementation of the multireference dressed CI (MR(SC)?CI)
procedure were already discussed in ref. [85]. They concern especially the CAS reference space
when relevant simplifications are possible. Nevertheless, the general version of the MR(SC)2CI
algorithm has been implemented, without any restrictions for the reference space. The possibility
to start for instance from the numerically selected references is a great advantage comparing
to other multireference size-consistent schemes. It demands however careful construction of
the program to avoid too high time and memory requirements (mainly due to complexity of
redundancy effects evaluation).

Basically the MR(SC)?CI procedure, as implemented by the author of this thesis [91], may
be illustrated as follows:

1. Diagonalize the usual MRCISD matrix and for the desired eigenstate m use the coefficients
{C7", ¢!} to modify the matrix in the dressing step.

2. In the loop over block A (see figure below) find column contributions

S

A

7 CT and the parentage denominators ,oﬁﬂi_l1 =1/%,;C7H;;j. Build a vector containing
non-zero H;j elements and auxilliary addressing vectors to locate elements H;j.

3. For a given determinant i find A/* = Y,k pi (loop over parents of 7). In case of
MRCEPA(0) (further labeled MR(SC)?CIy) go to 6.

4. In the loop over block B (which defines the overall complexity of the program) the redun-

dancies and partially EPV’s are subtracted by the analysis of interactions: a given H,;
and the relative operation é,.; defines (if possible) k = é,.I determinant, giving an EPV
contribution on common parents of ¢ and j and R contribution on the remaining parents
of 7.
It is crucial to find k (locate the corresponding matrix element Hyy, to undress by its effect)
without next loop over determinants. In the special addressing vector one can keep the
number of k£ (row of the matrix) in the cell given by the position of é,.; in the imaginary
loop that generates all singles and doubles from /. Then having address of a given é,.
with respect to I one gets Hyj.

5. Subtract the rest of EPV’s using one index e-arrays (actually two indices arrays e(z, /),
being a hole or particle and I being a reference) - analogously to ref. [86]

110



6. Add such evaluated shifts A’} to the diagonal (in case of direct CI algorithm first column
would be more convenient [89]) of the CI matrix and diagonalize it. Repeat 2,..,6 with the
new coefficients.

As one can see the memory requirements are specified by the dimension of the vector containing
H;p’s, whereas the complexity is roughly proportional to Nrefn4 X Nipter X N; (loop in 4. to find
redundancy contributions) where N, means the averaged number of parents (N, < Nyct), Nipter
the averaged number of interactions (non zero elements in rows of P, H Ps; Nipter << NTefn‘l)
and n is the dimension of the basis set.

B) Convergence problems

In the formalism two possibly dangerous denominators appear. The first one is the CI_WIL factor
in eq. (5.2). As mentioned before this factor disappears in the final dressing. The second
denominator appears in the definition of p;r, (eq. (5.5)) and there is a danger of numerical
instability or divergence if the quantity

A=Y HyCY (5.26)
J

is small (and may eventually become zero). Looking at the eigenequation for ¢;:

Z HZJCSH + Z HikCZL = (Em — H“)C;m (5.27)
Jes ;;#i
€s

we see that the definition of the parentage coefficient p}; assumed that the coefficient ¢! is
essentially determined by the first summation
o 2aes HiyCF (i H|PsVyn)

' (Ep— Hyi) — (Ep— Hy)

(5.28)

i.e. by the first order of perturbation theory from ]55|\Ilm> (otherwise also the second summation
would appear in the definition of p} - see ref. [105]). If this assumption is valid, then the
quantity A is small only when ¢* is small too, in which case the dressing A” will have a
negligable influence and may be forgotten.

A more troublesome situation happens when

Al < | Hipe'| (5.29)
K

i.e. when the coefficient ¢/ is not determined by the first order perturbation or in other words by
the interaction with the reference determinants, but by the second order (i.e. the interactions
occurring in PsH Ps). In this case the parentage becomes irrelevant and actually it is better
to remove the determinant ¢ from the first order interaction space. This leads to a selection
procedure: if there exists a reference I (for a given determinant 7) such that

e Hip
>_ges Higc}

| | > (5.30)
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where 7 is a threshold equal to about one, then the determinant ¢ is excluded from the s space.
The above inequality comes from the analysis of the coeflicients and parentage in terms of
coupled cluster expansion, and it simply expresses the fact that all amplitudes should be smaller
than one (see Sec. 5.3).

In practice in all numerical tests one observes that:

i) the number of determinants to be excluded remains small
ii) they do not contribute much to the energy

ili) the results are weakly dependent (to about 0.1 mH) on the precise value of the threshold
U

For example, the MR(SC)?CI energies for water molecule at stretched geometry (2R, - see Table
5.1) are 308.57, 308.59 and 308.61 mH with thresholds set to 0.5, 1.0 and 2.0 respectively. The
number of removed determinants decreases from 24 with threshold 0.5 to 21 with the biggest
one (the total number of MRCI determinants is 8616 in this case). The number of iterations of
dressing procedure increases in turn from 3 to 8, showing that convergence is influenced by large
amplitudes. On the other hand the speed of convergence is not dependent on the size of the
problem. In fact the threshold was not always necessary (as for water at equilibrium geometry)
but for the sake of consistency it was kept in all calculations.

In Sec. 5.3 we shall discuss a revised version of the parentage which starts directly from the
psedoamplitudes and avoids the dangerous denominators in the present form.

5.2.3 Results

(Hg)2, (Hyq)z and (H20); dimers have been used to verify the separability of the method in tests
of the program. In all cases the localized MO’s (subsystems separated at very large distance)
and reference spaces of the CAS type located either on one (i.e. on the second system only the
single reference determinant was involved) or on both subsystems have been used. In all those
tests the additivity of the MR(SC)?CI energy has been confirmed within tens of microhartrees.

H, The H; model has been extensively used in studies on single and multireference coupled
cluster methods [95]. Already in the minimal basis set it represents an example of a non-trivial
system owing to near degeneracies occurring in various geometrical arrangements. Here we use
the rectangular arrangement called in ref. [95] P4, consisting of two parallel Hy molecules with
a fixed (stretched to 2 a.u.) bond length. The distance R between the two molecules is varied
in this model, changing the degree of quasidegeneracy [95].

Using the minimal basis set and the HOMO, LUMO orbitals with two electrons as CAS
reference space makes the dressing irrelevant. There is nothing left out of CASCISD space.
Therefore the model has been modified slightly [91], by adding four additional 1s atomic or-
bitals: two bond centered and two located between H, molecules, forming a rectangular shape
with 1s orbitals in the middle of every side. Such a system has the same properties as the
original one - at the square geometry exact degeneracy occurs. However the precise values of en-
ergies are certainly slightly different (correlation energies are different on about 3.5 mH at some
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geometries). It makes the direct comparison impossible but in this case we are rather interested
in the qualitative observations such as the percentage of the correlation energy reproduced and
the general behavior (stability) of the method near degeneracy and in other regions.

Only distances R larger than 2 are considered here. The results are given together with
the results of SSCCACI method in Table 5.3 (see Sec. 5.3). The MRCI calculations with
determinants (¢1)*(¢2)? and (¢1)%(¥3)* (¢4, ¢ = 1,...,8 corresponds to the increasing orbital
energy) as references are done, starting from the HF MO’s for the triplet state. As one can see
MR(SC)?CI method adds about 0.1 mH to the corresponding MRCI energy and finally gives
almost constant (99.7-99.9 %) part of the correlation energy independently on the degree of
quasidegeneracy [91]. Two or three dressing iterations were sufficient to achieve the convergence
in all cases. The results will be compared to those of different MRCC schemes in the next
section.

The approximate MR(SC)%Cly scheme gives quite significantly shifted results at all listed
geometries, lower on about 5 mH, e.g. at R = 2.001 the MR(SC)2CIy energy is equal to 119.118
mH with the first iteration (i.e. the new Davidson-like correction referred to as NQ) giving
118.940. This reflects the relative importance of EPV contributions for that small system.

H;O Symmetrical bonds stretching in water molecule is very well known benchmark [108] that
has been used to test and calibrate many methods. In the Table 5.1 the results of CASSCF,
MRCI (MRCI + Davidson correction denoted by MRCIg) and MRLCC of Laidig and Bartlett
[106], MRCPA(0) and MRCPA(2) of Tanaka et al [98], MRACPF of Gdanitz and Ahlrichs
(reported in ref. [66]) and MRAQCC of Szalay and Bartlett [66] are collected (for explana-
tion of acronyms see Discussion 5.2.4) together with the results for the new MR(SC)*CI and
MR(SC)2Cly (as well as NQ) algorithms [91].

Comparing different forms of MRCEPA(0) scheme one notices that MR(SC)2CIy is in the
best agreement with FCI results (the error of the MRLCC method is smaller at equilibrium
geometry but the potential curve deviates more from FCI and the errors for stretched bonds
are larger). The behavior of MRCPA(0) is somewhat intriguing in the light of other results of
MRCEPA(0) type approximation (see also similar calculations in DZP basis set by Ruttink et al
[107]), underestimating the FCI results more than MRCPA(2). This seems to be in opposition
to what we know about the cancellation of two errors, namely neglect of higher orders linked
contributions of triples and quadruples and neglect of EPV terms, which usually manifests in
more accurate results of this kind of approximations.

Regarding the "exact CEPA’ results of MR(SC)*CI method one notices that it removes about
20 % of the MRCI errors in this case and it almost precisely reproduces the shape of the MRCI
potential curve. Comparing to ACPF method and its more rigorous modification MRAQCC, one
can estimate the influence of approximated treatment of EPV terms, which furnishes however
better results due to the cancellation of errors mentioned above. The new extensivity corrections
NQ are a little bit worse than the usual Davidson corrections but they are remarkably parallel
to the FCI curve.

As was mentioned before the reference space does not have to be of the CAS type. To
illustrate this another set of calculations for water molecule in the same basis set and the same
geometries but with numerically selected reference determinants has been done. CIPSI procedure
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Table 5.1: Results for water in DZ basis set.

| Method | R. | 15R. | 2R. |

\ FCI | —76.15787 | —76.01452 | —75.90525 |
SCF 148.0 211.0 310.1
CASSCF 95.0 90.2 78.0
MRCI 2.1 2.3 2.0
MRClg —0.5 —0.3 0.1
MRCPA(0) 0.7 1.0 1.1
MRCPA(2) 0.1 0.5 0.8
MRLCC —0.3 0.8 1.1
MRACPF 0.02 0.2 0.5
MRAQCC 0.6 0.8 0.9

This work

NQ —0.5 —0.4 —0.4
MR(SC)*Cly —0.6 —-0.3 —0.2
MR(SC)*CI 1.7 1.9 1.5

Geometry from Saxe et al [108]. Energy errors in millihartrees, with respect to the full CI energy given
in the first row. CAS reference space as specified in ref. [106].
MRCPA(0), MRCPA(2) - ref. [98]; MRLCC -ref. [106]; CASSCF, MRCI, MRCIg - ref. [106] and this
work; MRACPF, MRAQCC - ref. [66]; SCF, FCI - ref. [108].

[53] was used to generate the MRCI spaces: in the first step threshold 7 is set to choose references
and in the second step all singles and doubles are produced with zero threshold. Two different
selection thresholds n = 0.05 and = 0.03 give MRCI results (with respect to FCI) 4.3 mH
(5 ref.), 3.0 mH (24 ref.) and 5.9 mH (28 ref.) respectively in the first case and 1.5 mH (21
ref.), 1.9 mH (40 ref.) and 5.3 mH (49 ref.) with the second threshold. Numerical selection
with usual HF orbitals provides here less balanced description of the potential surface, which
is then reflected in the MR(SC)?CT results being respectively: 2.4, 1.4 and 4.0 with the larger
threshold (MR(SC)?Cly approximation behaves surprisingly well in this case giving -0.8, -1.1
and -0.8 mH) and 0.5, 0.7 and 2.7 mH with the smaller one.

CH; The five lowest states (1-5) 24y of C'Hy, for which the FCI results are known [100],
were used as a test of ACPF method by Gdanitz and Ahlrichs [99]. As in the ref. [100] one
starts from the CASSCF orbitals optimized for the average of the five states and then MRCISD
calculations are performed with all (76) determinants in the CAS space as references. The results
are displayed in Table 5.2.

The MR(SC)*CI method gives better results (except for the first root) than those of ACPF
method. Even for the fifth root the error is only 1.3 mH (for this root ACPF fails because of
much lower contribution of the reference determinants to the MRCI wavefunction - the same
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Table 5.2: Results for C'Hy (1-5 2A; states).

\ Root \ 1 | 2 | 3 [ 4 [ 5 |
\ FCI | —38.65031 | —38.21354 | —38.17007 | —38.14301 | —38.04032 |
CASSCF 68.5 80.0 77.8 82.0 101.2
MRCI 0.7 1.2 1.1 1.2 2.6
MRClIg —1.1 —2.6 —2.0 —2.8 —8.8
MRACPF —0.2 —0.7 —1.1 —0.8 —10.5
This work
NQ —1.3 —3.9 —2.7 —8.1 1.7
MR(5C)*Cl —1.4 —4.5 —2.6 —2.6 0.02
MR(SC)CI 0.4 0.6 0.5 0.2 1.3

Energy errors in millihartrees, with respect to the full CI energy given in the first row. Basis set, geometry
and reference space from Bauschlicher et al [100].

MRACPEF - ref. [99]; CASSCF, MRCI, MRCIg - ref. [100] and this work; FCT - ref. [100].

concerns the generalized Davidson correction). The MR(SC)2CI, approximation overestimates
the FCI energy (except the last root) and is in worse agreement with it than the MRCI energies.
As one see from the table the new form of extensivity correction (NQ) shows quite erratic
behavior: for the third and fourth root the convergence of MR(SC)*Cly is not monotonous and
the first iteration gives results that are lower than those at convergence. For the fourth root NQ
overestimates the FCI result by about 8 mH.

Summarizing briefly the numerical results one may state that MR(SC)>CI method gives
typically about 1/3 of the MRCI error and never exceeds the FCI energy. The MR(SC)*Cly
energies are also in quite good agreement with the exact ones, exceeding them by not more than
4.5 mH in all tested cases. The newly proposed extensivity correction may overestimate the
FCI result quite severely as observed for C'H3. It suggests that one could rather use for such
corrections estimates in terms of ratios of GCPF method, which are expected not to be much
sensitive to the iteration process.

5.2.4 Discussion

The MR(SC)2CI method should be compared with other size-consistent multireference algo-
rithms (for recent and comprehensive review of the MRCEPA type of procedures see ref. [66]).
First of all one should stress the fact that it cannot compete in principle with the MRCC meth-
ods since it only dresses the SD diagonal energies H;; to eliminate the unlinked effects of the
triples and quadruples, taking correctly into account all EPV effects, while CC methods also
incorporate their linked contributions. For the single reference case these linked effects have
also been treated through an approximate "total dressing’ [90]. A dressed-CI formulation of new
state-specific MRCC algorithm is introduced in the next section.
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The method most related to MR(SC)?CI is probably that proposed by Ruttink et. al. [107].
Starting from a multiconfigurational function of the CAS type, they apply excitation operators
and introduce diagonal energy shifts to functions obtained in this way. The energy shifts are the
same for a given number of inactive holes and inactive particles in the excitation in a manner
which is somewhat similar to that proposed in ref. [85] for the special case of CAS type reference
function. This takes properly into account the possible redundancy effects. Some EPV terms are
also treated correctly as a by-product of this procedure, but for the single reference case, when
there are no redundancies it is equivalent to CEPA(0). In light of the above the MR(SC)?CI
method appears to be different in

i) its uncontracted character, revising the content of the reference space (which moreover
does not have to be of the CAS type, although in such a case it may be not separable)

ii) accurate treatment of exclusion effects

Another quite similar proposal is due to Tanaka et. al. [98]. They develop a contracted
scheme as well and the perturbative evaluation of the amplitudes. Finally the EPV’s are not all
included, as in the CEPA(2) method. The numerical tests of Tanaka and Ruttink’s schemes are
very encouraging.

Other MRCEPA schemes have been proposed recently by Fulde and Stoll [103] through a
cummulant expansion and by Fink and Staemmler [101]. Both methods are contracted and
make simplifications in the treatment of EPV’s. The version proposed by Fink and Staemmler
introduces a specific shift of each excited configuration in an averaged way.

Somewhat further from the present approach one might mention the QDVPT (quasi de-
generate variation perturbation theory) of Cave and Davidson [102] which introduces a unique
energy shift of the diagonal energies of the s space determinants, the ACPF method of Gdanitz
and Ahlrichs [99] and MRAQCC method by Szalay and Bartlett [106] where the size-consistency
of the CI is restored by a proper change of the normalization, as discussed previously. The last
method improves the multireference linearized coupled cluster scheme (MRLCC) by inclusion
of the EPV quadratic terms that violate the Pauli principle through the occupied MO’s only.
The ACPF method is not contracted (see Part A of this chapter).

The MR(SC)?CI method is a unique proposal which conserves the symmetry of exclusion
effects with respect to occupied and virtual MO’s. One of its main advantages is its uncontracted
character. Problems arise where the interaction between determinants in 5 and s spaces changes
completely the content of the wavefunction in the reference space. A famous example is the
LiF problem where the valence CASSCF level predicts a curve crossing at 8 bohr, which is
pushed by the dynamical correlation to 12 bohr, changing completely the valence content of
the wavefunction in a large domain of distances. Any contracted scheme will lead to dramatic
artifacts in such problems [94]. Second very important feature of MR(SC)?*CI method is its
flexibility: any (e.g. numerically selected) reference space is allowed. Another advantage is that
one can use the usual CI machinery.
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5.3 State-specific dressing of CC type of MRCISD matrix

5.3.1 Theory

In the following we shall use the same notation as previously and consider a multireference
space S spanned by reference determinants I and a space s consisting of the determinants ¢
obtained by the single and double substitutions é; on the references that do not belong to 5.
The corresponding projectors are Pg and P,. Hereafter the model space will be chosen as the
union 5 P s and the associated projector will be labeled ]35@5.

Let us also recall that for a state |¥,,) (ground or excited state)

(W) =Y CTH)+ Y _clli)+ D cilla) (5.31)

Ies 1€s agSPHs

one can define an intermediate effective Hamiltonian f{mt = Pg@s(ﬁ + Am)f)g@s, where A™ is
a dressing operator, such that ]35@5|\Ilm> is an eigenstate of f{mt with the eigenvalue F,,, where
|¥,,) and F,, are the exact eigenstate and eigenvalue ﬁ|qlm> = F,|V,,). If one can write the
coefficients of the outer space determinants as a sum over references

="y (5.32)

Jes

then one may introduce a dressing of the first columns of the matrix (of the PsgsH Ps block)

=Y Hic) (™ (5.33)
agSPHs

A) Coupled Cluster type of dressing

The above proposal is purely academic if one does not have a reasonable evaluation of the
coefficients ¢/} of the outer space determinants. Remember that these determinants are here
triples and quadruples with respect to at least one reference I € 5 and singles or doubles with
respect to some of the singles and doubles ¢ € s.

The strategy to approximate the outer space coefficients is grounded in the CC assumption
that the higher-body effects may be reasonably described in terms of two-body (and one-body)
cluster amplitudes. In the following we shall assume a separate cluster expansion for every
reference determinant I € 5, implying for the wave operator

am=5"ar (5.34)
I

where Q}” has the form
Qr =17 Py (5.35)
The index m means that we shall try to define a state-specific ansatz.

Since the MRCISD matrix is dressed the cluster operators are truncated and involve single

and double excitations only
T =T+ 157 (5.36)
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In the second quantized form

Ty =" da(I)ymes(I); Typ= Y deb(n)ymes(I) (5.37)
a a<b
P p<q

where the vacuum is given by |/) and defines the occupied and unoccupied indices. The symbols
dy, d;g are used instead of ¢, t;g since the coefficients d; are not the independent variables
and can be only interpreted as pseudoamplitudes. In the following we shall not use the second
quantized notation but the notation introduced already in Chap. 4. If all singly and doubly
excited determinants from the references are included in the model space we may equivalently
define the cluster operators as follows

Ty = Y dirér; 9= > ditér (5.38)
keS(T) keD(I)
where S(I) (D(I)) designates the set of all singly (doubly) excited with respect to |I) determi-
nants and the summmations run over all determinants k belonging to S(I) or D(I) respectively.
According to the convention defined in Chap. 4 the excitation operator é; is by default defined
with respect to the vacuum given by the reference function é; acts on

éxll) = |k) (5.39)
and is determined as the relative excitation generating determinant |k) when acting on |I).

In the following we shall also assume that the disconnected part coming from ( {71)2 for
doubles may be neglected. This means that we have for the coefficients of determinants belonging
to the s space

o= Y dicy (5.40)
ly=2:l1)
For the outer space determinants we shall have decompositions into products of two model
space pseudoamplitudes dj; only. Thus, the coefficients of the outer space determinants are
approximated as
cp=>"1/2 > didiCT (5.41)
Ies (k1)
loy=éréx|l)
where the second sum runs over all possible decompositions of |a) with respect to a given
reference determinant. More precisely, the summation over pairs (k,/) is restricted to such
determinants k, [ that define excitations (with respect to I) é; and & such that

Eall) = éréx)I) (5.42)

Since the summation indices are not ordered here the factor 1/2 must appear.
Using eq. (5.41) one is able to introduce a column dressing according to eq. (4.35). The
partitioning of the outer space coeflicients with respect to references is clearly given by

cy=1/20 > rrdiy O (5.43)
(k1)
|y =éréx|J)
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leading to the column dressing of the form

m=1/2 S Hyj diydis (5.44)
(k1)
|y =¢éréx|J)

where |j) and the matrix element Hj; are given by the particular decomposition of |a) involving
|2)
la) = é;é;|J) = é;|1) (5.45)

The crucial thing here is the definition of the state-specific cluster amplitudes d7;. In the
next section we shall partition the dressed MRCI coeflicients ¢; with respect to references to
obtain pseudoamplitudes d7}.

The procedure will be iterative: starting from the undressed CI coefficients (weighted to
obtain initial pseudoamplitudes) we shall dress the MRCI matrix and diagonalize it. Using the
new pseudoamplitudes (defined by the new coefficients) the new dressing may be evaluated.
The process is repeated until self-consistency is achieved. In fact this new procedure, which
will be referred to as State Specific Coupled Cluster type of dressing of the (MR)CI(SD) matrix
(SS-CCdC), is a generalization of the MR(SC)2CI scheme [85] to a ’total” dressing that includes
also linked effects of triples and quadruples (which are present in CCSD method) with respect
to the reference determinants.

B) Reference-specific state-specific amplitudes

As one see from the previous subsection, we actually have in common with the state universal (or
Hilbert space) approach, that we employ separated cluster ansétze for references [83] (for more
detailed comparison see Sec. 5.3.1). In this approach a given determinant i € s is associated with
a set of excitations with respect to its parents, by which it is obtainable, and the corresponding
set of amplitudes coming from expansions for the parent references. All these amplitudes ’enter’
the corresponding CI coefficient (as in eq. (5.40)).

Consider now the reference space of the CAS type. In such a case the most numerous
inactive double excitations generate determinants having one parent only. The corresponding
reference-specific amplitudes are thus uniquely defined by the proper coefficients. The semi-
active excitations introduce determinants which might have many parents. One may hope that
for such determinants an appropiate scheme of partitioning of their (dressed) MRCI coefficients
will provide a reasonable definition of the reference-dependent amplitudes.

Let us try now to define state-specific and reference-specific psedoamplitudes for all substi-
tutions leading from S to s space. Let us remark that the coefficients of the eigenvector |\IJ )
of the dressed matrix # = H + A'™ satisfy the eigenequation (we shall omit the tilde accents
for the actual coefficients)

S HCT + Z Hi;e? — Ep)e™ =0 (5.46)
Ies
J#Z

In the following we shall only dress the H;; columns (fLI # H;r). This suggests two possibilities.
One may either
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i) consider the second sum of eq. (5.46) as negligible comparing to the first one (since the
C'r’s are supposed to be larger than ¢;’s, being respectively of order zero and order one in
terms of a pertubative expansion from [V ) = 3,5 C7*|1)); thus

m . 21es iCT

5.47
€ E, — Hy; (5:47)
This suggests to postulate ¢* ~ 3", ¢ H;;C7 ) Ae™ or directly for the amplitudes
Hir
= 5.48
o Aa’f;m ( )

where Ae? is an effective energy difference. In order to obey strictly the basic eq. (5.46)
Ae? should be defined as

Aef" = (B — Hig) = (3 Hie)(e")™h = 30 HiyCF(ef)™! (5.49)
JEs Jes
JFe

ii) or consider the full eq. (5.46) and write

Yres HiCp + Zq;s Hie Yres(Hir + Zjis Hydf)Cr
JF? _ JF?

e = (B — Hg) B (Em — Hii) (5.50)
Hence the set of linear (assuming that one may replace H;7 by H,j) equations
Hir+ Zqis H;;d7;
= = H (5.51)

Although the second definition avoids the denominators of eq. (5.48), which may be prob-
lematic when some ratios ¢7" /¢f" (see eq. (5.49)) become large, it is rather impractical, since it
introduces M-body dressing operator (d;; will not disappear even if H;; = 0). Regarding the
first possibility, for practical proposals one may be tempted to replace H;s in the definition of
eqs. (5.48) and (5.49) by H;;. This gives

m_ _ Macl (5.52)
T Y es HiuCy '

and further we shall assume that the reference-specific pseudoamplitudes d; are given by eq.
(5.52).

The above definition corresponds to the weighting of MRCI coefficients proposed for MR-
CEPA type dressing (see ref. [85]). If one postulates that pseudoamplitudes d;;’s come from a
normalized, reference dependent partitioning of ¢; coefficient

= oirmel; > oitm =1 (5.53)
I I
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and on the other hand ¢/* = Y~ ;d7;C7" and the definition of eq. (5.52) is employed, one is led
to

H;CF
2 ges i CF
which is partitioning suggested by eq. (5.46), proposed already in ref. [85]. However, as
mentioned before, the resulting d;;’s may become undesirably large (or even infinite) when the
quantity - ;oq H;jC7 becomes small (or even zero) due to cancelation of contributions with
different signs.

In MR(SC)?CI (see ref. [91]) procedure the amplitudes are chacked and when some of them
become large, the underlying determinants are removed from the MRCI space. As the numerical
tests show, such a selection concerns only very small part (usually much less than 1%) of all
determinants and, insuring nice convergence, does not influence practically the final results,
which are very encouraging [91]. Therefore this definition is kept as a basic one, although
several other definitions may also be proposed. One might use the equal weight approximation
for instance (d} = ¢*/(C}*N,) where N, denotes the number of parents of ¢), for the rare
determinants governed by the second sum of eq. (5.46).

Another possibility, which scales the quantities d;; not only on the strength of the interaction
H;; but also on the energy gap between H;; and Hjj, is to start from amplitudes optimized
variationally in 2 dimensional CI space spanned by |I) and |7)

1) 1)

|1) Hp Hyp
|4) H;; Hy

and then normalize them, in order to satisfy eq. (5.40)

=dmer o dt = 47" A% = ¢ (5.55)
ZI 15 7 ZJ |d0 m| 7 C? :

where (9, ¢? are variationally optimized coefficients. The primitive amplitudes d?l’m

A—/A? +4H?
d?l’m = T when Hir 20; 0 otherwise (5.56)

2H;;

where A = H;;— Hyy, depend on both H;;r and H;; — Hyy (with the latter one in the numerator).
These amplitudes remain (in absolute values) smaller than one, provided that we always take the
root with C'9 larger than 2. They never diverge — if one refers to Quasi Degenarate Perturbation
Theory [87] the wave operator Q(I ) at first order defines dir = H;1/(Hir — Hy;), which diverges
when Hyr = H;;.

Anyway, when some single or double substitutions have much larger coefficients than those
of reference determinants ¢; >> (7 (i.e. we actually face the intruder states problem) some
amplitudes might again become very large and destroy the convergence. The remedy for that
is the carefull and reasonable choice of the reference space. Let us notice however that when
¢; ~ Cri.e. when ¢; is of the same same order of magnitude as C'{ nothing wrong should happen.
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It is not always possible to choose the reference space in such a way to avoid the intruders.
Therefore some dumping of large amplitudes would be desirable. There are three situations,
which should be distinguished and may be treated in a different manner:

i) ¢; >> C7 and [ is the only parent of ¢. Then there is no risk of small denominator and
the definiton (5.52) may be applied.

ii) consider the following model situation: let determinant ¢ has two parents 1 and 2, ¢; >> C4
and ¢; ~ Cy. Then we may shift the large amplitude d;; on ref. 2 as follows

ci = dinCy + dipCly; dip =14+ A

Cq
diy = 1; diy = diz + Ailc_2
where A;1(C71/C3) remains small since Cy >> (7.

iii) ¢ has many parents, but for all of them the relation ¢; >> Cj hold. In such a (rare)
situation 7 might be treated as having no parents. With this special status ¢ would be
dressed according to (SC)%CI scheme, with respect to a reference determinant K chosen
such that C'x > ¢; and ¢ being triple or quadruple from K.

To choose the best definition of pseudoamplitudes further numerical tests of the method are
needed.

C) Comparison with MRCC formalisms

The MRCISD matrix dressed in this way may be considered as providing an eigenvalue (pseu-
doeigenvalue, due to the dependence on the coefficients) formulation of a state-specific Mul-
tireference Coupled Cluster Singles and Doubles (MRCCSD) method. To remain closer to the
rigorous CC approaches one may distinguish the amplitudes of the single substitutions

ayy = djy (5.57)
if é is a single substitution with respect to I (be] = D kes(I) alyéx) and introduce the proper
amplitudes of the double substitutions

=dip —1/2 ) alidly (5.58)
(ivg)A

e1=¢;€;

where ¢,j € S(I). Eq. (5.44) takes only into account )15 and T22 In order to strictly obey the
assumed exponential form of Q one should also introduce the amplitudes of the triples coming
from the third power of single substitutions (Tf) and the amplitudes of quadruples coming from
TETQ and T14 However, one may notice that this rigorous formulation differs from the simplest
one only by effects of orders higher than two in the wave function and higher than four in
the energy. In fact the restriction of T to Ty and T3 is an approximation which omits some
important 4" order corrections for the energy i.e. the linked contributions of the triples. The
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exact treatment of 5t (resp. 6%) order corrections coming from T2T, and T3 (resp. T7) is not
worthwhile in view of this error, except if some 7} terms have very large amplitudes.

The present state-specific formulation differs deeply from the dominant trends in the MRCC
research. Most of them (as mentioned in the introduction) belong to two families which assume
a very universal structure of the wave operator. The first one (VUCC or Fock space CC) exploits
the Valence Universal wave operator [88] and is less important in our considerations. The second
family (SUCC or Hilbert space CC) is based on the reference dependent choice of the vacuum.
The wave operator is expressed as a sum of independent wave operators defined with respect to

reference determinants
d

Q=> elxpg (5.59)
K
Such an ansatz was originally proposed by Jeziorski and Monkhorst [83]. Its basic feature is
that we have as many independent amplitudes as the number of references times the number
of amplitudes in the single reference case. As a result we have to consider the manifold of all
d states simultaneously to build enough equations. The so-obtained amplitudes are reference-
dependent but they are state universal i.e. they are solutions of the whole system of equations
(for all roots in the model space).
The philosophy, which is behind the SS-CCdCI procedure, is a very modest one, since one
defines a state-specific expansion for the wave operator Q. The ansatz we exploit here has a
form similar to that of SUCC approach

O =3Py (5.60)
Ies

where the summation over [ is restricted to S space only (and does not concern the whole model
space S @ s) and TIm denote state-specific operators with reference-dependent pseudoamplitudes
obtained by a proper partitioning (different for different states) of dressed CI coefficients with
respect to reference determinants.

In the theory of traditional effective Hamiltonians the effect of outer space determinants is
first included in the effective Hamiltonian (via the wave operator), which is then diagonalized
in the model space to provide d exact roots. Here we not only restrict (as usually for the
intermediate effective Hamiltonians) the manifold of states to be reproduced to the main model
space. Another basic difference follows from the fact that the wave operator of eq. (5.60) is not
built explicitly. However the self-consistent dressing of MRCISD matrix, as defined in Sec. 2B,
is equivalent to the traditional scheme

HozPs|V,,) = PsHQ™Ps|¥,,) = E,, Ps|¥,,) (5.61)

PSGBS(IA{ + Am)jDSGBs|\IJTrL> = EmPS®s|\IJm> (562)

From the practical point of view it means that instead of a set of non-linear equations we may use
the CI machinery for the pseudoeigenvalue problem, which is hoped to be much less troublesome.
On the other hand, as the model space is now formally much larger, one has to take care of
redundancy effects coming from Tlfg, T22 ..., since for instance some quadruples with respect to
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one of the references may still belong to the s space, being doubles from other references. This
may complicate the algorithm, especially for incomplete reference spaces.

Several other state-specific MRCC schemes have been originally proposed (see ref. [92]). In
the very beginning of the MRCC development Sinanoglu and Silverstone [93] proposed a state-
specific expansion, but it was rapidly recognized that their formulation introduced an exceedingly
large number of amplitudes which could not be defined. Linearized version of MRCC Hilbert
space method (LMRCC) with prediagonalization, proposed by Laidig and Bartlett in the early
80’s [106], in which the manifold of states is decoupled, also belongs to this category. Recently
Piecuch and Adamowicz [92] have formulated another practical proposal referred to as State
Selective (SS) CC method, which employs the single reference formalism with a state-specific
selection of higher rank excitations introduced by model space determinants. Li and Paldus
[92] have proposed another, spin-adapted SSCC method using unitary group approach. The
S5-CCdCI scheme is truly multireference i.e. the amplitudes are reference dependent, there is
no determinant playing distinguished role and it does not need prediagonalization.

D) Size-consistency

Starting from the the MRCISD coeflicients, which are not size-extensive, one repeats the dressing
procedure until self-consistency is achieved. One may demonstrate that the method is size-
consistent i.e. at convergence the desired eigenstate of the dressed MRCISD matrix provides
additively separable energy for a supersystem A ---B composed of two non-interacting systems
A and B.

We shall employ the same assumptions and notation as for the generalization of the proof of
separability of MR(SC)2CI method. Thus, the MO’s are supposed to be localized on subsystems
A and B and the reference space for the supersystem is supposed to be separable

Sap=54® 5B (5.63)

The Singles and Doubles from the references form space s4p and the supersystem model space
is Map = Sap @ sap. Again igjp determinants, where 14 and jp are single substitutions in
subsystems, which are formally doubles, but they do not interact with references I4.Jp shall
not be included in the model space. In order to restore size-consistency in case of these special
doubles included one would have to take into account the disconnected part of the coefficients
of doubles in eq. (5.40).

Consider now, as previously, two eigenstates |\IJ§1> and |\Ilf> of the dressed subsystems corre-
sponding to the pth and gth roots, with E;;‘ and Ef respectively, and let us form their product
|WABY (projected onto the supersystem model space Myp)

U57) = Paryu 9019F) (5.64)

We shall prove that this function, with coefficients satisfying eqs. (5.14) (thus being products
of the corresponding subsystem determinants coefficients) is an eigenfunction of the dressed
supersystem MRCISD matrix with an additively separable energy

ENP = E}+ EP (5.65)
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The demonstration might follow the proof of separability of MR(SC)*CI method, in which
the dressing operator is factorized into non-interacting subsystems contributions. It is possible
however to prove a more general statement which may be applied to both methods (and other
similar procedures) in order to show their size-consistency.

Definition 5.3.1 We shall call an intermediate, effective Hamiltonian H+A™ separable, if
it accepts function WAB as an eigenfunction with an additive eigenvalue EAP = EZ‘;‘ + Ef.

Let now the indices p, 7 refer to localized determinants belonging to 5, s or outer spaces.

Definition 5.3.2 The outer space coefficients are factorizable if for each supersystem deter-
minant aap = paTp its coefficient is the product of coefficients of the corresponding subsystem
m

; . — P
determinants: cf}, = cb cl .

Statement 5.3.1 If the outer space coefficients are factorizable the H+ A™ s separable.

Proof Let, according to our assumptions, the coefficients of determinants belonging to the model
space M 4p be factorized as specified in eq. (5 14) and those of the outer space determinants be
factorizable according to definition 5.3.2. H 4+ A™ is diagonalized in the model space, so that
we have to consider equations for two types of determinants, namely I4Jp and ¢4Jp. For the
latter one we have (for simplicity of notation we shall write the diagonal matrix elements with
a unique index between square brackets - e.g. Hyj = Hyy)

(H[iAJB] - E:;B)Cﬁffg,m + Z HZAJBJABBCIAI&B m t Z HZAJB@CAB +

IAIXB

+ Z HJBI\BC:‘L;I&B mt Z HZAJA fABi]B, =0 (5'66)
Kp#Jp JjaZia
where o may represent two types of outer space determinants, namely those which are triples
or quadruples on A (resp. B) i.e. of the type a4Jp (resp. [4ap) and those which are singles
or doubles on both A and B, i.e. of the type i4jp. Eq. (5.66) is satisfied for EAB = EA + EB
when the assumed factorization of the inner and outer space coefficients holds

[(H[ZA]_ ZA—I_ZHZAIAC —I_ZH’LAO(A aA+ Z H’LA]A ]A]C —I_
@A JjaZia
[(H[JB] - EqB)C}B + Z HJBI(BC}J(B + ZHJBkBCZB]C?A =0 (5'67)
Kp#Jp kp

since the quantities in the square brackets [ | are zero (the are the eigenequations for ¢4 and Jp
respectively, in the dressed separated subsystems). For the lines corresponding to the reference
functions I4Jp analogous derivation is straightforward. O

Thus, as long as we approximate the ¢,’s in a separable manner, the method is size-consistent
and statement 5.3.1 provides a universal tool, which enables to check size-consistency of dressing
procedures. We shall prove now that our definition of outer space determinants coeflicients used
for CC type dressing has the desirable property. The proof goes through the following steps
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i) notice that
dm

_ dp
tadp, ladp T Yialy

(5.68)

This is a direct consequence of the definition of the amplitudes (5.52) and of the fact that i4.J/p
interacts only with references of the type K4Jp

Hip, - Cq
ala Jo__ (5.69)

dm
HZ’AI(A CIX A CJB

iadp ladp — ZI
LA

It is easy to show that amplitudes resulting from variationally optimized primitives (see eq.
(5.55)) satisfy eq. (5.68) as well. Since

A=Hpy,gp— Higug) = Hig — Hiny (5.70)
we have
0,m
dZAJB IAJB d2A7 (571)
and then 0.
1,m |d2 Jp,IaJ | | 7 T,nI |
ZAJB,IAJB - A ACE A (572)

ZIXA| ZAJBleAJB| ZIXA| ZAI\A|
Therefore eq. (5.68) holds again.

ii) as pointed out previously there are two types of outer space determinants, namely a4.Jp
(resp. Iqap) and i4jp. Using the definition of the ¢,’s (eq. (5.41)) and eqs (5.68), (5.40) one
may show for both types the desired factorization

_ ™m m m _
- Z Z d(ékIAJB)IAIX’Bd(élIAJB)IAI(BCIAI(B -
I,Kp (k1)
|Oz>:ékél |IAI(B>

for a,Jp
= Z Z d(nékAIAJB)IAJBd(nélAIAJB)IAJBCEJB =
Ia (k,1)
lovadp)=¢k &1, [1aJB)
P P _ q
Z Z d(ékAIA)IAd(élAIA)IAC C C]ZYACJB (5.73)

(kD)
|O‘A> ekA elA |IA>

and for 14755

=2, 2. B 1oy taie s T 1oy 1aic s CTakcs =
(ekAIAI‘B)IAI\B (elBIAI\B)IAI\B IAIXB
IAKp (k,0)
liaiB)=¢ér  i511aKB)
_ P g
ZdZAIA Zd]BIxB Kp = €65 (5.74)
IXB

Thus the dressing is separable and our trial function (eq. (5.64)is an eigenfunction of the dressed
supersystem hamiltonian with the eigenvalue EAP = E;;‘ + Ef.
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5.3.2 Numerical example

In the following the same modifications of H4 model in the rectangular arrangement called in
ref.[95] P4 as in the Sec. 5.2.3 are used to illustrate the efficiency of the present proposal [105].

The results are given in Table 5.3. The MRCI results are already quite good in this case
and the dressings do not contribute too much. As one can see the SS-CCdCI method adds from
0.07 mH (at 2.001 and 10.0 au) to 0.17 mH (at R =5.0 au) to the corresponding MRCI energy
and finally gives almost constant (99.64-99.98 %) part of the correlation energy independently
on the degree of quasidegeneracy. This is an important message. The MRCC results remain
between MRCI and FCI ones in the whole region: for strong and weak quasidegeneracy as well.
Near square geometry the MRCC correction is about 1/5 of the difference between MRCI and
FCI, whereas for large geometries it riches 4/5. However, the difference between MRCC and
MR(SC)2CI is biggest in the intermediate region (it is equal to 0.96 mH at R =5.0) where the
total contribution of MRCC method (with respect to MRCI) is biggest as well.

Table 5.3: Results for Hy.

Rlau] | SCF[H] | MRCT [ MR(SCY’CI|SSCCACT (yp....,| FCI
2.001 | —1.947095 | 115.754 |  115.806 115.826 (99.70) | 116.178
2.01 | —1.947978 | 113.230 |  113.282 113.302 (99.70) | 113.655
2.1 | —1.955194 | 95.153 95.208 95.233 (99.64) 95.574
25 | —1.961392 | 73.125 73.184 73.233 (99.05) 73.467
3.0 | —1.937631 | 66.150 66.215 66.292 (g9 75) 66.438
4.0 | —1.866259 | 60.346 60.418 60.510 (g9.57) 60.536
5.0 | —1.806237 | 57.896 57.973 58.073 (99.94) 58.107
6.0 | —1.765281 | 56.706 56.778 56.866 (99.07) 56.885
10.0 | —1.708607 | 55.254 55.236 55.327 (99.95) 55.339

Modified P4 model (minimal basis set with additional 1s atomic orbitals located between H atoms) with
two determinantal reference space. Energy differences in millihartrees, with respect to the SCF energy
given in the first column - all signs reversed (except SCF energies). At R = 2.001 the coefficients of
references are respectively Cy = 0.692 and C33 = —0.688 [105].

At infinite separation (with both references localized on one Hy) both dressings give just the
sum of single Hy FCI energies (including the presence of bond centered orbitals), confirming
separability (notice that CISD is equivalent to FCI for this 2 electron system). Two or three
dressing iterations were sufficient to insure the convergence in all cases without any screening of
large amplitudes (the definition of eq. (5.52) for d;;’s were employed).

The VUCC (valence universal coupled cluster) or SUCC (state universal coupled cluster)
results for the original P4 model have been recently reported [96] [97]. The exact values of
correlation energies for the original P4 model are very similar to those presented here (the dif-
ference is not larger than 3.5 mH at all geometries). However, there is a qualitative difference in
behavior of VUCC and SUCC results compared to S5-CCdCI procedure. The valence universal
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method gives 106.9, 107.9, 97.4, 64.8 and 50.3 (VU-CCSD/A of ref. [96]) percent of the corre-
lation energy respectively at R = 2.002, 2.1, 3.0, 5.0, 10.0. In the case of SUCC (MRCCSD-3
of ref. [97]) one obtains 100.5, 100.0, 100.9, 107.0 and 109.9 percent of the correlation energy
at the same geometries. As discussed in ref. [97] the linear MRCC theory (L-MRCCSD) has
singularities at two geometries.

As one can see, in case VUCC and SUCC method one is not able to describe properly various
degrees of quasidegeneracy (it concerns especially large geometries where the second and third
determinants become relatively close) using reference space with two determinants. The SS-
CCdCI approximated scheme does not face similar difficulties. As one can see from Table 5.3
there is no problem with stability of our multireference method in the whole region: for strong
and weak quasidegeneracy as well. The error with respect to F'CI results never exceeds 0.4 mH.

5.3.3 MRCEPA type of dressing revisited

The formalism introduced in this section may also be applied to MRCEPA type of dressing
of the MRCISD matrix i.e. to the MR(SC)?CI method. Using psedoamplitudes df; one may
reformulate the MR(SC)?CI procedure in the new language.

As we already know in the MR(SC)2CI scheme the outer space contributions are effectively
shifted to the model space 5 & s through a diagonal multireference dressing. Its form is fixed
by assumption that one can weight MRCI coefficients with respect to reference determinants

m ICI
i = 5 (5.75)
Then the energy shifts of the references are transfered to the determinants ¢ € s according to
the parentage ratios.

Now we can introduce the amplitudes d}}, recognizing them easily in the definition of parent-
age ratios (5.75). It enables us to reformulate the method in this new language. In the following
we shall neglect for simplicity the EPV and R terms.

As a direct consequence of definitions (5.52) and (5.75) we have

ZIC

m o= ™)yl = dn(emyTlor 5.76
Pir = ZJ JCJ ( ) ZI( 7 ) I ( )
It implies that
AT = Wpirm = (¢} Z A e Hi) =
I IeP(I k€s

YN koCJ Hpy (5.77)

IeP(i)kes JeP(k)

where by P(i) we denote a set of parents of ¢ and we used relation (5.44) ¢" = 3~ jep(r) diyCl-
Comparing this with eqs. (4.32) and (5.33) one sees that we postulate for the coefficient of the
outer space determinant |a) = é;é;|I), obtained from |7) = é;|I) by substitution éy; |k) = éx|I),
the following form of its partitioning

iy =Y dijdisCy (5.78)
J
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r=> (5.79)
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Chapter 6

Multistate dressing of CC type of
the MRCI matrix

6.1 Introduction

We have been considering state-specific dressing procedures so far. The state-specific coupled
cluster type dressing presented in the Sec. 5.3 is based on the partition of the state-specific CI
coeflicients, which are weighted to obtain state-specific reference-dependent pseudoamplitudes
d?”;. In this way one decouples the Jeziorski-Monkhorst multistate ansatz into a state-specific
decontracted expansion.

Some arguments rationalizing possible definitions of the partition of the CI coefficients giving
reasonable approximation to the real CC amplitudes have been presented in the previous part
of this chapter. It is a matter of numerical tests to choose the optimal weighting. However all
the definitions of such obtained pseudoamplitudes must contain some arbitrariness.

To avoid this drawback one may propose another solution which is a generalization of the SS-
CCdCI procedure to the multistate or state-universal dressing of MRCI matrix. The Multistate
Coupled Cluster type dressing of Configuration Interaction matrix or MS-CCdCI procedure will
start from a set of CI eigenstates to define a state independent dressing in terms of the state-
universal CC amplitudes, coming from an adjusted CC approximation with the cluster operator
truncated to excitations remaining in the CI space.

The new multistate CC type dressing is a generalization of the exponentialization of an
arbitrarily truncated CI expansion and of the resulting CC type of dressing of the corresponding
CI matrix with respect to the ground state introduced in Sec. 4.6. It was suggested and formally
developed by J.P. Malrieu and the author of this thesis in collaboration with .. Adamowicz and
R. Caballol [111].

6.2 The method

Let us consider a set M of M exact states M = {|V¥,,,);m =1,... M} having the expansions

|\Ilm>:ZC}TL|I>—I—Zc;”|i>—I— Z o) m=1,...M (6.1)

Ies 1€s agSPHs
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where 5 denotes a reference space and the s space may contain single, double and some higher
excitations from the references.

Let us then assume that the reference space § was chosen in such a way that it consists of
M determinants and diagonalization of the Hamiltonian in 5 space provides reasonable approx-
imations to the exact states.

Now, we would like to define a multistate intermediate effective Hamiltonian Pg@s(ﬁ +
A)Pg@s, where A is a multistate dressing operator, such that

Psgs(H + A) Psgs|V,) = B Pses| V) m=1,...M (6.2)
|¥,,) and E,, being the exact eigenstates and eigenvalues
HY,) = E,|¥,) m=1,...M (6.3)

We demand M exact energies (M-dimensional main model space) when acting on the M pro-
jections of the exact eigenvectors onto the model space.
The tth rows in the matrix representation of the eigenequations (6.3) are

> HiyCY —|—ZHU '+ (Hy— Ep)el+ > Higcl =0 m=1,...M (6.4)
Ies agSPHs
J#Z
To define a desired dressing procedure i.e. to reproduce these equations as dressed CI equations
one has to transform the last summation of the above equations into proper matrix elements of
a dressing operator, included in one of the first three terms. In other words one has to effectively
shift the last summation into the model space.
In the following we shall postulate a dressing operator limited to the M columns involving

the reference determinants

JANS: 75 0 Iebs (6.5)

w=0 kes (6.6)

such that the eqs. (6.2) hold i.e. PS@S(H + A)PS@S accepts PS@SW ) as eigenvectors with the
energies F,,. The multistate dressing operator A should carry an additional index AM but for

simplicity of notation we shall drop the M index in most cases.
Let us denote the terms to be included in the dressing by v

> Higel (6.7)
agSPHs

Taking into account eqs. (6.2) and (6.5) - (6.6) one obtains

=> AgCF m=1,...M (6.8)
Ies

Notice that if the s space involves all Singles and Doubles with respect to the reference determi-
nants the quantities v7* and Ayy are zero and the dressing operator only concerns (N — M )M
matrix elements between the S and s spaces, N = dim(s). In a general case, for example for nu-
merical selection of the s space, the Ps H Pg block of the CI matrix would also remain undressed

131



by the effect of the not selected Singles and Doubles because their approximated coefficients (in
terms of model space ones) are not available.

Since we want to calculate v quantities we must estimate the coefficients ¢
space determinants, coupled with the model space. As suggested in the introduction it will be
based again on the CC arguments. More precisely we shall employ separate CC ansitze from
the M reference determinants in the spirit of the state-universal MRCC scheme of Jeziorski-
Monkhorst [83].

As pointed out in the part devoted to the state-specific solution, the Jeziorski-Monkhorst
MRCC expansions for the M states read (FCC indicates not truncated expansion)

m

™ of the outer

WEee) = S Ol m=1,...M (6.9)
Ies

in consistency with the postulated form of the wave operator
Q=> (6.10)
I

where Q[ is A
Q[I@TIPI; TI:ZtiIéiI (6.11)

Therefore the state-specific coefficients are products of state-specific coefficients C'7" of the ref-
erence determinants and state independent amplitudes ;5.

Here we shall assume the same form of the expansion of the wave function. There are however
two basic differences in the present proposal. Now, in eqs. (6.9) the C'7" coefficients will come
from the diagonalization of the intermediate effective Hamiltonian in the model space 5 & s and
not in the reference space 5, which plays a role of a model space in the traditional approach. The
truncation scheme of the cluster operators Ty is also different. As for the full exponentialization
of an arbitrarily truncated CI expansion with respect to the ground state introduced in Sec. 4.6
we shall write ) ) )

Tr = Ztuéu + Z tar€ar = T1s + TT out (6.12)
1€s agSPHs

Then the cluster operators 77 are truncated by putting
Trow=0 (6.13)
rather than according to the traditional excitation level scheme, giving

WEo) =S cpeliey  m=1,...M (6.14)
Ies

Our next step will be to evaluate CC amplitudes ¢;; from the CI coeflicients. For the exact
expansions i.e. exact coefficients and amplitudes we have for the model space determinants
e = (i|V% ) or more explicitly

= Z C}”(i|evaS|I> = Z Crd;r (6.15)
IeS Ies

132



where d;; = <i|eTIvS|I>. The state independent pseudoamplitudes d;; satisfy the known cascade
of equations defining amplitudes of the subsequent k-body operators é;; from the coeflicients
dy;) and the amplitudes of [-body operators (I < k).

d =) (6.16)
1
d =i +5 X ) (6.17)
(3,k)
éjIéka:éiI

Once we know the pseudoamplitudes d;; we may easily find the true CC amplitudes ¢;;. In order
to determine d;r coefficients one has to solve the set of linear equations (6.15).

For the outer space determinants in turn one has ¢} = Y ;g C}”<a|eT1|I>. This may be
approximated in terms of the model space decompositions according to our truncation scheme
TI,out =0 by

=3 CT{alers| 1) = > CFdar (6.18)
Ies Ies

where d,; = <a|eTIvS|I>. The equations for the approximate CC amplitudes are defined by
substituting ¢* of eq. (6.15) and ¢ of eq. (6.18) into eq. (6.4). On the other hand, taking into
account eqs. (6.18) and (6.7) one may write in general

v =3 (Y. Hiadar)CT (6.19)

I1€eS agSPs

and the matrix elements of the dressing operator are given by

Air= Y, Hiudar (6.20)
agSPHs

Let us now assume that we start from the truncated (5 & s)CI problem having only approx-
imate pure CI coeflicients. They will be used as a starting point of the dressing procedure i.e.
we shall assume that the CI expansions are first approximations to the CC ones i.e.

- m|0 m
Psgs U2 — jwm)y m=1,...M (6.21)

Comparing the explicit definitions of these two expansions one gets

> m plol mlct mlct]; -
Psgs SO = ST oty £ 3y =1, M (6.22)
Ies Ies 1€s

and then by projecting on the left by (/| and (i| respectively, one obtains C?[O] = C?M and

T = 3 ol o) m=1,...M (6.23)
Ies
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(0]

Then through the previously defined cascade of equations one may determine amplitudes ¢,
outer space coefficients CZL[O]
the CI matrix through the dressing operator as specified in eq. (6.20). The so-dressed CI matrix
is diagonalized furnishing the new set of dressed eigenvectors.

and the dressing terms vzn[o]. The latter ones are to be added to

The procedure defined above is iterated until self-consistency is achieved. At convergence of
the dressing procedure one obtains the desired amplitudes of the |¥7.) CC expansions from the
dressed CI coefficients resulting from the diagonalization of the dressed CI matrix. Certainly
one gets simultaneously all M energies.

6.3 Discussion

The actual S @ s space may be generated with respect to a larger reference space S’, 5 C 5.
Thus in general we shall consider two different partitions of the 5 ¢ s subspace of the total
Hilbert space

Sps=S"s (6.24)
Scsh §Cs (6.25)

where 5 is a Cl reference space and s’ is a space of excited with respect to reference determinants
defining the starting MRCI spaces. When interested in M roots only, M < dim(S5’), we shall
distinguish a M-dimensional subspace S C 5’ which could be called a generator space since the
multireference expansions will be defined with respect to it. Nevertheless it will be called simply
a reference space. In order to avoid confusion we shall denote the reference space of the MRCI
problem as S” if it is different from S. The s space contains an orthogonal complement of S (in
5") and the s’ space.

As indicated above one may for instance consider a CASCISD matrix and a reference gen-
erators subspace S C §' = CAS with the corresponding manifold of states included in the full
manifold derived from the CAS space. Nevertheless for logical and physical consistency it may
be desirable to assume that if S’@ s’ is a MRCI space then all the reference determinant belong to
Sie. S =5 and s = 5, in consistency with the state-universal scheme of Jeziorski-Monkhorst.
Certainly, instead of enlarging the set of desired roots to the full CAS manifold one may rather
restrict the MRCI space to the minimal S5 & s, sufficient for desired accuracy of description of a
given chemical system.

Regarding the practical implementation of the MSCCdCI procedure let us first remark that
the use of the block Davidson-like diagonalization procedure [43] for simultaneous evaluation of
M lowest eigenvectors of the (dressed or not dressed) CI matrix is desired for practical efficiency
and is a natural choice. It is impossible to predict a priori the behavior of the block Davidson-like
diagonalization method while adding the new multistate dressing terms to CI matrix. This may
be only verified by numerical tests. Nevertheless, on the grounds of the experience accumulated
so far concerning various dressing schemes one may expect good convergence as long as the
dressing introduces reasonable corrections (i.e. relatively small with respect to the dominating
matrix elements in the undressed eigenproblem).

One of the basic steps of the new procedure is determining pseudoamplitudes d;; through
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the solution of the set of linear equation

Cd' =c' (6.26)
where (¢))T = [}, e, ..., cM] and (d)T = [di1, dia, - - ., d;nr] are vectors of the state-specific CI
coefficients ¢!* and state independent pseudoamplitudes d;; respectively. The C matrix contains
the coefficients of the reference determinants C'j" in expansions for states m = 1,...M and reads

Cll C% e 011\4

- c: c: ... (%

c=| M (6.27)
cM ooy C%

The small set of linear equation (6.26) has to be solved for every model space determinant 7. It
is an ideal task for parallel computers to perform the N matrix multiplications

d' = (C)Y¢ (6.28)

N being the number of the model space functions. On the other hand these matrix manipulations
do not significantly increase the computational cost as long as M remains small, which is true
in most cases of potential applications. One may also remark that the C matrix may be easily
reversed as long as the vectors C” = [C7',C,...,Cf], m = 1,...M (rows of é) are not
linearly dependent.

Another important aspect of determining pseudoamplitudes d;; via the set of equations (6.28)
should be pointed out. The quantity d;; is defined even if H;; = 0 i.e. when determinant 7 is
more than doubly excited with respect to a given reference determinant /. It means that many-
body operators will appear in the wave operators increasing the complexity of the cascade
of equations (6.17) for determining the real CC amplitudes ¢;; from d;;. If |7) is for instance a
quadruple excitation from |/) the pseudoamplitude d;; contains the amplitude ¢;; traditionally
included in CCSDTQ (by T4) and products of amplitudes associated with all decompositions of
|7) in terms of other model space excitations defined with respect to |I). This is the price to pay
for the adjusting of the CC expansion to the CI model space.

In light of the above it is clear that the method is practical only if the reference space S (the
number of roots) and the CI space are sufficiently reduced. To avoid this bottleneck one could
consider an approximate scheme of the MRCEPA type that would account only for the disjoint
decompositions of the outer space excitations. It would then consist in writing

dor = dzjt]j; |a> = éj[éﬂ|[> (6.29)

instead of d,; = (a|e’?+|I) and would require only partial decomposition (up to the amplitudes
of Doubles) of quantities dy;.

It is worth to compare the new proposal to the previously defined computational schemes of
the state-specific character. The new multistate procedure may be reduced to the single state or
state-specific while restricting the number of desired roots to one (M = 1), provided that there
is a dominating determinant in the expansion for this root.
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Consider for instance the MRCI space S'@s” assuming that one of the determinants belonging
to the CI reference space S’ is a reasonable approximation to a given mth exact state and will
form our one-dimensional reference generator subspace 5. All other model space determinants
will receive single pseudoamplitudes d;x with respect to the reference determinant |K) € § =
{|K)} from which one can get real amplitudes of the single reference (more precisely SR(MR))
CC expansion for the mth state.

Thus the new MS-CCdCI algorithm in the limit of one state is different from the state-specific
S55-CCdCI procedure for the same state, in which one introduces state-specific weighting of CI
coefficients with respect to all CI references in S’. If the chosen state m is the ground state one
obtains the ground state CC type dressing of an arbitrarily truncated CI matrix introduced in
Sec. 4.6.

The size-consistency of the MSCCACI procedure will be discussed in the next section.

6.4 Size-consistency

One may demonstrate that the method is size-consistent i.e. at convergence the desired M eigen-
states of the dressed MRCI matrix furnish M additively separable energies for a supersystem
A--- B composed of two non-interacting systems A and B, under the following constraints:

e The MQ’s are supposed to be localized on subsystems A and B

e The reference space for the supersystem is supposed to be separable i.e. it is the tensorial
product of subsytem reference spaces

Sap=54® 5B (6.30)

e The respective subsystem spaces s4 and sp contain all the Singles and Doubles from
the references in 54 and Sp and may also contain some determinants, which are more
than Doubles with respect to all references (selected for instance as Single or Double with
respect to larger CI reference spaces S’y or S%)

o The supersystem model space is Map = S4p P sap where the space s4p has the following
structure

54B = (54 ® SB) D (54 @ sB) @ P(sa @ sB) (6.31)
where P(s4 ® sp) denotes a subset of s4 @ sg
) CP(sa®sp)Cs4®sp (6.32)

Thus s4p contains all the determinants of the form i4.Jg and I4jp and a part of composite
excitations t4jp € s4 ® sp introduced by the actual truncation scheme e.g. doubles
composed of localized singles.

Consider now M = P - @ pairs of eigenstates |\IJ§1> and |\Ilf> of the dressed subsystems
corresponding to the pth, p = 1,... P and ¢th, ¢ = 1,...Q roots, with E;;‘ and Ef energies
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respectively. Let us form their products |\Ille> (projected onto the supersystem model space

Mag)
(UAPY = Pop, |02 |05 m=1,...M (6.33)

where p=1,...P; ¢g=1,...¢. In the expansions of trial functions of the supersystem all the
coeflicients are products of the corresponding subsystem coefficients

_ . AB. _ A B . AB  _ A B
CIAJB m CIAJ?CJB#J’ Ciadpm = CZAJ?CJB#J’ Ciaipm = Y140 5.4 (6'34)

and for 1455 € Map
AB = B (6.35)

tAIB,T tAP B9

We shall prove that the functions |\Ille>, m = 1,...M are eigenfunctions of the dressed
supersystem MRCI matrix with additively separable energies

E}P = B4+ EP m=1,...M (6.36)

where again p=1,...P; ¢=1,...Q.

The demonstration will follow the proof of separability of SS-CCdCI method. We shall
first generalize to multistate situations the previously introduced statement specifying sufficient
condition for the size-consistency of the dressing procedures as factorizability of the coeflicients of
the outer space determinants. Then the desired property of the approximation to the coefficients
of the outer space determinants will be verified.

The definitions of the separable dressing and factorizable coefficients may be generalized for
the search of M states as follows

Definition 6.4.1 We shall call a multistate intermediate, effective Hamiltonian H + AM M-
separable, if it accepts functions WAB as the eigenfunctions with the additive eigenvalues
EAB :E;;‘—I—Ef for eachm=1,... M.

Definition 6.4.2 The outer space coefficients are M-factorizable if for each supersystem de-
terminant a4p = pATB

m _ P A4 _
Coup = b L m=1,...M

The indices p, 7 refer to localized determinants belonging to 5, s or outer spaces, as previously.

Statement 6.4.1 If the outer space coefficients are M -factorizable the H4+AM s M-separable.

Proof We shall follow the logic of the proof of the statement 5.3.1. Let the coefficients of
the determinants belonging to the model space M4p be factorized as specified in eqs. (6.34) —
(6.35) and those of the outer space determinants be M-factorizable according to def. (6.4).
Now, three types of determinants belong to the model space, namely I4Jp, i4Jp and some
t1475. The presence of the latter ones in the model spaces means that we have to consider
another set of rows of the matrix representation of the pseudoeigenproblems (6.2)
(H[iAjB] EAB aB + ZHZAIA e + Z Hj Kk pc Zf?r

Ciaip CIA]B
IXB
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m,AB m,AB m,AB m,AB
+ Z HZAkACkA]B + Z HJBIB ialp —I_ZHZAO‘A Caain —I_ZH]BO‘B Cijap — =0 (6'37)
ka#ia lp#iB

for each m = 1,...M. The summations over determinants k4jg and i4/p respectively include
both the model and outer space determinants of this form. Recall also that the diagonal matrix
elements are denoted by a unique index between square brackets - e.g. hyy) = hyy.

Eq. (6.37) is satisfied for E/1P = EZ‘;‘ + Ef when the assumed factorization of the model and
outer space coefficients holds

[(H[iA] - zA —I'ZHZAIACP —I_ZHZAO‘A Coy T Z HZAkACkA] cd +
@A kaZia
[(H[JB] - E + ZHJBI\BCBB + ZHJBQB Cap + Z HJBIBCZB] A =0 (6'38)
Kp lp#iB

since the quantities in the square brackets [ | are zero for each p = 1,...P, ¢ =1,...Q. They
are simply the rows of the eigeneproblem for i4 and jp respectively, in the dressed separated
subsystems eigenequations.

For the rows corresponding to the reference functions I4Jp and i¢4Jp determinants the
derivation is analogous to the previously considered in the context of the SSCCdACI procedure.
The only difference is that in the ¢ 4Jgth rows the model space determinants ¢4 jp resulting from
the composite excitations will certainly not appear in the sum over outer spaces determinants,
but in the separate term without any influence on the final conclusion since it may be factorized
into subsystem contributions as the other terms. O

We shall prove now that our definition of the coefficients of the outer space determinants
used for the multistate CC type of dressing has the desirable property. The proof goes through
the following steps

i) Recall that the coefficients of the outer space determinants are given by eq. (6.18), which
for the supersystem problem reads

m m,AB
Canp = Z CIAIdeOfABJAKB (6.39)

IAI(BGSAB

Since we have assumed that the coeflicients of the reference determinants are M-factorizable it

is sufficient to prove that the supersystem pseudoamplitudes d, , 1,k are M-factorizable.

ii) Notice that there are in general six types of the supersystem outer spaces determinants:
asKp, I4ap, asjp, isap, agap and 14 € M4p. Thus it is sufficient to show that

a) dOfAKBJAKB = dO‘AIA; b) dOéAJBJAKB = dOfAIAijKB;
C) dOfAOfBJAKB = dOfAIAdOfBKB; d) diA]B7IAI\"B = diAIAijKB;
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iii) Consider now the supersystem model space pseudoamplitudes. For iy Kg we have

m _ m . _
CZ’AI(B = Z CIAJBdZAJBJAJB m = 1,M (640)
IaJBESanm

where on the right hand side the terms with Jg = Kp may only survive, whereas for i4 in the
subsystem problem

! = > Cldi,, p=1,...P (6.41)
IAGSA

Subsequently multiplying all equations of the above set of linear equations by C}J(B, g=1,...0
we see that d; , xp, 1,k and d; 1, satisfy the same set of linear equations. Thus, since the model
space coeflicients ¢ and C7) i are assummed to be M-factorizable

1aKp
diAI(B,IAI(B = diAIA (642)
Similarly one can check that for kslp € M4p one has

A gig,IaKp = ka1, digkp (6-43)

iv) From the model space pseuamplitudes we may then get the real cluster amplitudes. Through
the cascade of equations (6.16), (6.17), ... we get for i4 Kp

1 1 1
tEA)I(B,IAI(B = d’EA)I(B,IAI(B = t’EA)IA (644)
(2) ) 1 (1) 0 _ @)
iaKpdaKp = "iaKp,laKp - 5 Z tkAIAtlAIA - tiAIA (645)

(k,0)

Ch AT CLAT =i g Ty

For the second type of model space determinants, namely kalp one gets that all amplitudes
g;)lBJAB"B are zero. It is clear that for the amplitudes of singles tng,IAKB = 0 because such
composite excitations are at least doubles. Then, because of eqs. (6.43) and (6.16), assuming
additionally that the charge transfer excitations that would introduce another decompositions
have zero amplitudes, we get

(2) (2) A1)

tkAlB,IAIX’B = dkAlB,IAI(B - kalpalplp

=0 (6.46)

It may be easily generalized for the amplitudes of an arbitrary k-body operator. This fact is
crucial for separability.

v) Let us introduce now the partition of the cluster operators TIAKB,SAB into parts with local-
ized subsystem excitations and composite excitations

TIAI(BHSAB = TIAKBJAB(A) + TIAI(BHSAB(B) + TIAKBﬁAB(AB) (6'47)
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where for instance the part involving only excitations localized on subsystem A is

TIAKBJAB(A) = ZtkAI\"BJAKBékAIA (6'48)
ka

Since, according to iv) t 1,1,k = 0 we have

TIAKBﬁAB(AB) = Z tkAlBJAI(BékAlBJAI(B =0 (6'49)
Falp
Moreover
TIAKBJAB(A) =Ty, TIAI(BHSAB(B) =Tkp,s5 (6'50)

vi) From the definition of the outer space pseudoamplitudes

d = <04AB|€TIAKBVSAB|IAI(B>

aaplaKp

follows that they are expressed in terms of sums of products of CC supersystem model space
amplitudes.
Let us first explicitly consider the first case, namely a) of ii)

dOfAKBJAKB = <O‘AI(B|€TIAKB’SAB |IAI(B> = <O‘A|€TIAKB’SAB(A)|IA> =

Z tkAIX”B,IAIX’BtlAI(B,IAI(B e (651)
(kala)
lva)=€r 41461414 14)
In this case certainly only excitations localized on subsystem A may survive by projecting on
the left. Finally taking into account eqs. (6.44), (6.45), ... we get

dOzAI(B,IAI(B = dOzA,IA (652)

For the other types of supersystem determinants i.e. a4jp, aqap and igjp € Map one needs
theeq. (6.49) of v), which states that all composite excitations have vanishing cluster amplitudes.
We shall also use eq. (6.50). Let us consider for instance the determinants i4jp ¢ Map i.e. the
case d) of ii)

d = (iajB |€TIAKB’SAB(A)+T1AI(BvSAB (B) |[[4KB) =

1aiB,1aKp

= (ia|(jpleTaxmoas D eTrarmoan BN 1) K ) = di,1,d; 1, (6.53)

In the same way one may demonstrate that the sufficient conditions as specified in ii) are satisfied
for the other types of outer space determinants.

Thus the MS-CCdCI dressing is separable and our trial functions (eq. (6.33) are eigenfunc-
tions of the dressed supersystem hamiltonian with the eigenvalues EAP = EZ‘;‘ + Ef.

140



Chapter 7

Size-consistent self-consistent
combination of selected CI and PT

The computational cost of the dressing procedures presented in the previous chapters may
increase too rapidly with the size of the considered systems to apply them to large molecules,
even in case of the relatively simple methods of the type of MRCEPA. Further approximations
may be still necessary. The flexibility of variuos dressing procedures opens a way to such
approximated schemes.

In principle one may dress any kind of CI matrices e.g. even two by two matrix and then
join it with a dressing of other CI problems. An example of such combined scheme, suggested
by Malrieu and developed in collaboration with Heully and the author of this thesis [116], is
used to illustrate the potential merits of such lower order methods.

The present chapter contains a brief presentation of a consistent combination of two compu-
tational schemes, namely a Selected (SC)*CI method and a non divergent 2nd order perturbation
evaluation (see below). The method treats Large Doubles (and any set of higher excited deter-
minants) in a variational manner and the Small Doubles in a perturbative mode, with reciprocal
dressings of the CEPA type and exact treating of the EPV terms. Strict separability into closed
shell subsystems is insured if the localized MOs are used and the selection procedure introduces
only localized excitations. The results and short discussion of some illustrative calculations
(N Hs in DZP basis set and H,0 in DZ basis set) are also presented.

7.1 The method

In the following we shall restrict ourselves again to the closed shell ground state problem. Let us
consider a two dimensional CI problem spanned by the ground state determinant and a doubly
excited determinant with respect to the ground state. This defines a CI model space {|0),|¢)}
and the outer space containing the rest of excited determinants. When we diagonalize two
by two problems it provides a non-perturbative evaluation of the coefficients of doubly excited
determinants called in ref. [115] an Independent Excitation Approximation (IEA). Then we may
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dress the small CI matrices

|0) Hoo+ 600 Hoi
Ho Hi; + 65

by the effect of outer space detrminants using diagonal energy shifts

Soo = > _ ¢;{0[H|j) (7.1)

J#

and

bii = ¢;(0lH|j) (7.2)
éj|ij>7é0

where [7) = é;]0) certainly represents a redundancy effect. These dressings incorporate the effects
of the doubles |j) = é;|0) for |0) (except ¢) and of quadruples é;|¢) for |i). When all coefficients
of the doubles are evaluated from such dressed two by two problems one is led to a self-consistent
and non-divergent evaluation of the 2nd order perturbation type correlation energies [112]. The
cost of this self-consistent 2nd order (dressed IEA) procedure is a few times that of a classical
MP2 calculation and the so far reported [112] behavior of the potential energy for single bond
breaking is very encouraging. However, this simple method could not be applied to the breaking
of multiple bonds.

As expressed in Chap. 4 the (SC)2CI method may be applied to any selected CI including
arbitrary fractions of the various classes of excitations with respect to the ground state determi-
nant. It means that one can apply this procedure to improve results of a numerically selected CI
method. A large fraction of doubles may be eliminated from the CI expansion because of small
coefficients. Then one might think of obtaining ¢; by a perturbative techique if |¢;| is small.
The traditional PT may however diverge and one may use the dressed IEA amplitudes instead,
joining the two self-consistent size-consistent processes.

The algorithm proposed here is only relevant when selected doubles are included in the
variational CI step, otherwise it reduces to the (SC)2CI algorithm. On the other side it reduces
to the dressed IEA method when the number of selected deteminants falls down to 2. The
method goes continously from dressed IEA to (SC)?CI by increasing the number of the doubles
included in the variational CI. It is always possible to add the important triples and quadruples
to this selected space. The method will be referred to as (SC)*(CI+PT2) [116].

From the practical point of view for the determination of ¢; it is sufficient to consider the
shifted matrix

0 Hy,
Hiyo Hi; — Hoo + 65 — d00
where
i — 0pp = — Z ¢;(0[H|j) + c:(0|H|7)

J
€; |é)=0
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and then the dressing reduces to the summation over EPV terms. Regarding the CI matrix we
do the same as in the (SC)?CI procedure, so that the dressing has the form

by = > ;{0 H|j)
5107 ¢i) ¢S

with the only difference that now summation over doubles j runs over all of them independently
on the origin of the ¢; coefficient.

Thus we have a unique and complete set of coeflicients of all Doubles, coming from either
small 2 x 2 or large CI diagonalizations that can be used in the mutual dressing of all matrices
(small or large ones).

The above procedure is size-consistent as long as the selection for the supersystem A---B
does not introduce composite excitations resulting from the simultaneous excitations on A and
B. The demonstration follows the same logic as that given in ref. [86] (with the later erratum
in the ref. [85]) except for the fact that the small coefficients result from 2 x 2 diagonalizations
and is subject to the same general assumptions that the MOs are localized on either A or B and
the intersystem double excitations have zero amplitudes.

Table 7.1: Results for ammonia in DZP basis set.

Var. space Small Doubles Energies

~ ~

dim nLD Fvar nSD €me €squ F E + €me FE
397 | 392 | —135.6 | 5426 | —62.0 | —73.5 | —138.8 | —200.8 | —210.9
1440 | 1414 | —180.0 | 4401 | —17.3 | —20.3 | —185.0 | —202.3 | —204.8
2807 2633 | —194.4 | 3182 | —4.4 | =5.1 | —199.7| —204,1 | —204.7
3381 | 3061 | —196.9 | 2765 | —2.3 | —2.7 | —202.2 | —-204.5 | —204.8
4957 | 3947 | —200.1 | 1861 | —0.4 | —0.5 | =205.1 | —205.5 | —205.6
13588 | 4892 | —203.2 | 918 0.0 0.0 | -207.3| —-207.3 | -207.3

Geometry and basis set are from Knowles and Handy [117], 1s orbital frozen. Energy differencies
in milihartrees, with respect to the SCF energy. The full CI energy is -209.9 mH [117]. »'P
means the number of large doubles and n°P the number of small ones. E%" refers to undressed

CIL, E to (SC)2CI energy (dressed only by large doubles) and E refers to (SC)?(CI4+PT) energy.
e€™P? and P! denote the usual MP2 and SCPT contributions of small doubles, respectively
[116].

7.2 Test calculations

Summation over EPV terms uses e(a,...) quantities (4.59). The calculation of the diagonal
dressing d;; becomes straigthforward then since it only requires summations over the holes and
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particles of 2. In practice all determinants are dressed by all possible double excitations. The
scheme of the algorithm is given in Appendix 7.3.

The efficiency of the above proposal has been tested through three sets of computations
[116]. The first one concerns the N Hs molecule in DZP basis set for which an estimate of the
full CI energy has been proposed a few years ago [117]. The results appear in Table 7.1 and
Fig. 7.1 for different variational spaces selected according to the CIPSI scheme. These spaces
contain from 5% to 85% of all doubles, plus the most important triples and quadruples. The
error never exceeds 5 mH.

Comparing the results from ref. [86] and from Table 7.1 one can notice that including 2633
doubles and 174 most important triples and quadruples in the S space and treating the other
3182 doubles in a perturbative mode one gets a better energy (-0.205 a.u.) than including all
doubles in the SDCI (-0.197 a.u.) or in the (SC)%SDCI (-0.203 a.u.) method. This example
proves the importance of including the most significant higher excitations in the variational
process while treating small doubles at a low level. As one can see from Table 1 small doubles
still give 5.1 mH. In cases with much larger number of double excitations, where only a fraction of
them could be treated variationally and where any MRMP2 calculations would be very difficult
(if possible), the advantage of the combination of (SC)2CI and (SC)?PT2 may be even more
pronounced.

Figure 7.1: N Hjs correlation energies (relative to FCI) for different dimensions of the variational
space
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In order to test the behavior of the (SC)*CI+PT method for bond breaking process, the
H30 molecule in the DZ basis set has been examinated. The results are given in Table 7.2.

The CIPSI MRMP2 and MREN2 methods give similar or slightly smaller errors (in the
absolute numbers) comparing to the present results. But the perturbative CIPSI step is much

more expensive and the present proposal is free from the uncertainty coming from the choice of
Hy.

Table 7.2: Results for water in DZ basis set.

Var. space Small Doubles FEnergies

dim nLD Evar nSD escpt OMP CEN E
1 0 0 841 —-177.0 —130.5 | —183.3 | —177.0
8 7 —32.9 834 —139.7 —134.5 | —161.5 | —172.0
32 31 —69.0 810 —90.9 —136.1 | —150.9 | —159.9
1re 82 81 —97.1 760 —50.5 —140.2 | —147.3 | —148.6
767 364 —142.5 | 477 —1.6 —147.3 | —148.0 | —146.2
6478 | 709 —147.4 | 132 —0.01 - — = - — = —147.9
CISD = —140.2 CISDTQ = —147.8
1 0 0 841 | —256.2 | —191.1 | —288.8 | —256.2
33 | 30 | —112.5 | 811 | —115.0 | —199.5 | —218.0 | —226.5
54 50 —136.6 | 791 —81.0 —201.5 | —213.3 | —218.0
1.57¢ 117 107 | —160.8 | 734 —37.4 —204.1 | —211.2 | —202.6
1329 | 366 —189.1 613 —6.6 —209.9 | —210.6 | —209.0
6965 | 683 —209.2 158 —0.02 - — = - — = —210.1
CISD = —188.6 CISDTQ = —209.9
1 0 0 841 —348.1 —257.3 | =519.8 | —348.1
38 32 —212.1 809 —102.9 —303.3 | —314.4 | —307.8
73 61 —234.0 | 780 —52.9 —302.3 | —312.1 | —294.4
2re 123 89 —253.0 | 752 —34.8 —303.3 | =309.4 | —297.5
1483 | 360 —298.7 | 481 —1.2 —308.4 | —309.4 | —305.3
6551 | 649 —304.6 | 192 —0.02 - — = - — = —307.2
CISD = —249.6 CISDTQ = —305.7

Geometry and basis set from Saxe ef. al. [108]. Energy differencies in milihartrees, with respect to the
SCF energy. The full CI energies are -148.0, -211.0, -310.1 mH for 1r., 1.5, and 27, respectively [108§].
ntP ‘means the number of large doubles, whereas n°P the number of small ones. EV?" refers to undressed
CI, E to (SC)}(CI+PT) energy. ¢**?* denotes SCPT contributions of small doubles, whereas C*¥ and
CFEN denote Mgller—Plesset and Epstein—Nesbet CIPSI energies. Single reference CISD and CISDTQ
energies are also given for comparison.

The separability property has been verified as a practical test for the program by calcu-
lating two water molecules at very large distances, using localized MOs. When the selection
introduces only doubles in the variational space, for the supersystem AB as well as for A and
B, the variational space is the simple union of those coresponding to the subsystems and the
additivity follows from the proof given in ref. [86] and [112]. In the case where using the same
thresholds for selections the variational space contains some intermolecular quadruple products
of intramolecular doubles the results are no longer separable (contrary to what is stated in ref.

[116]).

145



7.3 Discussion

It is worth comparing the present procedure to some popular multireference MP2 methods, al-
though the perturbative part is based on a single reference. Standard MRMP2 methods proceed
first to the diagonalization of the PsH Ps matrix and perturb later the multiconfigurational
vector, while here we take into account an outer space effect before diagonalization. This point
is crucial to insure size-extensivity [86].

Obviously some effects treated in MRMP2 methods are neglected in the present scheme,
mainly the MP3 contribution incorporating the interactions between small and large doubles.
The MRMP2 methods calculate all matrix elements between the model space determinants ¢
and the outer space determinants a: (i|H |a) while here one uses explicitely the matrix elements
of the first row (0| H|a). Therefore the computational cost of the new procedure is simply that
of the diagonalization plus that of an MP2, while in MRMP2 techniques the bottleneck is the
perturbative step with the cost that increases rapidly with the number of reference determinants.

Let us remark finally that although the test calculations have not been performed on real
scale problems since they concerned medium basis sets and small numbers of electrons, they
illustrate the efficiency and possibilities of the method. The reciprocal dressing of the variational
and perturbative type treatments improves significantly the results when the contribution of the
small doubles remains important. This should be the case for the relevant domains of application
of the method.

The above procedure may be generalized to open shell and excited states multireference
situations. As proposed by Malrieu et. al. [115] one may generalize Independent Excitation
Approximation (IEA) to MRIEA method. This generalization concerns CAS reference spaces
and defines relatively small variational problems including the reference functions and excitations
involving a given fixed set of inactive orbitals. Then all those excitations obtain a unique
diagonal shift taking into account the outer space effects. The procedure goes through a set
of such reciprocally dressed diagonalizations. Nevertheless the MRIEA method has not been
implemented as yet and its usefulness must be evaluated.
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Perspectives and conclusions
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Remark: towards large scale problems

The tremendous development of computer technology and parallel progress in methodology
of Quantum Chemistry have made possible accurate investigations of small to medium size
molecular structures using ab initio methods. Unfortunately the computational costs of such
methods increase with the size of the molecular system much faster than linearly - in case of
methods accounting for the correlation energy usually faster than n*, n being the number of
electrons in the system. Simple and efficient procedures that enable to predict with reasonable
accuracy various electronic phenomena are highly desirable. They should allow to attack larger
systems using large basis sets. The efforts reported in the previous chapters were motivated
by such reasoning. The new algorithms presented here result from looking for a compromise
between contradictory requirements i.e. desired precision and computational cost.

Development of general formalisms of the MRCC type is a point of reference for further
development of hopefully more practical proposals of the MRCEPA type. The same concerns
the Sup-CI method. Although in principle one could include higher order effects, the multiref-
erence third order version implemented here seems to be an optimal choice. Nevertheless, as
the computational cost increases so rapidly with the size of the considered systems, even such
relatively simple methods can be only applied to moderate systems and further approximations
may be necessary.

Regarding the Superdirect Configuration Interaction Method some simplified correction vec-
tors could be used to built the effective short CI expansion as suggested in Chap. 2. The
flexibility of various dressing procedures opens even greater possibilities for some approximated
schemes due to the fact that one may dress any kind of CI matrices and combine it consistently
with a dressing of other CI problems.

Summary

In this work several computational schemes for the electron correlation problem were formally
derived and implemented. The following paragraphs contain summary of the thesis and some
final remarks concerning the new methods of the Configuration Interaction type, which have
been developed by the author of this thesis in collaboration with prof. W. Duch and prof. J.P.
Malrieu.

The Superdirect Configuration Interaction method

The Superdirect Configuration Interaction (Sup-CI) method proposed by Duch [39] was pre-
sented. The method uses compact CI expansion in terms of contracted functions of the pertur-
bative type. A version in which third order contributions are computed for a relatively small
(10-100) space of reference and first order correction vectors has been implemented using modi-
fication of SGGA-CI program for matrix elements computations [57]. Several numerical tests on
benchmark problems are included in Sec. 2.4. The MBPT like formulas for the matrix elements
have been also derived, using the Symmetric Group Approach (SGA) to CI and an algebra of
circular operators, invented for this purpose by Duch [56]. Various formal and graphical devel-
opments have been introduced by the author of this thesis in order to simplify the evaluation
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of these matrix elements according to general algorithm proposed by Duch. The derivation of
general open shell third order Sup-CI matrix elements is the subject of Chap. 3.

As long as the first order correction vectors are used the Sup-CI method is an approximation
of the MRCISD method. The Sup-CI method may be useful for computations of molecular prop-
erties and potential energy surfaces, since the relative errors for different geometries are much
smaller than the absolute errors. CIPSI procedure for selection of the reference space applied at
the preliminary stage of potential energy calculations will identify all relevant configurations and
allow to fix one reference space for all geometry points used, increasing reliability of calculations.
The results reported in Chap. 2 are superior to all single reference methods, including CI and
many-body perturbation theory. On the other hand the method properly programmed should
be an order of magnitude more efficient than multireference CI giving results of similar quality.

One should stress that from a formal point of view increasing the number of first-order
correction vectors obtained from different reference CSFs leads to convergence to the exact so-
lution of Schrédinger equation. Another, faster but computationally more demanding, way of
improving the results would involve going beyond the first order corrections by computing ap-
proximations to the higher-order Hamiltonian expectation values, either by dividing integrals
into different classes or by statistical sampling techniques. The most direct approach is to use
approximate second-order correction vectors, for example by allowing only pair—pair interactions
in the Hamiltonian used to create second-order correction vectors. Since the method is varia-
tional even approximate correction vectors must improve the energy. However, in calculation
for water it has been verified that about one half of the improvement for second-order correction
vectors comes from interactions involving integrals with all four indices different, which are not
s0 easy to include.

The biggest problem that remains in Sup-CI as well as MR-CI is the size-extensivity error
due to neglecting of the higher-order excitations. Although a posteriori corrections applied to
Sup-CI energies remove a part of this error it is desirable to find more accurate corrections for
this method. Another problem is the complexity of the resulting formulas presented in Chap.
3 and in the Appendix. Efficient programming of such formulas is a challenge comparable to
programming of MBPT(5) method or MRPT methods.

Dressing of CI matrices as a bridge between CI and CC methods

Chapter 4 plays basically an auxiliary role. It introduces the concept of dressing of CI matrices
based on the theory of the intermediate Hamiltonians [87] [86]. Roughly speaking dressing
means adding non-linear terms, such as the non-linear terms appearing in CC methods, to the
corresponding CI matrix. This may be viewed as size-consistent modification of the CI method
in case of simplified dressings of the type of CEPA method or as particular method of solving
the non-linear equations of the CC type through a dressed, pseudolinear set of CI equations.

Methodological background of this new approach was presented. Some previous applications
are traced and relationships between different methods that may be regarded as particular forms
of a dressing are explained by the author of this thesis using the existing literature. Moreover a
new proposal, namely Generalized Coupled Pair Functional (GCPF') was proposed. The GCPF
method is a special form of dressing of the CEPA type of the overlap matrix. It has been
suggested and developed by Malrieu and the author of this thesis.
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Mutireference state-specific size-consistent procedures

A partition of the coeflicients of the Singles and Doubles from a multireference space, as obtained
from a MRCISD wave function has been proposed. This partition makes possible the definition
of state-specific reference-dependent amplitudes for the single and double excitations, compatible
with a partition of the state-specific operator Q™ into a sum of reference-specific state-specific
operators
am=3%"ar (7.3)
Ies

Then it is possible to assume an exponential form for each of the ¢ 7’s
Or =17 Py (7.4)

and one obtains directly a coupled cluster expansion of the multireference wave function. The so-
obtained leading contributions to the coefficients of the Triples and Quadruples (i.e. of 72 type)
are used to dress the CISD matrix according to the state-specific intermediate Hamiltonians
formalism, in the iterative, self-consistent manner. This proposal may be viewed as a dressed
CISD formulation of the CCSD method for the multireference case, as previously proposed for
the single reference [90]. One should also note that this procedure decouples the Jeziorski-
Monkhorst multistate ansatz [83] into a state-specific decontracted expansion. The new method
is referred to as State Specific Coupled Cluster type of dressing of the MRCI matrix (SS-CCdCI)
[105]. The results of a preliminary application of this method to the H4 problem, which happens
to be difficult for VU and SU MRCC approaches, are very encouraging. They are presented in
Chap. 5. Nevertheless, it is certainly desirable to refine the definition of the reference dependent
state-specific amplitudes within the general framework proposed here.

The state-specific CC type of dressing was inspired by the previous formulation of MR(SC)2CI
method, proposed by Malrieu et. al. [85]. The “weighted genealogy” of this method is logi-
cally connected to the partition of the coefficients of single and double excitations with respect
to their parent references exploited here. Convergence problems that arise when using such a
weighting may be overcome. The numerical results of the MR(SC)2CI method, implemented by
the author of this thesis, are very promising. They are presented in Chap. 5.

Mutireference state-universal size-consistent procedures

The state-specific coupled cluster type of dressing is based on the partition of the state-specific
CI coefficients. All definitions of such a procedure must however contain some arbitrariness.
To avoid this drawback a generalization of the SS-CCdCI procedure to the Multistate or State-
Universal Coupled Cluster type of dressing of the MRCI matrix has been proposed [111]. The
MS-CCdCI procedure starts from a set of CI eigenstates to define a state independent dressing
in terms of the state-universal CC amplitudes. More precisely, one assumes again the separate
cluster ansitze in the spirit of the Jeziorski-Monkhorst Hilbert space MRCC method but with
the truly multistate amplitudes and truncation of the cluster operators to the corresponding CI
model space.

In order to define the CC amplitudes one solves a set of linear equations obtained by compar-
ison of the linear CI expansions for a set of the exact states and the corresponding CC expansions
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in terms of products of the state-universal amplitudes and state-specific reference coefficients.
One may then consider for any truncated CI expansion (actually for a set of CI expansions
for a set of states) its exponentialization i.e. an adjusted CC approximation with the cluster
operators truncated to excitations remaining in the CI space. The products of such excitations
define through the CC expansion the approximate amplitudes of the outer space determinants
(i.e. those that not belong to the CI space) amplitudes and the dressing terms that has to be
added to the CI equations in order to obtain the CC equations. At convergence one obtains
amplitudes of CC approximation adjusted to the CI space from the dressed CI coefficients.

In the MS-CCdCI one has to take into account all the possible decompositions of all model
space determinants (not only singly and doubly excited ones) when considering expansions with
respect to subsequent references in the Jeziorski-Monkhorst ansatz spirit. Thus, the amplitudes
of triples or quadruples with respect to a given reference may appear in the dressing of the MR-
CISD matrix. This certainly increases the complexity of the method. One may however hope
that the approximate scheme of the MRCEPA type, which requires decompositions involving
doubly excited functions only and is therefore relatively cheap, will be an interesting alterna-
tive to the existing multireference size-consistent procedures. The MS-CCdCI method and its
approximated MS-CEPA version have not been implemented as yet. Both approximations have
been formally developed by Malrieu and the author of this thesis in collaboration with Adamow-
icz and Caballol [111]. The proof of size-consistency of MS-CCdCI procedure and other proofs
of size-consistency included in this thesis come also from the author of this thesis.

The (SC)?CI+PT method

Size-consistent self-consistent combination of selected CI and PT [116] is an effective combina-
tion of the dressing of CEPA type of selected CI matrix and a number of two by two dressed
diagonalizations providing coefficients of the not selected doubly excited functions. This proce-
dure is more flexible and more powerful than an approximate SDCI going through a partition
into large doubles and small doubles. The advantage come from the size-consistency, but even
more important is the incorporation of higher order effects, including the most important triples
and quadruples. This should be especially important for many problems in quantum chemistry
where a subset of highly correlated electrons appears, while the electronic correlation of the
remaining electrons may be treated at a lower level of accuracy. One may think of chemical
reactions where only a few bonds are strongly affected, or of the 7 electrons “above” the o
electrons in conjugated molecules.

Another field of application where size-extensivity is strongly desired is the interaction be-
tween molecules. At present the methods used for computation of molecular interactions are
either the single reference MBPTn expansions (in practice MP2 in most cases) or single reference
CC methods. The former ones are of poor reliability (especially if some internal doubles have
large coefficients) whereas the second ones are very expensive, except for CCSD which may not
be sufficient.

In comparison with MRPT2 methods, the present scheme may be seen as more approximate
since it neglects the interaction between small and large doubles, but it is formally more rigorous
and certainly much cheaper for a given size of the variational space since we do not generate all
the determinants interacting with the selected configurations. The bottleneck is no longer the
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perturbative step, allowing for larger dimensions of the CI space (especially if one uses Direct
Selected algorithms). The (SC)2CI+PT method has been implemented by the author of this
thesis. Several numerical tests on benchmark problems are presented in Chap. 7.
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B: Formulae for the Sup-CI matrix elements

Table 8.1: H? type diagonal matrix element: contractions
For explanations see Chap. 3

< O0|R;HR2|0 > :=d1(m,p)d2(m,p)< |bl(m,p)b0(m,p)bl(p,m)]| >

+d1(m,p)(A2(,p) < |D1(m,p
+d2(m,g) < |bl(m,p)bl(p,g
+dl(m,p)d2(m, f,p,h)<|bl(m,p)bl( f,h)b2(p, h,m, f)]| >
+dl(m,p)d2(e,g) < |bl(m,p)b2(p,e,m,g)bl(g,e)| >+
d1(m,p)(d2(e, f,p,h)<|bl(m,p)b2(e, fym, h)b2(p h,e, f)| >
+d2(m, f,g,h)<|bL(m,p)b2(p, f,g,h)b2(g,h,m, f)[>)+
dl(m,n,p,q)d2(m,n,p,q) < |b2(m,n,p,q)b0(m,n,p,q)
b2(p,q,m,n)| >+ dl(m,n,p,q)(

d2(n,q) < |b2(m,n,p,q)bl(p,m)bl(q,n)|>

+d2(n,p)< |b2(m,n,p,q)bl(g,m)bl(p,n)| >
+d2(m,q)<|b2(m,n,p,q)bl(qg,m)bl(p,n)|>

+d2(m,p) < |b2(m,n,p,q)bl(p,m)bl(g,n)|>)+
d1(m,n, p, q)(
d2(e,n,p,q) < |b2(m,n,p,q)bl
+d2(m,e,p,q) < |b2(m,n,p,q
+d2(m,n,g9,9)<|b2(m,n,p,q
+d2(m,n,p,g)<|b2(m,n,p,q
d1(m,n, p, q)(

d2(m,g) < [b2(m,n,p,q)b2(p,q,n,g)bl(g,m)| >
+d2(n,g) < |b2(m,n,p,q)b2(p,q,m, g)bl(g,n)| >
+d2(e,p)<|b2(m,n,p,q)b2(gq,e,m,n)bl(p,e)|>
+d2(e,q)< |b2(m,n,p,q)b2(p,e,m,n)bl(q,e)| >)+
d1(m,n, p, q)(

d2(e, f,p,q) < |b2(m,n,p,q)b2(e, fym,n)b2(p,q,e, f)] >
+d2(m,n,g,h)<|b2(m,n,p,q)b2(p,q,9,h)b2(g, h,m,n)| >
+d2(e,n,g9,q)<|b2(m,n,p,q)b2(p,e,m,g)b2(g,q,e,n)| >
+d2(e,n,p,g)<|b2(m,n,p,q)b2(q,e,m,g)b2(p,g,e,n)| >
+d2(m gq)<|b2(mnp, Yb2(p,e,n,g)b2(g,q,m,e)| >
+d2(m ,9)<|b2(m,n,p,q)b2(q,e,n,9)b2(p,g,m,e)| >

)

~—

bl(e,m)bl(p,e)|>
bl(g,m)[>)

e,m)b2(p,q,e,n)|>
bl(e,n)b2(p,q,m,e)| >
bl(p,¢)b2(g,q,m,n)| >
bl(q,9)b2(p,g,m,n)|>)+

\_/\_/\—//—\

NN NN
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Table 8.2: H? type diagonal mat. el. - distinct chains

CSC expanded with respect to indices repetitions. FTOS contributions
included, except for the S1 FTOS contributions given in Table 3.4 and
S1 terms from (3.74). For explanations see Chap. 3.

dl(m,n,s,q)d2(s,n,g,q) < |b2(m,n,s,q)b2(s,s,m,g)
b2(g,q,s,n)| >+ dl(m,m,s,¢q)d2(s,m,g,q9)< |b2(m,m,s,q)
b2(s,s,m,g)b2(g,q,s,m)| >+ dl(m,m,p,q)(
d2(e, f,p, )<|b2(m,m,p,q)b2(6,f,m,m)b2(p,q,e,f)|>
+d2(e,e,p,q)< |b2(m,m,p,q)b2(e,e,m,m)b2(p,q,e,e)| >
—|—d2(mmg, )< |b2(m, m,p,q)b2(p,q,9,h)b2(g, h,m,m)| >
+d2(m,m,g,9)<|b2(m,m,p,q¢)b2(p,q,9,9)b2(g,9,m,m)| >
+d2(e,m,g,¢) < [b2(m,m,p,q)b2(p,e,m,g)b2(g,q,e,m)|>)
+ d1(m,m, p, p)(
d2(e,m,p,p)<|b2(m,m,p,p)bl(e,m)b2(p,p,e,m)| >
+d2(m,m,g,p) < |b2(m,m,p,p)bl(p,g)b2(g,p,m,m)|>)
+d1(m, n, p,q)(
d2(m,g)<[b2(m,n,p,q)b2(p,q,n,g)bl(g,m)| >
+42(e,p) < [b2(m,n,p,0) b2 4, m, ) b1(p,e) | >) +
d1(m,m, p,q)(
d2(m,g)<|b2(m,m,p,q)b2(p,q,m,g)bl(g,m)| >
+42(e,p) < [b2(m,m, ) b2 g, e, mym ) b1(p,e) | >) +
di(m,n,p,p)(
d2(m,g) < |b2(m,n,p,p)b2(p,p,n,g)bl(g,m)| >
+42(e,p) < [b2(m,n,p,p) b2 pr e 1) b(pye )| >) +
d1(m,m, p,p)(
d2(m,g) < [b2(m,m,p,p)b2(p,p,m,g)bl(g,m)]| >
+42(e,p) < [b2(m, m,p, p) b2 pye,m, m) b(p, e )| >) +
di(m,n,p,q)(
AL B ) A S )|
+d2(e,e,p,q)< |b2(m,n,p,q)b2(e,e,m,n)b2(p,q,e,e)| >
—|—d2(mng, )< |b2(m,n,p,q)b2(p,q,9,h)b2(g, h,m,n)| >
+d2(m,n,g,9) < |b2(m,n,p,q)b2(p,q,9,9)b2(g,9,m,n )| >
+d2(6ngQ)<|b2(mnp, )b2(p,e,m, g)b2(g,q,e,n)|>)
+di(m
+di(m

d2(m,t) < |b2(m,t,p,q)b2(p,q,t,t)bl(t,m)]| >

')
,p)d2(m,t) < |b2(m,t,p,p)b2(p,p,t,t)bl(t,m)]| >
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+dl(m,n,p,s)d2(s,p)<|b2(m,n,p,s)b2(s,s,m,n)bl(p,s)|>
+dl(m,m,p,s)d2(s,p) < |b2(m,m,p,s)b2(s,s,m,m)
bl(p,s)| >+ dl(¢,n,p,q)d2(e,n,t,q)<|b2(¢,n,p,q)
2(p,e,t,t)b2(t,q,e,n) | >+ dl(t,n,p,p)d2(e,n,t,p)<|
b2(¢,n,p,p)b2(p,e,t,t)b2(t,p,e,n) | >+ d1l(¢,n,s,q)
d2(s,n,t,q) < |b2(t,n,s,q)b2(s,s,t,t)b2(t,¢,8,n)| >+
di(m,n,p,p)(

42(¢, £,p.9) < [b2(m, .5, ) b2 e, £y, 1) b2, pre, )| >
+d2(e,e,p,p)<|b2(m,n,p,p)b2(e,e,m,n)b2(p,p,e,e)| >
+d2(m,n,g,h)<|b2(m,n,p,p)b2(p,p,g,h)b2(g,h,m,n)| >
+d2(m,n,g,9) < |b2(m,n,p,p)b2(p,p,9,9)b2(g,9,m,n)| >
+d2(e,n,g,p) < [b2(m,n,p,p)b2(p,e,m,g)b2(g,p,e,n)|>)
+ d1(m,m, p, p)(

d2(e, f,p,p) < [b2(m,m,p,p)b2(e, fym,m)b2(p,p,e, f)|>
+d2(e,e,p,p) < |b2(m,m,p,p)b2(e,e,m,m)b2(p,p,e,e)| >
+d2(m,m,g,h) < |b2(m,m,p,p)b2(p,p,g,h)b2(g,h,m,m)| >
+d2(m,m,g,9) < |b2(m,m,p,p)b2(p,p,9,9)b2(g,9,m,m)| >
+d2(e,m, g,p) < |b2(m,m,p,p)b2(p,e,m,g)b2(g,p,e,m)|>)
Fd1(m ) d2n,g) < [52(m, . p.q) b1 p,m ) b1(g,n) | >
+dl(m,s)d2(m,s,g,9)<|bl(m,s)b2(s,s,g,9)b2(g,9,m,s)
|>—|—d1(m,p)(d2(6,p)<|b1(m,p)b1(e,m)b1(p,e)|>
+d2(m,g) < [bl(m,p)bl(p,g)bl(g,m)|>)+dl(m,s)
d2(m,s,g,h) < |bl(m,s)b2(s,s,9,h)b2(g,h,m,s)| >+
dl(m,n,p,p)(
d2(e,n,p,p)<|b2(m,n,p,p)bl(e,m)b2(p,p,e,n)|>
+d2(mngp)<|b2(mnpp)b1(p 9)b2(g,p,m,n)|>)
+d1(¢t,p)d2(e,e,p,t)< |bl(t,p)b2(e,e,t,t)b2(p,t,e,e)] >
+d1m .. d2m ) < | D2 Y, ) | >
+d1(m,m,p,) d2(n, ) < [b2(m,n,p,p) bL(p, ) bA(p,) | >
+dl(m,m,p,q)d2(m,q) < |b2(m,m,p,q¢)bl(p,m)bl(qg,m)| >
1 (m,m, )

d2(e,m,p,q) < |b2(m,m,p,q)bl(e,m)b2(p,q,e,m)| >
+d2(m,m,g,q) < [b2(m,m,p,q)bl(p,g)b2(g,q,m,m)|>)
+ d1(m,p)d2(m,p) <|bl(m,p)b0(m,p)bl(p,m)|>+
di(m,n,p,q)(

d2(e,n,p,q) < |b2(m,n,p,q)bl(e,m)b2(p,q,e,n)|>
+d2(m,n,g,q) < |b2(m,n,p,q¢)bl(p,g)b2(g,q,m,n)|>)+
di(m,n,p,q)d2(m,n,p,q) <|b2(m,n,p,q)b0(m,n,p,q)
b2(p,q,m,n)| >
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+d1(m,p)d2(m, £,p, 1) < [bA(m, p)bL(£,h) b2 p, by, £)] >
+d1(m,p)d2(e,g) < |bl(m,p)b2(p,e,m,g)bl(g,e)| >+
d1(m,p)(d2(e, f,p,h) < |bl(m,p)b2(e, fym,h)b2(p, h,e, f)| >
+d2(e,e,p,h)< |bl(m,p)b2(e,e,m, h)b2(p, h,e,e)| >
+42(m, £9,h) < [b1(m, p) b2 p, fg,h) b2 g, by, )] >
+d2(m, f,9,9)<[bl(m,p)b2(p, f,9,9)b2(g,9,m, f)]>)
+dl(m,s)d2(s,g)<|bl(m,s)b2(s,s,m,g)bl(g,s)]|>
+d1(t,p)d2(e,t) < |bLl(t,p)b2(p, e, t,t)bl(te)]| >
+d1(t,s)d2(s,t)< |bl(t,5)*b2(s,s,t,t)]| >

+d1(t,p)d2(e, f,p,t)<|bl(t,p)b2(e, f,t,t)b2(p,t,e,f)]| >
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Table 8.3: H? type diag. mat. el. - 2nd and 3d H expanded

CSC expanded with respect to indices repetitions. FTOS contributions
included, except for the S1 FTOS contributions given in Table 3.4 and
S1 terms from (3.74). cl(m,p) = >, (mp|kk)(nr — br) + (m|p) and
2(m,p, k) = X psm p(mk[pk) arve factors arising from By. For explana-
tions see Chap. 3.

a1, m,p.0) (d2(e, £ip,0) < [D2(mom, o )
i1(67m7f7m)i1(p767q7f)[67m7f7m7p767q7f]

. . 1
+il(e,m, fym)il(p, f,q,¢)[e,m, fym,p, fyq,e])| > + 3
d2(e,e,p,q)< |b2(m,m,p,q)il(e,m,e,m)il(p,e, g,€)
[e,m,e,m,p, e q,e]] >+ d2(m,m,g,h) < |b2(m,m,p,q)(
il(p,g,9,h)il(g,m,h,m)[p,g,4, h,g,m, h,m]

. . 1
+il(p,h,q,9)il(g,m, h,m) [p, k,q,9,9,m, h,m])| > + 2

d2(m,m,g,9) < |b2(m,m,p,q)il(p,g9,4,9)il(g,m,g,m)
[£,9:0,9,9,m 9, m]| > +d2(e,m,g,q) < [b2(m,m,p,q)(
il(p,m, e g)il(g.e,q,m) [p,m, e 9,9, €,q,m]
+1il(p,m,e,9)il(g,m,q,e)[p,m,€e,9,9,m,q,€]
+1il(p,g9,e,m)il(g,e,9,m ) [p,g,€,m,g,€,9,m]

+il(p,g,e,m)il(g,m,q,¢ )[p7g767m7g7m7q76])|>) +

di(m,n,p,p) (d2 (e, fipp) < |b2(m,m,p,p)(
11(57m7f7 )11 p,e 7p7f)[67m7f7n7p767p7f]

1
+11(67’Lf, (p7 7p7f)[67n7f7m7p767p7f])|>+5

d2(e,e,p,p) < |b2(m,n,p,p)il(e, m,e,n)il(p,e,p,¢€)
le,m,e,n,p,e,p,e]| >+ d2(m,n,g,h) < |b2(m,n,p,p)(
il(p,g,p,h)il(g,m, h,n) [p, g0, hyg,m, hyn]

+il(p,g,p,h)il(g,n, h,m) [p, 9,0, h, 9,0, R, m])| > +

1
2
d2(m,n, g,9) < |b2(m,n,p,p)il(p,9,p,9)il(g,m,g,n)
[#,9:0,9,9,m,9,n]1 >+ d2(e,n,g,p) < |b2(m,n,p,p)(
il(p,m,e,g)il(g,e,p,n)[p,m,€,9,9,€,p, 1]
+1il1(p,m,e,g)il(g,n,p,€e)[p,m,e,g,9,n,p, €]
+1i1(p,g9,e,m)il(g,e,p,n) [P g, e, m, g,e,p, 1]
)

+il(p,g,e,m)il(g,n,p,e) [P, g,e,m,9,n,p,¢])]| >) +
di(m,m,p,p) (d2(e7f7p7p)< |b2(m,m,p,p)il(e,m, f,m)
. 1
il(p,e,p, f)le,m, fym,p,e,p, f1] >+ Zd2(6767p7p)< |

bz(m7m7p7p)i1(evmvevm)il(p767p7e)[67m767m7p767p76]
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| >+ d2(m,m,g,h) < |b2(m, m,p,p)il(p,g,p, h)il(g,m, h,m)
1
[p,g.p hyg,m, hym]] >+ Zd2(m7m7g7g)< |b2(m,m,p,p)

il(p,9,p,9)il(g,m,9,m) [P, 9,P,9:9,m,9,m] >+

d2(e,m,g,p) < |b2(m,m,p,p)(

il(p,m,e,g)il(g,e,p,m)[p,m,€,9,9,€,p,m]

+1i1(p,m,e,g)il(g,m,p,e)[p,m,e,g9,9,m,p, €]

+1i1(p,g9,e,m)il(g,e,p,m)[p,g,e,m,g,€,p,m]
)il(yg

+il(p,g,e,m)il( Jmp,e)[p7g767m7g7m7p76])|>) +

di(m,p)d2(m, f,p,h) < |b1{m,p)(

L f,h) i1y, By £ ) LF, oy sy £
AN A R SN AR

+c2( f h,r2)il(p,m, b, f)[72,h, f,72,p,m, h, f]

+c2( f b, r2)il(p, fih,m) [ 72k, f,72,p, f h,m])| >
+di(m,p)d2(m,p) <[bl(m,p)b0(m,p)bl(p,m)| >+
di(m,p)(d2(e,p) < |bl(m,p)(cl(e,m )cl(p,e)[e, m,p,e]
+cl(e,m)c2(p,e,r3)[e,m,73,¢e,p,73]
+c2(e,m,r2)cl(p,e)[r2,m,e, r2,p, €]
+c2(e,m,r2)c2(p,e,r3)[r2, m,e, 72,73 ,e,p,73])| > +
d2(m,g) < [bLl(m,p)(cl(p,g)<cl(g,m)[p,g,g,m]
+cl(p,g)c2(g,m, 73 )[p,g, 73, m,g,73]
+c2(p,g,72)cl(g,m)[r2,g9,p, 72,9, m]
+c2(p,g,m2)c2(g,m,r3)[r2,9,p,72,73,m, g, 73 ])| >) +
di(t,p)d2(e, f,p,t) < |bL(t,p )(

il(e,t, f,t)il(p,et, f) e t, ity poest, ]
-I—il(e,t,f,t)il(p,f,t,e)[e,t,f,t,p,f,t,e]ﬂ>+%d1(t,p)
d2(e,e,p,t)< |bl(t,p)il(e, t,e,t)il(p,e,t,¢€)

est,e, t,p e, t,e]| >+ dl(m,s)d2(m,s,g,h) < |bl(m,s)(
i1(s,g9,5,h)il(g,m,h,5)[s, 9,5 h,g,m,h,s]
—I—il(s,g,s,h)il(g,s,h,m)[s,g,s,h,g,s,h,m]ﬂ>—|—%
di(m,s)d2(m,s,g,9)< |bl(m,s)il(s,g,s,9)il(g,m,g,s)
[s,9,8.9,9,m,9,s]| >+ dLl(m,n,p,q)d2(m,n,p,q)< |
b2(m,n,p,q)b0(m,n,p,q)b2(p,q,m,n)|>+dL(m,p)(
d2(e, f,p, h) < |bl(m,p)(

il(e,m, f,h)il(p,e,h, f)[e,m, f h,p, e, b, f]
+il(e,m, f,h)il(p, f, hye)[e,m, f, hyp, f, R, €]
+1il(e, h, fym)il(p,e, h, f) e h, fym,p, e h, f]
+1il(e, h, fym)il(p, f, hye) (e, b, fym,p, f R, e])| >+
d2(e,e,p,h) < |bl(m,p)il(e, m,e, h)il(p,e, h,€)

[e,m, e h,p,e hel| > +d2(m, f,g,h) < |bl(m,p)(
il(p,g, f,1)i1(g,m h, f)[p,g, f, hyg,mi b, f]

+il(p,g, f,h)il(g, f,h,m) [P, g, £ hog, £ Ry m ]

+il(ph, fi9)il(g,m. b, f) [0, fr9,9,m, b, f]

+il(p,h, f,9)il(g, f,h,m ) (o, fr9,9, F,hom )] > +
d2(m, f,9,9) < [bl(m,p)il(p,g, f,9)il(g,m,g, f)

(2,9, f,9,9,m,9, f11 >) +di(m,p)d2(e,g) < |bl(m,p)(

— o — T
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il(p,m,e,g)cl(g,e)[p,m,e,g,9,¢]
+il(p,m,e,g)c2(g,e,73)[p,m,e,g,73,¢e,9,73]
+1i1(p,g9,e,m)cl(g,e)[p,g,e,m,g,€]
+1il1(p,g,e,m)c2(g,e,73)[p,g,e,m,r3,€e,9,73])| > +
di(m,s)d2(s,g) < |bl(m,s)(
il(s,m,s,g)cl(g,s)[s,m,s,9,9,5]
+1il(s,m,s,9)c2(g,s,73)[s,m,s,9,73,5,9,73])| >+ d1(¢,p)
d2(e,t) < |b1(¢,p)([il(p, t e, t)cl(t,e)[p,t, e, t,t, €]
+1i1(p,t,e,t)c2(t, e, 73 ) [p, te, b, 73,6, 8,73 ])| > + d1(¢,5)

1
d2(s,t) < |b1(t,s) (Eil(s,t,s,t)cl(t,s)[s,t,s,t,t,s]

1.
+ Ell(s,t,s,t)CQ(t,s,TS)[s,t,s,t,TS,s,t,TS]) | >+

di(m,n,p,q)d2(n,q) < |b2(m,n,p,q)(
cl(p,m)cl(q,n)[p,m,q,n]
+cl(p,m)c2(g,n,r3)[p,m,r3,n,q,73]
+c2(p,m, 72 )cl(q,n)[r2,m,p,72,9,n]

+c2(p,m, 72 )c2(q,n,73)[r2,m,p, 72,73, n,q,73])| > +
d1(m,m,p,q)d2(m,q) < [b2(m,m,p,q)(
cl(p,m)cl(q,m)[p,m,q,m]

+cl(p,m)c2(g,m,
+c2(p,m, 72 )cl(q,m)[r2, m,p, 72,9, m]
+c2(p,m,r2)c2(gq,m,r8)[r2,m,p, 72,78, m,q, 78 ])| >+

d

)

Tg)[p7m77,37m7q77,3]

di(m,n, p,p)d2(n,p) < [b2(m,n,p,p)(
cl{p,m)cl(p,n)[p,m,p,n]
+cl(p,m)c2(p,n, 73 )[p,m,r3,n,p, 13 ]

2(
+c2(p,m, 12 )c
)

( n)[”/’?,m,p,’l’?,p,n]
+c2(p,m, 72 ) c2(

p,n,r8)[r2,m,p, 72,78, n,p, 73 ])| > +
di(m,m,p,p )d2(m,p)<|b2(m,m,p,p)(Cl(p,m)2[p,m,p,m]
+cl(p,m)c2(p,m,r8)[p,m, 3, m,p, 3]

+c2(p,m, 72 (
+c2(p,m, 72 (
dL(m,m, p,p)(d2(e,m,p,p) < |b2(m,m,p,p )(
cl(e,m)il(p,e,p,m)[e, m,p,e,p,m]
+c2(e,m,r2)il(p,e,p,m)[72,m,e,72,p,e,p,m])| >+
d2(m,m,g,p) < |b2(m,m,p,p)(
cl(p.g)il(g,m,p,m)[p g,9,m,p,m]
+<2(p.g,r2)il(g, m,p,m)[r2,9,p, 72,9, m,p,m])| >) +
di(m,n,p,q)(d2(e,n,p,q) <|b2(m,n,p,q)(
cl(e,m)il(p,e,q,n)[e, m,p,e,q,n]
+cl(e,m)il(p,n,q,e)[e,m,p,n,q,€]
+c2(e,m,r2)il(p,e,q,n)[72,m,e,72,p,€,9,n]
+c2(e,m,r2)il(p,n,q,e)[r2,m,e,72,p,n,q,e])| >+
d2(m,n, 9,q9) < |b2(m,n,p,q)(
cl(p.g)il(g,m,q,n)[p,9,9.m ¢, n]
+cl(p,9)il(g,n, 0, m ) [p,9,9,n, 0, m]
+c2(p,g,72)il(g,m,q,n)[r2,9,p,72,9,m,q,n]

ym)[r2,m,p,r2,p,m]

c2(p, m, T3)[T?,m,p,rQ,TS,m,p,TS]) | >+

A\_/\_//—\
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+c2(p.g,72)il(g,n, ¢, m ) [72,9,p,72,9,m, ¢, m])| >) +
di(m,m,p,q)(d2(e,m,p,q) < [b2(m,m,p,q)(
cl(e,m)il(p,e,q,m)[e,m,p,e,q,m]
+ecl(e,m)il(p,m,q,e)[e,m,p,m, q,e]
+c2(e,m,r2)il(p,e,q,m ) [r2,m,e, 72,p,€,q,m]
+c2(e,m,r2)il(p,m,q,e)[r2,m,e,72,p,m,q,€e])| > +
d2(m,m,g,9) < |b2(m,m,p,q)(
cl(p.g)il(g,m.q¢;m)[p,g,9,m,q,m]
+c2(p.g,72)il(g,m,q,m) [72,9,p,72,9,m, ¢, m])| >) +
di(m,n,p,p)(d2(e,n,p,p) < |b2(m,n,p,p)(
cl(e,m)il(p,e,p,n)[e,m,p,e,p,n]
+c2(e,m,r2)il(p,e,p,n)[r2,m,e,72,p,e,p,n])| > +
d2(m,n, g,p) < |b2(m,n,p,p)(
cl(p.g)il(g,m.p.n)[p,g9,9,m,p,n]
+cl(p,g)il(g,n,p,m)[p,g,9,n,p,m]
+c2(p,g,72)il(g,m,p,n)[72,9,p,72,9,m,p, 1]
+c2(p,g,72)il(g,n,p,m)[72,9,p,72,9,n,p,m])| >) +
di(m,t,p,q)d2(m,t) < |b2(m,t,p,q)(
il(p,t,g,t)cl(t,m)[p,t,q,t ¢, m]
+1i1(p,t,q,t)c2(¢t,m,r3) [p,t,q,t, r3,m,t, 73 ])| > +

di(m,t,p,p)d2(m,t) < |b2(m,t,p,p) (

g
g

1.
511(p7t7p7t)(:1(t7m)[p7t7p7t7t7m]

1.
+ Ell(p,t,p,t)CZ(t,m,TS)[p,t,p,t,TS,m,t,TS] | >+

di(m,n,p,s)d2(s,p) < |b2(m,n,p,s)(
il(s,m,s,n)cl(p,s)[s,m,s,n,p,s]

+1il(s,m,s,n)c2(p,s,m3)[s,m,s,n,r3,s,p,r3])| > +

di(m,m,p,s)d2(s,p) < |b2(m,m,p,s)(
1.
Ell(s,m,s,m)cl(p,s)[s,m,s,m,p,s]

1.
+ Ell(s,m,s,m)CZ(p,s,TS)[s,m,s,m,TS,s,p,TS]) | >+

dl(m,m,p,p)(d?(m,g)( |b2(m,m,p7p)(
il(p,m,p,g)cl(g,m)[p,m p,g,9,m]
+il(p,m,p,g)c2(g,m,r3)[p,m,p,g,73,m,g,73])| >+
d2(e,p) < [b2(m,m,p,p)(
il(p,m,e,m)cl(p,e)[p,m,e,m,p,e]
+il(p,m,e,m)c2(p,e,r3)[p,m,e,m,r3,e,p,73])| >) +
dl(m,n,p,q)(d?(m,g)( |b2(m,n,p7q)(
il(p,n,q,9)c1(g,m)[p,n,q,9,9,m]
+il(p,n,q,9)c2(g,m, 73 )[p,n,q,9, 73, m, g, 73]
+il(p,g,0,n)cl(g,m)[p,9,0:n,9,m]
+1il(p,g9,9,n)c2(g,m,r3)[p,g,9,n, 73, m,g,73])| >+
d2(e,p) < |b2(m,n,p,q)(
il(g,m,e,n)cl(p,e)[q,m,e,n,p,e]
+1i1(gq,m,e,n)c2(p,e,r3)[q,m,e,n,73,e,p,73 ]
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+1il1(gq,n,e,m)cl(p,e)[g,n,e,m,p,e]
+1il1(gq,n,e,m)c2(p,e,r3)[q,n,e,m,r3,e,p,73])| >) +
dl(m,m,p,q)(d?(m,g)( |b2(m,m,p7q)(
il(p,m,q,9)cl(g,m)[p,m,q,9,9,m]
+i1(p,m,q,9)c2(g,m, 73 )[p,m,q,9, 73, m, g, 73]
+il(p,9,9,m)cl(g,m)[p,g,q,m,9,m]
+i1(p,g9,9,m)c2(g,m, 73 )[p,g9,9,m, 73, m,g,78])| > +
d2(e,p) < |b2(m,m,p,q)(
il(g,m,e,m)cl(p,e)[q,m,e,m,p,€e]
+1i1(g,m,e,m)c2(p,e,r3)[g,m,e,m,r3,e,p,73])| >) +
dl(m,n,p,p)(d?(m,g)( |b2(m,n,p7p)(
it{p,n,p,9)cl{g,m)[p n,p,9,9,m]
+il(p,n,p,g9)c2(g,m,r3) [p,n,p, 9,73, m, g, 73 ])| > +
d2(e,p) < [b2(m,n,p,p)(
il(p,m,e,n)cl(p,e)[p,m,e,n,p,e]
+1i1(p,m,e,n)c2(p,e,r3)[p,m,e,n,r3,e,p, 13 ]
+il(p,n,e,m)cl(p,e)[p,n,e,m,p, €]
+il(p,n,e,m)c2(p,e,r3)[p,n,e,m,r8,e,p,78])| >) +
dL(m,n, p,q)(d2(e, f,p,q) < [b2(m,n, p,q)(

il(e,m, f,n)il(p,e,q,f)[e.m, f,n,p,€e,9, f]

+il(e,m, f,n)il(p, fq,e)[e,m, fin,p, frq, €]
+il(e,n, fym)il(p,e,q,f)[e,n, fym,p,e,q,f]
+il(e,n, fym)il(p, fiq,e)[e,n, fym,p, fig,e])| >+
d2(e,e,p,q)< |b2(m,n,p,q)il(e, m,e,n)il(p,e,q,€)
le,m,e,n,p,e,q,e]| >+ d2(m,n,g,h) < |b2(m,n,p,q)(
il(p,g,9,h)il(g,m,h,n)[p, 9,9, h,g,m, hyn]
+il(p,9,¢,h)il(g,n, h,m)[p,g,9, b, 9,7, b, m]
+il(p,h,q,9)i1(g,m, h,n)[p,h,q,9,9,m; h,n]
+1i1(p,h,q,9)il(g,n, h,m)[p,h,q, 9,9, 7, h,m])| > +
d2(m,n, 9,9) < |b2(m,n,p,q)il(p,9,9,9)il(g,m,g,n)
[£,9:0,9,9,m:9,n]] >+ d2(e,n,9,9) <|b2(m,n,p,q)(
il(p,m,e,g)il(g,e,q,n)[p,m,€,9,9,€,9,n]
+1i1(p,m,e,9)il(g,n,q,e)[p,m,€,9,9,m,9, €]
+1i1(p,g9,e,m)il(g,e,q,n)[p,g,€,m,9,€,9,n]
+1il(p,g9,e,m)il(g,n,q,e)[p,g,e,m,9,n,9,€])| >)
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C: Example of Maple code for algebra of generators

Function gcir transforms an arbitrary chain of replacement operators into a linear combination
of circular chains (sse Chap. 3). In order to get the following chain F,,Ep,E,, Eg as a linear
combination of circular chains one has to put:

gcir(la,g,b,9,9,a,9,b])

The output has the form

&+ ([avgvavbvgvb]v[avgvbva]v(&_ [avgva]])

which means &,4,Egp + Eagba — Eaga- aGroup is extracted from the Maple library and slightly
modified. It defines an abelian group with multiplication designated by &+ and inversion

denoted by &—.

‘define/aGroup‘:=
proc(OplName,Identity,Inverse)
local x;
options ‘Copyright 1993 by Waterloo Maple Software‘;
if
nargs <> 3 or not type(OpName,string) or not type(Inverse,{name,procedure})
then
ERROR(‘invalid arguments‘)
fi;
proc()

local i,t,x;
options remember;
t := [args];
t := map(
proc(y)
if type(y,function) and op(0,y) = DOpName then op(y) else y fi
end
t);
t sort(t);
t map(proc(y) if y <> DIdentity then y fi end,t);
for i while i < nops(t) do
if t[i] = DInverse(t[i+1]) then
t := subsop(i = NULL,i+1 = NULL,t); i := i-1
fi

’

od;

if nops(t) = O then RETURN(DIdentity) fij;

if nops(t) = 1 then RETURN(t[1]) fi;

RETURN (subs(x = op(t),’DOpName(x)’))
end;
if type(OpName,protected) then

unprotect (’OpName’); lprint(‘Warning: new definition for‘,OpName)
fi;
OpName :=

subs (’DOplame’ = Oplame,’DIdentity’ = Identity,’DInverse’ = Inverse,");
if type(op(Inverse),name) then
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proc(a)

options remember;
if nargs <> 1 then ERROR(‘invalid arguments‘) fij;
if type(a,function) and op(0,a) = DInverse then RETURN(op(a)) fi;
if a = DIdentity then RETURN(DIdentity) fi;

’DInverse(args)’
end;
Inverse := subs(’DInverse’ = Inverse,’DIdentity’ = Identity,");
proc(a)
if nargs = 1 and type(a,function) and op(0,a) = DOpName then
if 1 < nops(a) then
DOpName (expand (DInverse (DOplName (op(2 .. nops(a),a)))),
expand(DInverse(op(1,a))))
else DInverse(args)
fi
fi
end;
‘expand/‘.Inverse := subs(’DOpName’ = OpName,’DInverse’ = Inverse,")
else

if Inverse(Identity) <> Identity or Inverse(Inverse(x)) <> x then
ERROR(‘Inverse operator defined incorrectly®)
fi
fi;
NULL
end;

define(aGroup(‘&+¢, [1, ‘&-));

deltal:=proc(x) local i,j,k,1,nl,nl1,nl2;
if type(x,list) and nops(x)=4 then
i:=x[1]; j:=x[2]1; k:=x[3]; 1:=x[4];
if j=k then nl1:=[i,1] else nli:=[ ] fi;
if i=1 then nl2:= &- [k,j] else nl2:=[ ] fi;
nll &+ nl2
else
ERROR(‘Wrong number of type of arguments‘)
fi
end;

find12:=proc(x,i,j) local n,k;
n:=nops(x);
for k to n/2 do
if x[2*k-1]=j and x[2*k]=i then RETURN(k) fi
od;
for k to n/2 do
if x[2*k-1]=j then RETURN(k) fi
od;
RETURN (0)
end;

shiftqtop:=proc(xlist,p,q) local i,j,k,n,bp,aq,bpq,xx,xxn,cl;
if not type(xlist,list) then ERROR(‘Invalid argument‘) fij;
xx:=x1list;
n:=nops(xlist);
if p<1 or 2*q>n or p>q then ERROR(‘Invalid argument‘) fij;
bp:=[op(1 .. 2%p, xx)];
if 2*q=n then aq:= [] else aq:=[op(2%q+l .. n, xx)] fi;
bpq:=[Lop(2*p+1 .. 2%q-2, xx)];
k:=nops(bpq)/2;
xxn:= [];
for i to k do
cl:=deltal([bpq[2+¥k-2%i+1] ,bpq[2*k-2*i+2] ,xx[2*q-1],xx[2*q]]1);
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if not c1=[] then
if op(0,cl)=‘&+¢ then cl:=[op(cl)] else cl:=[cl] fi;
if 2¥k-2*%i=0 then cbpgb:= [ ]
else cbpgb:=[op(1 .. 2*k-2*i, bpq)] fi;
if 2#k-2%i+2=nops(bpq) then cbpqe:= [ ]
else cbpge:=[op(2*k-2%i+3 .. nops(bpq), bpg)] fi;
xxn:=[op(xxn), op(map( proc(y,bp,aq,cbpgb,cbpqe)
if op(0,y)=‘%-¢ then &-([op(bp),op(cbpgb) ,oplop(y)),op(cbpge),oplaq)])
else [op(bp),op(cbpgb),op(y),oplcbpge),oplaq)] fi end, cl,
bp,aq,cbpgb,cbpge))]
fi
od;
cl:= [op(bp),op(2*q-1 .. 2*q,xx),op(bpq),oplaq];
&+ ( cl, op(xxn) );
end;

findxx:=proc(x) local n,k;
n:=nops(x);
for k to n/2 do
if x[2*k-1]=x[2*k] then RETURN(k) fi
od;
RETURN (0)
end;

shiftxx:=proc(xlist,p) local i,j,k,n,bp,aq,xx,xxn,cl;
if not type(xlist,list) then ERROR(‘Invalid argument‘) fij;
xx:=x1list;
n:=nops(xlist);
if p<1 or p>n then ERROR(‘Invalid argument‘) fij;
if p=n then RETURN(xx) fi;
if p=1 then bp:= [] else bp:=[op(1 .. 2*p-2, xx)] fi;
aq:=[op(2*p+1 .. n, xx)];
k:=nops(aq)/2;
xxn:= [];
for i to k do
cl:=deltal([xx[2*p-1],xx[2*p],aq[2*i-1],aq[2*i1]);
if not c1=[] then
if op(0,cl)=‘&+¢ then cl:=[op(cl)] else cl:=[cl] fi;
if i=k then cbpge:= [ ]
else cbpge:=[op(2*i+l .. 2%k, aq)] fi;
if i=1 then cbpgb:= [ ]
else cbpgb:=[op(1 .. 2*i-2, aq)] fi;
xxn:=[op(xxn), op(map( proc(y,bp,cbpgb,cbpge)
if op(0,y)=‘%-¢ then &-([op(bp),op(cbpgb) ,oplop(y)),op(cbpge)])
else [op(bp),op(cbpgb),op(y),op(cbpge)] fi end, cl, bp,cbpgb,cbpge))]
fi
od;
cl:= [op(bp),oplaq) ,op(2*p-1 .. 2*p,xx)];
&+ ( cl, op(xxn) );
end;

findxx2:=proc(x) local n,k,i,xx;
if op(0,x)=&-¢ then xx:=op(x) else xx:=x fi;
n:=nops (xx) ;
k:=findxx(xx) ;
if k=0 or k=n/2 then RETURN(O) fi;
for i to n/2-k do
if not xx[2%k+2*i-1]=xx[2*k+2*i] then RETURN(k) fi
od;
RETURN (0)
end;
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shiftxx2:=proc(x,p) local xx;
if p=0 then RETURN(x) fi;
if op(0,x)=‘&-¢ and type(op(x),list) then
xx:=shiftxx(op(x),p);
if op(0,xx)=‘&+¢ then xx:=[op(xx)]
else xx:=[xx] fi;
xx:=map(proc(y) &- (y) end, xx)
else
if type(x,list) then
xx:=shiftxx(x,p);
if op(0,xx)=‘&+¢ then xx:=[op(xx)]
else xx:=[xx] fi
else ERROR(‘Invalid argument‘) fi
fi;
&+ (op(xx));
end;

extractxx:=proc(xlist) local i,j,k,n,xx,it;
if not type(xlist,list) then ERROR(‘Invalid argument‘) fij;
if findxx(x1ist)=0 then RETURN(x1list) fi;
xx:=[x1ist]; i:=1;
while i>0 do
ii:=[seq(j, j=1 .. nops(it))];
xx:=map (proc(y) local zz;
zz:=shiftxx2(y,findxx2(y));
if op(0,zz)=‘&+¢ then [op(zz)]
else [zz] fi
end, xx);
n:=nops (xx) ;
xx:=[seq(opCop(j,xx)), j=1 .. m)];
it:=map(findxx2,xx);
i:=max(op(it));
od;
&+ (op(xx));
end;

getinter:=proc(x) local n,k,i,c,11;
n:=nops(x);
11:=[0,0];
for k to n/2-1 do
c:=x[2*k];
for i from k+2 to n/2-1 do
if x[2*i]=c and x[2*i+1]=c then
11:=subsop(1=k,2=1i,11);
fi
od;
od;
11;
end;

getinterl:=proc(x) local k,i,j,11l,c,1,yesl;
11l:=getinter(x);
k:=11[1]; i:=11[2];
if k=0 then RETURN(O) fi;
yesl:=true;
for j to k do
c:=x[2%j-1];
if j>1 then
yesl:=true;
if x[2*j-2]=c then yesl:=false fi
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fi;
for 1 from k+1 to i-1 do
if x[2*1]=c and yesl then RETURN(O) fi
od;
od;
RETURN (k)
end;

findcirc:=proc(xlist) local n,k,i,yesl,xx;
if op(0,x1list)=‘¢-¢ then xx:=op(xlist) else xx:=xlist fi;
if not type(xx,list) then ERROR(‘Invalid argument‘) fi;
n:=nops (xx) ;
for k to n/2-1 do
if not xx[2*k]=xx[2*k+1] then
yesl:=false;
for i to k do
if xx[2#k]=xx[2*¥k-2*i+1] then
if i=k then yesl:=true
else
if not xx[2*k-2*i+1]=xx[2¥k-2%i] then
yesl:=true fi

fi
od;
if not yesl then RETURN(k) fi
fi;
od;
getinterl(xx);
end;

find12bis:=proc(x,p) local xx,i,j,k,1l,n;
if p=0 then RETURN(0) fi;
if op(0,x)=&-¢ then xx:=op(x) else xx:=x fi;
n:=nops (xx) ;
i:=xx[2*p-1]; j:=xx[2*p];
xx:=[seq(op(2*p+2+k ,xx), k=1 .. n-2*p-2)];
1:=find12(xx,i,j);
if 1>0 then RETURN(1+1+p) fi;
RETURN(0)

end;

shiftqtop2:=proc(x,p,q) local xx;
if p=0 or q=0 then RETURN(x) fi;
if op(0,x)=‘4-¢ and type(op(x),list) then
xx:=shiftqtop(op(x),p,q);
if op(0,xx)=‘&+¢ then xx:=[op(xx)]
else xx:=[xx] fi;
xx:=map(proc(y) &- (y) end, xx)
else
if type(x,list) then
xx:=shiftqtop(x,p,q);
if op(0,xx)=‘&+¢ then xx:=[op(xx)]
else xx:=[xx] fi
else ERROR(‘Invalid argument‘) fi
fi;
&+ (op(xx));
end;

getcirc:=proc(xlist) local i,j,k,n,xx,it;
if not type(xlist,list) then ERROR(‘Invalid argument‘) fij;
if findcirc(xlist)=0 then RETURN(xlist) fi;
xx:=extractxx(xlist);
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if op(0,xx)=‘&+¢ then xx:=[op(xx)] else xx:=[xx] fi; i:=1;
while i>0 do
xx:=map (proc(y) local zz,11;
11:=findcirc(y); 1lprint(11);
zz:=shiftqtop2(y,11,find12bis(y,11));
if op(0,zz)=‘&+¢ then [op(zz)]
else [zz] fi
end, xx);
n:=nops(xx); lprint(xx);
xx:=[seq(opCop(j,xx)), j=1 .. n)]; lprint(xx);
xx:=map (proc(y) local zz;
if op(0,y)=‘&-¢ then
zz:=extractxx(op(y));
if op(0,2z)=‘&+¢ then zz:=[op(zz)]
else zz:=[zz] fi;
map(proc(y) & (y) end,zz)
else
zz:=extractxx(y);
if op(0,zz)=‘&+¢ then [op(zz)]
else [zz] fi
fi
end,xx) ;
n:=nops(xx); lprint(xx);
xx:=[seq(opCop(j,xx)), j=1 .. n)]; lprint(xx);
it:=map(findcirc,xx);
i:=max(op(it));
od;
&+ (op(xx));
end;
shortcirc:=proc(x) local i,j,l,n,xx,xx1,yesl;
yesl:=false;
if op(0,x)=‘%-¢ then xx:=op(x); yesl:=true else xx:=x fi;
1:=xx[1]; xx1:=[1];
n:=nops (xx)/2;
for i to n-1 do
if xx[2#i]=1 then
xx1:=[op(xx1) ,xx[2*i]];
1:=xx[2*i+1]; xx1:=[op(xx1),1];
else
if xx[2#i]=xx[2*i+1] then xx1:=[op(xx1),xx[2*i]]
else ERROR(‘NON-CIRCULAR chain‘) fi
fi
od;
xx1:=[op(xx1),xx[2*n]];
if yesl then &- (xx1) else xx1 fi
end;
conj:=proc(xlist) local i,n,xx,xx1l,yesl;
if op(0,xlist)=‘&-¢ then xx:=op(xlist); yesl:=true
else xx:=xlist; yesl:=false fi;
n:=nops(xx); xx1:=[];
for i to n do
xx1:=[op(xx1) ,xx[n+1-i]];
od;
if yesl then &- (xx1) else xx1 fi
end;
multpr:=proc(xlist) local i,j,k,n,l,xx,xxk,xx1l;
n:=nops(xlist);
xx1:=[]; xx:=xlist;
while n>0 do
1:=1; xxk:=[];
for i to n-1 do
if xx[1]=xx[i+1] or xx[1]=conj(xx[i+1]) then 1:=1+1
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elif xx[1]1=&-(xx[i+1]) or xx[1]=&-(conj(xx[i+1])) then
1:=1-1
else xxk:=[op(xxk),xx[i+1]] fi;
od;
if 1=1 then xx1:=[op(xx1) ,xx[1]]
else if not 1=0 then xx1l:=[op(xx1),l*xx[1]] fi fi;
xx:=xxk; n:=nops(xx);
od;
&+ (op(xx1));
end;
gcir:=proc(xlist) local i,j,k,n,xx,it;
if not type(xlist,list) then ERROR(‘Invalid argument‘) fij;
n:=nops(xlist); n:=n mod 2;
if not n=0 then ERROR(‘Improper length of the chain‘) fi;
xx:=getcirc(xlist);
n:=nops (xx) ;
if op(0,xx)=‘&+¢ then xx:=[op(xx)] else xx:=[xx] fi;
xx:= map(proc(y) shortcirc(y) end,xx);
multpr(xx)
end;
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D: The scheme of the (SC)?(CI+PT) program

1. Select reference space

S
|

2. Diagonalize Hamiltonian matrix
in S space; PsH Pg
!
3. Generate all doubles and find ¢; coeff. for them
from undressed 2 x 2 matrices

|
4. For doubles belonging to S
take the ¢; from step no 2

|
5. Built e-arrays from the updated coeff. ¢;

|

6. Having e-arrays dress Cl matrix or 2 X 2 matrices
for large or small doubles respectively

|

7. Undress the doubles belonging to S by the effect of these
doubles that lead again to S acting on a given double
|

8. From the new CI and 2 x 2 matrices find

new energy E and new ¢;. Go to stepno 5
Repeat until the self-consistency is achieved

1. In practice two iterations of CIPSI were done, so that some doubles and most important
triples and quadruples were included in S.

6. For a given doubly excited determinant |i) = DF|0) one uses the e-arrays as described
in Chap. 7 to evaluate ¢;;, instead of explicit summation over EPV (with respect to 1)
contributions. Then the corresponding diagonal element in 2 x 2 or CI matrix is modified.

7. The undressing is done by the explicit decomposition of all selected triples and quadruples,
as described in the ref. [86].

8. The contribution of small doubles is added to (0| H|0) element of the dressed CI matrix,
which is then diagonalized to obtain next value of £/ and the coefficients ¢; of large doubles.
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