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Preface

�Concepts� like men� are gregarious�

Ernest Gellner� �Plough� Sword and Book� The Structure of Human History��

Although� E� Gellner refers to a culture� which he de�nes as a system of notions� interrelated
and interdependent in various complex ways� I �nd his metaphor matching very well the content
and background of this work� It is devoted to the development of new methods of the Quantum
Chemistry or Theoretical Atomic and Molecular Physics� if one prefers� Not depending on the
actual 	and historically determined
 nomenclature� it means theoretical methods of research on
the electronic structure of the matter�

After �� years 	starting from the very beginning of the Quantum Mechanics
 of the develop�
ment of this discipline and �� years since the invention of the computer � its nowadays inevitable
companion � it has reached high degree of sophistication and impressive predictive capabilities�
Due to �black box� quantum chemistry packages� one can routinely describe the structure of
chemical compounds� reaction paths and spectra� and many other interesting properties and
characteristics ��� � ����

Nevertheless� despite the parallel progress in computer technology� further formal develop�
ment of methods and increasing of e�ectiveness of the computer algorithms of Quantum Chem�
istry is highly desired� We shall always be pushed to attack larger and larger systems with
growing accuracy�

It seems that the project of linear Quantum Chemistry 	i�e� using algorithms for which
the computational complexity scales linearly with the number of electrons
 remains still quite
exotic� The problem of bad scaling has been however constantly inducing e�orts resulting
in various combinations in the spirit of the so�called direct algorithms and other numerically
e�cient schemes�

Another area of vital importance for contemporary Quantum Chemistry is further develop�
ment of existing and well established methods for special and di�cult cases as for example open
shell systems and excited states�

This work has been inspired by both challenges and tries to o�er some new solutions to
these problems� They are formulated on the grounds of well known and standard Con�guration
Interaction method� that had been devised and employed to account for the electron correlation
i�e� to go beyond the one particle approximation� On the other hand the methods presented

�



in this thesis are far from the methodological purity and are based on e�ective combination
of concepts� coming from di�erent approaches to the electron correlation problem� Certainly
all these approaches are interrelated and this fact has been used many times to introduce new
schemes and algorithms�

The Superdirect Con�guration Interaction 	Sup�CI
 method� proposed independently by
Bendazzolli ��
� and in a more general form by W� Duch ���� � the supervisor of this thesis � uses
Perturbation Theory to built e�ective short linear expansion of the electronic wave function�
This idea has been previously used with great success in various diagonalization algorithms for
instance� The Sup�CI method in third order is a matter of the �rst part of this work� It is tested
on a series of benchmark problems and its e�cient implementation is discussed� The formulas
for matrix elements occurring in this approximation are derived�

The �dressing� of the set of linear equations of the Con�guration Interaction 	CI
 method�
which allows to incorporate non�linear terms of the Coupled Cluster 	CC
 method� has been used
in the �rst implementations of the Coupled Electron Pair Approximation method� Recently� it
has been rediscovered and generalized by J�P� Malrieu and his collaborators ����� giving theo�
retical and practical bridge between CI and CC methods� It appeared to be a generator of a
series of e�cient algorithms of the Coupled Cluster type� formulated in terms of Con�guration
Interaction method� Some of them are presented in the second part of the thesis� with the
obvious accent on those� which the author of this work has contributed to� Because one is facing
a collection of 	gregarious
 ideas in this case� I shall leave further comments to the subsequent
parts of the work�

Most of the presented schemes have been formulated in terms of multicon�gurational ex�
pansions and are directed to the description of systems having di�erent electronic structures
at di�erent conformations as for instance dissociating molecules� of the open shell systems and
excited states� Multicon�gurational procedures are certainly more complex than their single
reference counterparts� but real chemical systems and processes inevitably require some mea�
surements of a non�dynamical correlation� All those general issues will be discussed in a more
detailed manner in the �rst chapter�

Coming back to the Gellner�s metaphor� I would like to point out that it may be interpreted
in two � contradictory to some extent � ways� One may regard that it expresses a natural and
fruitful tendency in any systematic search for the logically consistent knowledge� especially in
science� This tendency manifests itself by two rules of scienti�c investigation� First � do not try
to go too far as long as it is possible� Second � combining known things you may always �nd
something new� Its deeper meaning suggests however that only straying one may really make a
progress�

This is consistent with the character of a scienti�c revolution or a change of paradigm� as
described by Kuhn� Men are conformistic� They usually choose what has already been chosen�
They tend to exclude all di�erent individuals from their communities� It may however happen
that a deep crisis may force them to accept previously rejected options or to invent new solutions�
The same concepts do�

Looking at this work from a wider perspective of the theoretical physics� one has to admit that
it has nothing to do with any fundamental question that might change our view of Quantum
Mechanics� The aim of this thesis is to widen the range of standard computational options
enabling chemists to predict behavior of real chemical systems�

��



The Quantum Paradigm still seems not to be seriously threatened and we seem to remain
in the relatively calm� intermediate period� I am 	gregarious
 man and I may only hope that
my modest contribution to the development of Quantum Chemistry will not cause a butter�y
e�ect�

Seriously speaking� my hope is that at least some of the algorithms I have contributed
to� will �nd their way to the world of real applications in chemistry and molecular physics or
will inspire some further formal developments resulting in more mature methods� It seems to
me that combining traditional approaches may not only serve in increasing of the e�ciency of
calculations� but it may also bring a new light on the mutual relationships among those deeply
interrelated approaches�
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Chapter �

Introduction

Some basic aspects of the description of electronic states of chemical molecules and method�
ological background of the developments presented here shall be considered in the following
chapter�

��� Roots

In Quantum Mechanics any microscopical system may be characterized by the mathematical
quantity called a wave function 	usually denoted as �	r� t

� The wave function has probabilistic
interpretation� ��	r� t
�	r� t
 means the probability density of �nding objects� a given system
consists of� at points given by r and at a moment t� It ful�lls time dependent Schr�odinger
equation

i h
��	r� t


�t
! "H�	r� t
 !

h
"T � V 	r� t


i
�	r� t
 	���


A di�erential operator "H is called Hamiltonian and its particular form is depended on the system
considered� We shall consider only non�relativistic Hamiltonians�

When the potential V is not depended on time� one can separate variables� obtaining time
independent Schr�odinger equation

"H�	r
 !
h
"T � V 	r


i
�	r
 ! E�	r
 	��



Square integrible 	i�e� localized in space
 solutions of this equation de�ne a Hilbert space H�
The bounded states of a system are represented by functions belonging to H and thus may be
expanded in terms of eigenfunctions of "H � that form a basis of the space H� A bounded state�
which is a superposition of eigenfunctions having the same eigenvalue E� is called a stationary

state� A set of eigenvalues En associated with all stationary states is in turn called an energetic

spectrum of a system ����
The goal of Quantum Chemistry is to solve the Schr�odinger equation 	��

 for a given chem�

ical system� More precisely� one of the main objectives of Quantum Chemistry is to �nd 	not
necessarily all
 stationary states of electron cloud in the potential associated with the interac�
tions between nuclei and electrons� a given molecule consists of� Speaking in general terms� the
methods presented in this thesis are aiming at that goal as well�

�




The study of time dependent phenomena 	e�g� arising in the interaction between time�
dependent external �eld and the electronic system
 in general require solving the time dependent
Schr�odinger equation� but this may often be done in the basis of time independent eigenstates
of eq� 	��

 ����

There are only a few known analytic solutions of the Schr�odinger equation for such simple
systems as hydrogen atom� Therefore various approximations are inevitable� They not only
allow us to solve the Schr�odinger equation but also play a fundamental role in understanding
	modeling
 of molecular structure�

Since a large di�erence in mass between electrons and nuclei it is well grounded to pos�
tulate the separation of nuclei and electrons motions ���� This assumption is known as Born�
Oppenheimer approximation 	or adiabatic approximation if one includes some additional terms
that do not couple nuclei and electronic states ���
 and leads to great practical and conceptual
simpli�cations� It allows to introduce the electronic Hamiltonian "He

"He	re�R
 ! "T 	re
 � V 	re�R
 	���


and electronic wave functions that depend on the 	�xed at a given conformation
 positions of
nuclei R as parameters only� In the above equation re denotes a vector of electronic coordinates�
Since the potential V 	re�R
 consists of one�electron� separable terms and two�electron non�
separable terms

V 	re�R
 !
X
k

	"t	rk
 �
X
A

ZA
rkA	R



 �
X
k�l

�

rkl
! "h� � "h� 	���


one may de�ne the one� and two�particle parts 	denoted as "h� and "h� respectively
 in "He ����
The summation over A refers to the atomic centers and atomic units are used in the eq� 	���
�

As a consequence of the separation of the electronic and nuclei states the electronic energy
	eigenvalue associated with electronic wave function
 plays the role of a potential energy in the
motion of nuclei� This in turn allows to introduce the concept of the Potential Energy Surface
	PES
 ���� Therefore the electronic structure is not only important for the description of the
electronic phenomena 	as for instance excitation energies or transition probabilities
 but it serves
also as a starting point for further investigation of vibrational and rotational phenomena�

Another model central to contemporary Quantum Chemistry is the one�particle approxi�
mation� Within this model every electron is associated with a one�particle function� called an
electron spin orbital �i� One may look for one�particle functions that de�ne the energetically
lowest many�particle wave function� which is de�ned as antisymmetrized product 	determinant

of one�particle functions� It brings substantial reduction of the complexity of the problem and
leads to a set of well known integro�di�erential Hartree�Fock equations for one�electron problems
	a single electron interacting with an averaged �eld of all electrons


"f�i ! ei�i# "f ! "h�
X
j

	 "Jj � "Kj
 	���


where ei is called one�particle energy and the Fock operator "f is a sum of one�particle Hamil�
tonian and Coulomb and exchange operators respectively� For N electrons� from a set of spin

��



orbitals with N lowest one�electron energies one can built the best single determinant approxi�
mation to the ground state of the N �electron system described by an electronic Hamiltonian "He

����
In case of atoms and linear molecules the above equations may be directly solved by numerical

methods ��
�� Because the operator "f is de�ned by spin orbitals �i� one has to solve eqs� 	���

iteratively� in a self�consistent way� Unfortunately� this procedure is not as yet applicable to
molecules consisting of a larger number of atoms ��
� and further simpli�cations are required�

��� Molecular orbital approximation

The N�particle Hilbert space HN has very nice and simple structure in the one�particle ap�
proximation� It is built of the one�particle function products i�e� it has the form of a tensor
product

HN ! �N 	H�
 	���


whereH� denotes the one�particle Hilbert space of all localized one�particle functions 	dim	H�
 !
�
� When dealing with fermions� only the antisymmetric subspace AHN has to be taken into
account 	we shall skip further the A index
� Solving the Hartree�Fock equations in this space
one obtains the so�called Hartree�Fock limit for the energy of N�particle system ����

As was pointed out in the previous section� except for the simplest linear molecules� alge�
braization of the problem is necessary to obtain solutions of the Hartree�Fock equations in case
of chemical systems� It was Roothan� who introduced the expansion of molecular orbitals in the
�nite basis of atomic orbitals ����� Therefore we say about Hartree�Fock�Roothan equations or
LCAO MO 	Linear Combination of Atomic Orbitals� Molecular Orbitals
 method�

From the formal point of view it means that one�particle Hilbert space H� has �nite di�
mension n� where n is the dimension of the basis set used and certainly the N �particle Hilbert
space is also of �nite dimension� As the one�particle basis approaches completeness 	n � �

the method approaches Hartree�Fock limit� The acronym SCF 	Self�Consistent Field
 method
is often used to distinguish the Hartree�Fock method in the �nite basis set�

It is common to introduce a set of k ! n�
 spatial basis functions� electron orbitals� The
spatial parts of the spin orbitals with the � 	and � respectively
 spin function are expanded
in terms of these atomic orbitals� giving �nally n molecular spin orbitals� Assuming the same
spatial parts for � and � spins� we get the restricted HF 	RHF
 method� Relaxing this constraint
one obtains unrestricted HF 	UHF
 method ����

In practice� one has to restrict the dimension of the basis set severely 	to about ��� in
routine calculations
� Quality of the basis is of great importance� The art of constructing of such
basis for molecular ab initio calculations has been developing since the early days of Quantum
Chemistry� The most common choice is to expand molecular orbitals as linear combinations of
atomic gaussian functions 	i�e� with exponents and coe�cients of primitive functions optimized
in atomic calculations
� leading to simpli�cations in evaluation of multicentered integrals ����

In contradistinction to ab initio methods the so�called semi�empirical methods mean pro�
cedures that use some parameters �tted to known empirical data and not only basic physical
constants ����� The use of atomic functions with optimized parameters for the construction of
one�particle basis functions makes the distinction between ab initio and semi�empirical methods
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actually only traditional� Nevertheless� the semi�empirical methods usually assume a simpli�ed
form of a Hamiltonian� as the H�uckel one� and are in this sense less re�ned ����

The Hartree�Fock approximation is important not only for its own sake but as a starting
point to the so�called post Hartree�Fock methods that try to incorporate the instantaneous
interactions among the electrons � to include the electron correlation� as quantum chemists say�

��� Electron correlation problem

Although the Hartree�Fock 	or molecular orbital
 approximation has proved its high predictive
capabilities� it is very often inadequate for description of chemical systems and processes because
they depend on energy di�erences 	which are relatively small
 rather than on energies themselves�

In extreme cases like that of the F� molecule� the HF method is unable to describe the
bonding ���� The problem cannot be removed even by using the numerical solutions of the HF
equations 	HF limit
� Single determinantal description� even in the in�nite Hilbert space� is not
adequate and one has to go beyond the one�particle approximation�

When each electron is assumed to move in the �eld of nuclei and the average �eld of all other
electrons� one should expect an error coming from the discarding of the instantaneous e�ects in
the Coulomb interactions� arising from the interelectronic potential e�e��r���

The electronic correlation energy is essentially a measure of the error of the HF method� It
is de�ned by the di�erence

Ecorr ! E � EHF 	���


where E is the exact eigenvalue of the Hamiltonian "H under consideration ���� Because the
Hamiltonian employed normally in Quantum Chemistry does not contain the relativistic e�ects�
which are always present in the experimental energy� the correlation energy has no physical
meaning� It only indicates how good 	or bad
 the HF approximation is�

It is worth to note that working in a given basis set 	H�
 of �nite dimension we may only
talk about HF energy ESCF and the �exact� energy E in the resulting N �particle space HN �
Despite that� the correlation energy 	in a given basis
 remains very useful for the evaluation of
the quality of the post Hartree�Fock methods�

When dealing with �nite dimensional basis sets another problem arises� connected to the
Coulomb correlation and leading to a slow convergence of the post HF methods� The restricted
�exibility of such an approach causes errors even when going beyond the one�particle approxi�
mation� Taking into account all determinants in N �particle space HN one is not able to describe
properly such special e�ects as the Coulomb hole� arising for r�� � �� The solution for this
problem requires methods that explicitly take into account the interelectron distances r�� and
face serious computational di�culties �����

One should not forget that� in practice� the correlation energy is a formal parameter rather
than a measure of physical correlation in the system� The latter one is partially included in
the HF method and partially is not included even in E of eq� 	���
� when employing �nite
dimensional approximations�

In the next section we shall brie�y consider di�erent post HF approaches� An important
remark should be made before we go further� All the considerations presented here refer to
molecular ab initio methods and not to density methods� Various methods oriented at electron
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density instead of the wave functions undertake recently an intensive development� They are
commonly referred to as the Density Functional Theory 	DFT
 and o�er an interesting alterna�
tive to the traditional molecular approach 	at least for the lowest states in a given symmetry

�����

��� Going beyond the Hartree�Fock method

A given choice of n atomic basis functions for an N �electron system implies that one obtains in
the SCF procedure n 	usually orthonormal for the sake of computational e�ciency
 molecular
spin orbitals� They form a basis of the �nite dimensional space H�� All their antisymmetrized
products are eigenfunctions of N �particle Fock operator "F !

PN
i

"fi and form a basis of N �
particle Hilbert space HN � The number of all such products is given by n$�N $	n�N
$ and may
be very large even for the systems of a moderate size� For 
� basis functions and �� electrons 	of
the water molecule for instance
 it reaches ���� Although this number is signi�cantly decreased
	by about one order of magnitude
 when excluding determinants characterized by unwanted
total spin projection and further reduction is possible by the full spin and space symmetry
adaptation� it shows the potential computational di�culties�

Those spin orbitals that occur in the energetically lowest� so�called Hartree�Fock determinant
�HF � are de�ned as occupied spin orbitals� The rest is called virtual spin orbitals� Since one can
describe each determinant with respect to the HF one 	by the number of occupied spin orbitals
replaced by virtual spin orbitals
� we may de�ne single 	S
� double 	D
� triple 	T
� quadruple
	Q
 ��� N �tuple substitutions or excitations

HN ! fj�HF ig � HN
S � HN

D � � � � � HN
N 	���


From now we shall use more convenient language of the state vectors j�HF i in the abstract
Hilbert space rather than the explicit coordinate representation �HF 	r
 ! hrj�HF i� The par�
titioning of 	���
 is a useful tool to avoid problems associated with huge dimensions of HN by
de�ning some truncated schemes� When employing orbitals rather than spin orbitals and spin
adapted basis rather than determinantal one� it is necessary to use other partitioning� based for
instance on the concept of the interaction space� since the excitation level may not be uniquely
de�ned �����

Going beyond the Hartree�Fock method means that we take into account not only the ground
HF state� A given state is expressed as a linear combination of a number ofN �electron functions�
Among those state functions 	being in case of symmetry and spin adaptation combinations of
determinants
 one can distinguish those that have signi�cantly large coe�cients 	comparable to
the coe�cient of the ground state determinant
 in the expansion of a given state in terms of
N �particle basis and those that have relatively small coe�cients or weights in the total wave
function� Such a distinction is never sharp nor unique� Nevertheless� some intuitive heuristics
usually allow us to justify a given choice�

In general non�dynamical or structural correlation e�ects and dynamical correlation e�ects
are distinguished ����� manifested by relatively large or small coe�cients respectively� A more
strict distinction follows the de�nition of Sinanoglu ���� which says that the term non�dynamical
correlation refers to a minimal qualitatively correct description of the separation of a molecule
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into fragments� Thus� the non�dynamical correlation arises in a situation� when some con�gu�
rations are of di�erent importance at various molecular conformations and all of them have to
be included in the zeroth order treatment to obtain correct description of the PES� It also may
happen that even at equilibrium the single determinant treatment is entirely not adequate 	as in
the F� case mentioned before
 and a multireference treatment� accounting for the non�dynamical
correlation� is necessary� Some excited states are also inherently of the multireference character�

The above situation implies that all methods used in Quantum Chemistry� primarily devised
for single reference zeroth order description� has now its multireference counterpart� It concerns
also the SCF method itself� which has its generalized version� Multicon�gurational SCF 	MC�
SCF
 method� In the MCSCF scheme the orbitals are variationally optimized not for single
determinant� but for linear combination of determinants� The choice of the reference space is
often based on the concept of the Complete Active Space 	CAS
 i�e� a space composed of all
possible excitations within a given set of 	chemically active
 orbitals� It is equivalent to the FCI
treatment 	see subsection ����

 in this small subspace of HN �

One should recall another and related distinction� important from the conceptual and prac�
tical point of view� A closed shell state of N�electron system is a state described by a single
electronic con�guration� consisting of completely occupied shells� Any other state is called an
open shell state� This includes cases with a single modeling con�guration but involving partially
occupied shells and states that cannot be described in a qualitatively correct way using single
reference approach �����

Once the non�dynamical part of the correlation energy is taken care of by small MCSCF
or CASSCF calculations the post Hartree�Fock methods account for the dynamical part of it�
This is computationally more demanding� Moreover� as mentioned before� the problem with
quantum chemical methods is that there is no clear distinction between the dynamical and the
non�dynamical parts of the correlation energy in di�erent molecular conformations� In the next
three subsections we shall restrict to the single reference approaches unless otherwise stated�

����� Perturbation Theory

Perturbation Theory prevails in many branches of physics� It has been also used as one of the
basic tools of the molecular quantum mechanics�

On the grounds of molecular orbital approximation� a special role is played by the Rayleigh�
Schr�odinger expansion with the Fock operator as a zeroth order approximation to the exact
Hamiltonian ����

"H ! "H� � V # "H� ! "F # V !
X
i�j

r��ij �
X
i

ui 	���


where ui is a potential of the motion of ith electron� obtained in the one�particle approximation�
Then� the expansion of the wave function for a state j�i with a dominating contribution from
j��i and the corresponding expression for the energy are given order by order

j�i ! "%PT j��i ! 	� � "%��� � "%��� � � � �
j��i 	����


E ! E��� �E��� �E��� � � � � 	����


��



where the indices in the parenthesis 	i
 refer to orders in the pertubative expansions and
j��i�i ! "%�i�j��i# j����i ! j��i� The zeroth order description is obtained using the one�
particle approximation "F j��i ! E�j��i# E��� ! E�� as indicated by the partitioning of the
total Hamiltonian� The operator "%PT is called a wave operator and occurs in the theory of e�ec�
tive Hamiltonians 	see Sec� ���
� Acting on the model functions it produces the exact functions�
In this and the two next subsections it will simply denote a generator of the particular 	here
perturbative
 expansion characteristic for a given post Hartree�Fock method�

One reason for the success of the Rayleigh�Schr�odinger approach is that the exact energy
is not explicitly present in this formalism and therefore it can be applied to a group of states
simultaneously and leads to the energy�independent e�ective operators ����� Second reason is
probably more important� Using the so�called diagrammatic technique 	graphical representation
similar to that introduced by Feynman in �eld theory
 one can conveniently derive formulas for
energies and properties at subsequent orders in terms of sums of products of molecular integrals
����� Using this technique� it was also formally shown by Goldstone ���� that the so�called
unlinked terms� that have non�physical i�e� non�linear dependence on the number of electrons in
the system disappear from the expansion and they do not need to be considered at subsequent
orders�

When a particular method scales properly 	i�e� linearly
 with the size in a homogeneous
system we say that it is size�extensive ���� �
��� In case of the methods formulated in the second
quantization language size�extensivity is insured by the requirement of linked expression for the
energy and is very often simply identi�ed with the lack of unlinked terms �
��� The M&ller�
Plesset Many Body Perturbation Theory 	MBPT
 i�e� the RSPT with the partitioning of the
Hamiltonian of the form 	���
� �rst proposed by M&ller and Plesset� is size�extensive� even when
truncated at �nite order� taking bene�t of the linked diagram theorem �����

Related� although di�erent notion which deals with the problem of correct scaling with size
is size�consistency� As de�ned by Pople et� al� �

� a method is considered size�consistent if the
energy of a 	super
system A � � �B composed of two 	sub
systems A and B far apart is equal to
the sum of subsystem energies computed separately by the same method� Hence we require that
for any molecule AB the following separability condition is satis�ed

E	AB

rAB���� E	A � � �B
 ! E	A
 � E	B
 	���



where A and B may be open or closed shell fragments�

The above condition for a supersystem A � � �B may be satis�ed by a given method only when
the separable 	i�e� correctly dissociating
 reference function is used� Thus size�consistency im�
poses additional requirement on the zeroth order description and refers to a desired model of the
dissociation processes� While using separable zeroth order description� size�extensivity ensures
size�consistency� The reverse is however not true� In the interaction regions size�extensivity is
still well de�ned as lack of unlinked terms� whereas size�consistency i�e� additivity of a super�
system energy is not 	the same concerns atoms
�

There is a lot of confusion in the literature� regarding the terms size�extensivity� size�
consistency and separability� There is no canonical 	commonly accepted
 distinction among
these terms� Therefore it is necessary to evoke explictly the de�nitions exploited here 	for
further discussion see Sec� ���
�
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Perturbation methods that have been very successful and are routinely used are second� third
and fourth order M&ller�Plesset MBPT� This is a well de�ned theory that can be unambiguously
applied in completely automated way ���� The success of the MBPT method depends on the
proper zeroth�order description of the system� Perturbation theory can be applied safely for the
ground states of closed�shell molecules around equilibrium geometries�

Unfortunately� the generalization of PT to multireference situations 	referred to as multiref�
erence PT � MRPT
 is not straightforward� There is no well de�ned zeroth order Hamiltonian
in this case� Some MRPT schemes have been formulated� but they rely on a rather arbitrary
choice of "H� or are iterative� All of them become quite expensive already at the third order �����

����� Con�guration Interaction method

Expressing the wave function as a linear combination of 	all or a part of
 determinants belonging
to HN

j�i !
dX

L��

cLj�Li# d � dim	HN 
 	����


and applying the Ritz variational principle� one obtains conceptually the simplest approach to
electron correlation problem� known as the method of con�guartion interaction 	CI
 or super�
position of con�gurations ����� It leads to well known eigenvalue problem

Hc ! ESc 	����


where usually the overlap matrix S ! I� When all determinants are employed we talk about full
con�guration interaction 	FCI
� otherwise about limited CI�

The method is variational i�e� E is an upper bound to the exact energy 	of the considered
Hamiltonian
 ����� As the one�particle basis approaches completness the FCI energy approaches
the exact energy� Since the FCI result is the best one can get in a given basis set it is often used
as a benchmark result for other calculations�

Variational methods are much more robust although computationally more demanding� since
they are iterative and their complexity is at least of the third order 	n�
� They are also not so easy
to use as MBPT methods� except for the most commonly used con�guration interaction method
with singly and doubly excited con�gurations 	CISD
 out of a single reference� roughly equivalent
in accuracy 	at least when the size�inextensivity errors are small
 as well as computational
complexity to the MBPT	�
� they require experience in the selection of con�guration space and
interpretation of their results�

While MBPT methods may give us energies and properties directly� variational methods
almost always compute wave functions� For large basis sets or highly excited con�gurations
vectors of wave function coe�cients become prohibitively long� making the computer memory�
rather than the time of computations� the main barrier of further progress� The full CI 	FCI

techniques used in recent years produce vectors of dimension up to ��� � ��	 �
�� and an order
of magnitude increase is in sight �����

Nevertheless� only limited CI schemes 	CISD� CISDTQ
 remain practical� despite tremendous
progress in both computer and CI technology� Thus� in the expansion of the CI wave function�
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which may be rewritten in the intermediate normalization as

j�i ! "%CI j��i ! 	� � "C� � "C� � � � �� "CN
j��i 	����


one is usually tempted to truncate it at a given level of excitations� The k�body excitation op�
erators "Ck generate k�tuply excited functions 	with respect to j��i
 with the proper coe�cients
i�e�

"Ckj��i !
X

j
Li�HN
K

cLj�Li 	����


where the summation over L is restricted to a proper subspace HN
K consisting of k�tuply excited

functions only� In the second quantized form they become

"Ck !
X

a� � � � � � ak
m� � � � � � mk

ca����akm����mk
"ea� ���akm����mk

	����


where the indices mi refer to occupied spin orbitals� ai to the virtual ones and

"ea����akm����mk
! a�a� � � �a�akamk

� � �am� 	����


Any truncated CI su�ers from very serious formal drawback� It is neither size�extensive
nor size�consistent �
�� �
��� It means that one cannot properly describe using approximate CI
schemes� processes like dissociation or extended systems like crystals� Because cancellation of
unlinked e�ects that are present in truncated CI schemes is only possible by mixing di�erent
categories of excitations� a remedy for this problem may be achieved by an exponential factoriza�
tion of the wave operator �
��� Nevertheless� one should note that the Multireference CI 	MRCI

method� which is direct generalization of the single reference counterpart� allows in principle to
remove substantial part of the size�consistency error�

����� Coupled Cluster method

The Coupled Cluster 	CC
 method� originally formulated in the framework of nuclear physics
by Coester and K�ummel� was later introduced to molecular electronic theory by 'Ci'zek ����� The
CC method is non�variational but it is size�extensive� The CC wave function has an exponential
structure

j�i ! "%CC j��i ! e
�T j��i 	����


where the cluster operator "T is given as

"T ! "T� � "T� � � � �� "TN 	��
�


"Tkj��i !
X

j
Li�HN
K

tkLj�Li 	��
�


with the coe�cients tkL called cluster amplitudes� which are unknown quantities to be determined�
The index k in the amplitude tkL says that this amplitude is associated with the promotion of
k electrons from k occupied spin orbitals to k virtual ones and not with a product of two
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promotions de�ning �nally the same function j�Li� Such products occur due to the exponential
structure of the CC expansion and as a result higher excited functions appear also with the
coe�cients being products of lower rank amplitudes� For example the total coe�cient in the CC
expansion of a quadruply excited function j�L�i will involve t
L�

and products of the type t�L�
t�L�

as well� where L� and L� denote some doubly excited functions de�ning in terms of excitations
decomposition of the function L�� The additional index k becomes obsolate when using the
second quantized de�nition of the cluster operator

"Tk !
X

a� � � � � � ak
m� � � � � � mk

ta����akm� ���mk
"ea����akm����mk

	��




One way to look at the CC expansion is based on the comparison with the MBPT method�
When rearranging all terms not order by order but according to the rank of k�body e�ects
included one �nds that it may be realized by means of the exponential expression 	����
 for the
wave function� Moreover� as shown by Hubbard �
��� there is a CC counterpart of the linked
energy diagram theorem in MBPT stating that only the connected diagrams has to be retained
in the CC expansion �
�� �
���

The working equations of the CC method are usually obtained by projections against func�
tions de�ning the corresponding CI space �
��� Premultiplying the Schr�odinger equation "Hj�i !
Ej�i by e�T one obtains

e�
�T "He

�T j��i ! Ej��i 	��
�


or equivalently� using the identity �
��

"Hje �T��i ! 	 "He
�T 
cje �T��i ! e

�T 	 "HNe
�T 
cj��i 	��
�


and subtracting h��j "H j��i
	 "HNe

�T 
cj��i ! (Ej��i 	��
�


where "HN indicates the normal product form of the Hamiltonian and 	 
c means that only
connected terms are included �
��� Projecting eq� 	��
�
 onto j��i and the set of the excited
state functions� one obtains the expression for the correlation energy (E ! E � h��j "Hj��i
and the amplitudes of subsequent excitation� respectively� Certainly one might also project eq�
	��
�
 and then using the Hausdor��Cambell formula one obtains an equivalent set of equations
for cluster amplitudes ����

The simplest CC type approximation is the CCD method� Within this scheme one postulates
that "T ! "T�� The corresponding equations for the energy and amplitudes of doubly excited
determinants 	de�ned by a set of the one�particle indices jabij i where i� j are occupied indices
which are replaced by the virtual indices a� b
 have the form

(E ! h��j "HN	� � "T�
j��ic 	��
�


� ! habij j "HN	� � "T� �
�



"T �
� 
j��ic 	��
�


As may be seen from the above formulas� all the linked quadruple excitation energy diagrams
that arise from the disconnected part of the wave operator "T �

� are included in CCD� The resulting
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energy is accurate up to the fourth order of MP	DQ
 i�e� M&ller�Plesset PT in a space of all
double and quadruple excitations from the closed shell ground state 	for open shells that may
require multireference treatment the comparison is not so obvious
 and moreover includes in�nite
summation of all pair e�ects �
��� The computational complexity of the CC	S
D procedure is
of the order n� �
��� Neglecting most of the non�linear terms while retaining those which are
necessary to restore size�consistency one obtains various approximations of the CEPA 	Coupled
Electron Pairs Approximation
 type �����

From the formal point of view the CC method is certainly superior to the CI method� It
is size�extensive� has nice invariance properties and is highly accurate even when truncated at
low rank operator level� On the other hand the coupled cluster approach is more di�cult to
generalize to the multireference situations than the CI approach� The impressive development
of Multireference Coupled Cluster 	MRCC
 methods has led to mature formalisms and tractable
approximations ����� An increasing number of applications to atomic ���� and molecular ���� ����
���� systems is encountered in the recent literature� However the computational complexity of
these methods is very high and there are still many speci�c problems that have to be overcome
���� in order to reach the �black box� level�

����� Wind rose

Figure ���� Standard molecular ab initio methods
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Some of the previously presented observations about the basic approaches to the electron cor�
relation and their most typical approximations are put together in the schematic diagram ����
HX indicates here the subspace of HN � the problem is projected onto 	within a given approx�
imation
� QX indicates the range of interactions 	mixing of di�erent HS � HD � � � � subspaces

that is actually taken into account and is related to the quality of a given approximation�

The relation � may be read as �approximations of comparable quality� i�e� including the
same range of interactions 	although not necessarily at the same level of accuracy
� The star 

denotes �practically comparable approximations� in the sense of comparable quality of results�
provided that each method is used in the range of its applicability 	e�g� when perturbation series
is quickly convergent� size�consistency error is small or the cluster assumption is reasonable for
PT� CI and CC respectively
� PTN means Nth order of the MBPT method 	for the energy
�
Parametrization of the wave operator 	simply as a generator of the expansion� not necessarily
implying the use of the theory of e�ective Hamiltonians
 is indicated by arrows labels�

Perhaps the relationship between PT� and CCSD requires more detailed comment� In fact
the restriction of "T to "T� and "T� is an approximation which omits some important �th order
corrections to the energy 	i�e� the linked contributions of the triples
 but includes some higher
order e�ects� �th 	resp� �th
 order corrections coming from "T �

�
"T� and "T �

� 	resp� "T 

� 
� Thus�

one can expect similar results in PT� and CCSD� except when some "T� terms have very large
amplitudes �
���

Finally� one should remember that the above schematical presentation refers to the single
reference methods and is much more approximate in case of multireference schemes 	in this case
only Hilbert space CC approch may be compared directly to MRCI for instance � see Chap� �
�

��� Introduction par excellence

After brief presentation of the methodological background of this thesis� it is time to introduce
more precisely the methods� it is conserned with� Figure ��
 shows their relative positions with
respect to the three main 	molecular
 approaches to correlation energy i�e� CI� CC and PT with
arrows indicating the �migration� of ideas�

The CI node is here treated in a special way with arrows going out described by the following
labels� lvp � linear variational principle� � � functional form of the method� pev � pseudoeigenvalue
problem� All these terms and relationships between the new algorithms and standard approaches
will be described in details in the subsequent parts of the thesis�

For the sake of simplicity� the MR acronyms� indicating multireference procedures are omit�
ted� It has also deeper motivation� All the methods� even though they may be formally single
reference 	i�e� there exists a state function which plays distinguished role
 work in multireference
spaces i�e� generated as single and double substitutions from a set of reference state functions�

There are many procedures 	e�g� SSCC method proposed by Adamowicz ��
�� some ver�
sions of MRPT ����
 that similarily work in multireference spaces� although they employ single
reference formalism� To avoid mistakes one should call them single reference methods in mul�
tireference spaces 	SR	MR

� as proposed by Duch ����� All the methods presented below are
at least of the SR	MR
 type�

� The Superdirect Con�guration Interaction or Sup�CI method� It has been proposed in�
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Figure ��
� New algorithms� methodological perspective

CI

Sup�CI GCPF

�SC��CI

�SC��CIpt

SSCCdCI

CCdCI

PT CC

lvp

�

pev

pev

pev

dependently by Duch ���� and by Bendazzolli et� al� ��
�� It has the usual versatility
and stability of the CI methods with computational e�ciency typical to that of the many
body methods� such as the many�body perturbation theory 	MBPT
� Hamilton operator
is projected into a space of a few trial vectors� such as Krylov� Nesbet or M&ller�Plesset
perturbation correction vectors� In this space Hamiltonian matrix elements may be di�
rectly computed in the many�body fashion� as weighted sums of integral products over
orbital indices and such formulas up to the third order are derived in the second chapter�
Variation�perturbation method based on the �rst order wave function is equivalent to the
Sup�CI method with a single correction vector of the M&ller�Plesset type� The Sup�CI
method in third order is consisdered in this work�

� The Coupled Cluster method through the pseudoeigenvalue problem or CCdCI 	��d��
standing for �dressed�
� It was demonstrated by Malrieu et� al� ����� that a set of non�
linear equations for every approximate CC method may be translated into a set of �dressed�
linear equations of the corresponding CI approximation� In other words the CC methods
may be formulated in terms of the pseudoeigenvalue problem� Then� using very stable
and e�cient Davidson�like diagonalization procedures one may obtain its solution in an
iterative� self�consistent manner or directly� using perturbative arguments for the non�
linear� coe�cient�dependent� dressing terms� Another� very important advantage of such
reformulation is great �exibility� comparable to that of pure CI� Selected schemes that
employ only a part of a given class of excitations 	instead of all of them taken into account
in CC once a given "Ti is included
 and treat the remaining small contributions by lower
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order methods are easily obtainable�

One considers in this work various dressings of the MRCI matrix by non�linear terms
appearing in CCSD or CEPA methods� in a way insuring size�consistency of such de�ned
procedures� The state�speci�c size�consistent multireference procedure of the CC type
	referred to as SS�CCdCI
 as well as its generalization to state�universal or multistate
procedure 	MS�CCdCI
 are presented in the chapters � and ��

Approximate schemes of the CEPA or MRCEPA type� Size�consistent Self�consistent Con�
�guration Interaction or �SC��CI method and Generalized Coupled Pair Functional or
GCPF method� and Multireference or MR�SC��CI method� respectively� are also intro�
duced 	the 	SC
�CI method for pedagogical reasons � the author has not contributed to its
invention but has clari�ed the relationship between this scheme and conventional CEPA
method
� The character of approximations introduced to CCdCI to obtain such CEPA
type procedures will be discussed in the Chapter ��

� The acronym �SC��CI�pt� denotes Size�consistent Self�consistent combination of selected
CI and perturbation theory� which is actually a selected CEPA type procedure with an
account of a pertubative type for the in�uence of remaining small 	i�e� not selected

doubles�

None of the algorithms presented here matches all basic characteristics of the pure CI method�
Nevertheless� there is a common denominator occurring in all of them� at least a part of CI
machinery used to maximize the e�ciency of the method�

From the formal point of view the pseudoeigenvalue problem cannot be regarded as arising
from a linear combination of a set of state functions� However� the procedure for solving this
problem is the same as for the original set of equations of the CI method� The Sup�CI method
in turn� although it employs compact linear expansion of the wave function and variational
principle� similarily to MBPT avoids the explicit construction of the long vector of the wave
function coe�cients and uses matrix elements expressed in terms of weighted sums of integral
products over orbital indices� In light of the above� the title of this thesis re�ects my subjective
point of view on the matter 	coming from a tradition I have been growing up
� I hope hewever
that it expresses the right perspective in this methodologically confusing situation�

Theoretical methods of quantum chemistry have reached a high degree of sophistication in
recent years� A good deal of this sophistication has been passed on to research chemists� Thanks
to such �black box� packages as GAUSSIAN ���� HONDO �
� or GAMESS ��� ab initio systems
of programs� computational chemistry is �nding its way to the real world applications�

The simplest molecular ab initio methods� such as the Hartree�Fock and the second order
perturbation theory� are the most frequently used� These methods are not only the least expen�
sive but also the easiest to use� Application of more sophisticated methods requires much more
understanding of the theoretical techniques and more computer resources� However� real chemi�
cal processes� such as multiple bond breaking� chemical reactions or quasidegenerate situations�
are not easy to describe adequately using simple methods� There is a great need for reliable and
computationally inexpensive methods that could treat the more complicated chemical processes
in qualitatively and quantitatively right way� My hope is that at least some of the algorithms I
present in the subsequent parts of this work will �nd their way to the world of real applications�
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Chapter �

Superdirect Con�guration

Interaction method

The Superdirect Con�guration Interaction 	Sup�CI
 method ���� is presented in this chapter�
A version in which third order contributions are computed ���� for a relatively small 	������

space of reference and correction vectors has been implemented using traditional approach to
computing of matrix elements and several numerical tests on benchmark problems are included�
Di�erent points of view on the superdirect CI method as well as selection of the best �e�ective
�rst order spaces� and size�extensivity corrections in Sup�CI are discussed�

The MBPT like formulas for the matrix elements have been also derived� using the Symmetric
Group Approach 	SGA
 to CI and an algebra of circular operators� invented for this purpose by
Duch ����� They are presented in the next chapter�

��� Introduction

Correlation energy� i�e� the di�erence between the exact non�relativistic energy and the Hartree�
Fock results� is hard to calculate if we want the dynamical part of it 	the non�dynamical part
may be taken care of by small MCSCF or CASSCF calculations
� From the practical point of
view we are usually not so much interested in obtaining the exact results as in qualitatively
correct description� What we really want to see in the case of stretched chemical bond is the
potential curve which is parallel to that experimentally obtained or at least to the FCI potential
curve� Such description should be possible with a small number of reference con�gurations to
take care of the non�dynamical part of correlation and third�order perturbative corrections to
include a substantial part of dynamical correlation�

In the con�guration interactionmethod 	CI
 solution of the Schr�odinger equation is obtained
by expressing the wavefunction in the form of a linear combination of N�electron functions� so�
called Con�guration State Functions 	CSFs
� From a formal point of view this means� that the
Hamilton operator is projected into a �nite subspace of the Hilbert space� spanned by the CSFs�
In this space one can �nd the elements of the matrix representation of the Hamiltonian� and
then solve the eigenvalue problem ���� 	see also Sec� ���
�

This conceptually simple method of describing the electron correlation in practice has very
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serious limitations� connected with the slow convergence and thus the length of the CI expansion�
Many schemes have been devised and employed in order to overcome these limitations� One may
divide them in 
 classes� improving the CI techniques to treat very long expansions� or selecting
CSFs to reduce the length of the expansion�

Since the Hamilton operator contains one and two�body interactions only it should be possi�
ble to reduce the N�particle problem to the 
�particle equations� The direct CI method proposed
by Roos ��
� was the �rst step in this direction� getting rid of the N�particle matrix elements
but leaving the coe�cients of the N�particle CSFs�

Direct CI has dominated development of CI algorithms enabling very long expansions in
terms of CSFs� It became a standard method since over two decades� with various implemen�
tations based on graphical unitary and symmetric group approach ���� ���� In this scheme
solving the matrix eigenvalue problem is coupled with simultaneous matrix elements evaluation�
without explicit construction of the matrix H� The next step in this spirit is to avoid not only
construction of the matrix� but also of the long eigenvectors�

Several CI methods belonging to the second class� aiming at reduction of the length of CI
expansion� were formulated� In the simplest case they reduce the number of CSFs by performing
numerical selection to �nd those CSFs that contribute the most to the wavefunction sought� In
more complicated cases CSFs are not constructed as products of spinorbitals but are made
from more complex 	two or more�particle
 functions such as geminals or explicitly correlated
functions� In CI method Hamiltonian is always projected into the space of selected CSFs�

Projection into the space of CSFs build from explicitly correlated functions gives more accu�
rate results than projection into the space 	of similar dimension
 of CSFs build from one�particle
functions� However� computational complexity due to the complicated form of matrix elements
is increased when explicitly correlated functions are used �����

Another possibility exists� projection into relatively small number of N�particle functions
constructed as linear combination of CSFs� This approach leads to various forms of contracted CI
���� and to the Sup�CI method� It has been recently formulated by Duch ���� as an improvement
over the Connected Moment Expansion 	CMX
 ���� ���� and subsequently traced back to an
earlier 	expressed in a di�erent language� starting from quite di�erent point of view
 work of
Bendazzoli et�al� known as the FAST CI ��
��

In the Sup�CI approach one avoids construction of both the Hamiltonian matrix and the
eigenvector� obtaining the energies and other properties from equations formulated directly at
the 
�particle level� The Hamilton operator is projected into a space of a few trial vectors�
such as Krylov or Nesbet correction vectors used in diagonalization methods� In this small
space 	dramatically smaller in comparison to the space of CSFs in classical approach
 matrix
elements are computed directly as sums of integral products over orbital indices 	using MBPT
techniques
� without explicitly generating an eigenvector�

The aim of the Sup�CI method is to combine the e�ciency and simplicity of the many�body
perturbation theory with the robustness of variational methods� optimizing the tradeo� be�
tween the desired simplicity of the method and its potential for the best description of chemical
reactions involving breaking of molecular bonds� Since most chemical processes require mul�
tireference treatment the superdirect CI approach 	at the lowest level
 within a multireference
scheme is used� In essence one obtains variational results with perturbationally selected and in
some cases optimized zeroth�order multireference states� at the cost comparable to that of the
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third�order perturbation theory�
In the next section the essence of the superdirect approach will be summarized and the

theoretical details described� Some aspects of the implementation of the method are discussed
in the second section� In the third section some illustrative calculations on water� acetylene and
NH� molecule bond breaking are reported�

��� Theory

����� Sup�CI ansatz

Starting from some zeroth�order solution j�i to the Schr�odinger equation we may create a number
of correction vectors improving the quality of this vector

jV 	�
i ! RV j�i 	
��


where the operator RV is an arbitrary function of the Hamiltonian or of some partition of
the Hamiltonian� In the simplest case we de�ne Krylov� Nesbet and M&ller�Plesset �rst�order
correction vectors ���� as�

jK	�
i ! RK j�i ! "Q�
"H j�i 	
�



jN	�
i ! RN j�i ! 	 "HD �ESCF 

�� "Q�

"H j�i 	
��


jM	�
i ! RM j�i ! 	 "H� � E�

�� "Q�

"Hj�i 	
��


The Epstein�Nesbet and the M&ller�Plesset vectors are made from the Krylov vector di�
viding its elements by di�erent denominators � in the �rst case diagonal elements "HD of the
Hamiltonian� in the second case elements of the Fock operator "H�� We could introduce more
vectors of this type� for example by adding some scaling parameter that will de�ne intermediate
cases between Nesbet�Epstein and M&ller�Plesset partitioning� or by taking higher powers in the
denominator ��
�

jMk	�
i ! 	 "H� �E�

�k "Q�

"H j�i 	
��


According to Olsen �
�� zeroth�order vectors of the following form should be useful�

jON	�
i ! 	 "HD �ESCF 

��j�i 	
��


jOM	�
i ! 	 "H� �E�

��j�i 	
��


If the Hamiltonian is expressed via the unitary group generators ���� ���

"H !
X
ij

	ijj
 "Eij �
�




X
ijkl

	ijjkl
	 "Eij
"Ekl � �jk "Eil
 	
��


one can easily partition it into physically meaningful terms� de�ning for example core�valence
"H	c�v
� valence�valence "H	v�v
� core�external "H	c�e
 and valence�external "H	v�e
 operators�

"H ! "H	c� v
 � "H	v � v
 � "H	c� e
 � "H	v � c
 	
��
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Correction vectors may be accordingly created for each of these operators 	although in this case
selection of correction vectors for the best convergence of the �nal wavefunction remains an open
question
 with the goal of improving and stabilizing the solution of the Schr�odinger equation
projected into the space of these vectors�

Hj�i ! ESj�i 	
���


where matrices H and S are de�ned in the space of the trial vectors�

f j�i ! R�j�i� jK	�
i� jN	�
i� jM	�
i ���g 	
���


����� Sup�CI from di
erent perspectives

There are several ways of looking at the Sup�CI�

�� The original point of view ���� was to look at the Sup�CI as the next logical step from
classical CI through direct CI to complete reduction of equations to the single�particle level�
leading to non�iterative approximation to the MR�CISD� It was motivated by the use of the
expectation values of the Hamiltonian powers in the CMX expansion ���� on the one hand� and
by the desire to avoid very long CI expansions� leading to logistic problems with storage of the
bilion�term eigenvector �
���


� Sup�CI is equivalent to the �rst few iterations in a Davidson�like diagonalization method
in which more than one type of correction vectors may be used� In particular the use of the
Krylov vectors leads to the convergence characteristic of the Lanczos method and the use of
the Epstein�Nesbet vectors to the Davidson method ����� The second iteration in Davidson
diagonalization gives the lowest�order Sup�CI results# the complexity of such calculation is of
the third�order or n�� Multireference Sup�CI corresponds� however� to a new diagonalization
method in which small matrix is created not only from the single new correction vector added to
k�th iteration correction vector � in case of full con�guration interaction requiring n
k operations
to compute elements of the new iteration vector and n
k�� to compute the energy � but also
correction vectors constructed from H jIi for the most important jIi components� These new
vectors are constructed at the cost of n
 operations only but computation of the elements of the
small matrix involving these correction vectors require in general n� arithmetic operations�

�� Sup�CI is also a generalization of variation�perturbation theory� In the variation�perturbation
theory variational results are obtained in the space of correction vectors obtained by perturba�
tion theory� Instead of using higher�order correction vectors more correction vectors of the same
order but of di�erent type are added to the variational space� selectively exploring the space of
highly excited CSFs� Second�order perturbation theory wave function is de�ned in the space of
quadruply exicted con�gurations relatively to the zeroth�order reference function# in Sup�CI cor�
rection vectors are singly and doubly excited relatively to a number of CSF� The space of CSFs
explored in Sup�CI is similar to that of the PTMR method ���� but the results are variational�

�� Perhaps the most fruitful point of view on the Sup�CI is to note that it belongs to the
contracted CI type of methods� The Hamiltonian operator is projected into a space of contracted
CSFs 	CCSFs
 to reduce the number of variational parameters� in the externally contracted CI
���� all CSFs sharing the same internal orbitals are contracted into one contracted con�guration

�




state function 	CCSF
�

j�ECCIi !
�N�X
I

CI j)Ii�
�N���X

I

CI

X
a

*Ca
I j)a

Ii�
�N���X

I

CI

X
ab

*Cab
I j)ab

I i

*Cab
I !

h�j "Hj)ab
I i

E� � h)ab
I j "Hj)ab

I i
	
��



The number of variational parameters left is equal to the number of internal paths for N� N � �
and N � 
 electrons in the corresponding graph ����������

In the internally contracted case all CSFs that do not contain any external orbitals are
combined into one reference function from which excitations are formed� The general form of
the internally contracted wavefunction is�

j�ICCI i ! C�j��i�
X
ia

Ca
i j�a

i i�
X
ijab

Cab
ij j�ab

ij i

�ab
ij ! 	EaiEbj � EajEbi
jMCSCFi 	
���


with the sign � depending on singlet or triplet coupling of orbitals a� b� The number of vari�
ational parameters is almost independent of the number of the CSFs in the MCSCF state�
Unfortunately full implementation of this idea requires computation of the ��th order density
matrices �����

In the Sup�CI contractions are formed in a way similar to the externally contracted case�
but disregarding internal�external division of orbitals�

j�SCCI i !
X
I�k

CI�k
"Rkj)Ii !

X
I�k

CI�k

X
ijab

Cab
ij�kj)ab

I�iji

Cab
ij�k ! h)ab

I�ij j "Rkj)Ii 	
���


where k numbers di�erent types of "R operators�
�� We project the Hamiltonian into the small space of �rst�order correction vectors e�ective

in di�erent iterative diagonalization methods� Convergence of the Sup�CI is therefore strongly
correlated with the convergence of the diagonalization methods� E�ective Hamiltonians ���� aim
at projection of exact wavefunction onto a �nite model space� Since �exact� refers to �exact in
a given one particle�basis�� i�e� to the full CI wavefunction� Sup�CI Hamiltonians may also be
regarded as e�ective Hamiltonians� The Sup�CI method is a particular method of �nding the
e�ective Hamiltonian not by Bloch or des Cloizeaux formulation 	in practice always solved by
perturbation theory
 but by searching �rst for the e�ective spaces� i�e� best combinations of the
CSFs� and than solving variational problem�

�� From computational point of view the formulas in Sup�CI are of the ��rd order and should
be similar to the ��rd order CIPSI procedure ����� Unfortunately such a procedure has not yet
been developed�

����� Convergence of the method�

Adding more correction vectors guarantees not only� by the variational principle� that the en�
ergy will decrease� but also serves to stabilize the method when some of the vectors do not give
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a proper correction to the zeroth�order state� for instance when low�order perturbation theory
breaks down� The Krylov vector plays such stabilizing role since it has no �dangerous� denom�
inators� although its in�uence on energy is not signi�cant� In practice if the space of reference
con�gurations describes the wave function in qualitatively correct way one type of correction
vectors is enough to achieve high accuracy and stable behaviour of the method at di�erent
molecular conformations ����� A single second�order correction vector may be more e�ective in
decreasing the energy than a set of �rst�order vectors but it is also much more expensive to
compute�

Convergence of variational series with the order of correction vectors may be quite rapid�
in ���� it is shown that taking sixth order Krylov vectors gives in case of calculations for water
around equilibrium geometry essentially exact results� For many molecules results of variation�
perturbation calculations are better than the results of perturbation theory in the corresponding
order� Using �rst�order M&ller�Plesset function the best linear combination with the reference
state 	i�e� Sup�CI in the space fj�i� jM	�
ig
 leads to the following formula�

Es� !
E� �E� �

q
	E� �E�
� � �h��j��iE�

�


h��j��i 	
���


Variational correlation energy is expressed here in terms of the second and third order pertur�
bation energies and the norm of the �rst�order wavefunction� This is the simplest version of the
superdirect CI with a single correction vector obtained from perturbation theory�

Sup�CI energies are always better than the variation�perturbation results and may be com�
puted starting from the restricted as well as the unrestricted Hartree�Fock formalism� Variational
energies obtained from equation 	
���
 are usually very close to� and sometimes even slightly
better than� the third order M&ller�Plesset energies 	examples are given below
� Although it has
been known for a long time now that variation�perturbation method is capable of high accuracy
the method has been rarely used� parhaps because it has been labeled as �not�extensive�� How�
ever� it is quite obvious that variational energies lower than the non�variational ones are more
accurate and are �better� in the sense of being more uniform at di�erent molecular conforma�
tions�

For some molecules single reference variation�perturbation energies Esk are already lower
than the perturbation theory at the corresponding 
k�� order� For example� unrestricted MP�
correlation energy calculations ���� for lithium gave ��
�
� mH and the variation�perturbation
result is Es�!��
��� mH� calculation on carbon C	�S
 gave ������ mH and Es�!������ mH�
carbon C	�P 
 gave �����
� mH compared to Es�!������� mH� for BeH UMP� correlation
energy is ������ mH and Es�!������ mH� The calculations for BH molecule around equilibrium
geometry in the DZP basis give Es� lower on about 
 mH than E� and Es� lower on ��� mH
than E�� Similar di�erences have been noted for calculations on the Be� molecule in �s�p�d
basis �����

To test higher order convergence Sup�CI calculations for water in equilibrium geometry and
with the bonds stretch symmetrically to twice their equilibrium values have been performed� with
one type of correction vectors selected for each series of calculations ����� For comparison with
previous calculations ���� ��� ��� ��
�G basis set was used� In Tables 
�� and 
�
 e�ectiveness
of di�erent correction vectors in variation�perturbation method is compared�
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Table 
��� Convergence of variation�perturbation method� H�O�

Order MP V�P Krylov V�P MP V�P EN
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 ������� �������

Exact ������� ������� ������� �������

Calculation on water in equilibrium distance �from ������ 	
��G basis set �
��� Results for di�erent
correction vectors� Minus correlation energy given in millihartrees�

In this case convergence with Krylov vectors is rather slow 	although much faster than con�
vergence of the CMX expansion ���� ��� using the same expectation values
� The di�erences be�
tween M&ller�Plesset perturbation theory and variational results computed with Epstein�Nesbet
correction vectors are negligible� with Sup�CI based on M&ller�Plesset correction vectors con�
verging slightly slower� For stretched geometry convergence of variational series is much slower
	see Table 
�

� with Krylov vectors it is very slow and convergence of perturbative series is
quite erratic� As we shall see it is much better to use �rst�order correction vectors for a few
reference con�gurations instead of higher�order correction vectors�

It should be noted that higher order perturbation theory functions lead to slightly di�erent
variational energies than the correction vectors obtained in iterative methods� For example�
in Table 
�
 the M&ller�Plesset 	Epstein�Nesbet
 variational correlation energy obtained from
the ��rd iteration of Davidson method is �
�����
 	�
�����
 mH
� and from the ��th iteration
�
������ mH 	�
�
���
 mH
� while the best energy obtained from the �rst and second�order
perturbation wavefunction is �
������ mH 	�
������
 and with the third�order wavefunctions �

������ mH 	�
�
����
� This suggest that a diagonalization method based on Nesbet �rst�order
correction vectors used iteratively� as Davidson method does ����� converges as rapidly as the
second�order method based on the vectors obtained from perturbation theory�

Recently a number of papers devoted to the restricted M&ller�Plesset theory for open�shell
molecules and MCSCF reference functions appeared ����� While multireference M&ller�Plesset
theory is formulated via iterative approach and cannot easily be reduced to the MBPT form
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Table 
�
� Same as Table 
�� but for bonds stretched to 
Re�

Order MP V�P Krylov V�P MP V�P EN
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Exact 
������ 
������ 
������ 
������

the open�shell methods are in this respect analogous to the single�reference case ����� Since
convergence properties of these new methods is similar results obtained by Knowles et�al should
be typical ����� One may expect that using semi�canonical orbitals of Knowles et�al ���� will
signi�cantly improve convergence of perturbational as well as variational series� However� one
can notice that even if perturbation series is divergent variational series may converge quite well�

For the �B� state of NH� molecule at 
 Re geometry starting from usual ROHF Hamil�
tonian� as implemented in the GAMESS system ���� leads to the divergent perturbation series
	see Table 
��
� for example E� in M&ller�Plesset series is ����
� Hartree and in Epstein�Nesbet
series is ������ Hartree
� Despite this divergence of non�variational energies and similar diver�
gence of expectation values computed with the perturbative wavefunction 	third order values
are �
���� in the M&ller�Plesset and ����
��� in Epstein�Nesbet case
 as well as the diverging
norms of correction vectors using perturbative wavefunctions for variational expansion leads to
satisfactory convergence of correlation energy� with M&ller�Plesset vectors the �rst � energies
are� Es ! �������� �������� ������
 and with the Epstein�Nesbet vectors much better con�
vergence is obtained� Es ! �������� ���
���� ���
��
 	exact result is ���
���
 ����� It is clear
that when several types of correction vectors are included in the superdirect CI calculations
convergence should be reliable�

How can one improve convergence of the Sup�CI� especially for the open shell cases and ex�
cited states+ It is not di�cult to include simpli�ed higher�order corrections using diagrammatic
techniques for summation of certain terms 	like ladder diagrams
 in computation of h�jRk

iHRl
j j�i

matrix elements� Although such summations have not been included in the calculations pre�
sented here� it has been veri�ed that adding second�order correction vectors with pair excitations
only may signi�cantly reduce the remaining error and such terms should be included in future
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versions of the method�

����� Size�extensivity corrections

Corrections for size extensivity ���� ���� although not an ideal solution� remove part of the error
due to neglecting higher order excitations in singly and doubly excited CI� It is worthwhile to
note that these corrections may be easily applied in the Sup�CI method� The variational energy
Es�� Eq� 	
���
 may be corrected for size�extensivity errors using the correction formulas given
in ���� ���� First� C� coe�cient should be computed�

C� ! �
�s

� �

�
Es�

E�

��
h��j��i 	
���


The formula for Davidson correction is�

(EDC ! 	�� C�
�
Es� !

E�
s�h��j��i

E�
� � E�

s�h��j��i
	
���


Renormalized Davidson correction formula is�

(ERD !
�� C�

�

C�
�

Es� !
E�
s�

E�
�

h��j��i 	
���


The formula for the Davidson�Silver correction is identical with the �rst term of the CMX
expansion ���� ��� and with the E�
��� Pad�e approximant ���� for E� and E� energies�

Es� � (EDS ! Es� �
�� C�

�


C�
� � �
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The same formula is obtained as the linear approximation to the quadratic equation for the
variation�perturbation energy from which Es� in Eq� 	
���
 was obtained�

Multireference versions of these formulas may also be applied to the Sup�CI results� including
the qubic correction ��
�� Since in practice all these corrections gave very similar results in test
calculations the original Davidson correction� eq� 	
���
 are always given ����� However� it
is clear that corrections in Sup�CI will be signi�cantly smaller than in MR�CI for the same
reference space� The reference energy is the same for both methods but MR�CI total correlation
energy is larger and the norm of the reference con�gurations in the �nal function smaller�

����
 Selection of reference space

Selection of con�gurations for the zeroth�order state is of great importance� This can be done by
estimating energy lowering due to con�gurations at a given order of perturbation theory or their
coe�cients in the corresponding wavefunction� The simplest approach� scaling like n
 	where n is
the number of orbitals
� estimates the importance of con�gurations by second�order perturbation
theory relatively to the Hartree�Fock state� and is capable of selecting only those con�gurations
that are no more than doubly excited relatively to the Hartree�Fock state� However� for some
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molecules this is not su�cient even around their equilibrium geometry� and in any case exploring
potential surfaces one frequently �nds highly excited con�gurations dominating at stretched
geometries� Therefore a second�order method was used� small CIPSI calculations to construct
reference space iteratively are performed before Sup�CI�

Starting from some arbitrary zeroth�order state and performing second order perturbation
calculations one obtains 	taking con�gurations with coe�cients larger than a given threshold

new reference space� Diagonalizing Hamiltonian matrix in the reference space the new mul�
ticon�gurational zeroth�order state is obtained and the whole procedure is repeated until all
important con�gurations are included� The �nal perturbation energy is an approximation to
the full CI limit� The CIPSI method has proved its usefulness for the study of medium�size
molecular systems ����� It is closely related to various selected CI methods 	cf� ����
� The
inexpensive CIPSI scheme 	especially if it is done via intermediate projection algorithm ����
 for
constructing the reference space seems to be a reasonable choice for low order methods�

Second selection method was employed to test the e�ectiveness of the iterative CIPSI scheme
as a generator of reference CSFs� Reference con�gurations are selected as those corresponding
to the CSF coe�cients in the renormalized �rst�order wavefunction larger than a given thresh�
old� It allows to select all important doubly excited con�gurations only� This method is not
really suitable for generation of reference con�gurations because it does not select higher�order
con�gurations� but it is the simplest and the least expensive therefore comparison with CIPSI
selections scheme was made in calculations for water�

��� Implementation of Sup�CI

One can develop the superdirect approach in several directions� In ���� estimation of higher order
Hamiltonian expectation matrix elements was mentioned� Another choice is to test an inexpen�
sive third�order method based on a relatively small zeroth�order space of CSFs� Diagramatic
version of such method� restricted to the case of several singlet reference con�gurations has been
developed by Bendazzoli et�al ��
�� The Sup�CI may use larger reference spaces and di�erent
correction vectors generated from arbitrary open�shell con�gurations selected using second�order
perturbation theory�

Matrix elements of H in the basis of correction vectors may be written down in the form
similar to the expressions of the many�body perturbation theory� General open�shell second
order formula was derived ���� as an example of application of the algebra of unitary group
generators and other elements appearing in the superdirect method are derived here 	see Chap�
�
 along the same lines� Taking only the �rst�order correction vectors the complexity of the
energy expressions is of the third order� For second order correction vectors elements of the
�fths order would appear � for general open�shell CSFs they would be very di�cult to derive
and program� Since the �nal matrix is small it is easy to take care of the near�linear dependencies
among the trial vectors� In this way we obtain variational results without the need to store the
list of variational wavefunction coe�cients� hence the name �superdirect��

The multireference superdirect method may be implemented in several ways� After the
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selection procedure the zeroth�order vector j�i is a linear combination of Nref reference CSFs

j�	C���
i !
NrefX
i��

C
���
i jw���

i i 	
�
�


From this reference state linearly independent correction vectors "RV j�i are generated� one for
each operator "RV � Assuming that "R� ! I � taking MCSCF as the zeroth�order function and

j�i !
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i��
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i��
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as the trial function for variational procedure Sup�CI method that is similar to the internally
contracted CI ���� is obtained� To increase the number of variational parameters L one can use
di�erent types of excitations 	core�valence� valence�valence� core�virtual� valence�virtual� one
and two�electron
 forming the "RV operators�

Since the energy depends on the C��� coe�cients a better approximation is obtained by
optimization of all these coe�cients to minimize the energy obtained from the 	L��
�dimensional
generalized eigenvalue problem�

�HC ! E�SC 	
�




where �H ! �H	C���
 is the projection of the Hamiltonian into the space of the �rst order wave�
functions and �H ! �H	C���
 of the overlap matrix� Although in this formulation the dimension
of the eigenvalue problem is very small we have to solve the nonlinear optimization problem for
E	C���
 and in practice there is no way to avoid computation of all matrix elements of the type�

*Hik�lj ! hwij "RkH "Rljwji 	
�
�


where *Hi���j are the usual CI matrix elements�

The �direct optimization� in which all LNref coe�cients C
���
k Cj are taken as independent�

leading to larger �H matrices requires smaller computational e�ort as the �indirect optimization�
described above�

In calculations reported in the Sec� 
�� three types of correction vectors are used� Krylov
vectors 	suggested by the gradient optimization of energy functional
 and �rst�order perturbation
theory corrections for both M&ller�Plesset and Epstein�Nesbet partitionings� Each reference CSF
is therefore associated with the following set of vectors�

f jwji ! R�jwji� jK	wj
i� jN	wj
i� jM	wj
ig 	
�
�


where j extends over all reference CSFs� From the computational point of view formulas for
hwij "RkH "Rljwji matrix elements for all �rst order correction vectors are closely related� for �xed
i� j di�ering only in the denominators� Most of these matrix elements involve summation of two
indices only 	if wi is quadruply excited relatively to wj
� some four indices and only diagonal
hwiRkjH jRlwii elements are of the third order 	i�e� involve six�fold summations
� Therefore one
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may expect approximately linear scaling of the timing of the Sup�CI program with the number
of reference con�gurations� The overall complexity of the method should be Nrefn

��
The timing should be faster than a single iteration of the MR�CI procedure when computation

of all matrix elements is programmed in the superdirect way 	i�e� involving only summation
over orbital indices� without reference to the MR�CI wavefunction
� It is easy to generate
more variational parameters increasing accuracy of the method without signi�cantly increasing
computational complexity� separating Hamiltonian operator according to Eq� 	
��
 we get more
correction vectors but no new matrix elements� increasing only the size of the small matrix in
�nal diagonalization�

So far we have discussed calculation of energies only� In principle calculation of properties
via Sup�CI method is equally simple� since we do have a compact wavefunction it is enough
to derive appropriate matrix elements� Since the wavefunction in Eq� 	
�


 is expressed as
a combination of non�orthogonal functions contribution of a given function to the norm of the
wavefunction is calculated as�

jj)ijj� ! Cih)j�i !
X
j

CiSijCj 	
�
�


jj�jj� !
X
i

jj)ijj� ! CT�SC ! �

Finally let us stress that the Sup�CI method has to converge in a monotonic way to the exact
energy when the number of variational parameters 	reference con�gurations
 is increased� The
real convergence of the method is tested in a series of calculations described in the next section�

��� Test calculations

I would like to stress that all calculations reported here have not been yet done using the
e�cient formulas for matrix elements� presented in the next chapter� Their e�cient implemen�
tation requires more time than the test calculations and is a matter of a future work� Instead
the modi�ed SGGA�CI program ���� has been used� extended to give perturbation theory and
variation�perturbation results ���� from � iterations of the CI procedure� Energies are computed
up to ��th order and wavefunctions are computed up to ��th order� The program is also capa�
ble of computing CIPSI and Sup�CI results� calculating matrix elements hwij "RkH "Rljwji of the
Hamiltonian� although not so e�ciently as the many�body version should compute them� All
reported results are obtained with the properly spin�adapted CSFs� GAMESS system of pro�
grams ��� was used for generation of orbitals� All calculations were run on a personal computer
PC���� and some on a notebook computer PC���� and are described in a more detailed manner
in the ref� �����

In some calculations even higher order perturbation or variation�perturbation calculations
fail if the single reference start is used� For example Sup�CI at ��th order 	with third order
correction vectors
 gives for calculations on water 	reported in details below
� with the bonds
stretched to twice their equilibrium distance� an error of the order of �� mH with respect to
the full CI limit� whereas at equilibrium geometry the error is �,�� mH ����� In such cases
perturbation theory converges very slowly and the number of iterations in CI or CC procedures
is quite large� It shows the importance of well de�ned zeroth�order state�
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In order to check how the present inexpensive approach is capable of describing bond stretch�
ing processes� the multireference superdirect method on rather di�cult cases� stretching two
bonds in water and and an open�shell NH� molecule and the triple carbon�carbon bond of
acetylene� is tested� These are rather challenging computations for the low�order methods�

����� Water

Some Sup�CI results have been already presented in Tables 
�� and 
�
� in which high�order
convergence rates for M&ller�Plesset perturbation theory and variation�perturbation results are
compared in calculations on water in ��
�G basis set� Multireference Sup�CI calculations on
water were also done using the same double zeta basis set as in the benchmark calculations of
Saxe et�al ����� for � geometries� with the bond length Re� ��� Re� 
 Re ����� The geometry
of Bauschlicher and Taylor ���� is employed and� for comparison with calculations of Duch and
Diercksen ����� the lowest orbital is not correlated�

In the �rst set of calculations con�gurations with coe�cients larger than a given threshold
in the �rst order Epstein�Nesbet function were included in the reference space 	this partitioning
gave always larger reference spaces than M&ller�Plesset
� This choice allows us to compare
CIPSI selection scheme with the simplest second�order selection scheme� Two values of selection
threshold are used� typical for CIPSI and MRD�CI calculations� ���� and ����� Depending on
the respective geometry our reference space is composed of ��� �� and �� reference functions
for the smaller threshold and 
�� �� and 
� reference CSFs for the larger one� Since SGGA
program treats simultaneously all CSFs di�ering only by spin couplings and sharing the same
orbital con�guration some open�shell reference con�gurations are associated with more than
one CSF 	only one of them has to give large contribution
� After some experimentation� the
following correction vectors are �nally included for each reference con�guration jIi� Epstein�
Nesbet jN	I
i� M&ller�Plesset jM	I
i and a vector

jD	I
i! 	HD �EI

��HDjN	I
i 	
�
�


where HD is the diagonal part of the Hamiltonian� Thus the size of the small matrix that
is diagonalized is equal to � times the number of reference functions� In practice Epstein�
Nesbet correction vectors recovered most of the correlation energy� with other correction vectors
contributing no more than � mH in all cases� with their total contribution to the wavefunction
norm being not larger than ������

In this small space� using only �rst order correction vectors� very encouraging results were
obtained � for every geometry more than ����- with the larger threshold and more than ����-
of the full CI correlation energy with the smaller threshold was recovered� One cannot expect
that the dynamical correlation energy will be well reproduced for this case but as one can
see from Table 
�� and Figure 
��� especially with the larger number of references 	smaller
threshold
 the results are comparable to the ��th order MBPT results� with the error of 
��� ���
and ���
 millihartree at Re� ��� Re� and 
 Re geometries respectively� Multireference Davidson
corrections were also computed� giving in this case signi�cant reduction of the error to ���� ���
and ��� millihartree� or more than ��- of correlation energy at all points�

One should stress that the �rst set of calculations was done only for comparison as the
iterative CIPSI scheme of reference space selection is much better� It allows to take into account
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Table 
��� Results for water in DZ basis set

Method Re ���Re �Re
FCI �����
��		 ����		�
�� �������	��
Escf ����� ��
�
 �����
E� ��� ���� ����
E� ��� ���� �
��
Es� ���� 
��
 �����
CI�SD� ��� ���� ����
E
 ��� ��
 ����
E� ��	 ��� ���	
Es� ��� ��� ����
E� ��� ��� ���
CI�SDTQ� ��� ��� 
��
E� ��� ��� ���	
Es� ��� ��� ����
E� ��� ��� ����

Superdirect and CIPSI results

S����
PT� ��	 ��� �
��

� Davidson corr� ��
 
�� ���
S����
PT� ��� 
�� ����

� Davidson corr� ��� ��� ���
CIPSI ���� ���� ���	 ����
S����
CIPSI

��	 ��� 	��
� Davidson corr� ��
 ��� ��

CIPSI ���� ��� ���� ���
S����
CIPSI

��� ��� ���
� Davidson corr� ��� ��� ���

Geometry from Bauschlicher and Taylor ����� �s orbital frozen� Energy di�erences in millihartrees� with
respect to the full CI energy �except �rst row�� Perturbation theory results and variation
perturbation
results Esk are obtained with the M�ller
Plesset partitioning� S����CIPSI means Sup
CI with the threshold
���� and modi�ed CIPSI reference selection scheme� S����PT� denotes Sup
CI with the threshold ���� and
selection using �rst order wavefunction �����

the most important con�gurations at the lowest possible level � using second order perturbation
theory� However� we cannot expect that Sup�CI will remove the inadequacy of the reference
space completly� The second set of calculations was done using modi�ed CIPSI algorithm to
construct the reference space� Epstein�Nesbet or M&ller�Plesset �rst order correction vectors
are built from the zeroth�order vector� obtained from the previous iteration by diagonalization
of the Hamiltonian in the former reference space� In case of Epstein�Nesbet partitioning many
con�gurations relatively strongly interact with the Hartree�Fock function 	in comparison with
the M&ller�Plesset case
� That implies selection of larger number of con�gurations already in
the �rst iteration� Since Epstein�Nesbet and M&ller�Plesset correction vectors are subject to
intermediate normalization we compute their norm� storing at the same time information about
all con�gurations with coe�cients larger than the threshold� and renormalize coe�cients of
these selected con�gurations at the end of CIPSI calculations� Since renormalization reduces
their magnitude some of the selected con�gurations are dropped� The full CIPSI vector is never
stored� only the largest components�

Moreover� dropping from the reference set con�gurations already selected is not allowed if
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their coe�cient became smaller than the threshold in the next iteration� Tests performed with
such an option showed that cyclic solutions were possible� For example� 
 CSFs selected in the
�rst iteration gave � CSFs in the third iteration� but this time renormalization will bring the
number of CSFs with coe�cient above the threshold back to the same 
 con�gurations� large
number of reference CSFs leads to a large number of singly and doubly excited CSFs in the
CIPSI wavefunction� and their combined weight reduces the norm of the reference con�gurations
in the renormalized wavefunction� Increasing the number of CSFs until no new important
con�gurations are found escapes from this cyclic atractor and leads to very rapid convergence�
with 
�� CIPSI iterations being su�cient for selection�

As one can see from Table 
�� and Figure 
��� the errors at di�erent geometries are quite
uniform with this selection scheme� In the tables En is the M&ller�Plesset MBPT	n
 energy#
Epstein�Nesbet energies are in general worse 	for 
Re divergent
� With both thresholds� T!����
and T!����� energies are remarkably parallel to the full CI results� For T!���� the errors are
���� ��� and ��� mH and for T!���� they are reduced to 
��� ��� and ��
 millihartree at Re� ���Re

and 
Re geometries respectively� With the Davidson corrections we have in the later case ����

�� and 
�� mH� The large improvement of results 	comparing to the previous selection scheme

for 
Re was obtained because new quadruply excited con�gurations appeared in our reference
set� Even for a larger threshold ���� the superdirect results are quite good and for stretched
bonds better than MBPT	�
 and similar to CI�SDTQ�

Figure 
��� Results for water in DZ basis set� three geometries
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With the threshold ���� the accuracy of the description of dissociation is better than CI�
SDTQ and much better than the MBPT	�
� This time the maximum dimension of the Hamilto�
nian matrix is equal to ���� but almost as good results are obtained from ���dimensional matrix
with Epstein�Nesbet correction vectors only� Norms of di�erent types of correction vectors in the
�nal wavefunction give an idea about the relative importance of these corrections� For Re with
���� threshold for selection of reference con�gurations by CIPSI 
� con�gurations are selected�
giving the following contributions to the norm of the wavefunction�

j)HF j� ! ������# j)Ref j� ! ���
��#

j)EN j� ! ������# j)MP j� ! �����
# j)Dj� ! ������

and the contributions to correlation energy� ������� mH from the reference space� ������� mH
from Epstein�Nesbet correction vectors� ������ mH from M&ller�Plesset vectors and ���
�� mH
from )D vectors� For 
Re stretched bonds �� CSFs are selected with ���� threshold� giving the
norms�

j)HF j� ! ������# j)Ref j� ! ������#

j)EN j� ! ������# j)MP j� ! �����
# j)Dj� ! �����


and the contributions to correlation energy� �
������ mH from the reference space� ������� mH
from Epstein�Nesbet correction vectors� ������ mH from M&ller�Plesset vectors and ������ mH
from )D vectors� In this case the weight of the Hartree�Fock solution in the �nal norm is very
low� making serious problems to all single�reference methods� For the 
Re case the selection
procedure brings some quadruply excited con�gurations into the reference set from the CIPSI
wavefunction� These con�gurations are of great importance for the performance of the method�

In Table 
�� one may see the comparison between CIPSI and Sup�CI results for water in
the same DZ basis set� but with all electrons correlated� in the original geometry of Saxe et�al
����� used also by Cimiraglia and Persico and by Evangelisti� Daudey and Malrieu ���� in their
studies on the convergence of CIPSI algorithms� CIPSI results of this work are given in Table

�� and Fig� 
�
 and are similar to the results of ����� Smaller CIPSI errors in the Epstein�
Nesbet partitioning are due to the use of spin eigenfunctions by the SGGA program instead of
determinants used by the original CIPSI program� The given here CIPSI energies are obtained
with the M&ller�Plesset and Epstein�Nesbet partitioning techniques� while Sup�CI energies use
both type of correction vectors� For M&ller�Plesset partitioning the E� single�reference energy
has been corrected by the correlation energy obtained by diagonalization of the Hamiltonian in
the reference space instead of the baricentric energy �����

Results presented in Table 
�� compare the rate of convergence of the perturbative CIPSI
method and variational Sup�CI method for growing number of the reference con�gurations�
Good agreement of CIPSI for ���� threshold is rather fortuitious� we have veri�ed that even
for ����� threshold 	�� reference functions
 the error of the CIPSI method is still around ����
mH� with ������ threshold 	��� reference functions
 it is ����
 mH but decreasing the threshold
to �������
� 	��� reference functions
 still leads to an error of ���� mH� Similar behaviour is
observed at other geometries�

Thus behaviour of CIPSI even at the very low threshold levels is not predictable� In contrast
to this erratic behaviour much better convergence is obtained with variational Sup�CI procedure
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Table 
��� CIPSI� CASPT
 and Sup�CI results for water at equilibrium

Threshold ��� ���� ���� ���� ���


No� of refs� CIPSI�MP � � � �� ��

( E	CIPSIMP 
 ����� ������ ������ ������ ����


Refs� CIPSI�EN . Sup�CI � � �� 
� ��

CI in the ref� space �����
� ����
�
 �����
 ������ ������

( E	CIPSIEN 
 ������� ������ ���
�� ����� �����

( E	Sup�CI
 �
���� ����� ����
 ����� �����

( E	Sup�CI
�Dav� corr� ����� ����� 
���� ����� �����

CASPT
 el�,orb�,refs �,�,�
 �,�,��
 �,�,��


��� ��� ���

C� CIPSI� S� Superdirect CI
Results from ����� Geometry from Saxe et�al ����� Energy di�erences in millihartrees� with respect to the
full CI limit of 
�	�����		� CASPT� results from ����� number of electrons in active orbitals and number
of reference CAS con�gurations is given�

� it is not a priori obvious� because Sup�CI is variational but third�order while CIPSI is non�
variational but of the second order� There is no problem in Sup�CI with overshooting the full
CI limit 	as is the case with CIPSI for Epstein�Nesbet partitioning� in general more realiable of
the two partitionings used
� because the method is variational�

One could also compare these results with those of the CAS�PT
 method developed recently
���� and similar second�order calculations of McDouall et�al� ����� Three di�erent CAS spaces
were selected� corresponding to �
� ��
 and ��
 reference CSFs� The errors at equilibrium for
the �rst two CAS spaces are around � mH and in the largest case� for CAS with � electrons in
� orbitals� are reduced to about � mH�

As one can see in Table 
�� and Figure 
�
 Sup�CI errors are reduced to such level with
much smaller number of reference con�gurations� Numerical selection of reference spaces is
much more e�ective than taking all CAS con�gurations� Already with 
� numerically selected
reference CSFs the same accuracy is achieved using Sup�CI method as with the ��
 reference
CSFs in the CAS�PT
 method� The variation for di�erent points along the potential surface is
also smaller� although RHF orbitals are much worse than the corresponding CAS orbitals� The
accuracy of Sup�CI with the CAS orbitals is much better� as we shall also see in case of the
NH� calculations� In fact there is no reason why CAS�PT
 should not behave in the same way
as CIPSI with CAS space as reference�
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Figure 
�
� Comparison of convergence of Sup�CI and CIPSI methods
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����� Acetylene

Calculation on acetylene was done in STO��G basis� with carbon �s orbitals frozen� Acetylene is
much more di�cult case because the presence of the triple bond complicates description already
at the equilibrium geometry�

Increasing the equilibrium bond length by half already decreases the coe�cient of the SCF
function in the normalized �rst order wave function to ��� and to ���� in the �nal CIPSI nor�
malized �rst order function� The Davidson diagonalization procedure in MR�CI converges very
slowly in this case� therefore the superdirect results will also be slowly convergent and rather
far from full CI� Using the second�order wavefunction in the superdirect procedure with a single
reference 	at a cost comparable to the full ��th order of of perturbation theory
 still gives an
error of �� mH and going to third�order function still misses almost �� mH�

However� in spite of this poor reproduction of the dynamical part of correlation energy by the
single reference methods and the failure of CIPSI at thresholds ���� to ���� to obtain accurate
correlation energy Sup�CI results are quite good indeed� The results are closer to the full CI
only in the case of CIPSI selection and they remain nearly constant for both geometries� giving
an error of ��� and ��� mH at Re and ���Re geometries respectively 	or ��� and 
�� mH with the
Davidson correction
�

One can �nd more details on these calculations in ref� ����� We shall look in the next
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paragraph at the superdirect CI results for open�shell system�

����� NH�

Calculations for �B� and
�A� open�shell states ofNH� will be brie�y reported in this subsection�

This time the reference benchmark were calculations done by Bauschlicher et�al ����� The same
double zeta basis set and geometries have been used 	with ROHF energies reproduced within a
few 	H
� For �B� state the SCF reference con�guration is �a��
a

�
��a

�
��b

�
��b

�
� at all geometries� For

�A� state all geometries correspond to the �a� � �b� excitation relative to the �B� con�guration�
The lowest orbital was frozen in these calculations�

Figure 
��� Results for NH� in the DZ basis set� �B� state� three geometries
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All results are summarized in Table 
�� 	�B� state
 and Table 
�� 	�A� state
� The su�
perdirect results converge quite well and are remarkably stable� giving at all geometries almost
the same errors 	see Fig�
�� and Table 
��
� Such stable behaviour of the Sup�CI results for
stretched geometries is rather surprising� because convergence of the Davidson procedure in full
CI calculations is very slow� giving for 
Re after �� iterations an error of ��
� mH� Results at
the ���� threshold level are already quite close to CI�SDTQ� and the error after adding David�
son correction is even lower than CI�SDTQ� The coe�cient of SCF function in the CI�SDTQ
function is in this case ���� � it means that the ROHF description is really poor�

Perturbation theory with the standard partitionings 	M&ller�Plesset and Epstein�Nesbet


��



Table 
��� Results for NH��
�B� state� DZ basis set�

Method Re ���Re �Re
FCI �����
���� ������
��	 ����

	
��

MBPT results

E� ����� ����� �		�

E� ��� ���� �����
E
 ���� ����� ������
E� ��
 �
�
 �����

Variational perturbation results

Es� MP �	�� ���� 	���
Es� EN ��� �	�	 ����
Es� MP �	�� ���
 ���

Es� EN ��� ��
 ����
Es� MP ���� ���� ����
Es� EN ��� ��	 ����

Variational results

Escf ����� ����� ��
��
CI�SD� 
�� ���
 ����
CI�SDTQ� ��� ��� ���

Superdirect and CIPSI results

S���� ��� ��� ���
� Davidson corr� ��� ��� 
��
CIPSI ���� ���� ��� ���
S���� ��� ��	 ���
� Davidson corr� ��	 ��� ���
CIPSI ���� ���� ��� ���

Geometry from Bauschlicher et�al �	��� �s orbital frozen� Results from ����� Energy di�erences in milli

hartrees� with respect to the FCI energy �except �rst row�� Perturbation theory results in M�ller
Plesset
partitioning are divergent for all � points� and in Epstein
Nesbet partitioning� as given below� diverge
only for �Re case� Modi�ed CIPSI scheme for selection of the reference con�gurations used�

diverges for open�shell systems� although low�order results have deceptively reasonable values�
In a very similar calculation for NH��

�B� state in STO��G basis set Nobes et�al ��
� showed
that for 
Re the contribution of 
��th order is still larger than ��� mH for every tested method
i�e� di�erent versions of RHF based MP theory and UHF based MP theory� Results in Table

�� show also how dangerous it is to believe in the results of the low�order perturbation theory�

As one can see from Table 
�� the errors are smaller for �A� state� except for 
Re geometry
where ROHF becames quite inadequate as a zeroth�order description� The Davidson procedure
converges even slower than in the previous case� after �� iterations the error is still 
 mH� CIPSI
results with thresholds ���� and ���� are also quite poor� indicating that the reference space
is still too small� In spite of such slow convergence Sup�CI with the threshold ���� gives an
error of ��� mH 	�� references
� a signi�cant reduction from ���
 mH error at ���� threshold 	��
references
�

This example shows that large reference space may compensate even serious inadequacies of
the single�particle description� Nevertheless� one should try to improve the method to include
more correlation in smaller reference space� An obvious way in this direction is by better selection
of the molecular orbital space� using the simplest valence CAS�SCF orbitals one can reduce the
error for 
Re geometry� �B� state in calculations with the threshold ���� from ��� mH 	��
 mH

��



Table 
��� Results for NH��
�A� state� DZ basis set�

Method Re ���Re �Re
FCI �������
�
 ����

	�
� ����������
Escf 	��� ����� �����

MBPT results

E� ����� ����	 �����
E� ��� ���� �
��
E
 ���� ��
�� �����
E� ��� ���� 
���

Variational perturbation results

Es� MP 
��	 ���� ����

Es� EN ��� ���� 
	��
Es� MP ���� ���� �����
Es� EN ��� ��
 �	��
Es� MP ���
 ���� �����
Es� EN ��� ��� ��	

Variational results

CI�SD� 
�� ���� ����
CI�SDTQ� ��� ��
 ���

Superdirect and CIPSI results

S���� 
�� ��� �
��
� Davidson corr� ��� ��
 ���

CIPSI ���� ���	 ���� �
�	
S���� ��� ��� 
��
� Davidson corr� ��� ��� ���
CIPSI ���� ��	 ��� ���

Geometry from Bauschlicher et�al �	��� �s orbital frozen� Results from ����� Energy di�erences in mil

lihartrees� with respect to the FCI energy given in the �rst row� Modi�ed CIPSI selection scheme is
used� Perturbation theory results are given in Epstein
Nesbet partitioning� M�ller
Plesset energies are
divergent at all geometries�

with correction
 to ��� mH 	��� mH
� and for the ���� threshold the error drops from ��� mH
	
�� corrected
 to only ��� mH 	��� mH
� Indeed� all results presented in this paper are much
more accurate if CAS�SCF or simple MC�SCF orbitals are used� but the goal here was to test
the Sup�CI method performing the simplest 	and still the most common
 calculations rather
than to present the best results�

��� Discussion

The results reported in the previous section are very encouraging� Comparing these results to
those of FAST CI approach of Bendazzoli et�al ��
� we note that adding new types of correction
vectors and relaxing restrictions on the types of reference CSFs gives results that are superior
to all single reference methods� including CI and many�body perturbation theory� On the other
hand the method properly programmed should be an order of magnitude more e�cient than
multireference CI giving results of similar quality� The work is in progress now on a black�box
Sup�CI program that should be as easy to use as perturbation theory� Explicit formulas for
matrix elements are rather lengthy and they are given in a compact notation in the appendix�
The most e�cient approach to their implementation is a matter of investigation�

��



CIPSI procedure for selection of the reference space applied at the preliminary stage of
potential energy calculations will identify all relevant con�gurations and allow to �x one reference
space for all geometry points used� increasing reliability of calculations� Such a combined CIPSI�
Sup�CI procedure may be very useful for computations of molecular properties and potential
energy surfaces� The calculations on water and NH� convince that convergence of the variation�
perturbation method in higher orders is superior to the convergence of the perturbation series�

Since the method is variational one may increase the number of �rst�order correction vec�
tors obtained from di�erent reference CSFs or introduce higher order corrections to improve
the results� The latter one seems to be however di�cult and one may think of using approxi�
mate second�order correction vectors� for example by allowing only pair�pair interactions in the
Hamiltonian used to create second�order correction vectors�

Selection of the one�particle basis set in the variation�perturbation method has been discussed
by Bendazolli et�al ��
�� Their conclusion was that MCSCF orbitals are the proper choice�
Parametrization of the Hartree�Fock operator shows that the convergence rate of low�order CI
methods may be substantially increased� Indeed� preliminary studies of HF method with scaling
parameters for Coulomb and exchange integrals 	g�Hartree�Fock method and 
 
 method ����
suggest� that the canonical HF function may be the worst choice in all cases except for single
reference CISD� Although introduction of 
 parameters to the HF equations is trivial it is not
clear how to predict a priori their best value� Orbitals obtained in this way may also lead
to erratic convergence of perturbative series� but that should not in�uence variational Sup�CI
results�

The biggest problem that remains in Sup�CI as well as MR�CI is the size�extensivity error
due to neglecting of the higher�order excitations� Although a posteriori corrections applied to
Sup�CI energies remove a part of this error it is desirable to �nd more accurate corrections for
this method�

��



Chapter �

Matrix elements in the Sup�CI

method

The outline of the SGA approach and an algebra for the Sup�CI matrix elements are presented
in the �rst two sections of this chapter� The algorithm based on these techniques is described
in the fourth section and applied then to the derivation of the MBPT�like expressions for the
matrix elements occuring in third order Sup�CI� Some of the formulas are explicitly given�

��� Symmetric group approach to CI methods

In the direct CI 	DCI
 methods one avoids storing the CI matrix� The product of this matrix
and the vector of CI coe�cients� which is formed in any diagonalization procedure directed at
diagonalizations of large CI matrices ���� is constructed directly from the list of two electron
integrals ��
�� It requires however sophisticated mathematical tools to implement such an algo�
rithm in an e�cient way� The formal problems appearing in DCI schemes have been solved by
Paldus and Shavitt using the Unitary Group Approach 	UGA
 ���� and by Duch and Karwowski
within the Symmetric Group Approach 	SGA
 ����� These formal developments may also pro�
vide a tool for deriving the MBPT�like formulas i�e� expressions in terms of sums of products
of two electron integrals for the matrix elements between contracted functions� appearing in the
superdirect CI mode �����

In the following we shall brie�y recall the basic principles of the SGA� which is then used to
evaluate matrix elements occurring in the third�order Sup�CI method�

����� Hamiltonian and its symmetry

The non�relativistic spin�free electronic Hamiltonian 	���
 may be represented in the �nite
Hilbert space HN in the following form ����

"H !
kX
ij

	ijj
 "Eij �
�




kX
ijkl

	ijjkl
	 "Eij
"Ekl � �jk "Eil
 	���


��



The summation indices i� j� � � � refer to orthonormal orbitals fj�iigki��� which span the one�
particle orbital space H�

o � The one� and two�electron integrals are de�ned as follows

	ijj
 ! h�i	�
j"h�	�
j�j	�
i# 	ijjkl
 ! h�i	�
h�k	

j"h�	�� 

j�l	

ij�j	�
i 	��



The operators "Ekl 	for simplicity of notation we shall often simply write Ekl
 are called the
replacement operators since they replace j�li by j�ki when acting on a product of orbitals

Ekl !
NX
i

j�k	i
ih�l	i
j 	���


They are generators of the unitary group U	k
 which is an invariance group of H�
o� This fact

forms a basis for the UGA approach to the CI methods ����� The replacement operators satisfy
the following commutation rule

�Eij� Ekl� ! �kjEil � �ilEkj 	���


and may be expressed in the second quantization language in terms of anihilation and creation
operators Eij !

P
� a

�
i�aj� �

Since all kinds of spin operators commute with "H the total spin S and its projection M are
good quantum numbers and the eigenfunctions of "H should be chosen also as eigenfunctions of
"S� and "Sz � It imposes additional restrictions on the variational coe�cients of the CI expansion
in terms of determinants i�e� determinantal basis of HN � They may be taken into account by
an explicit expansion in terms of conveniently chosen spin adapted basis� Such a basis consists
in general of the linear combinations of a number of Slater determinants corresponding to a
given set of orbitals and di�ering only in their spin parts� referred to as the con�guration state

functions 	CSFs
 ����� The CSFs will be denoted j
#SM� li� They ful�ll equations

P j
#SM� li! �	P 
j
#SM� li 	���


"S�j
#SM� li! S	S � �
j
#SM� li 	���


"Sz j
#SM� li! M j
#SM� li 	���


where P is a permutation operator of electron coordinates and �	P 
 is its parity� 
 stands
for a set of the orbital indices used to construct a given CSF or in other words for an orbital
con�guration� The index l ! �� � � �f	S� s
 distinguishes independent eigenfunctions of "S� and
"Sz belonging to the same values of S and M � Their number depends on the number of singly
occupied orbitals s in 
 and is given by f	S� s
 ! 	s$	
S � �

�	a$	�� a
$
# a ! s�
 � S �����
The CI expansion for the kth state characterized by given S and M numbers is then written

j�#SM� ki !
X
�

f�S�s�X
l��

CSMk
�l j
#SM� li 	���


Equivalently we may say that the Schr�odinger equation is projected onto a proper spin adapted
	S�M
�subspace of the Hilbert space HN

HN !
N��M

S��������

SM
M��S

HN 	S�M
 	���


�




Another basic invariance property of the Hamilton operator considered here is associated
with the indistinguishability of electrons� It implies that the Hamiltonian 	���
 is symmetric in
electron coordinates and as a result it is invariant with respect to the symmetric group SN � The
antisymmetry of the N �electron fermion functions 	��

 is equivalent to the assumption that
they should transform according to the one�dimensional� so�called sign representation of SN �
This is already taken into account in eq� 	���
�

The molecular electronic Hamiltonian 	���
 may be also invariant with respect to a certain
point group G if we �x the distribution of the nuclei� Then a symmetry adapted CSF 	SACSF

has to transform according to an irreducible representation / of the group G� In the following
we shall assume that the considered point group is abelian i�e� all irreducible representations
are one�dimensional and each CSF corresponding to a given orbital con�guration of a proper
symmetry spans such a representation� Thus for a given /� the set of SACSFs j
�#SM� li is a
subset of CSFs j
#SM� li� In general case each SACSF would be rather a linear combination of
CSFs ����� For simplicity we shall further drop the point group symmetry label�

����� Separation of the spin part

The SGA speci�c step consists in construction of separate N�particle orbital and spin spaces
	before the antisymmetrization is performed
 ����� The total one�particle Hilbert space H� is a
product of the k�dimensional orbital space and two�dimensional spin space H�

s ! fj
iigi����
H� ! H�

o �H�
s 	����


Then one may construct the N �particle space as

HN ! "A�HN
o � HN

s � ! "A�	H�
o�N 
� 	H�

s�N 
� 	����


Equivalently� we shall assume that the N �electron CSFs are of the form

j
#SM� li! �� "A�j
ijSM� li� 	���



where jSM� li � HN
s is the pure spin function being an eigenfunction of "S� and "Sz and j
i

is a spin independent orbital function de�ned as a product of N 	orthonormalized
 orbitals
corresponding to the con�guration 
� s� of them being singly and d� doubly occupied� The
antisymmetrizer operator and the normalization constant are respectively given by

"A !
�

N $

X
P�SN

�	P 
P # �� ! 	N $�
d�
��� 	����


In the following we shall assume that the spin functions are geminally antisymmetric spin
functions i�e� they are antisymmetric with respect to the transpositions within doubles� In other
words the spins of those electron pairs that correspond to doubles are coupled in the N �electron
spin functions to two�electron singlets� insuring the antisymmetry of the resulting CSFs �����
For the remaining s� singly occupied orbitals one has f	S� s
 di�erent coupling schemes i�e�
with each orbital con�guration 
 there is associated a vector of spin functions jSMi with the
components jSM� li� l ! �� � � �f	S� s
�

��



Figure ���� Branching diagram for N!�� solid lines� S!�,


S
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All the spin functions that span the N �particle spin space or the di�erent coupling schemes
within a given set of spins may be characterized using the so�called branching diagram ����� Each
path on this diagram� passing from the 	�� �
 node to a given 	N� S
 node uniquely represents
certain spin function jSM� li � HN

s � l ! �� � � �f	S�N
� The projection of the spin M does
not in�uence its shape� The numbers in the nodes indicate a number of possible paths 	spin
functions
 from the origin 	�� �
 to a given node� An example of the branching diagram for
N ! � electrons is displayed in the �gure ����

It should be noted that the spin functions coupled according to the branching diagram are
not the geminally antisymmetric functions� To get the latter ones one may use the so�called
reversed branching diagram� introduced by Duch �����

Let us consider now the permutational symmetry of the pure spin functions� For each P � SN
the N �electron spin space HN

s is closed under its action� More speci�cally� since the "S� and "Sz
operators are symmetric in the coordinates of the electrons they commute with an arbitrary
permutation� Thus for each P � SN the new function P jSM� li is an eigenfunction of "S� and "Sz
with unchanged eigenvalues S	S � �
 and M � It is in general a linear combination of the spin
functions�

Thus we may use the permutational symmetry and irreducible representations of SN to
classify also the spin functions and for further factorization of matrix representations of the
spin�free Hamiltonian� In fact such a factorization� as indicated in eq� 	���
 follows from the
corresponding decomposition of the spin space�

A linear space that carries a 	irreducible
 representation of a group G is called a 	irreducible

G�module� The HN

s space is a reducible SN �module� It may be decomposed into a direct sum
of irreducible SN �modules HN

s 	S�M
 characterized by the total spin and the spin projection

��



quantum numbers

HN
s !

N��M
S��������

SM
M��S

HN
s 	S�M
 	����


Alternatively� spin functions belonging to a pair of S� M 	S � jM j
 quantum numbers form
a basis for an irreducible representation of the symmetric group SN or more precisely of an
irreducible SN �module HN

s 	S�M
� The irreducible representation that is carried by this module
is associated with the matrix representation i�e� the set of matrices fUN

S 	P 
# P � SNg where

UN
S 	P 
kl ! �	P 
hSM� kjP jSM� li k� l ! �� � � �f	S�N
 	����


It may be easily proved ���� that these representation matrices are M �independent� For orthog�
onal spin functions these matrices are also unitary�

����� Hamiltonian matrix elements

Due to the separation of the spin and orbital parts in the CSFs one may perform separate
integration over spin and orbital variables in the resulting Hamiltonian matrix elements� For
the future use it is convenient to consider matrix elements of the powers of the Hamiltonian "Hp

Hp
k���l��� ! h
#SM� kj "Hpj	#SM� li! ����hSM� kjh
j "Ay "Hp "Aj	ijSM� li!

�����	N $

X

P�SN

�	P 
hSM� kjP jSM� lih
j "HpP j	i 	����


where we have used the fact that "Ay ! "A and "A� ! ��	N $
 "A�
The last formula may be expressed in a somewhat di�erent manner� following the proposal

of Karwowski ����� Let 0� be an invariance group of j
i generated by the transpositions within
doubles in 
 and let D� stands for its dimension� Then for two orbital con�gurations 
 and 	
and a given permutation P one may de�ne a subgroup of SN called the double coset 0�P0��
Every group may be decomposed into a number distinct double cosets having no elements in
common�

The antisymmetrizer may be also decomposed into the double cosets contributions ����

"A !
�

N $

X
q

�	Pq

Dq
��

D�D�

X
����� 	���

�Pq� 	����


where the summation runs over distinct double cosets 0�Pq0� of the dimensions Dq
��� generated

by Pq � Moreover one may replace the permutations acting on the electron coordinates in the
orbital integrals by their hermitian conjugate i�e� the same permutations but acting on the
orbital indices� Assuming that spins associated with the doubly occupied orbitals are coupled
to singlets 	Singlet Coupled Pairs � SCP
 and the spin functions are generated according to
the reversed branching diagram� the full representation matrices may be replaced by the small
rectangular blocks �UN

S 	Pq
�
fg de�ned by the sets of singly occupied orbitals in j
i and j	i

respectively�

��



Finally one gets in the matrix block notation for k ! �� � � �f ! f	S� s�
 and l ! �� � � �g !
f	S� s�


Hp
������ ! 
��d��d����

X
q

Dq
���U

N
S 	Pq
�

fghPq
j "Hpj	i 	����


As have been proved by Kotani et� al� ���� further 	and essential
 simpli�cation is possible
since all �UN

S 	Pq
�
ff blocks may be reduced to Us

S matrices� corresponding to appropriate per�
mutations of singles only� The �nal numerical factor appearing in eq� 	����
 takes simple form
and may be tabulated for several di�erent cases and in practice absorbed in the de�nition of
representation matrices �����

From the practical point of view it is crucial that only at most one of the permutations Pq
in eq� 	����
� called line�up permutation leads to complete coincidence between jPq
i and each
chain 	product
 of replacement operators 1j	i occurring in "Hp� giving non�zero contribution in
terms of products of electron integrals� For such a permutation one has to �nd then the proper
spin integral i�e� relevant matrix �Usmax

S 	Pq
�
fg� smax ! max	s�� s�
� Several very e�cient and

suitable procedures for evaluating the relevant matrices of the representations of the symmetric
group have been proposed by Duch and Karwowski �����

��� Circular operators

Let us introduce for further considerations the following convention distinguishing the occupation
of the one�particle functions 	orbitals
 in the N �particle functions by the respective indices�

arbitrary unoccupied singly occupied doubly occupied
nindex ! �� �� 
 nindex ! � nindex ! � nindex ! 


e� f� g� h a� b� c� d s� t� u� v i� j� k� l
m� n� p� q w� x� y� z

Let 1efgh���pq denote the product 	chain
 of replacement operators

1efgh���mnpq ! "Eef
"Egh � � � "Emn

"Epq 	����


and let 1 denote a chain with non�speci�ed indices� If the subsequent orbitals we excite from
are the same as those we excite to in the nearest right hand side neighbor� regarding additionally
the �rst and the last index as neighbors� we shall call such a chain of replacement operators a
circular operator and denote Eefh���mnq

Eefh���mne ! 1effh���mnne ! "Eef
"Efh � � � "Emn

"Ene 	��
�


Notice that each index must appear even number of times in 1 if it is to be a circular operator�
The sums over all indices of circular operators are known as the Casimir invariants of the U	k

group� The �rst Casimir invariant

P
e
"Eee gives N acting on any N �electron orbital function�

Consider now matrix elements of the type

1������ ! ��UN
S 	Pq
�

fghPq
j1j	i 	��
�


��



where � is an appropriate product of one� or two�electron integrals associated with a chain
1 occuring in the Hp

������� The matrix elements of the powers of the Hamiltonian 	����
 are
in general sums of a number of such terms� The necessary condition for non�vanishing of the
1������ is the same occupation scheme in j
i and 1j	i i�e� any of the 	singly or doubly occupied

orbitals appearing in jPq
i must also appear 	as singly or doubly occupied respectively
 in 1j	i�
If the occupation schemes are the same one may choose a permutation Pq such that it leads to
complete coincidence between jPq
i and 1j	i�

Let us restrict now to the diagonal matrix elements� If j
i ! j	i we shall use j�i to denote
the total� orbital or spin N �electron function 	or their set associated with given S�M numbers

depending on the context� Thus we shall write

h�j "Hpj�i !
X
�

�	1
h�jP 	1
j�ihP 	1
�j1�i!
X
��

�	1
h�jP 	1
j�i 	��




where all the numerical factors as well as the sign factors are absorbed either in � or in the spin
integrals and

P
�� denotes summation with 1 giving vanishing contributions hP 	1
�j1�i ! �

excluded� According to our previous considerations h�jP 	1
j�imeans square matrix block� The
above equation is a good starting point for the derivation of the matrix elements occurring in
the Sup�CI method�

Let us notice that the summation over distinct chains of replacement operators giving non�
vanishing contributions to the matrix element in eq� 	��


 may be expressed as a sum over
circular operators only� Indeed� if 1 is to give a non�zero contribution it cannot change the
occupation of any orbital in j�i i�e� each index m must appear 
i times in 1� i times as left
index Emp and i times as right one Eqm� It means that commuting the replacement operators
one may end up with the circular chain� The additional terms that may appear by applying the
commutation rule 	���
 are of two types

� � � "Eef
"Ehe � � � �� � � � � "Ehf � � � # � � � "Eef

"Efh � � � �� � � � "Eeh � � � 	��
�


and may be then also permuted to the circular form� Thus we may write

h�j "Hpj�i !
X
��

�	1

X
E���

h�jP 	E	1

j�i 	��
�


where the second sum runs over all circular operators arising from a given chain 1� This will
be our general strategy� to specify all non�vanishing chains of operators in the orbital integral
and then transform them to sums of circular chains� Now� we must learn what permutation
is generated by a given circular chain� Then in the �nal step a proper spin integral may be
evaluated�

Some general properties of the circular operators may be directly derived from the com�
mutation relations 	���
� As noticed by Duch ���� they provide a tool for an alternative and
convenient reduction of the diagonal spin integrals to the occupation numbers or to the permu�
tations associated with a chain of operators involving singly occupied orbitals only�

Let us �rst distinguish closed circular operators involving any orbital index twice only i�e�
through a single pair� excited from� excited to 	when expressing the circular operator explicitly
in terms of replacement operators
� An arbitrary circular operator may be expressed in terms

��



of closed circular operators only � as a product of closed circular operators or simply product of
closed chains or a sum of a number of such products�

Eefhe���mne ! EefheEe���mne# Eefh���fg���mne ! Efhe���fEefg���mne � Eeh���f ���mne 	��
�


For the closed chains the following general rule is valid

Eef ���m���ne ! Em���nef ���m � Eef ���ne � Em���ne���m 	��
�


In the simplest case one gets for instance

Eefe ! Efef � Eee � Eff ! Efef � "ne � "nf 	��
�


where "ne ! �� �� 
 denotes the occupation number operator for the orbital j�ei with values
ne ! �� �� 
� Since excitation from unoccupied or to doubly occupied orbitals are forbidden we
have also in general

Ea���aj�i ! E���i���j�i ! � 	��
�


where indices a and i refer to unoccupied and doubly occupied orbitals in j�i� respectively�
Notice that j�i may be here either pure orbital function or the total function�

Using eqs� 	��
�
 and 	��
�
 one then easily �nds for the matrix elements that the unoccupied
orbital indices may always be simply removed

h�jEe���abc���ej�i ! h�jEe���ej�i 	��
�


whereas the doubly occupied indices always contribute through the terms of the type h�jEie���fij�i
only and may also be eliminated

h�jEiaij�i ! ni ! 
# h�jEisij�i ! ni � ns ! � 	����


h�jEistij�i ! h�jEstis � Eiti � Estsj�i ! �� h�jEstsj�i 	����


� � �
In this way all expressions for the diagonal matrix elements of the closed chains may be reduced
to the matrix elements of the chains involving singly occupied indices only�

When eliminating the indices of the doubly occupied orbitals we had to evaluate the spin
integrals appearing in h�jEiij�i and h�jEssj�i� Since such chains introduce identity permutation
only they always give spin integral equal to one 	as many times as a given orbital occurs in j�i
�
The non�trivial spin integrals will appear when considering the chains h�jEst���sj�i� We have to
describe the permutations associated with such circular operators�

Acting on the orbital product � � � j�si � � � j�ti � � � with Ests one may verify that ���� this op�
erator is equivalent to�

Ests ! � � 	s� t
 	���



where 	s� t
 denotes the transposition of sth and tth orbitals� For longer chains�

Estus ! 	� � 	s� t

	� � 	s� u

 	����


��



Estuws ! 	� � 	s� t

	� � 	s� u

	�� 	s� w

 	����


Let us then denote by hs� ti� hs� t� ui etc� the appropriate spin integrals

hs� ti ! h�j	s� t
j�i 	����


hs� t� ui ! h�j	s� t
	s� u
j�i! h�j	s� t� u
j�i! hs� tihs� ui 	����


where now j�i stands for the set of spin functions and hs� tihs� ui is a product of two 	represen�
tation
 matrices� Thus �nally we obtain

h�jEstsj�i ! �� hs� ti# h�jEstusj�i ! 	�� hs� ti
	�� hs� ui
 ! �� hs� ti� hs� ui� hs� t� ui 	����


and in general
h�jEstu���wsj�i ! 	� � hs� ti
	�� hs� ui
 � � �	� � hs� wi
 	����


i�e� the diagonal elements of the circular operators with more than two di�erent indices may
always be expressed through the elements of operators with lower number of indices�

The basic integrals hs� ti corresponding to the transpositions of spins numbers s and t are
equal to �� in the determinantal basis� In case of spin adapted basis they are appropriate
representation matrices of the transpositions 	s� t
 and are easily calculated from the branching
diagram ����� Now� we are ready to apply the above derived machinery to the calculation of
the matrix elements occurring in the Sup�CI method with the arbitrarily complicated reference
functions in the spin adapted basis�

��� Matrix elements in the third order Sup�CI

In the following all types of the relevant matrix elements will be speci�ed� In the multireference
third order Sup�CI method we need formulas up to the third order i�e� matrix elements of the
type�

Hik�lj ! hwij "Rk
"H "Rljwji# Sik�lj ! hwij "Rk

"Rljwji 	����


where indices i� jmean di�erent reference 	open shell
 functions and k� lmean di�erent �resolvent�
operators� which may take one of the following forms

"RI ! "�# "RK ! "Q�
"H# "RX ! "DX

"Q�
"H 	����


where in the latter one 	X ! N or X ! M where N refers to the Epstein�Nesbet scheme and
M refers to the M&ller�Plesset scheme
 the respective perturbative denominators appear

"DN ! 	 "Hd �ESCF 

��# "DM ! 	 "H� � E�


�� 	����


From now we shall use j�i and j��i to distinguish di�erent reference functions and R�� R� for
di�erent resolvent operators 	except the identity operator "RI
�

Those elements that contain Hamiltonian in the �rst power are the usual CI matrix elements
derived in SGA formalism by Duch and Karwowski ����� We shall distinguish �diagonal� type of
the matrix elements considered� for which j�i ! j��i but the resolvent operators 	i�e� denomi�
nators
 may be di�erent� The non�diagonal type is de�ned by j�i �! j��i� In the diagonal case

��



H�R��R�� with the second power of "H 	i�e� when R� ! I � R� �! I
 one gets PT
�like or k
�like
	i�e� involving fourth�fold summations
 formula and with the third power 	R� �! I � R� �! I
the
third order or k��like formula� In the non�diagonal case the complexity of the evaluation of those
matrix elements is certainly lower since more indices in the summation are �xed�

Table ���� Matrix elements types in the third order Sup�CI

compl� ordinary CI type non�diagonal diagonal

� n
 H�I�I�#H�I�I�� H�I�R��� #S�R��R���

S�I�R��#S�I�R��� H�R��R������
�����

n
 H�R��R������ H�I�R��#S�R��R��

n� H�R��R��

For the future use it is useful to distinguish more precisely di�erent categories of the matrix
elements of the general form 	����
� They are gathered in Table ���� The non�diagonal type
matrix elements are speci�ed 	if useful
 by the relative excitations of the ket function with
respect to the bra function e�g� ��	�� �
 means all reference functions j��i which di�er by � or �
orbitals with respect to j�i 	quintuply or sextuply excited con�gurations
�

��� Algorithm and formulae

The formula for the diagonal matrix elements of the second order type i�e� H�I�R�� 	thus S�R��R��

as well
 has been derived by Duch ����� using techniques presented in the previous subsections�
This formula does not include some simple one�particle terms� but they may be easily added� We
shall derive now the third order diagonal formula h�j "R�

"H "R�j�i� Notice that if "R� ! "R� ! "RM we
get the core of E� MBPT formula� Then� the non�diagonal matrix elements will be considered�

����� Contractions

In the following we shall divide the set of arbitrarily occupied indices into two subsets � of those
that we may excite from 	nindex ! 
� �
� e� f�m� n# and of those we may excite to 	nindex ! �� �
�
g� h� p� q� Let r stands for an arbitrary orbital index� Furthermore� since we shall explicitly
di�erentiate the possible relative occupation schemes in all intermediate projections it should
be recalled ���� that one may extract from the de�nition of the Hamiltonian those terms which
do not vanish between CSFs di�ering by a certain number of orbital indices� Denoting by
"B�� "B

eg
� � "Befgh

� the parts of "H 	including the one�particle terms
 connecting states di�ering on

����
 orbitals 	h�j � � � j�i# jgei# jghef i
 respectively� one gets ����

"B� !
�




X
e

	eejee
"ne	"ne � �
 �
X
e�f

�	eejff
"ne"nf � 	ef jef
	 "Eef
"Efe � "ne
� �

X
e

	eje
"ne 	���



��



"Beg
� !

X
r

	egjrr
	"nr � �gr
 "Eeg �
X
r ��e�g

	erjgr
 "Erg
"Eer � 	ejg
 "Eeg 	����


"Befgh
� ! 
�
ef
gh	egjfh
 "Eeg

"Efh � 	�� �ef 
	�� �gh
	ehjfg
EehEfg 	����


Let us now consider the most complicated matrix element of the diagonal� n� type

h�j "R�
"H "R�j�i !

X
L���

X
K ���

D�	L
D�	K
h�j "HjLihLj "HjKihKj "Hj�i 	����


where L�K denote N�electron basis function 	CSFs
 and are subject to the conditions L � SD	�
#
K � SD	�
 � SD	L
 i�e� are at most doubly excited with respect to j�i and jLi respectively�
Di	L
 are appropriate denominators�

Dividing the intermediate sums into contributions coming from the singly and doubly excited
con�gurations one may rewrite the r�h�s� of the eq� 	����
 asX

L�D���

D�	L
h�j "B�jLi f
X

K�D���	D�L�

D�	K
hLj "B�jKihKj "B�j�i�

X
K�D���	S�L�

D�	K
hLj "B�jKihKj "B�j�i�D�	L
hLj "B�jLihLj "B�j�i g

For simplicity contributions from the singles with respect to j�i are for a moment omitted� The
most complicated term in the above expression is

S� !
X

L�D���

X
K�D���	D�L�

D�	K
D�	L
h�j "B�jLihLj "B�jKihKj "B�j�i 	����


or in the more explicit notation

S� !
X
m
n

X
p
q

X
e
f

X
g
h

Dmnpq
� Defgh

� h�j "Bmnpq
� jpqmnihpqmnj "Buvwz

� jghef ihghef j "Bghef
� j�i 	����


Because the non�vanishing contributions come from the double excitations only jghef i � D	L
�
L ! jpqmni� among indices e� f� g� h one pair only may di�er from the indices m�n� p� q� This gives
six possible contractions of eight orbital indices� reducing the sums to ��fold only�

e !m� f ! n p� q� g� h
g ! p� h ! q e� f�m� n

e ! m� g ! p for which u� v� w� z are respectively f� q� n� h
e ! m� h ! q f� p� n� g

f ! n� g ! p e� q�m� h
f ! n� h ! q e� p�m� g

Finally� S� may be rewritten as

S� !
X
m
n

X
p
q

Dmnpq
� h�j "Bmnpq

� jpqmnihpqmnj

��



f
X
g
h

Dmngh
� j "Bpqgh

� jghmnihghmnj "Bghmn
� j�i�

X
e
f

Defmn
� j "Befmn

� jpqefihpqef j "Bpqef
� j�i�

�
X
e

X
g

� Dmepg
� j "Beqng

� jpgmeihpgmej "Bpgme
� j�i�Denpg

� j "Beqmg
� jpgenihpgenj "Bpgen

� j�i�

�Dmegq
� j "Bepng

� jgqmeihgqmej "Bgqme
� j�i�Dengq

� j "Bepmg
� jgqenihgqenj "Bgqen

� j�i � g 	����


The third part of the above expression has been obtained due to the exchange of the summation
indices� Notice that the summations over e and g are not completely free � they cannot be
the same as their counterparts in the �rst intermediate con�guration jpqmni e�g� Dmepg

� implies
that e �! n� g �! q whereas Dengq

� implies that e �! m� g �! p� On the other hand e may be
equal to n 	n �! m
 and,or g may be equal to q 	q �! p
 in the latter case� implying that the
overall complexity of such terms is lower than n� 	although they still involve two doubly excited
con�gurations being also doubly excited with respect to another
� In the next section we shall
extract all the terms with some of the summation indices occuring many repetetively� Recall also
that any orbital con�guration jgqeni represents a number of CSFs with di�erent spin couplings�

Table ��
� H� diagonal matrix element � CSC
For explanation of symbols see text below�

� �jR�HR�j� � !

d�	m� p 
 d
	m� p 
 � jb�	m� p 
 b�	m� p 
 b�	 p�m 
 j� �

d�	m� p 
 � d
	 e� p 
� jb�	m� p 
 b�	 e�m 
 b�	 p� e 
 j�
� d
	m� g 
� jb�	m� p 
 b�	 p� g 
 b�	 g�m 
 j� � �

d�	m� p 
 d
	m� f� p� h 
� j b�	m� p 
 b�	 f� h 
 b
	 p� h�m� f 
 j �
� d�	m� p 
 d
	 e� g 
� j b�	m� p 
 b
	 p� e�m� g 
 b�	 g� e 
 j��

d�	m� p 
 �d
	 e� f� p� h 
� jb�	m� p 
 b
	 e� f�m� h 
 b
	 p� h� e� f 
 j �
� d
	m� f� g� h 
� j b�	m� p 
 b
	 p� f� g� h 
 b
	 g� h�m� f 
 j � � �

d�	m�n� p� q 
 d
	m�n� p� q 
� j b
	m�n� p� q 
 b�	m�n� p� q 
b
	 p� q�m� n 
 j�
� d�	m�n� p� q 
 d
	n� q 
� jb
	m�n� p� q 
 b�	 p�m 
 b�	 q� n 
 j�
� d�	m�n� p� q 
 �d
	 e� n� p� q 
� j b
	m�n� p� q 
 b�	 e�m 
 b
	 p� q� e� n 
 j�
� d
	m�n� g� q 
� jb
	m�n� p� q 
 b�	 p� g 
 b
	 g� q�m�n 
 j� � �

d�	m�n� p� q 
 �d
	m� g 
� j b
	m�n� p� q 
 b
	 p� q� n� g 
 b�	 g�m 
 j�
� d
	 e� p 
� jb
	m�n� p� q 
 b
	 q� e�m� n 
 b�	 p� e 
 j� � �

d�	m�n� p� q 
 �d
	 e� f� p� q 
� jb
	m�n� p� q 
 b
	 e� f�m� n 
 b
	 p� q� e� f 
 j �
� d
	m�n� g� h 
� jb
	m�n� p� q 
 b
	 p� q� g� h 
 b
	 g� h�m�n 
 j�
� d
	 e� n� g� q 
� jb
	m�n� p� q 
 b
	 p� e�m� g 
 b
	 g� q� e� n 
 j� �

The complete expression for� �jR�HR�j� � with contributions of the singles and all possible
contraction schemes is given in Table ��
� A compact summation convention 	CSC
 is used

�




in this table and in all automatically generated expressions i�e� generated by means of the
symbolic algebra program written for this purpose in the Maple language� According to this
convention all sums are associated with the ordered orbital indices occuring as arguments of the
denominators functions� We shall use a simpli�ed notation� Dmp

i 	 di	m� p
# "Bmp
� 	 b�	m� p
#

Dmnpq
i 	 di	m�n� p� q
# "Bmnpq

� 	 b
	m�n� p� q
� Thus for example

d�	m� p
d
	m�p
 � � � ��
X
m

X
p

d�	m� p
d
	m� p
 � � � 	����


d�	m� p
d
	e� f� p� h
 � � � ��
X
m

X
p

X
e
f

X
h

d�	m� p
d
	e� f� p� h
 � � � 	����


d�	m�n� p� q
d
	e� f� p� q
 � � � ��
X
m
n

X
p
q

X
e
f

d�	m�n� p� q
d
	e� f� p� q
 � � � 	����


d�	m�n� p� q
d
	e� n� g� q
 � � � ��
X
m
n

X
p
q

X
e

X
g

d�	m�n� p� q
d
	e� n� g� q
 � � � 	���



The general rule is clearly visible from the above examples� Certainly� orbital indices we excite
from and we excite to have to be di�erent � otherwise contributions are already included in the
formulas involving lower rank "Bi operators� Furthermore� some terms in CSC represent actually
a number of terms according to the following rule� if there is one contracted index among the
indices we excite from or we excite to in the second denominator 	i�e� an index equal to any
index occuring in the corresponding part of the �rst denominator
 it generates two terms with
two di�erent contractions when the �rst denominator contains two indices in the corresponding
part� For example

d�	m�n� p� q 
d
	 e� n� g� q 
� jb
	m�n� p� q 
 b
	 p� e�m� g
 b
	 g� q� e� n 
 j� !

d�	m�n� p� q 
� d
	 e� n� g� q 
� jb
	m�n� p� q 
 b
	 p� e�m� g 
 b
	 g� q� e� n 
 j�
� d
	 e� n� p� g 
� j b
	m�n� p� q 
 b
	 q� e�m� g 
 b
	 p� g� e� n 
 j�
� d
	m� e� g� q 
� jb
	m�n� p� q 
 b
	 p� e� n� g 
 b
	 g� q�m� e 
 j�
� d
	m� e� p� g 
� jb
	m�n� p� q 
 b
	 q� e� n� g 
 b
	 p� g�m� e 
 j��

Finally the expression for S�� eq� 	refs�contr
� in the CSC notation is

S� ! d�	m�n� p� q 
� d
	 e� f� p� q 
� jb
	m�n� p� q 
 b
	 e� f�m� n 
 b
	 p� q� e� f 
 j �
� d
	m�n� g� h 
� jb
	m�n� p� q 
 b
	 p� q� g� h 
 b
	 g� h�m�n 
 j�
� d
	 e� n� g� q 
� jb
	m�n� p� q 
 b
	 p� e�m� g 
 b
	 g� q� e� n 
 j��

The formula for h�jR�HR�j�i� with all the contractions and the terms represented in the CSC
implicitly expanded� is given in the Appendix 	in Table ���
�

Notice that expressions in Table ��
 do not include the intermediate projections since for
every chain of operators with a certain contraction scheme one may replace the product of
integrals

h�j "Bmnpq
� jpqmnihpqmnj "Bpqgh

� jghmnihghmnj "Bghmn
� j�i 	����


��



by a single integral

h�j "Bmnpq
�

"Bpqgh
�

"Bghmn
� j�i ! h�j "Bmnpq

�
"� "Bpqgh

�
"� "Bghmn

� j�i !

! h�j "Bmnpq
� jpqmnihpqmnj "Bpqgh

� jghmnihghmnj "Bghmn
� j�i 	����


The last step follows from the fact that only CSFs associated with the orbital con�gurations
given by the respective "B� operators survive in the identity operators resolved in the basis of all
CSFs� As a result all the intermediate states may be simply removed in all contracted chains
of operators� but diagonal elements of higher order operators 	involving up to �
 replacement
operators
 have to be computed�

����� Chains

According to our general strategy� as speci�ed by the equation 	��
�
 we shall now expand
explicitly all the chains of operators to transform them further to the circular chains� In order
to apply the commutation rule 	���
 one has to �rst extract all repetitions of indices� They
occur due to summation over pairs e�g�

P
p
q and due to the presence of the singly occupied

indices one excites from and excite to as well� The latter ones will be called� from,to open shell
contributions 	FTOS
�

Consider �rst summations over pairs of indices� Any such summation generates certainly
two sums with the di�erent chains of orbitals involving p � q and p ! q respectively� Thus
for example

P
m
n

P
p
q

P
e
f generates eight 	
�
 sums with the distinct chains of operators�

The corresponding pairs of indices must be di�erent by the de�nition of the doubly excited
con�gurations jpqmni and jpqefi� Furthermore for the doubly excited con�gurations 	relatively to
each other
 e �! m�n and f �! m�n and there are no other repetitions� The same concernsP

m
n

P
p
q

P
g
h�

Table ���� S� expanded with respect to the repetitions of indices � FTOS not included

S� !

d�	m�n� p� q 
 �d
	 e� f� p� q 
 � d
	 e� e� p� q 


� d
	m�n� g� h 
 � d
	m�n� g� g
 � d
	 e� n� g� q 


� d
	n� n� g� q 
 � d
	 e� n� q� q 
 � d
	n� n� q� q 
 � �

d�	m�m� p� q 
 �d
	 e� f� p� q 
 � d
	 e� e� p� q 


� d
	m�m� g� h 
 � d
	m�m� g� g 
 � d
	 e�m� g� q 
 � d
	 e�m� q� q 
 � �

d�	m�n� p� p 
 �d
	 e� f� p� p 
 � d
	 e� e� p� p 


� d
	m�n� g� h 
 � d
	m�n� g� g
 � d
	 e� n� g� p 
 � d
	n� n� g� p 
 � �

d�	m�m� p� p 
 �d
	 e� f� p� p 
 � d
	 e� e� p� p 


� d
	m�m� g� h 
 � d
	m�m� g� g 
 � d
	 e�m� g� p 
 �

��



The third ��fold summation� namely
P

m
n
P

p
q
P

e

P
g is more complicated� As speci�ed

in 	����
 it is associated with four contraction schemes of the type

h�j "Bmnpq
� jpqmnihpqmnj "Bpemg

� jgqenihgqenj "Bgqen
� j�i 	����


In the above case one gets for the e� g indices the following constraints only� g �! e# e �! m# g �! p�
Thus one has to take into account additional possibilities�

e ! n if n �! m# g ! q if q �! p# 	e ! n and,or g ! q
 if 	n �! m and q �! p


Finally it gives nine di�erent sums 	��
�
�� instead of four sums only
 as long as we omit the
FTOS type of repetitions� Similarily� one can expand the three other chains associated with the
considered summation� At that level S� has the expansion as given in Table ���� All integrals
are dropped for simplicity�

Recall that according to the CSC convention the d�	m�n� p� q 
 d
	 e� n� g� q 
 term repre�
sents four distinct chains of the replacement operators with the same summations indices
whereas d�	m�m� p� q 
 d
	 e�m� g� q 
 as well as d�	m�n� p� p 
 d
	 e� n� g� p 
 represent two as�
sociated chains�

As we have seen before each of the four chains of operators represented in CSC by the single
expression d�	m�n� p� q 
 d
	 e� n� g� q 
 generates additional chains with e and g indices equal to
some 	depending on the case
 of the m�n and p� q indices respectively� Therefore� each of the
�ve additional terms in Table ��� represents a number of terms that may come from the four
distinct chains and the CSC must be extended to take that fact into account�

The new terms arise according to the following rule� if there is a pair of contracted indices
	we excite from or we excite to
 in the second denominator and both indices in this pair are the
same it generates two terms when the corresponding pair in the �rst denominator consists of
the di�erent indices � in the second term the di�erent index from the corresponding pair in the
�rst denominator replaces the original one� For example

d�	m�n� p� q 
 d
	n� n� g� q 
 ! d�	m�n� p� q 
 � d
	n� n� g� q 
 � d
	m�m� g� q 
 � 	����


where any of the two terms on the right hand side still represents two distinct chains according
to the previously de�ned rules of the CSC� Thus� the explicit expressions are

d�	m�m� p� q 
 d
	 e�m� q� q 
 ! d�	m�m� p� q 
 � d
	 e�m� q� q 
 � d
	 e�m� p� p 
 � 	����


d�	m�n� p� q 
 d
	n� n� g� q 
 !

d�	m�n� p� q 
 � d
	n� n� g� q 
 � d
	m�m� g� q 
 � d
	n� n� p� g 
 � d
	m�m� p� g 
 � 	����


d�	m�n� p� q 
 d
	n� n� q� q 
 !

d�	m�n� p� q 
 � d
	n� n� q� q 
 � d
	n� n� p� p 
 � d
	m�m� q� q 
 � d
	m�m� p� p 
 � 	����


As mentioned before there are some other possible repetitions due to the presence of the
singly occupied indices i�e� the FTOS cases� Consider �rst the following term

d�	m� p 
 d
	 e� g 
� jb�	m� p 
 b
	 p� e�m� g
 b�	 g� e 
 j� 	����


��



appearing in the expression for the h�jR�HR�j�i 	see Table ��

� It corresponds to two singly
excited con�gurations jpmi and jgei being doubly excited with respect to each other� Since the
only restrictions that exclude double occurring of the indices are� p �! m� g �! e� e �! m and
g �! p in the open shell case we have to take into account the possible repetitions e ! p ! s

and,or g ! m ! t� Thus when distinguishing all the distinct sets of the orbital indices involved
we get except the term 	����
 itself 	with all indices di�erent
 three other terms

d�	m� s 
 d
	 s� g 
� jb�	m� s 
 b
	 s� s�m� g 
 b�	 g� s 
 j�
d�	 t� p 
 d
	 e� t 
� jb�	 t� p 
 b
	 p� e� t� t 
 b�	 t� e 
 j�
d�	 t� s 
 d
	 s� t 
� j b�	 t� s 
 b
	 s� s� t� t 
 b�	 t� s 
 j�

They are graphically represented by the respective diagrams on the Fig� ��
� Solid and dashed
lines are used to distinguish excitations de�ning the two di�erent con�gurations� The arrows
points the nodes 	indices
 we excite to�

Figure ��
� FTOS for single excitations
g •

s •

m •

p •

t •

e •

t •

s •

For the doubly excited con�gurations� being also doubly excited with respect to each other
i�e� for the terms occurring in the expression for S� one gets unfortunately as many as 
�
additional terms which are gathered in Table ����

A large number of such terms follows from the fact that they arise independently from
the di�erent chains of indices in Table ���� For each distinct chain and associated summation
scheme one has to consider all possible appearances of the indices that involve excitation from
and excitation to� In order to simplify this procedure one may again introduce a graphical
representation of the di�erent FTOS terms as given in Figure ���� Actually the number of terms
that arise from the graphs in this �gure is equal to �� but some of them are equivalent i�e� they
involve an equivalent chain of indices for the same summation scheme� Let us learn how to
generate di�erent FTOS contributions from those graphs�

As an example the term d�	m�n� p� q 
 d
	 e� n� g� q 
� m �! n and p �! q is taken� As we know
it corresponds to four chains� For each chain we get three di�erent FTOS terms since for two
free indices there are three possible situations� one or another index or both of them being singly
occupied� Thus we get

d�	m�n� s� q 
 d
	 s� n� g� q 
 ��
X
m�n

X
s

X
q

X
g

�� A

d�	 t� n� p� q 
 d
	 e� n� t� q 
 ��
X
t

X
n

X
p�q

X
e

�� B

��



Figure ���� FTOS for double excitations
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d�	 t� n� s� q 
 d
	 s� n� t� q 
 ��
X
t

X
n

X
s

X
q

�� C

for the term d�	m�n� p� q 
 d
	 e� n� g� q 
 itself� Notice that in the �rst of the above terms the
summation indices are subject to the following restrictions� q �! s and g �! q � otherwise the
relative excitation would be di�erent from two and g �! s by the de�nition of the doubly excited
con�guration jgqsni� Thus there are no more chains represented by this term according to the
CSC 	one free index g� g �! s
� It concerns the two remaining terms as well�

For d�	m�n� p� q 
 d
	m� e� g� q 
 we get in turn

d�	m�n� s� q 
 d
	m� s� g� q 
 ��
X
m�n

X
s

X
q

X
g

�� D

d�	m� t� p� q 
 d
	m� e� t� q 
 ��
X
m

X
t

X
p�q

X
e

�� E	p�q
m�n


d�	m� t� s� q 
 d
	m� s� t� q 
 ��
X
m

X
t

X
s

X
q

�� H	p�q
m�n


X	p�q
m�n
 denotes a diagram X with the simultaneous exchanges of the indices m � n and

p � q� One may easily verify that this operation generates non�equivalent diagrams only if
it involves terms with the summation over pairs� Thus� for example H	p�q

m�n
 	 H � On the
other hand since the second term involves summation over pairs E	p�q

m�n
 �	 E� Indeed� in
E 	 d�	 t� n� p� q 
 d
	 e� n� t� p 
 the index p 	and not q
 is distinguished with respect to the sumP

p�q in the second denominator� Analogously� we get for d�	m�n� p� q 
 d
	m� e� p� g


d�	m�n� p� s 
 d
	m� s� p� g 
 ��
X
m�n

X
p

X
s

X
g

�� A	p�q
m�n


d�	m� t� p� q 
 d
	m� e� p� t 
 ��
X
m

X
t

X
p�q

X
e

�� B	p�q
m�n


��



d�	m� t� p� s 
 d
	m� s� p� t 
 ��
X
m

X
t

X
p

X
s

�� C	p�q
m�n
 	 C

and for d�	m�n� p� q 
 d
	 e� n� p� g 


d�	m�n� p� s 
 d
	 s� n� p� g 
 ��
X
m�n

X
p

X
s

X
g

�� D	p�q
m�n


d�	 t� n� p� q 
 d
	 e� n� p� t 
 ��
X
t

X
n

X
p�q

X
e

�� E

d�	 t� n� p� s 
 d
	 s� n� p� t 
 ��
X
t

X
n

X
p

X
s

�� H

All the remaining terms may be obtained by joining in all possible manners the 	not singly
occupied
 vertices and applying the exchange of indices m � n and p � q� Only the terms
non�equivalent to any other previously obtained have to be included� In the alphabetical order
we get �rst � terms from A and from B as well� Notice that the diagrams F and G arise from
A and B respectively absorbing two additional terms in both cases � they are distinguished in
order to illustrate how the new terms may arise by joining the respective vertices� Then we get

 terms 	� independent
 from C� � 	
 independent
 from D and E as well� � 	
 independent

from F and G and 
 	� independent
 from H �

Some examples of equivalent terms are�

A	m ! n
 	 D	m ! n
# A	g ! q
 	 F

A	m ! n� g ! q
 	 A	m ! n� g ! q
	p�q
m�n
 	 F 	m ! n
	p�q

m�n
 	 F 	m ! n
 	 D	m ! n� g ! q


F 	p�q
m�n
 	 F # G	p�q

m�n
 	 G

All the distinct FTOS terms in the S� expression are explicitly given in Table ����

Table ���� FTOS terms in S�

S�	FTOS
 !

d�	m�n� s� q 
 d
	 s� n� g� q 
 � d�	m�m� s� q 
 d
	 s�m� g� q 
 � d�	m�n� s� q 
 d
	m� s� g� q 
 �

d�	 t� n� p� q 
 d
	 e� n� t� q 
 � d�	 t� n� p� p 
 d
	 e� n� t� p 
 � d�	 t� n� p� q 
 d
	 e� n� p� t 
 �

d�	 t� n� s� q 
 d
	 s� n� t� q 
 � d�	 t� n� p� s 
 d
	 s� n� p� t 
 �

d�	m�n� p� s 
 d
	 s� n� p� g 
 � d�	m�m� p� s 
 d
	 s�m� p� g
 � d�	m�n� p� s 
 d
	m� s� p� g 
 �

d�	m�n� s� q 
 d
	 s� n� q� q 
 � d�	m�m� s� q 
 d
	 s�m� q� q 
 � d�	m�n� s� q 
 d
	m� s� q� q 
 �

d�	m� t� p� q 
 d
	m� e� t� q 
 � d�	m� t� p� p 
 d
	m� e� t� p 
 � d�	m� t� p� q 
 d
	m� e� p� t 
 �

d�	 t� n� p� q 
 d
	n� n� t� q 
 � d�	 t� n� p� p 
 d
	n� n� t� p 
 � d�	 t� n� p� q 
 d
	n� n� p� t 


In contradistinction to the case of doubly excited con�gurations one gets only a few terms
in case of one singly excited and another doubly excited con�gurations� As a matter of fact the

��



FTOS terms arise only if those con�gurations are doubly excited relatively to each other� They
may be obtained from the D and E diagrams while removing the g and e vertices respectively�
Thus we have only four such terms�

All the distinct chains of indices associated with appropriate summation schemes are gathered
in the Appendix � see Table ��
� When all chains of the di�erent indices 	and thus of the
replacement operators
 are uniquely de�ned one may use the commutations rules 	���
 to make
those chains circular� Substituting the de�nitions of all quantities involved one gets an expression
in terms of sums over orbital indices with some chains of the replacement operators�

����� Factorizations

The most straightforward strategy would be now to extract all possible circular chains of the
replacement operators and to evaluate for all the di�erent occupations schemes the corresponding
spin integrals� This simple approach leads however to a large number of �nal spin integrals that
have to be considered� Moreover these integrals would involve long cycles and require signi�cant
e�ort for the computation of the representation matrices� In the following we shall demonstrate
how to reduce complexity of the above direct approach by means of various conveniently chosen
intermediate states and resulting factorizations of the spin integrals�

Let us consider the �rst term in the expression 	����
 for S� which we shall denote S�2��
expanding explicitly the second and the third "B� operators

S�2� !
X
m
n

X
p
q

Dmnpq
� h�j "Bmnpq

� jpqmnihpqmnjAj�i 	����


where using ��xy ! �� �xy and ���xywz ! �	�xy � �wz


A ! 


��
pqmn

X
g

Dmngg
� 	pgjqg
	gmjgn
 "Epg

"Eqg
"Egm

"Egn �
X
g�h

Dmngh
� B 	���



B ! 	pgjqh
	gmjhn
 "Epg
"Eqh

"Egm
"Ehn � ��mn 	pgjqh
	gnjhm
 "Epg

"Eqh
"Egn

"Ehm �

� ��pq	phjqg
	gmjhn
 "Eph
"Eqg

"Egm
"Ehn � ��mn�

�
pq	phjqg
	gnjhm
 "Eph

"Eqg
"Egn

"Ehm

One has to distinguish in the above expression di�erent repetitions of indices� as speci�ed in
Table ���� As an example we may �rst expand explicitly the term involving the second chain of
A for n �! m and q �! p which isX

m�n

X
p�q

X
g�h

Dmnpq
� Dmngh

� 	pgjqh
	gmjhn
h�j "Bmnpq
�

"Epg
"Eqh

"Egm
"Ehnj�i 	����


where according to the de�nition of "Bmnpq
� the integral splits in two products of the two�electron

orbital integrals and spin integrals

h�j "Bmnpq
�

"Epg
"Eqh

"Egm
"Ehnj�i !

	mpjnq
h�j "Emp
"Enq

"Epg
"Eqh

"Egm
"Ehnj�i� 	mqjnp
h�j "Emq

"Enp
"Epg

"Eqh
"Egm

"Ehnj�i 	����


��



All the indices involved in the de�nition of the above spin integrals are di�erent and we may
transform them into integrals with circular chains� The results are

h�j "Emp
"Enq

"Epg
"Eqh

"Egm
"Ehnj�i ! h�jEmpgmEnqhnj�i 	����


and respectively

h�j "Emq
"Enp

"Epg
"Eqh

"Egm
"Ehnj�i ! h�jEmqhnpgm � Emqhpgmj�i 	����


The above expressions� which are not so simple in general case� may be generated automatically
using special function written for this purpose in the Maple language� It is a part of the general
program for evaluation of the matrix elements appearing in the Sup�CI method� The Maple
code of this function is given in the Appendix since it has potentially wider applications�

The integrals in eqs 	����
� 	����
 are quite complicated� Nevertheless the main problem is
associated with the large number of possible occupation schemes that have to be considered� For
each distinct summation scheme de�ned by a certain contraction and certain repetitive occurring
of indices we have to take into account all partial sums involving di�erent occupation schemes
separately� Otherwise the spin integrals could not be evaluated using the technique described
previously�

We have three pairs of the summation indices in the case considered above� for which the
possible occupations are�

m� n � 	
� 

# 	
� �
# 	�� �


p� q# g� h � 	�� �
# 	�� �
# 	�� �
 	����


The assumed order of orbital indices is the following� �rst the doubly occupied indices� then
the singly occupied and the unoccupied ones� which are later than the singly occupied� Thus�
from the expression 	����
 we get 
� partial sums that have to be separately treated since they
involve integrals with di�erent indices being doubly or singly occupied or unoccupied� These
sums run certainly over the respective subsets of all indices e�g� the occupations 	
� 

	�� �
	�� �

are taken into account through the partial sumX

i�j

X
a�b

X
c�d

� � � 	����


where according to our convention i� j designate doubly occupied indices and a� b� c� d unoccupied
indices respectively�

Consider now another extreme case when m ! n� p ! q� g ! h and the associated chain of
operators is�

�



h�j "Emp

"Emp
"Epg

"Epg
"Egm

"Egmj�i 	����


Making it circular we get

�



h�jEmpgmEmpgm � EmpgmEgpg � EmpgmEmgm � EmpgmEmpm � 
EmpgmEpgp � 
Empgmj�i 	����


The number of possible occupation schemes is however equal to one in this case�

��



The total number of partial summations that have to be extracted is equal to 
��
����� !
��� They arise as follows� 
� terms for all indices di�erent� � terms for each set of six indices
with one pair of equal indices and all the remaining being di�erent e�g� m ! m� p � q� g � h
	� 
 � ! 
�
� � terms for each set with two pairs of equal indices 	� 
 � ! �
 and � term for three
pairs of equal indices� Similarly one gets �� partial summations that has to be extracted from
the second general contraction scheme in the expression 	����
 for S�X

m
n

X
p
q

X
e
f

� � � 	����


For the third contraction scheme X
m
n

X
p
q

X
e

X
g

� � � 	���



situation is more complicated since as we have seen some additional repetitions appear 	e�g�
of the FTOS type
� Despite the fact that some repetitions occur and the number of possible
occupation schemes is limited the total number of the resulting partial summation that have
to be separately considered is unfortunately large because of large number of such additional
terms� While excluding these additional repetitions 	i�e� assuming that e �! g and both e and
g are not equal to any other summation index
 one gets again �� partial summations� When
m � n� p � q the possible occupations are

m� n � 	
� 

# 	
� �
# 	�� �


p� q � 	�� �
# 	�� �
# 	�� �


e� g � 	
� �
# 	
� �
# 	�� �
# 	�� �
 	����


giving �� partial summations� For m ! n� p � q and m � n� p ! q one gets �
 summations in
each case and for m ! n� p ! q there are � summations�

There are �ve 	one with all indices �xed
 additional summation schemes with associated
chains of operators when relaxing constraints for the summation indices e and g � see Table ����
They are the following

d�	m�n� p� q 
 �d
	n� n� g� q 
 � d
	 e� n� q� q 
 � d
	n� n� q� q 
 �

d�	m�m� p� q 
 d
	 e�m� q� q 


d�	m�n� p� p 
 d
	n� n� g� p 
 	����


One may easily check that they generate respectively� ��� ��� �� �
 and �
 partial summations�
One may also verify that 
� additional contractions with repetitive occurring of singly occupied
indices of the FTOS type generate �� partial summations� Thus �nally S� generates as many
as ��
������ ! ��
 partial summations in the direct approach described above� Fortunately�
as we have seen the number of FTOS and other additional terms is large in the case of S� only�
and all other terms give rise to a small number of partial summations�

There is however an alternative solution to the �direct approach� described above� which
allows for signi�cant reduction of the number of di�erent partial summations that have to be

��



separately considered� Introducing two ghost orbitals a� b 	na ! nb ! � for every function
corresponding to j�i
 one may write down the identity�

"Eij ! "Eia
"Eaj 	����


Let us come back to the expression for S�2�� Using eq� 	����
 one may shift g� h indices to
gather them in every chain of the type "Epg

"Eqh
"Egn

"Ehm� For example

"Epg
"Eqg

"Egm
"Egn ! "Epa

"Eag
"Eqb

"Ebg
"Ega

"Eam
"Egb

"Ebn ! "Epa
"Eqb

"Eag
"Ebg

"Ega
"Egb

"Eam
"Ebn 	����


Inserting then identity operators as speci�ed below one gets

hpqmnj "Epg
"Eqg

"Egm
"Egnj�i ! hpqmnj "Epa

"Eqb
"� "Eag

"Ebg
"Ega

"Egb
"� "Eam

"Ebnj�i !
! hpqmnj "Epa

"Eqbjabmnihabmnj "Eag
"Ebg

"Ega
"Egbjabmnihabmnj "Eam

"Ebnj�i !
! hpqmnj "Epa

"Eqb
"Eam

"Ebnj�ihabmnj "Eag
"Ebg

"Ega
"Egbjabmni 	����


provided that all functions associated with a given con�guration are taken into account�

From the above follows that

S�2� !
X
m
n

X
p
q

Dmnpq
� f

h�j "Bmnpq
�

"Epa
"Eqb

"Eam
"Ebnj�i � f 



��
pqmn

X
g

Dmngg
� 	pgjqg
	gmjgn
h��j "Eag

"Ebg
"Ega

"Egbj��i�

�
X
g�h

Dmngh
� �	pgjqh
	gmjhn
h��j "Eag

"Ebh
"Ega

"Ehbj��i���pq	phjqg
	gmjhn
h��j "Eah
"Ebg

"Ega
"Ehbj��i � g�

�h�j "Bmnpq
�

"Epa
"Eqb

"Ean
"Ebmj�i��mn �

X
g�h

Dmngh
� �	pgjqh
	gnjhm
h��j "Eag

"Ebh
"Ega

"Ehbj��i�

���pq	phjqg
	gnjhm
h��j "Eah
"Ebg

"Ega
"Ehbj��i � g 	����


where j��i ! jabmni�
Since the integrals withm�n� p� q and g� h indices involved are separated one may signi�cantly

simplify evaluation of the S�2� term� Notice that in all di�erent products of orbital and spin
integrals the terms resulting from integrals of the type h�j "Bmnpq

�
"Epa

"Eqb
"Ean

"Ebmj�i� de�ned by
the occupation of m�n� p� q indices only� are multiplied by a factor which involves summation
over g � h and one of the following spin integrals

h��j "Eah
"Ebg

"Ega
"Ehbj��i# h��j "Eag

"Ebh
"Ega

"Ehbj��i# h��j "Eag
"Ebg

"Ega
"Egbj��i 	����


which are equivalent to

h��jEahbga� Eahgaj��i ! A# h��jEagaEbhbj��i ! B# h��jEagaEbgb � Eagba� Eagaj��i ! C 	����


�




respectively� Because na ! nb ! � in j��i we have � possible occupation schemes in case of A
and B with the corresponding values of the integrals�

ng� nh A B

�� � ha� bi �
�� � ha� bi� ha� b� gi � � ha� gi
�� � 	� � ha� hi
	�� ha� gi
ha� bi 	� � ha� gi
	�� hb� hi


Let Ai� Bi denote the value from the ith row of this table� Notice that for instance A� may
be rewritten as 	� � ha� ti
	� � ha� si
ha� bi since in this case both g and h are singly occupied
indices 	g 	 s� h 	 t
� There is only one possible occupation scheme in case of the third integral
C� namely ng ! � and therefore g 	 c where c denotes unoccupied index� Thus

C ! h��jEaaEbb � Eaba � Eaaj��i ! � � ha� bi 	����


In light of the above it is clear that we may separately extract four partial summations from
the sum over pair g � h and evaluate easily the spin integrals A� B or C playing then a role of
a numerical factor in each partial sum� Thus� the expression for S�2� 	����
 reads

S�2� !
X
m
n

X
p
q

Dmnpq
� h�j "Bmnpq

�
"Epa

"Eqb
"Eam

"Ebnj�i �

� f 


��
pqmn

X
c

Dmncc
� 	pcjqc
	cmjcn
C�

�
X
c�d

Dmncd
� �	pcjqd
	cmjdn
B�� ��pq	pdjqc
	cmjdn
A�� �

�
X
s

X
d

Dmnsh
� �	psjqd
	smjdn
B�� ��pq	pdjqs
	smjdn
A�� �

�
X
s�t

Dmnst
� �	psjqt
	smjtn
B� � ��pq	ptjqs
	smjtn
A��g� R 	���



where R designates the remaining terms which may be reduced in the same way�
Now� we may separately consider di�erent occupations of the indices m�n� p� q� We shall

illustrate how to extract the subsequent partial summations using as an example the �rst of
two di�erent integrals of the type h�j "Bmnpq

�
"Epa

"Eqb
"Ean

"Ebmj�i appearing in eq� 	����
� Let Imnpq

denote Imnpq !
P

m
n
P

p
qh�j "Bmnpq
�

"Epa
"Eqb

"Eam
"Ebnj�i� Four cases have to be distinguished

generating ��!������� separate summations�
�� m ! n ! i# p ! q ! c

This certainly induces only one partial summation

I iicc !
X
i

X
c

�



	icjic
h�j "Eic

"Eic
"Eca

"Ecb
"Eai

"Ebij�i !
X
i

X
c

�



	icjic
� �


� 	��
 m ! n ! i# p � q 	 m � n# p ! q ! c respectively

Here occupation of one pair of indices is speci�ed and three di�erent partial summations 	in both
cases
 arise�

P
i

P
c�d#

P
i

P
s

P
d and

P
i

P
s�t 	

P
i�j

P
c#
P

i

P
s

P
c and

P
s�t

P
c respectively
�

Notice that once the distinct chains with m ! n or p ! q are speci�ed we may gather terms

��



corresponding to partial summations
P

i

P
s

P
d and

P
i

P
s

P
c� We skip the explicit forms of

the integrals involved�

�� m � n# p � q
Nine partial summations arise with integrals that may be easily derived from the general formula

Imnpq ! 	mpjnq
h�j "Emp
"Enq

"Epa
"Eqb

"Eam
"Ebnj�i� 	mqjnp
h�j "Emq

"Enp
"Epa

"Eqb
"Eam

"Ebnj�i !
! 	mpjnq
� hEmpamEnqbni� 	mqjnp
� hEmqbnpam � Emqbpami !
! 	mpjnq
� hEmpmEnqni� 	mqjnp
� hEmqnpm � Emqpmi 	����


These partial summations are�X
i�j

X
s�t

#
X
i�j

X
s

X
d

#
X
i�j

X
c�dX

i

X
s

X
t�u

#
X
i

X
s

X
t

X
d

#
X
i

X
s

X
c�dX

s�t

X
u�w

#
X
s�t

X
u

X
d

#
X
s�t

X
c�d

	����


where the summations over subsequent singly occupied indices are subject to the following
restrictions w �! s� t# u �! s� t# t �! s�

The complexity of the problem decreases when using the factorizations of the type of eq�
	����
� Instead of �� partial summations� implied by the di�erent combinations of the occupation
numbers for the orbitals m�n� p� q� g� h� with di�erent spin integrals to evaluate one can consider
only �� partial summations for the indices m�n� p� q and then � summation for the pair g� h�
Moreover� thanks to factorization the longest chain has only � indices Estuws instead of �� Similar
reduction of complexity may be achieved by various factorizations for all summations and spin
integrals considered here�

Recall that the second general contraction scheme in S� 	see 	����

 which shall be denoted
S�2� has the following form

S�2� !
X
m
n

X
p
q

Dmnpq
� h�j "Bmnpq

� jpqmnihpqmnjAj�i 	����


where the quantity A is de�ned as

A ! 


��
pqmn

X
e

Deepq
� 	emjen
	pejqe
 "Eem

"Een
"Epe

"Eqe �
X
e�f

Defpq
� B 	����


B ! 	emjfn
	pejqf
 "Eem
"Efn

"Epe
"Eqf � ��mn 	enjfm
	pejqf
 "Een

"Efm
"Epe

"Eqf �

� ��pq 	emjfn
	pf jqe
 "Eem
"Efn

"Epf
"Eqe � ��mn�

�
pq 	enjfm
	pf jqe
 "Een

"Efm
"Epf

"Eqe

Consider now as an example the following termX
m
n

X
p
q

Dmnpq
� h�j "Bmnpq

� jpqmnihpqmnj
X
e�f

Defpq
� 	emjfn
	pejqf
 "Eem

"Efn
"Epe

"Eqf j�i 	����


��



Inserting again two ghost orbitals a and b and applying the commutation rules 	���
 to gather
indices m�n� p� q and e� f we get

"Eem
"Efn

"Epe
"Eqf ! "Eea

"Eam
"Efb

"Ebn
"Epa

"Eae
"Eqb

"Ebf !

! "Epa
"Eqb

"Eea
"Efb

"Eae
"Ebf

"Ebn
"Eam � A�B � C 	����


where

A ! "Epm
"Eqb

"Eea
"Efb

"Eae
"Ebf

"Ebn 	����


B ! "Epa
"Eea

"Efb
"Eae

"Ebf
"Eqn

"Eam 	����


C ! "Epm
"Eea

"Efb
"Eae

"Ebf
"Eqn 	����


Let L designate the longest chain in eq� 	����
 i�e� L ! "Epa
"Eqb

"Eea
"Efb

"Eae
"Ebf

"Ebn
"Eam� Inserting

then identity operators and retaining the non�vanishing projections only one gets

hpqmnjLj�i ! hpqmnj "Epa
"Eqbjabmnihabmnj "Eea

"Efb
"Eae

"Ebf jabmnihabmnj "Eam
"Ebnj�i !

! hpqmnj "Epa
"Eqb

"Eam
"Ebnj�ihabmnj "Eea

"Efb
"Eae

"Ebf jabmni 	���



hpqmnjAj�i ! hpqmnj "Epm
"Eqbjbnihbnj "Eea

"Efb
"Eae

"Ebf jbnihbnj "Ebnj�i !
! hpqmnj "Epm

"Eqb
"Ebnj�ihbnj "Eea

"Efb
"Eae

"Ebf jbni 	����


hpqmnjBj�i ! hpqmnj "Epajaqmnihaqmnj "Eea
"Efb

"Eae
"Ebf jaqmnihaqmnj "Eqn

"Eamj�i !
! hpqmnj "Epa

"Eqn
"Eamj�ihaqmnj "Eea

"Efb
"Eae

"Ebf jaqmni 	����


hpqmnjCj�i ! hpqmnj "Epmjqnihqnj "Eea
"Efb

"Eae
"Ebf jqnihqnj "Eqnj�i !

! hpqmnj "Epm
"Eqnj�ihqnj "Eea

"Efb
"Eae

"Ebf jqni 	����


Although the number of the resulting spin integrals involving the separate pair of indices e� f
is larger than for S�2� their structure is very simple for na ! � or,and nb ! � in a given
j��i� Finally� again only �� partial summations appear involving separately treated � partial
summations for pair e� f �

Let us consider now as the last example factorization of the third term in expression for S�
	����
� namely the term associated with the general contractionX

m
n

X
p
q

X
e

X
g

� � � 	����


As previously we may demonstrate that the pair e� g may be separately treated introducing
proper intermediate projections� The chains that have to be considered are now of the type

h�j "Bmnpq
� jpqmnihpqmnj "Eem

"Epg
"Ege

"Eqnj�i 	����


This time the ghost orbitals are inserted as follows

"Eem
"Epg

"Ege
"Eqn ! "Eea

"Eam
"Epa

"Eag
"Egb

"Ebe
"Eqn !

! "Epa
"Eea

"Eag
"Egb

"Ebe
"Eam

"Eqn � A 	����


��



where
A ! "Eea

"Eag
"Egb

"Ebe
"Epm

"Eqn 	����


Thus� inserting the intermediate projections one gets

hpqmnj "Epa
"Eea

"Eag
"Egb

"Ebe
"Eam

"Eqnj�i ! hpqmnj "Epajaqmnihaqmnj "Eea
"Eag

"Egb
"Ebejaqmnihaqmnj "Eam

"Eqnj�i !

! hpqmnj "Epa
"Eam

"Eqnj�ihaqmnj "Eea
"Eag

"Egb
"Ebejaqmni 	�����


hpqmnjAj�i ! hpqmnj "Eea
"Eag

"Egb
"Ebejpqmnihpqmnj "Epm

"Eqnj�i !
! hpqmnj "Epm

"Eqnj�ihpqmnj "Eea
"Eag

"Egb
"Ebejpqmni 	�����


Let us �nally remark that the above technique may be mechanized� One can easily specify
which indices should be gathered� Then� using the commutations rules one gets the desired
chains with chosen indices separated� A few rules� except for presented above� for inserting the
ghost orbitals depending on the case� are su�cient� All other terms 	i�e� not only those included
in S�
 may also be factorized in a similar way� Nevertheless� from the computational point of
view� one may gain little when factorizing terms of complexity lower than n��

����� Non�diagonal elements

In the following subsection we shall brie�y discuss the evaluation of expressions for the matrix
elements in the non�diagonal 	in the sense de�ned in Sec� ���
 cases� As displayed in Table ���
the di�erent types of the non�diagonal matrix elements in the third order Sup�CI are

compl� type

� n
 H�I�R��� # S�R��R��� # H�R��R������
�����

n
 H�R��R������

n� H�R��R������

The most complicated type i�e� H�R��R������ involves ��fold summation� All these matrix
elements may be derived using the same machinery as in the diagonal cases� Only minor revisions
are necessary provided that one is able to transform evaluation of the general non�diagonal spin
integrals into evaluation of diagonal integrals considered previously�

The reduction of the non�diagonal expressions to the diagonal ones is based on the following
observation� Let C denote a certain chain of replacement operators� Then we may consider
evaluation of the integral

h�jCjpmi 	����



There is a number of spin functions associated with the con�guration jpmi 	de�ned with respect
to certain con�guration j�i
� Since "Epm generates in general di�erent set of functions when
acting on j�i ���� we cannot simply replace h�jCjpmi by h�jC "Epmj�i� Relatively simple solution
to this problem may however be found� Acting with "Epm

"Emp on jpmi and inserting identity one
gets

"Epm
"Empjpmi ! "Epm

"� "Empjpmi ! h�j "Empjpmi "Epmj�i 	�����


��



Inserting another identity

"� "Epm
"Empjpmi ! hpmj "Epm

"Empjpmijpmi ! h�j "Empjpmi "Epmj�i 	�����


Let us denote now the relevant spin integrals as A	�
 ! hpmj "Epm
"Empjpmi and B	�
 ! h�j "Empjpmi�

Recall that these integrals are in fact 	representation
 matrices of the dimensions determined
by the number of spin functions associated with a given orbital con�guration� Since A	�
 is a
square matrix it can be reverted� Thus� we �nally get that

jpmi ! A	�
��B	�
 "Epmj�i 	�����


where the right hand side is certainly a vector of the same dimension as the left hand side
vector� The generalization of the above trick to doubly excited functions jpqmni and higher excited
con�gurations is straightforward� At most sextuply excited functions 	relatively to each other

may appear in the third order method� Thus� the longest non�diagonal integral involve six
replacement operators

B	�
 ! h�j "Emp � � � "Enqjp���qm���ni 	�����


The non�diagonal elements H�R��R����i� correspond to a pair of reference functions j�i and
j��	i
i which are i�fold excited with respect to each other� The number of reference functions is
limited and their relative structure may be used to evaluate all integrals of the type B	i
 and
tabulate them in the simple loop over pairs of references in the preliminary step of the procedure�
The integrals B	i
 are simple 	all occupations are �xed
 and may be evaluated directly from the
de�nition or in another convenient way� Thus� the problem of evaluation of general non�diagonal
integrals reduces by means of 	�����
 to evaluation of a limited number of simple integrals of
the type 	�����
�

We may specify now how to modify the expressions for diagonal type of matrix elements
considered here in order to extract the formulas in non�diagonal cases� Let us turn to matrix
elements of the type ND ! H�I�R����i�� In this case i ! �� 
� �� �� Dropping for simplicity the
denominator associated with R� we may write more explicitly

ND !
X

K�SD���� K�SD����

h�j "HjKihKj "Hj��i 	�����


where j��i is at most quadruply excited with respect to j�i� Let the chain of replacement
operators corresponding to the con�guration j��i de�ned with respect to j�i be denoted by
C	��
� For example C	jpmi
 ! "Epm� The relevant matrices shall be denoted by B	��
 and A	��
�
In the above notation

ND !
X

K�SD���� K�SD����

A	��
��B	��
h�j "HjKihKj "HC	��
j�i 	�����


Thus� for a rectangular problem we may �rst �nd the square diagonal representation matrix 	or
integral as it has been called throughout above considerations
 D and then transform it into a
rectangular one by the matrix multiplication A��BD� This means that it is su�cient to consider
diagonal integrals D�

��



In case of matrix elements of ND type we have speci�cally four cases that have to be taken
into account� When j��i is quadruply excited with respect to j�i summation overK reduces to ��
doubly excited con�gurations which involve two pairs of indices de�ning j��i with respect to j�i�
If j��i is triply excited with respect to j�i only one pair and one index in the relative de�nition
of j��i are �xed� Therefore� except for � singly excited con�gurations and � doubly excited
with all indices involved in the relative de�nition of j��i gathered in two short summations� two
other summations over one free index 	belonging to the set of occupied or unoccupied indices
respectively
 and the other three indices involved in the relative de�nition of j��i will appear for
the doubly excited con�gurations�

When j��i is doubly excited with respect to j�i we may extract the di�erent summations
schemes and the corresponding chains of operators from the formula for the diagonal matrix
element derived previously

D !
X

L�SD���

X
K�SD���� K�SD�L�

h�j "HjLihLj "HjKihKj "Hj�i 	�����


Notice that removing the �rst summation i�e� the �rst denominator in the CSC convention
employed in the previous section and the �rst integral h�j "HjLi we getX

K�SD���� K�SD�L�

hLj "HjKihKj "Hj�i 	�����


which is equivalent to ND if we �x the vacuum level at j��i and if we insert C	��
 and multiply
by A	��
��B	��
� This means that simply removing the �rst denominator and the �rst integral
i�e� involving the �rst B� operator in the diagonal type of formulas one gets the formula for
ND�

Consider now another type of non�diagonal elements� which is of complexity n� if �� is singly
excited with respect to j�iX

L�SD���

X
K�SD����� K�SD�L�

h�j "HjLihLj "HjKihKj "Hj��i 	�����


Formulas for such matrix elements may be also derived by simple modi�cations of the diagonal
formulas� As previously� we have to insert the corresponding chain C	��
 and multiply by
A	��
��B	��
� However� instead of removing some parts of the diagonal formulas we shall only
restrict summations occurring in the diagonal case this time� Let for example j��i be a doubly
excited with respect to j�i con�guration� Then� the summation over con�gurations K subject
in general to conditions K � SD	��
# K � SD	L
 may be separated into the following cases�

�� K � SD	�
 � this part may be extracted from the diagonal formula by restricting the
summation over K� de�ned in CSC by second denominator� to con�gurations involving at least
two indices of j��i when K � D	�
 and at least one index of j��i when K � S	�
� Notice
that since we had only two free summation indices in K � SD	�
# K � L	�
 in the diagonal
formula there are no longer free indices and ��fold summation reduces to ��fold summation with
di�erent chains of operator depending on the actual contraction of indices between K � D	�

and j��i � D	�
� In case of singles there was one free index in the diagonal case which is now
absorbed as well i�e� it becomes equal to one of indices de�ning j��i�

��




� K � TQ	�
 � since K � SD	��
 and in turn j��i � D	�
 the relative de�nition of K
with respect to j�i must involve two pairs of indices de�ning j��i with respect to j�i� Thus we
have only one pair 	for K � T 	�

 or two pairs 	for K � Q	�

 of not �xed indices with the
contractions resulting from the restriction K � SD	L
� Considering doubles only i�e� when
K � Q	�
# K � D	��
 and L � D	�
 one has� if L and j��i have no indices in common L can
contribute to 	�����
 only through K being composition of j��i and L� if L and j��i have some
indices in common L contributes to 	�����
 through con�gurations K involving the indices of L
that are not in common� In consequence all the summations are at most ��fold�

The above restrictions may be easily taken into account in the procedure for generating all
di�erent contractions in the diagonal case� All non�diagonal matrix elements may be treated
according to the above presented general prescription� One should remark that although the
resulting chains of replacement operator are in general longer� the subsets of not �xed indices
are smaller and in fact these integrals are much simpler than the integrals considered previously�
corresponding to the diagonal type of matrix elements�

��� Discussion

As we have seen the evaluation of general open shell third order Sup�CI formulas is quite com�
plicated� The number of terms that arise is large and their structure may be quite complex�
Developing the Sup�CI 	Fast CI in the original work
 method for a limited case of several singlet
open shell functions Bendazzoli et� al� ��
� had to consider �� MBPT diagrams� For an arbi�
trary reference functions the problem is certainly more complex� Nevertheless� one can manage
this problem using symbolic algebra program based on the algorithm described in this chapter�
Various intermediate projections may decrease the number of di�erent partial summation that
have to be considered� Graphical techniques may simplify evaluation of some terms�

Additional e�ort is however required to develop further the Maple code for generating Sup�CI
matrix elements� First of all one should look for a possible occurring of equivalent summation
schemes to gather more terms together and reduce the number of separate terms� This is crucial
for an e�cient implementation of these formulas�

It seems that the algebra of generators ����� described in the �rst part of the chapter and
then used to evaluate the relevant matrix elements� would not be useful in orders higher than
third� This is because this technique requires explicit extraction of di�erent occupation schemes
to �nd the spin integrals� The number of possible occupation schemes may be very large in
higher orders in general open shell case� One could certainly restrict oneself and consider only
reference functions of certain simpli�ed structure� The other possible direction of the future
development is to include only some higher order e�ects� which would not require signi�cant
e�ort� Such possibility has been already suggested in Chap� 
�

��
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Part III

Size�consistent modi�cations of the

CI method

��





Chapter �

Dressing of CI matrices as a bridge

between CI and CC methods

��� Introductory notes

The Coupled Cluster approach to the correlation problem ���� o�ers a rigorous and elegant
solution� Assuming the exponential parametrization of the wave operator

"% ! e
�T 	���


one obtains immediately for a system composed of two subsystems A and B a multiplicatively
separable wave function provided that the cluster operator is additively separable

"TA���B ! "TA � "TB 	��



and a separable zeroth order description is used

j�A���Bi ! j�Aij�Bi 	���


Assuming also that the molecular orbitals are localized either on A or on B one avoids problems
with antisymmetry� As a result of 	��

 and 	���
 one obtains additively separable energy and
the CC method is size�consistent�

EA���B ! h�A���Bj	 "HA � "HB
e
TA���B j�A���Bi !

! h�Aj "HAe
TA j�Ai� h�Bj "HBe

TB j�Bi ! EA �EB 	���


The additivity of cluster operators 	��

� even truncated at arbitrary level of excitations� is
insured by the connectedness of the "T operator� the condition stating that in the de�nition of "T

"T ! "T� � "T� � � � �� "TN 	���


there are no disconnected terms i�e� parts which could be resolved into products of two or more
lower "Tk operators ����� At separation it insures that the cross terms� involving excitations on
both systems� will vanish and the eq� 	��

 holds�

��



This special feature of the CC method is probably even more transparent when associated
with the MBPT linked diagram theorem ����� Instead of eq� 	��
�
 one may directly project the
Sch�odinger equation

	 "H � h��j "Hj��i
j�i ! (Ej�i 	���


against j��i and excited determinants� obtaining an alternative set of equations for the energy
and amplitudes� While restricted to "T� and "T� they have the following form

(E ! h��j "HN	� � "T� �
�



"T �
� � "T�
j��i 	���


tam(E ! hamj "HN	� � "T� �
�



"T �
� � "T� � "T� "T� �

�

�$
"T �
� 
j��i 	���


	tabmn� tamt
b
n� tbmt

a
n
(E ! habmnj "HN	�� "T��

�



"T �
� �

"T�� "T� "T��
�

�$
"T �
� �

�



"T �
�
"T��

�



"T �
� �

�

�$
"T 

� 
j��i
	���


which is equivalent to that of the explicitly connected equations because all disconnected terms
	i�e� having a disconnected diagramatic form
 on the right hand sides of eqs� 	���
 and 	���
�
occuring due to quadratic terms of the type "T �

� � will exactly cancell the energy dependent left
hand sides �
���

For any arbitrarily chosen level of truncation of the cluster operator "T the strict cancellation
of the terms de�ned above may no longer take place� but the connected cluster theorem says
that only connected terms 	i�e� having a connected diagrammatic representation
 need to be
considered� implying that only linked terms will appear in the expression for the energy and
thus �nally insuring the size�extensivity �
���

The relevant terminology might be confusing� Here the convention used by Lindgren ����
is employed� The terms linked and unlinked refer to closed energy diagrams whereas terms
connected and disconnected refer to diagrammatic representation of operators 	e�g� of the wave
operator
 in the second quantization language� Thus� by an unlinked diagram one means a
diagram which does contain a closed disconnected part� and by a disconnected one a diagram
which has open disconnected part�

In contrast the CI linear expansion does not insure the size�extensivity� when truncated at
some level� For a system of N non�interacting H� molecules one obtains non�linear dependence
of the energy with respect to N 	in the limit N � � the energy is proportional to

p
N
 �
���

By projections of eq� 	����
 one is led to the following set of equations for the energy and
CI coe�cients 	when limiting the expansion to the singly and doubly excitated determinants
"%CI ! � � "C� � "C�


(E ! h��j "HN	� � "C� � "C�
j��i 	����


cam(E ! hai j "HN	� � "C� � "C�
j��i 	����


cabmn(E ! habij j "HN	� � "C� � "C�
j��i 	���



Because� as was pointed out before� the left hand side terms have wrong dependence on the
number of electrons it is crucial to cancel them at least approximately to correct the improper
behavior of the CI method� Such a cancellation is only possible by implicit mixing of di�erent
categories of excitations e�g� for CID it is necessary to account for some e�ects of quadruples to

��



restore correct scaling� In fact this is what all methods that have been devised to modify the CI
method for size�extensivity do� starting from the simple a posteriori Davidson�like corrections
���� to CC type procedures such as the Quadratic Con�guration Interaction 	QCI
 method ����
���� or di�ernet CEPA type modi�cations ���� that incorporate to some extent the CC terms of
the type "T �

� and may restore strict size�extensivity�

The methods presented in this chapter certainly follow the same direction� They generally
employ the Coupled Cluster assumption saying that one can reasonably approximate the higher
excitations e�ects in terms of products of lower rank excitations and they use the fact that the
cluster assumption coupled with the exponential form of the wave function leads to a cancellation
of unlinked e�ects�

Since the CC approach has natural links with MBPT ����� the second quantization language
is the most natural for CC methods� However� since algorithms directed at CI method are
considered in this thesis and moreover� in most cases multireference schemes� the choice to use
consequently the second quantization formalism seems not to be the most fruitful� Adding some
CC derived terms to the corresponding CI matrix 	which is actually the de�nition of a dressing
of CI matrices
 may confuse readers used to the MBPT language but hopefully this shall not
become a serious obstacle in understanding this part of the thesis�

Another general remark should be also made before we go further� Recall that for size�
consistency we have to insure �rst of all the correct separation of a reference j�ABi

j�ABi rAB���� j�A���Bi ! j�Aij�Bi 	����


which is the case of a single RHF reference determinant when the molecule dissociates into
closed shell fragments or UHF reference determinant otherwise 	at least in some cases
� The
UHF introduces a spin contamination and therefore in general is not a proper choice �
�� �����

The separability of electronic states is not a trivial question� except the simplest 	and rather
rare
 case when a ground� closed shell state dissociates into two ground� closed shell states of
the fragments ����� The situation gets complicated when multireference description is inevitable�
If at least one of the dissociation products requires multireference description the model space
for AB system 	SAB
 no longer consists of a single reference function as well� and is usually
built as a proper spin and symmetry subspace of the Complete Active Space 	CAS
 i�e� a set
of all determinants obtainable by excitations of valence electrons within valence orbitals� The
active 	valence
 one�particle space is chosen to provide qualitatively correct description of the
separation into fragments ����� The last requirement may imply very large model spaces in a sense
of the model spaces occuring in the theory of e�ective Hamiltonians� Intermediate Hamiltonians
used later here impose the corresponding CI spaces as model spaces� But even keeping relatively
small complete model spaces one may face the so�called intruder states problem due to the lack
of a good energy separation between states derived from the model space states ���� ���� 	by
switching on the dynamical correlation
 and other states�

The CAS zeroth order description is separable ���� i�e� for each reference space state jmSAB
AB i

there exist subsystem states jpSAA i and jqSBB i such that

jmSA���B
A���B i ! jpSAA ijqSBB i 	����


��



where jmSA���B
A���B i is de�ned by the separation process

jmSAB
AB i rAB���� jmSA���B

A���B i 	����


Introducing the dynamical correlation one may however face convergence problems due to the
possible occurance of avoided crossings at some conformations� Thus� when we consider a given
state jmABi of the AB system� derived from its reference space counterpart jmSAB

AB i our method
may not converge at all or may �jump� to a potential curve of another 	nearly crossing
 state�
excluding anyway the correct dissociation�

In the subsequent considerations a number of various 	size�consistent
 modi�cations of CI
method shall be presented� In all these cases the size�consistency i�e� additivity of the energies
at large separation is formally veri�ed� at least for some special structure of the model spaces 	in
particular separable reference spaces are required � see next section
� I would like to stress that
this does not mean that the methods are also size�extensive� By the physically oriented de�nition
of size�consistency �

� one may escpape from the inherently MBPT linked diagram theorem and
di�culties that appear when using the MBPT language because of the self�consistent character
of the new proposals� It means however that size�extensivity 	de�ned as a lack of unlinked
terms
 is not veri�ed�

Showing that a 	projected onto a supersystem model space
 product of subsystem solutions
for a pair of subsystem states p and q is also a solution of the equations for the supersystem with
an additive eigenvalues we formally demonstrate the size�consistency� This concerns however
only the states derived from the reference space and not some arbitrary states� When tracing a
given root number k for AB problem one should remember that it may be an intruder state� for
which the demonstration is not valid and one may obtain a non�additive result for it� Another
di�culty arises in connection with the above mentioned convergence problems and possible
switching between two solutions� One should not forget about these restrictions when considering
the separability condition as implying smoth dissociation of a set of states of system AB�

We shall use the following notation in the current and three next chapters� The capital
letters I� J� � � � will designate N �electron states playing the role of reference functions� The
indices i� j� k� l shall designate many�electron states if used to specify state functions 	usually
some excitations with respect to the reference functions
� The indices m�n� p� q and a� b� c� d will
refer to occupied and virtual 	one�electron
 spin orbitals respectively� Thus consequently the
excitation operators "eabmn and "ei are de�ned as follows

"eabmnj�i ! jabmni# "eij�i ! jii 	����


When considering multireference situations in the spirit of the Hilbert space approach 	see Chap�
�
 the "ei excitation operators will be by default de�ned with respect to the vacuum given by the
reference function jIi they act on "eijIi� Otherwise� the vacuum level will be explicitly de�ned
by second subscript e�g� "eiI � In both cases such excitation operator designates the relative
excitation� which generates jii when acting on jIi�

��



��� Self�consistent state�speci	c intermediate Hamiltonians

In the theory of e�ective Hamiltonians one de�nes a small subspace of the total Hilbert space
M 
 HN of projector "PM � which is called a model space

HN ! M �MQ 	����


where MQ is a complementary space and in practice k ! dim	M
 �� dim	HN 
� The choice of
a model space corresponds to the choice of k lowest roots of the exact Schr�odinger equation

"H j�ii ! Eij�ii i ! �� � � � � k 	����


for which we want to reproduce exact eigenvalues Ei in the model space i�e� to built an e�ective

Hamiltonian "He� having the same eigenvalues when acting on projection of the exact states onto
the model space

"He�
"PM j�ii ! Ei

"PM j�ii i ! �� � � � � k 	����


Introducing the so�called wave operator "%

j�ii ! "% "PM j�ii i ! �� � � � � k 	��
�


one gets for the e�ective Hamiltonian "He� ! "PM "H "%� Using then Bloch equation 	see table below
the Fig� ���
 one may �nd the wave operator� hence the e�ective Hamiltonian and diagonalize
it in the model space to �nd desired eigenvalues ���� �����

In practice the above procedure is only applicable when we have reasonable starting approx�
imation to exact eigenstates� Thus we de�ne a set of k functions j)ii� which span the model
space M of projector "PM !

P
i������k j)iih)ij and from the formal point of view M must be cho�

sen in such a way to insure that the projections of the exact eigenstates will be non�vanishing
and lineary indepenedent ����� To obtain reasonable results those projections should be also
reasonable zeroth order approximation to the exact states�

The e�ective Hamiltonians may be safely applied only when the model and outer space are
well separated energetically ����� Otherwise they su�er from the intruder state problem� To
avoid this problem Malrieu et� al� ���� have proposed intermediate Hamiltonians� which are
e�ective Hamiltonians that are supposed to reproduce only a part of the exact eigenvalues Ei

when diagonalizing the intermediate e�ective Hamiltonian "Hint in the model space M � Tracing
only well separated roots should in principle avoid convergence problems connected with the
presence of intruders�

The outline of the intermediate Hamiltonian theory may be summarized as follows� The
model space M is divided into the so�called main model space Mm 	of the dimension l � k
 and
its orthogonal complement Mint called an intermediate model space

M ! Mm �Mint 	��
�


and then one tries to built an intermediate Hamiltonian "Hint satisfying

"Hint
"PM j�ii ! Ei

"PM j�ii i ! �� � � � � l � k 	��




��



Figure ���� E�ective Hamiltonians vs Intermediate Hamiltonians
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One may introduce a counterpart of the wave operator� denoted in the original work by "R ����
and �nd some necessary conditions that have to be satis�ed by "R� However� these cinditions are
not su�cient for a unique de�nition of "R ����� This formal drawback paradoxically may open
a way for variuos interesting proposals that would use the theory of intermediate Hamiltonians
as a general frame� say general heuristic scheme�

Various dressing procedures aiming generally at making di�erently truncated CI schemes
size�consistent have been recently proposed by the group of Toulouse ������ Some of them as
well as several new ones are presented here� They take bene�t of some degree of freedom which is
present in the theory of intermediate Hamiltonians and �x their form by introducing a dressing
operator which is supposed to account for the outer space determinants e�ects� This in turn
opens a way to very �exible procedures taking into acount CC type non�linear terms�

Modifying CI equations in the dressing procedures we shall de�ne a model space as the
corresponding CI space and then distinguishing one or a few lowest roots we shall de�ne a
proper main model space� An intermediate Hamiltonian "Hint is postulated to take the form

"Hint ! "PM 	 "H � "(
 "PM 	��
�


where the dressing operator "( is de�ned by the equation 	��


 ������ Now we may adjust the
general de�nitions to particular situations considered in this work�

In the following we shall consider a multireference space S spanned by the reference deter�
minants I � We shall also consider the determinants i which do not belong to S� obtained by
the single and double substitutions on the references� These determinants span a space s� The

��



corresponding projectors are
"PS !

X
I�S

jIihI j 	��
�


"Ps !
X
i�s

jiihij 	��
�


The determinants i may interact with one or several reference determinants 	hij "HjIi �! �
�
depending on their nature and the structure of the reference space� Hereafter the model space
will be chosen as the union M ! S � s and the associated projector will be labeled "PS�s�

For the state j�mi 	ground or excited state
 one can write its expansion in terms of the
N �electron basis fjIi� jii� j�igI�S� i�s� ���S�s

j�mi !
X
I�S

Cm
I jIi�

X
i�s

cmi jii�
X

���S�s

cm� j�i 	��
�


Now� we would like to de�ne an intermediate e�ective Hamiltonian "PS�s	 "H � "(m
 "PS�s� where
"(m is a dressing operator� such that

"PS�s	 "H � "(m
 "PS�sj�mi ! Em
"PS�sj�mi 	��
�


j�mi and Em being the exact eigenstate and eigenvalue

"H j�mi ! Emj�mi 	��
�


As usually for the intermediate e�ective Hamiltonians ����� we demand the exact energy when
acting on the projection of the exact eigenvector onto the model space� The state�speci�c
intermediate Hamiltonians are only required to give one exact root 	one�dimensional main model
space
� It should be stressed that contrary to the usual e�ective Hamiltonians the model and
the reference space are di�erent�

Inserting 	��
�
 into 	��
�
 and multiplying by hI j on the left hand side we obtainX
J�S

J ��I

HIJC
m
J � 	HII �Em
C

m
I �

X
i�s

HIic
m
i ! � 	��
�


which is the Ith row of the matrix representation of the eigenvalue problem 	��
�
� Since the
elements hI j "Hj�i ! � this equation is the same for "H and for "PS�s "H "PS�s� so that there is no
dressing to introduce in the PSHPS�s block of the matrix

"PS "(
m "PS�s ! � 	����


Multiplying 	��
�
 by hij belonging to the space of the singles and doubles� the eigenequation
becomes X

I�S

HiIC
m
I �

X
j�s

j ��i

Hijc
m
j � 	Hii �Em
c

m
i �

X
���S�s

Hi�c
m
� ! � 	����


To obtain a correct dressing one has simply to transform the last summation of the above
equation into a proper matrix element of a dressing operator and include it in one of the �rst

��



Figure ��
� Self�consistent Intermediate Hamiltonians
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three terms 	i�e� e�ectively shift the last summation to the model space
� One may for instance
de�ne a diagonal dressing ����

(m
ii ! 	

X
���S�s

Hi�c
m
� 
	c

m
i 


�� 	���



(m
ii ! � if i �! j 	����


such that "PS�s	 "H � "(m
 "PS�s has "PS�s j�mi as the eigenvector for the energy Em�
Another dressing operator is obtained assuming that one can write the coe�cients of the

outer space determinants as a sum over references

cm� !
X
J�S

cm�J 	����


Then one may de�ne a dressing of the �rst columns of the matrix ����� 	more precisely of the
PS�sHPS block


(
�m
iJ ! 	

X
���S�s

Hi�c
m
�J
	C

m
J 
�� 	����


(
�m
ij ! � 	����


The two dressings lead to a common eigenvector of "PS�s	 "H� "(m
 "PS�s and "PS�s	 "H� "(
�m
 "PS�s�

namely j*�mi ! "PS�sj�mi with the eigenvalue Em� but all other eigenstates are di�erent� It
should be emphasized that postulating di�erent forms of dressing we actually impose additional
conditions that allow to de�ne an intermediate e�ective Hamiltonian uniquely �����

The above proposal is purely academic if one does not have a reasonable evaluation of the
coe�cients cm� of the outer space determinants� Remember that these determinants are here

��



triples and quadruples with respect to at least one reference I � S and singles or doubles with
respect to some of the singles and doubles i � s�

The strategy to approximate the outer space coe�cients will be grounded on the CC as�
sumption saying that higher�body e�ects may be reasonably described in terms of two�body
	and one�body
 cluster amplitudes�

Before we go into details� let us only notice that the above de�ned dressing operators� given
in the matrix representations by eqs� 	���

 and 	����
 or by eqs� 	����
 and 	����
 may be
postulated to take an operator form

"(m ! "Ps "H "�m "PS 	����


where the operator "� generates the outer space determinants� Then one may assume that all
��s will be generated with respect to a selected reference j�i only or that they are generated
succesively with respect to all references� Certainly in both cases we may go into limit of one�
dimensional reference space when these two choices become equivalent� In the �rst case one may
thus write

"�m !
X

���S�s

�m� j�ih�j 	����


whereas in the second 	assuming 	����



"�m !
X

� ��S�s

X
I�S

�m�I j�ihI j 	����


In consistency with the matrix representations the �amplitudes� are given by

�m� !
cm�
Cm
�

and �m�I !
cm�I
Cm
I

	����


and may be exponentially factorized as in the Coupled Cluster theory�

��� CEPA method as a dressing of CI matrix

We shall leave now the deductive perspective for a while and recall the known fact that Cor�
related Electron Pair Approximation 	CEPA
 type methods ���� ���� may be formulated in a
self�consistent manner in terms of the pseudoeigenvalue problem� to use the usual CI machinery
for practical implementations ���� ��
�� In the following we shall restrict the discussion to the
CEPA	

 method �����

The simplest reasonable structure of the cluster operator leads to CCD approximation� �rst
introduced by 'Ci'zek under the name Correlated Pair Many Electron Theory 	CPMET
 �����
In the traditional formulation of CCD,CPMET method the equations for the amplitudes of
doubles are usually written in the following form ���

habmnj "Hj�i�
X
p�q

X
c�d

habmnj "Hjcdpqiccdpq �
X
p�q

pq ��mn

X
c�d

cd��ab

habmnj "Hjabcdmnpqi cabmn � c
cd
pq !

��



! E�c
ab
mn �

X
p�q

X
c�d

h�j "Hjcdpqiccdpqcabmn 	����


where cabmn � c
cd
pq denotes a sum of �� di�erent products of the coe�cients of doubles into wich a

given quadruple may be factorized with proper signs de�ned by the antisymmetry requirement
���� The above equation is certainly equivalent to eq� 	���
 if we put there "T� ! ��

Di�erent CEPA methods corresponds to di�erent approximations of the left hand side non�
linear term LN !

P
p�q

pq ��mn

P
c�d

cd ��ab
habmnj "Hjabcdmnpqi cabmn � c

cd
pq� The CEPA	

 method for instance is

de�ned by ����
LNCEPA��� ! cabmn

X
p�q

pq ��mn

X
c�d

h�j "Hjcdpqiccdpq 	���



Notice� that the restriction on the summation over virtual spin orbitals 	particles
 is released�
This is due to the de�nition of the pair energy �ij

�mn !
X
c�d

h�j "Hjcdmniccdmn 	����


which is de�ned as a sum over all excitation from a given pair m�n of occupied indices� Using
eq� 	����
 one may �nally write the equation for CEPA	

 amplitude

habmnj "Hj�i�
X
p�q

X
c�d

habmnj "Hjcdpqiccdpq ! 	E� � �mn
c
ab
mn 	����


It is clear already here that the term LNCEPA��� 	���

 is to be added to the ith line
	jii 	 jabmni
 of CID matrix to obtain an equivalent set of equations� Certainly when we start
from the pure CI coe�cients they do not satisfy such dressed equations� However the pure CI
coe�cients de�ne �rst approximation to the CC amplitudes and non�linear term LNCEPA����
At convergence of this self�consistent process one obtains the CEPA amplitudes that satisfy eqs�
	����
� Thus the CEPA	

 dressing of the CID matrix may be viewed simply as a way of solving
	by a pseudoeigenvalue formulation
 CEPA	

 equations�

In fact the pseudoeigenvalue formulation was used for solving CEPA equations in a self�
consistent manner already in the seventies ����� Let us illustrate it using as an example work
of Alrichs ��
�� Following ref� ��
� we may introduce now a matrix block notation� which may
be used to study the relationship between CEPA and CID� Let the index 	 denotes a pair of
occupied indices 	 	 mn� Then by H�� we shall denote a block vector H�� 	 	H��� � � � � � H��m

where m is equal to the number of excitations from pair 	 and by H�� a block matrix

H�� 	
�B� H���� � � � H���m

���
H�m�m

�CA
Using this notation we can rewrite the CID and CEPA	

 equations� Let the total number of
pairs will be equal to n� The CID eigenvalue problem Hc ! Ecic is equivalent to a set of coupled
matrix equations ��
��

E� H��

H�� H��

	�
�
cci�

	
� 	E� � �ci� 


�
�
cci�

	
! �

X
����n

� ���

�
�

H��c
ci
� � �ci� c

ci
�

	
	����


�




where Eci ! E� �
P

� �
ci
� # �ci� ! H��c

ci
� � The corresponding CEPA equation is di�erent by the

absence of the �wrong� term
P

� ��� ��c� and reads

�
E� H��

H�� H��

	�
�

ccepa�

	
� 	E� � �cepa� 


�
�

ccepa�

	
! �

X
����n

� ���

�
�

H��c
cepa
�

	
	����


Comparing eq� 	����
 and eq� 	����
 one immediately notices that the latter one is a result of
a diagonal dressing of CID matrix by the quantities (�� !

P
� ��� �� More precisely all diagonal

elements in every block H�� obtain one common shift (���

Thus the CEPA	

 equations in the form of 	����
 form a basis for an iterative proces�
starting from the CID equations one may evaluate the CI approximations to diagonal shifts
(ci
�� !

P
� ��� �

ci
� � solving then such dressed equations one obtains next approximation etc� At

convergence one obtains CEPA solution�

In the Alhrichs� original work the iterative process goes through a ssries of small diagonal�
izations for pair problems� One starts from IEPA approximation 	for which the left hand side
of eq� 	����
 is simply equal to zero
 and then adds the terms that couple di�erent pairs i�e�
the set of CEPA equations may be solved by a self�consistent dressing of IEPA small 	pairs
 CI
problems� For this special case such approach might be more convinient� but going beyond the
pair approximation one may no longer use it� Dressing of a total CI matrix is more universal
	although for very large CI problems one may be tempted to use again small diagonalizations
dressed in a more re�ned manner � see next section


��� Size�consistent self�consistent CI or exact CEPA method

In light of the above considerations dressing appears as a particular method of solving CEPA
equations� This is true and is interesting by itself� machinery developed for solving the CI
eigenproblem ���� is very stable even in badly degenerated situations and one may take bene�t
of that when facing convergence problems with the standard methods of solving various non�
linear CC equations�

However� reversing this logic one gains a lot of freedom� Starting from a given CI approx�
imation one may look for di�erent kinds of dressing that may restore size�extensivity or an
approximate size�extensivity� This may lead to new formal developments which are somewhere
between traditional CC and CI approximations similar 	or even superior
 in the quality but less
complex than traditional CC methods ������

Certainly the problem of adding some pertubative or non�linear CC type terms to CI equa�
tions to make such modi�ed CI method size�extensive has been considered many times for the
last two decades� Of course� doing that one looses the property of variational upper bound of
the resulting energy �
��� Satisfying one formal requirement another one is spoiled and it seems
that there is no escape from this contradiction�

The �rst proposals to make CI method approximately size�extensive were guided by a per�
tubative analysis and in the case of CISD approximately accounted for the so�called renormal�
ization term in the fourth order of MBPT which gives rise to diagrams that should be excluded

��



in the linked diagram expresion for the fourth order MBPT energy� This leads to various forms
of a posteriori 	Davidson�type
 corrections �����

Including some quadratic terms arising from "T �
� one obtains various CEPA methods �����

Adding singles and higher excitations one may consider at each level all terms that are necessary
to restore size�extensivity of the corresponding CI� The Quadratic Con�guration Interaction
	QCI
 method proposed by Pople et al ���� belongs to this family of methods� In the ref�
���� one may �nd the review of single reference �dressings� of this type� Nevertheless all these
computational schemes use traditional CCmachinery i�e� a set of non�linear equation 	comparing
to the traditional CC approximation some terms are omitted
 is solved using Reduced Linear
Equation 	RLE
 or other methods ����� It seems that except the recent e�orts of Malrieu
et� al� ���� ����� ���� ����� such trials have never been systematically studied in terms of the
pseudoeigevalue problem with the use of CI machinery and additional freedom in choosing terms
for a dressing�

In the family of dressings proposed by the Toulouse group the �rst was Size�consistent Self�
consistent Con�guration Interaction 		SC
�CI
 method ����� It will be brie�y recalled in the
remaining part of this section�

Let us �rst consider purely single reference case i�e� let the reference space S consists of
one closed shell determinant j�i only� The s space is assumed to contain all single and double
excitations from j�i and the relevant outer space determinants j�i are triples and quadruples�
Thus we shall dress single reference CISD matrix� The dressing concerns the ground state only
	it is state�speci�c dressing
� so that we shall also assume that j�i is a reasonable approximation
to the ground state� In the following the state index m will be omitted�

The diagonal dressing of eqs� 	���

 and 	����
 is employed in the ref� ����� Further� it is
assumed that the outer space determinants coe�cients may be approximated by the products
of the coe�cients of determinants belonging to s� Thus we write

c� ! cicj 	����


for j�i ! "ej"eij�i where "ej and "ei are de�ned by jji ! "ej j�i and jii ! "eij�i respectively for some
determinants i� j � s� Assumption 	����
 leads to the following form of the diagonal dressing
	���



(ii ! 	
X

���S�s

Hi�c�
	ci

�� !

X
j

�ej�ei ���

H�jcj 	����


since Hi� ! h� y"eij "Hj"ej"ei�i ! H�j � When the intermediate normalization is assumed

Ecorr !
X
j

H�jcj 	����


and the dressing of eq� 	����
 reads Ecorr�EPVi where EPVi denotes a sum over contributions
from the conjoint or Exclusion Principle Violating 	EPV
 terms

EPVi ! �
X
j

�ej�ei��

H�jcj 	����


From the practical point of view it is su�cient to calculate e�ciently the EPV contributions�

��



Restricting ourselves to double excitations in s space only we may compare the 	SC
�CID
dressing directly with that of CEPA	

 presented in the previous section� The latter one for the
ith row� jii 	 jabmni reads 	compare eq� 	���



(cepa
ii !

X
p�q

pq ��mn

X
c�d

h�j "Hjcdpqiccdpq 	����


The new dressing takes into account all EPV e�ects

(
�sc��cid
ii �(

cepa
ii ! �

X
p�q

pq ��mn

h�j "Hjabpqicabpq 	���



and therefore the 	SC
�CID method may be regarded as an exact CEPA method� As the two
dressings di�er only by EPV terms all the unlinked e�ects are removed in both cases and the
	SC
�CID method is strictly size�extensive ����� Notice also that for a two electron system

(
�sc��cid
ii vanishes� The CID is equivalent to FCI in this case and should not be dressed� Thus

the 	SC
�CID method has correct behavior in this limit similarly as the CEPA	

 method � the
di�erence given by eq� 	���

 is equal to zero in such a case�

The form of the 	SC
�CI dressing 	eq� 	����
 remains unchanged when also single excitations
are included as well as some selected higher excitations appear ����� The 	SC
�CISD method
is a particular case of MR	SC
�CI procedure considered further� Therefore the proof of size�
consistency of the MR	SC
�CI method� given in Sec� ��
� is applicable to 	SC
�CISD method�

In a general case with some selected singles� doubles and higher excitations with respect
to j�i generated as singles and doubles with respect to a set of references jIi � S 	j�i � S

one still may treat all those excitations as derived from the ground state determinant only� It
corresponds to the choice 	����
 of the parametrization of the dressing operator� The dressing
has now the form

(ii ! 	
X

���S�s

Hi�c�
	ci

�� !

X
j

�ej�ei ���� �ej�eij�i��S�s

H�jcj 	����


or equivalently

(ii ! Ecorr � EPVi �Ri 	����


where the term Ri takes care of possible redundancy e�ects

Ri ! �
X
j

�ej�eij�i�S�s

H�jcj 	����


The outer space sextuple excitation for instance will appear in the dressing of model space
quadruples with the coe�cients being products of quadruples and proper doubles 	i�e� de�ned
by the decompositon of our sextuple including a given quadruple
 coe�ents� For selected CI
procedures the dressing is selected as well i�e� we may only dress by this part of interacting outer
space determinants which are obtainable as products of model space excitations� Because some

��



higher excitations are present in the model space one has to take care of possible redundancies
Ri� e�g� product of two doubles may also belong to the model space�

In general case the method may no longer be strictly size�extensive� For such Selected
	SC
�CI procedure one can however show 	see ref� ���� and further erratum in ref� ����
 size�
consistency as long as the selection procedure introduces only localized excitations consistently
for the super� and sub�systems i�e� when a given �AjB appears in the supersystem expansion jB
is also selected in the separate treatment of B� Let us �nally remark that in such generalized
	SC
�CI method one may in fact work in a multireference space with a distinguished role of
one of references 	single reference dressing of MRCI matrix
� Thus� according to the typology
presented in the �rst chapter the 	SC
�CI method belongs to SR	MR
 family�

The results of applications reported so far 	mostly using the multireference i�e� SR	MR

variants
 show that the 	SC
�CI method o�ers an interesting alternative to CCSD method for
describing the PES of closed shell systems� It gives results of comparable quality and remains
stable even for extremely stretched bonds where CCSD usually fails ���� ����� The Selected
	SC
�CI method takes into account the most important linked contributions arising from "T �

�

and other products of "T� and "T� which are included in the CCSD scheme� provided that the
selection procedure introduces the most important triple and quadruple excitations 	in this way
certainly also "T�� "T
 contributions from those selected triples and quadruples are included
�
Actually all those linked contributions may also be included in the full CC type dressing as we
discuss in Sec� ����

Regarding the practical implementation� one does not perform explicit summation over all
EPV contributions 	the number of which is approximately proportional to n�� n being the size
of the basis set
� One takes bene�t of a trick proposed in the previous work for the in�nite
summation of EPV diagrams ������ One�� two� and three�indices arrays store the contributions
to the correlation energy of each spin orbital r

e�	r
 !
X
i�r�

cih�jH jii 	����


of each pair of spin orbitals r� s

e�	r� s
 !
X
i�r�s�

cih�jH jii 	����


and of each triplet of spin orbitals r� s� p

e�	r� s� p
 !
X

i�r�s�p�

cih�jH jii 	����


where summations over all determinants i are restricted as follows� i	r
 indicates that only
determinants i de�ned by "ei involving r are taken� i	r� s
 is resricted to "ei involving r and s and
respectively i	r� s� p
 is resricted to "ei involving r� s and p� Using these quantities� the calculation
of the EPVi term becomes straigthforward since it only requires summations over the holes and
particles of jii 	 jabmni

EPVi ! �e�	m
� e�	n
� e�	a
� e�	b
 � e�	m�n
 � e�	a� b
 � e�	m� a
 � e�	m� b
�

��



e�	n� a
 � e�	n� b
� e�	m�n� a
� e�	m�n� b
� e�	m� a� b
� e�	n� a� b
�H�ici 	����


The above trick is used in all methods introduced in the subsequent chapters whenever the EPV
contributions have to be evaluated�

It is worth noting �nally that IEPA small CI problems may also be dressed in the same
manner� For a given pair 	 the model space is then de�ned by all determinants a pair 	

consists of� All these determinants obtain then exactly the same dressing as in 	SC
�CI method
including all EPV contributions� The only di�erence concerns the ground state determinant
which is dressed in the diagonalization for the 	th pair by an e�ect of outer space determinants
i�e� by the quantity (�

�� ! Ecorr � ��� The mutual dressing of small CI problems provides a full
set of the coe�cients of the doubles�

��� Functional form of a dressing or generalized CPF method

We have been assuming so far that the dressing concerns the Hamiltonian matrix H in the
eigenvalue problem Hc ! Ec� Introducing a generalized eigenvalue problem

Hcm ! EmSc
m 	����


one may however consider a dressing of the overlap matrix� Let us recall that the term we
want to e�ectively take into account by the dressing is

P
���S�sHi�c

m
� � De�ning an e�ective

state�speci�c change 	dressing
 of the diagonal elements of the overlap matrix

e�Smii ! �� 	
X

���S�s

Hi�c
m
� 
�	Emc

m
i 
 	����


one reproduces the exact ith row of the matrix representation of the eigenproblem 	��
�
 in the
normalized basis as ith row of 	����
X

I�S

HiIC
m
I �

X
j�s

j ��i

Hijc
m
j � 	Hii �Em

e�Smii 
c
m
i ! � 	���



Notice that using the de�nition of the diagonal dressing (m
ii one is led to

e�Smii ! ��(m
ii �Em 	����


So far the dressing (m
ii remains unspeci�ed and may take di�erent forms i�e� single or multiref�

erence� CEPA or total CC type� as discussed in the next section�
Let us �rst consider the single reference situations i�e� we shall in general assume that the

outer space determinants coe�cients are de�ned with respect to a certain determinant j�i as
speci�ed by eq� 	����
� This includes all versions of the 	SC
�CI dressing for SRCI as well as
for MRCI matrices when the redundancy contributions have to be substracted

(ii ! Ecorr � EPVi �Ri 	����


For the single reference ground state dressing of the 	SC
�CISD method we simply had (ii !
Ecorr �EPVi� Assuming that the zero of the energy is equal to E� ! h�jH j�i one may write

e�Sii ! �	EPVi � Ri
�Ecorr 	����


��



Let us recall that the expectation value of the energy Em ! h�mj "Hj�mi�h�mj�mi for the
single reference ground state in a CI model space S � s may be rewritten in the intermediate
normalization 	with respect to E�
 as

Ecorr !
h)�j "H �E�j)�i

h)�j)�i !
h� � �cj "H �E�j� � �ci

� � h�cj�ci 	����


where j)�i ! "PS�sj��i ! j�i� j�ci�
The Coupled Pair Functional 	CPF
 method ���� and its further generalizations to multiref�

erence situations the Averaged Coupled Pair Functional 	ACPF
 ���� modify the norm h�cj�ci
to achieve approximate size�extensivity of CISD and MRCISD method� This is based on the
observation that the e�ect of higher excitations 	necessary to restore size�extensivity
 manifests
in a partial cancellation of the norm denominator in 	����
� In other words the outer space e�ect
may be e�ectively taken into account by a proper change of the normalization �����

In the CPF method one de�nes pair functions 	in the usual CEPA sense
 and then norm of
each pair function is multiplied by a factor g� chosen to satisfy certain limit conditions� In the
original work ���� the numerator of eq� 	����
 is divided into parts coming from di�erent pairs
and then denominator is actually modi�ed by g�� factors depending on the relation between
pairs 	 and �� For the non�interacting pairs the 	� 		 �! �
 cross terms must vanish and by the
requirement of a correct description of two electron 	pair
 systems and supersystems of identical
non�interacting pair systems one is led to the choice

g� ! g !
�

np
!




N
	����


where np denotes number of pairs 
np ! N and N is the number of electrons� The averaged
common factor g ! 
�N was used in the ACPF methods where the notion of the electron pair
is no longer employed and the method may be de�ned for MRCISD functional with respect to a
multireference zeroth order energy ����� In the single reference case the di�erence between CPF
and ACPF comes simply from the less re�ned statistical limit employed by the latter method�
The single reference ACPF energy functional reads

F acpf
c ��c� !

h� � �cj "H �E�j� � �ci
� � gh�cj�ci 	����


Both CPF and ACPF functionals are not bounded from below by the lowest eigenvalue of "H
but they are bounded by some �nite real numbers �����

Notice that in analogy to CPF or ACPF functionals one obtains a pseudofunctional form
	since gi are depenedent on ci
 of the 	SC
�CI or other single reference dressing while taking
into account the e�ective change of the overlap matrix

Fci �Ecorr� !
h� �Pi ciij "H �E�j� �Pj cjji

� �
P

i gic
�
i

	����


Summations over i and j indices run in generally over determinants belonging to S � s space
except that the ground state determinant and the factors gi are given by

gi !
e�Sii ! �	EPVi � Ri
�Ecorr 	����


��



with Ri and Elkd
i terms equal to zero in case of 	SC
�CISD dressing since j�ci contains only

singles and doubles with respect to j�i�
Let us verify the limit behavior of gi factors de�ned in this way� For this purpose we shall test

the 	SC
�CID dressing for a system of np identical non�interacting closed shell electron pairs 	e�g�
separated H� molecules
� Thus� let the determinant jii 	 jabmni belong to a pair 	 	 mn� Then
certainly all excitations in 	 are not possible on i whereas charge transfer excitations involving
indices of di�erent pairs have vanishing matrix elements and we simply have EPVi ! ��� The
supersystem correlation energy is equal to the sum of localized pair energies and �nally

gi !
EPVi
Ecorr

!
��Pnp
��� ��

!



N
	����


one gets the ACPF factor as expected� Let us notice that CEPA	

 dressing would lead to the
same limit� It shows that limit requirements used in ACPF are very weak� On the other hand
puting all EPV�s as zero 	CEPA	�
 approximation
 one gets the functional form of CEPA	�

found already by 'Ci'zek ���� ����

F cepa�
c ��c� ! h� � �cj "H �E�j� � �ci 	���



Although the CPF renormalization is more re�ned than the ACPF one it also averages the
exact determinant speci�c contributions gi ! EPVi�Ecorr� For heterogeneous electronic systems
the gi factors may vary within a given pair since they may involve excitations on orbitals of very
di�erent importance� This suggests the following generalization of the CPF method 	which goes
in the opposite direction comparing to the MRAQCC method �����
 referred to as Generalized
Coupled Pair Functional 	GCPF


F gcpf
c ��c� !

h� � �cj "H �E�j� � �ci
� �

P
i g

���
i c�i

	����


where the determinant dependent g
���
i factors are �xed as numbers before the dressing procedure

	i�e� evaluated from the CI coe�cients
 or after the �rst or subsequent iteration of the dressing�
It means that one has to diagonalize the CI matrix �rst 	dressed or not
 and then use such

evaluated g
���
i factors in the GCPF step� In this way one obtains a functional 	and not only

pseudofunctional
 form of dressing di�ering from the CPF one by the fact that all diagonal
elements of overlap matrix are di�erent� It means that the density matrix and gradients may
be evaluated analogously� as described in ref� ����� Let us notice that gi quantities should
not strongly depend on the dressing steps since they are relative quantities� Fixing them from
the pure CI coe�cients 	by simple evaluation of EPV contributions
 should not bring large
error� The merits and limitations of such a scheme have to be however con�rmed by numerical
applications�

The generalized CPF method is di�erent from the original CPF by determinant�speci�c
change of the norm� Simultaneously one avoids restrictions to pair and single reference closed
shell theories as in ACPF� By considering the de�nition of eq� 	����
 it is clear that we may add
for instance linked CC type corrections as well� The possibility of generalization to multireference
situation becomes more transparent when one comes back to the general notation and writes

gmi ! e�Smii 	����


��



where e�Smii ! ��(m
ii �Em� Then assuming that the outer space coe�cients may be factorized

into parts coming from di�erent references � in consistency with eq� 	����
 one may write
(m
ii !

P
I�S (

m
ii�I � The diagonal element of the e�ective overlap matrix may be written as

e�Smii ! 	Em
corr �

X
I�S

(m
ii�I
�E

m
corr 	����


provided that the zero of energy is taken as E�
m� obtained by the diagonalization in the reference

space S� This means that we introduce a new basis in the reference space jI �mi !
P

I�S
*Cm
I jIi

where the *Cm
I coe�cients come from the diagonalization� Then we shall employ 	as in mul�

tireference version of ACPF
 the MRCI expectation value for the energy 	with respect to E�
m


����

Em
corr !

h)mj "H �E�
mj)mi

h)mj)mi !

!
hI �m �QS	I

�

m
 � �m
c j "H � E�

mjI
�

m �QS	I
�

m
 � �m
c i

� � hQS	I
�

m
jQS	I
�

m
i� h�m
c j�m

c i
	����


where this time j)mi ! "PS�sj�mi ! jI �mi� jQS	I
�

m
i� j�ci and QS	I
�

m
 denotes an orthogonal
complement of jI �mi in the S space� Introducing the reference dependent and state dependent
dressing of eq� 	����
 one may write in general

F gcpf
c�m �QS	I

�

m
��c� !
hI �m �QS	I

�

m
 � �cj "H �E�
mjI �m � QS	I

�

m
 � �ci
� � hQS	I

�

m
jQS	I
�

m
i�
P

i�s g
����m
i c�i

	����


where the functional F gcpf
c�m is state dependent since the renormalization factors gmi are state�

speci�c� If all the coe�cients gmi are assumed to be equal 
�N we again get the ACPF functional
in its multireference version�

One should mention that it has been shown ���� ���� that even keeping the coe�cient depen�
dent factors gi� which is equivalent to some CEPA or CC approximations� one may also de�ne
a functional which furnishes the starting equations 	of the CEPA or CC type
 when making it
stationary with respect to variations of the coe�cients� Nevertheless� it can be only done by
the introduction of new parameters 	Lagrangian multipliers
 ����� which make the calculations
of derivatives very expensive �����

��
 Coupled Cluster type of dressing

So far we have considered di�erent approximations that may be located somewhere in between
CI and CC approaches� It has been however suggested ����� that also the CC method itself
	truncated at some level
 may be transferred into a dressed CI problem� Speaking more precisely
the CC non�linear terms may be all 	and not only partially as in CEPA type dressing
 added
to the corresponding CI equations� In principle CC method equations may be solved by a self�
consistent dressing of the corresponding CI matrix or� in other words� by a pseudoeigenvalue
formulation�

���



Let us recall that in the CEPA method 	dressing
 actually only single product cicj 	jii 	
jabmni� jji 	 jcdpqi
 of the coe�cients is taken into account� Including the whole non�linear term
on the left hand side of eq� 	����
 one obtains the CCD equation through a pseudoeigenvalue
problem with the following dressing

"(ii ! 	cabmn

��

X
p�q

pq ��mn

X
c�d

cd��ab

habmnj "Hjabcdmnpqi cabmn � c
cd
pq 	����


or in equivalent notation

"(ii ! 	ci

��
X
j

�ej�eij�i�j�i

h�j "Hjji
X
�k�l�

P�
kl
�ek�elj�i�j�i

	��
��P�kl�ckcl 	����


where P�
kl denotes the permutation which leads to coincidence between "ek"elj�i and j�i�

In the ref� ����� a column dressing rather than the diagonal one is employed to avoid division
by ci � The results obtained in such way are equivalent to the traditional CCD with the accuracy
of � 	H at all conformations 	for which the traditional CCD method converges
 of T�shaped
Li
 cluster used to test the numerical equivalence of those two methods of solving the CCD
equations� Moreover through an eigenvalue problem formulation it is possible to get results
when near degenaracies appear and the usuall methods for solving non�linear equations diverge
������

In order to generalize the above procedure to CCSD one has to clearly distinguish the CI
and CC amplitudes� ci and ti respectively� For the exact state j��i and for the exact CI
coe�cients and CC amplitudes one gets a well�known cascade of equations de�ning amplitudes
of the subsequent k�body operators "ti from the coe�cients ci and the amplitudes of l�body
operators 	l � k
�

cam ! tam 	����


cabmn ! tabmn � tamt
b
n � tbmt

a
n 	����


� � �
As long as the s space consists of doubly excited determinants only the CID coe�cients are

good approximations to CCD amplitudes t
ab ���
mn ! c

ab �cid�
mn and we actually do not need introduce

di�erent notation � the working equations de�ne the amplitudes we deal with� In case of CCSD
approximation we write in turn

ta ���m ! ca �ci�m 	���



tab ���mn ! cab �ci�mn � ta ���m tb ���n � tb ���m ta ���n 	����


to reformulate CCSD equations into the dressed eigenvalue problem� The set of eqs� 	����
 has
to be solved after each iteration of the dressing procedure� Then the new dressing by the outer
space triples and quadruples may be evaluated� Since the singles and triples are now present
the dressing may be written in general as

"(ii ! 	ci

��hij "H	 "T� "T� �

�

�$
"T �
� �

�



"T �
�
"T� �

�



"T �
� �

�

�$
"T 

� 
j�i 	����


���



instead of 	����
� When the self�consistency is achieved we end up with the CCSD amplitudes�

As pointed out in ref� ����� the above procedure may be generalized to CCSDT and higher
levels� Thus any single reference CC approximation may be transformed by the dressing of the
corresponding CI matrix into an intermediate e�ective Hamiltonian pseudoeigenvalue problem to
solve its working equations� Notice also that adding the linked terms arising from the quadratic
terms of eq� 	����
 to the 	SC
�CI dressing considered in the previous section in the context of
GCPF methods one obtains a pseudofunctional form of the CC dressing� Fixing ratios

gi ! 	Ecorr �(ii
�Ecorr 	����


at some iteration one gets an approximate functional form of the CC method through an e�ective
change of the norm of the CI energy functional�

Let us now consider the reverse situation� Starting from an arbitrary CI space S�s we de�ne
it as a model space of certain intermediate e�ective Hamiltonian which is supposed to reproduce
the exact ground state energy� In order to built this e�ective operator we shall exponentialize
the model space expansion "PS�sj��i to take into account the e�ect of outer space determinants
also exponentially factorized� In other words we shall de�ne CC approximation adjusted to a
given CI problem� Thus� we shall assume the following

j��i ! "%j�i ! e
�T j�i 	����


where the cluster operator "T de�ned as

"T ! 	
X

I�S� I ���

tI "eI �
X
i�s

ti"ei
 �
X

� ��S�s

t�"e� ! "TS�s � "Tout 	����


will be truncated in the following way

"Tout ! �# "T ! "TS�s 	����


instead of the traditional truncation according to the excitation level�

The coe�cients of the model space determinants in the expansion of j��i are de�ned by

ci ! hije �T j�i ! hije �TS�sj�i 	����


Eqs� 	����
 are certainly equivalent to the hierarchy of eqs� 	����
� 	����
 restricted to S � s�
Hence all the model space cluster amplitudes ftIgI�S� I ���# ftigi�s are uniquely de�ned by the

CI coe�cients of "PS�sj��i� The outer space coe�cients c� ! h�je �T j�i are approximated in
terms of model space decompositions since we truncate the cluster operator to the model spaces
"T ! "TS�s

c� ! h�je �TS�sj�i 	����


Multiplying eq� 	����
 by �� we get

j��i ! "PS�s "%j�i� "Pout "%j�i 	����


��




Notice that the exponentialization of the second term of the right hand side of eq� 	����
 means
that we epxonentially factorize our dressing operator 	����
 since the term "Pout "% corresponds to

"�m !
X

���S�s

�m� j�ih�j 	���



Since we know the approximate form of the outer space coe�cients the dressing term which
should be added to the diagonal of 	S � s
CI matrix is evident� The ith row is for instance
dressed according to eq� 	���

 for instance� All outer space determinants � that interact with
i and do not belong to S � s contribute to the dressing with coe�cients given by 	����
�

Certainly� in practice we start again from the pure 	S � s
CI coe�cients as zeroth order
approximation to the corresponding amplitudes 	through the cascade of eqs� 	����

 to evaluate
the �rst dressing correction etc� until self�consistency is achieved� The size�consistency of such
formulated procedure will be discussed in Part C of this chapter� This solution has been recently
proposed by Adamowicz and Malrieu ������

The single reference CC methods such as CCSD� CCSD	T
 	CCSD with perturbative inclu�
sion of Triples
 are very e�cient and routinely used in atomic and molecular calculations� The
CCSD	T
 method works well not only when dealing with well de�ned single reference case but
often is able to reproduce reasonable PES �
��� Nevertheless when some double excitations be�
come important 	have large amplitudes
 during changes of conformation it may diverge� In such
situations� using the corresponding CCdCI procedure one may take bene�t of the Davidson�like
diagonalization procedures to obtain solutions in extreme regimes where the traditional ways
of solving the CC equations fail� Moreover� various single reference dressing schemes appear to
be very �exible and allow introducing lower approximations combined with CI spaces generated
with respect to a set of references to account for the non�dynamical correlation�

However� in degenerate situations there is no escape from the inherently multireference de�
scription� The MRCC methods still face problems and are expensive� Therefore di�erent mul�
tireference dressing schemes are of special interest�

���



Chapter �

State�speci�c size�consistent

multireference procedures

Using the theory of state�speci�c self�consistent intermediate Hamiltonians several dressings of a
Multireference 	MR
 Singles and Doubles Con�guration Interaction Hamiltonian matrix� which
insure size�consistency 	in the sense de�ned in Part A of this chapter
 are proposed here� These
methods are based on a Coupled Cluster 	CC
 type of factorization of coe�cients of triples
and quadruples� The most re�ned approach leads to a dressed CI formulation of a state�speci�c
MRCCmethod ������ Simpler dressings lead to revised formulations of the recently proposed MR
Self�consistent Size�Consistent CI algorithm ���� and its lower approximation of the MRCEPA	�

type �����

��� Introduction

The research on the multireference post Hartree�Fock methods is probably the most active in the
contemporary Quantum Chemistry� The study of bond breaking and thus chemical reactivity
must necessarily use such approaches� The well established perturbative or non�perturbative
single reference methods may be safely applied to the ground state near equilibrium� Most of
the excited states also demand a multicon�gurational zeroth order description and the study of
excited potential energy surfaces requires very �exible approaches�

Generalization of the CI method for multireference cases is straightforward and the multiref�
erence con�guration interaction 	MRCI
 method has been the most popular tool in molecular
spectroscopy for a long time� In the MRCI method one may in principle remove an essential
part of the extensivity error 	due to the inclusion of higher order excitations
� but it still su�ers
from the lack of rigorous extensivity� which is crucial when we deal with extended systems� The
usual aposteriori Davidson�type corrections that take into account to some extent the unlinked
contributions which should be removed ���� can only partially resolve the problem and many
attempts have been made to modify the method to obtain nearly extensive results 	for recent
review see ref� ����
�

On the other hand the coupled cluster approach is more di�cult to generalize to the mul�
tireference situations than the CI method� Several Multireference Coupled Cluster 	MRCC


���



methods have been developed ���� and increasing number of applications to atomic ���� and
molecular ���� ���� ���� systems is encountered in the recent literature� However� the computa�
tional complexity of these methods is very high and they are still facing many speci�c problems�
as for instance the generalization of the Fock space methods to an arbitrary open shell reference
state �����

One should also mention another very active and rapidly growing �eld� namely the research
on multireference perturbation theory 	MRPT
 ����� Unfortunately MRPT methods become
expensive already at third order� although second order results on huge CAS reference spaces
are routinely available ���� and o�er an interesting alternative to those of MRCC and MRCI�
Nevertheless these methods are irrelevant in our present considerations�

Additional complexity that inevitably occurs in MRCC theories follows from the lack of the
unambiguously speci�ed separation of hole and particle states� One can in general introduce a
�xed vacuum state 	e�g� one of the references
 for all reference functions or a reference�dependent
vacuum with independent 	although coupled
 expansions with respect to each reference� As a
result the genuine MRCC theories may be classi�ed according to the above distinction� imposing
di�erent de�nitions of the wave operator "% ����� Moreover both schemes are inherently of the
multistate character� In the so�called Fock space approach 	referred to also as the valence
universal CC approach � VUCC
 one has to consider a manifold of states with di�erent number
of valence electrons ����� while in the Hilbert space approach 	state universal CC approach �
SUCC
 all states 	with a constant number of valence electrons
 corresponding to the di�erent
linear combinations of reference functions must be simultaneously handled �����

In light of the above remarks the research on the single state or state�speci�c approximations
is of a great practical meaning� Several such MRCC schemes have been originally proposed 	see
ref� ��
�
� They employ in general the state�speci�c wave operator acting on a single reference
state but of the multideterminantal form�

Aforementioned procedures that rely on the underlying con�guration space and try to modify
MRCI method in order to obtain extensive results form another group of methods� which may
be viewed as a group of approximate MRCC methods of the MRCEPA type ��
� ����� All those
schemes are grounded in the cluster assumption and inherently use the CC factorization of the
coe�cients of triples and quadruples� reproducing to some extent the hierarchy of single reference
CEPA methods� They are state speci�c similarily as the CI method�

The computational schemes presented in the subsequent parts of this chapter are aiming
at obtaining a general state�speci�c MRCC theory starting from the recently proposed MR
�dressed� CI method 	MR	SC
�CI
 ����� which may be considered as an exact MRCEPA proce�
dure� The previously formulated single reference counterpart referred to as the size�consistent
self�consistent CI method 		SC
�CI
 ���� insures the extensivity by a proper cancellation of un�
linked e�ects� It was shown ���� that adding the linked e�ects 	arising from the triples and
quadruples as in CCSD method
 one may eventually end up with a �dressed� CI formulation
of the corresponding SRCCSD approximation� As in the single reference case it is possible
to include the linked contributions of triples and quadruples as well� obtaining �dressed� CI
formulation of a state�speci�c MRCCSD type approximation�

���



��� Multireference Self�consistent Size�consistent Con	guration
Interaction method

The recently proposed state speci�c self�consistent dressing of a multireference CI matrix and
a simpli�ed scheme of MRCEPA	�
 type have been implemented by the author of this thesis
and tested on a series of benchmark problems 	H
� H�O� CH�

� 
 ����� The proof is given that
this method is size�consistent provided that the reference space is separable 	i�e� it contains all
products of localized reference states
� The structure of the method and its results are compared
to those of other size�consistent multireference schemes� Its formal derivation in terms of CC
expansion shall be presented in Sec� ����


���� Theory

For a long time the multireference con�guration interaction 	MRCI
 methods and especially
the MRCISD� limited to the single and double excitations from the references� have been the
most popular tool in molecular spectroscopy� The method is �exible and robust but it is not
size�extensive nor separable� It would be worth to �nd a strategy insuring the size�extensivity
and the separability of a modi�ed MRCI algorithm�

The recently proposed self�consistent dressing of the CI matrix which makes the ground
state description size�consistent ����� has been recalled in Chap� �� However� the dressing was a
single reference dressing with the ground state single determinant j�i playing special role and a
generalization was needed� Its principle has been given in a recent paper ���� and its content is
brie�y described below�

A� The method

The references are labeled I �J � ��� and de�ne a reference space S of projector "PS � The singles
and doubles with respect to references are labeled i�j�k� ��� and de�ne the space s of projector
"Ps� The method uses the concept of intermediate state�speci�c Hamiltonian ���� according to
the general prescription given in Chap� �� Here the MRCISD matrix is dressed to account for
some non�linear terms� The diagonal dressing operator "( 	(ij ! �� i �! j
 is employed� taking
in the MR	SC
�CI method the following form 	for the desired state j�mi


(m
ii !

X
I

	hmI �EPV 	i� I
m�R	i� I
m
�miI 	���


where hmI designate the e�ective energy shifts of the references

hmI ! 	
X
i�s

cmi HIi
C
��
Im 	��



whereas the terms

EPV 	i� I
m ! �	
X
	ek

�ek jii��

cmk HI��ekI
C
��
Im 	���


���



R	i� I
m ! �	
X
	ek

�ekjii�S�s

cmk HI��ekI
C
��
Im 	���


take care of all exclusion e�ects 	EPV
 and redundancy e�ects 	R
 respectively ����� Each
determinant i receives a parentage ratio �miI from all references jIi according to the following
de�nition

�miI !
HiICImP
J HiJCJm

	���


This parentage relies on the �rst order perturbation arguments with the function "PS j�mi taken
as the zeroth order function ����� The coe�cients CIm and cmi are here those of the solution of
the dressed MRCISD eigenequation

j�mi !
X
I�S

CImjIi�
X
i�s

cmi jii 	���


Further� the state index m will be conveniently put as superscript or subscript� depending on
the number of other super� and subscripts�

The e�ective Hamiltonian matrix to be diagonalized is the dressed matrix

"PS�s	 "H � "(m
 "PS�s 	���


Of course "(m is dependent on the coe�cients and the method is iterative� Notice that the
method is uncontracted since it does not �x the components of the wavefunction in the reference
space�

B� MRCEPA��� type approximation

The above procedure may be viewed as a generalized multireference CEPA method� which takes
into account all EPV e�ects� Actually the correct treatment of EPV and redundancy e�ects
is either time or memory consuming and usually these terms are approximated to some extent
���� ����� ������ Indeed� it sometimes happens that neglect of some of these e�ects may lead to
accurate results due to a compensation of errors 	namely with the neglect of higher order e�ects
such as the linked e�ects of the triples
� If we forget the EPV terms in eq� 	���
 we obtain a
method that may be considered as an MR�CEPA	�


(
�m
ii !

X
I

	hmI �R	i� I
m
�miI 	���


For practical e�ciency one may be tempted to neglect also the redundancies and use

(
��m
ii !

X
I

hmI �miI 	���


The neglect of the redundancies may introduce undesirable but rare unlinked e�ects�
Notice that when the e�ect of the dressing is calculated using the eigenvector j�ci

mi of the
undressed MRCISD matrix 	at �rst iteration of the dressing procedure
� we obtain a generalized
Davidson�like correction

(Em ! h�ci
mj(mj�ci

mi !
X
i

(
��m
ii c

�ci� �
im 	����
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C� Generalization of the proof of size�consistency

Ref� ���� has only given a proof of size�consistency 	called in ref� ���� separability
 of MR	SC
�CISD
method when localized MO�s are used and when the reference space involves only excitations of
one subsystem� Actually it is possible to prove a more general theorem� stating that the method
is separable 	i�e� size�consistent according to the de�nition given in Chap� �
 if and only if the
reference space is �separable� i�e� it contains all products of subsystem references� insuring that
any function belonging to S space is multiplicatively separable�

The MO�s are supposed to be localized on non interacting subsystems A and B� Let us call
IA and JB the references for independent description of A and B� SA and SB the corresponding
reference spaces� A separable model space for the supersystem is a space built of all determinants
IAJB

SAB ! SA � SB 	����


The SD space sAB may be then written as a direct sum

sAB ! 	sA � SB
� 	SA � sB
 	���



i�e� it is composed of determinants of the forms iAJB and IAjB� where iA � sA� jB � sB � Notice
that the determinants iAjB do not appear in the SD space for the supersystem� Although iAjB
determinants� where iA and jB are single substitutions in subsystems� are formally doubles�
but they do not interact with references IAJB of the supersystem A � � �B i�e� hiAjhjBj "HA �
"HBjIAijJBi ! ��

Consider now two eigenstates j�A
p i and j�B

q i of the dressed subsystems corresponding to the

pth and qth roots� with EA
p and EB

q respectively� and let us form their product j�AB
m i 	projected

onto the supersystem model space MAB ! SAB � sAB


j�AB
m i ! "PMAB

j�A
p ij�B

q i 	����


We shall prove that this function� with coe�cients satisfying 	further we shall omit the upper
indices for subsystems


CAB
IAJB �m

! CA
IA�p

CB
JB�q

# cABiAJB�m ! cAiA�pC
B
JB �q

# cABIAjB �m ! CA
IA�p

cBjB �q 	����


is an eigenfunction of the dressed supersystem MRCISD matrix with an additively separable
energy

EAB
m ! EA

p �EB
q 	����


Hence� we shall prove that j�AB
m i corresponds to a certain 	size�consistent
 root m 	with EAB

m 

of the supersystem eigenvalue problem�

Acting on such a trial function the dressing operator 	���
 may be expressed in a special
way� For simplicity of notation we shall write the diagonal matrix elements with a unique index
between square brackets 	e�g� (�i� 	 (ii
� From eqs� 	��

 and 	����
 it follows that

hmIAJB ! hpIA � hqJB 	����


Using in turn eq� 	���
 it is easy to show that

�m�iAJB��IAJB� ! �
p
iAIA

	����


���



Then using eqs� 	����
 and 	����
 one may demonstrate that

(m�AB
�iAJB �

! (p
�iA�

� hqJB 	����


To prove it notice that determinant iAJB has only parents of the type IAJB and due to 	����


(m�AB
�iAJB �

!
X
IA

	hmIAJB � EPV 	iAJB� IAJB

m �R	iAJB� IAJB


m
�piAIA 	����


Moreover

EPV 	iAJB � IAJB

m ! EPV 	iA� IA


p 	��
�


R	iAJB � IAJB

m ! R	iA� IA


p 	��
�


Therefore

(m�AB
�iAJB�

!
X
IA

	hpIA � hqJB �EPV 	iA� IA

p �R	iA� IA


p
�piAIA

! (p
�iA�

� hqJB 	��




since
P

IA
�piAIA ! ��

The subsystems eigenequation for iA and JB are respectively

	H�iA� �(p
�iA�

� EA
p 
c

p
iA

�
X
IA

HiAIAC
p
IA

�
X

jA ��iA

HiAjAc
p
jA

! � 	��
�


	H�JB� �EB
q 
C

q
JB

�
X

KB ��JB

HJBKB
Cq
KB

�
X
kB

HJBkBc
q
kB

! � 	��
�


the last term in eq� 	��
�
 being hqJB � Multiplying eq� 	��
�
 by Cq
JB

and eq� 	��
�
 by cpiA and
adding them one obtains the eigenequation for the determinant iAJB and the eigenstate m in
the dressed supersystem matrix

	H�iAJB � �(m�AB
�iAJB�

� EAB
m 
cABiAJB �m �

X
IA

HiAIAC
AB
IAJB �m

�

�
X

KB ��JB

HJBKB
CAB
iAKB�m

�
X

jA ��iA

HiAjAc
AB
jAJB �m

! � 	��
�


provided that relations 	����
 � 	����
 hold� Hence our trial function is an eigenfunction of the
dressed supersystem hamiltonian with the eigenvalue EAB

m ! EA
p �EB

q � �

Notice that if some of the determinants IAJB are not included in the reference space 	non�
separable model space
 determinants iAJB are dressed in a way that breaks the separability
because of inconsistent parentage in the super� and subsystems�

���




���� Computational aspects

A� Practical implementation

Some aspects of the practical implementation of the multireference dressed CI 	MR	SC
�CI

procedure were already discussed in ref� ����� They concern especially the CAS reference space
when relevant simpli�cations are possible� Nevertheless� the general version of the MR	SC
�CI
algorithm has been implemented� without any restrictions for the reference space� The possibility
to start for instance from the numerically selected references is a great advantage comparing
to other multireference size�consistent schemes� It demands however careful construction of
the program to avoid too high time and memory requirements 	mainly due to complexity of
redundancy e�ects evaluation
�

Basically the MR	SC
�CI procedure� as implemented by the author of this thesis ����� may
be illustrated as follows�

�� Diagonalize the usual MRCISD matrix and for the desired eigenstate m use the coe�cients
fCm

I � c
m
i g to modify the matrix in the dressing step�


� In the loop over block A 	see �gure below
 �nd column contributions

S



A

� � �

B
� � �




hmI C
m
I and the parentage denominators �miIH

��
iI ! ��

P
J C

m
J HiJ � Build a vector containing

non�zero HiI elements and auxilliary addressing vectors to locate elements HiI �

�� For a given determinant i �nd (
��m
ii !

P
I h

m
I �miI 	loop over parents of i
� In case of

MRCEPA	�
 	further labeled MR	SC
�CI�
 go to ��

�� In the loop over block B 	which de�nes the overall complexity of the program
 the redun�
dancies and partially EPV�s are subtracted by the analysis of interactions� a given Hij

and the relative operation "erel de�nes 	if possible
 k ! "erelI determinant� giving an EPV
contribution on common parents of i and j and R contribution on the remaining parents
of i�
It is crucial to �nd k 	locate the corresponding matrix element HkI � to undress by its e�ect

without next loop over determinants� In the special addressing vector one can keep the
number of k 	row of the matrix
 in the cell given by the position of "erel in the imaginary
loop that generates all singles and doubles from I � Then having address of a given "erel
with respect to I one gets HkI �

�� Subtract the rest of EPV�s using one index e�arrays 	actually two indices arrays e	x� I
� x
being a hole or particle and I being a reference
 � analogously to ref� ����

���



�� Add such evaluated shifts (m
ii to the diagonal 	in case of direct CI algorithm �rst column

would be more convenient ����
 of the CI matrix and diagonalize it� Repeat 
����� with the
new coe�cients�

As one can see the memory requirements are speci�ed by the dimension of the vector containing
HiI �s� whereas the complexity is roughly proportional to Nrefn


�  Ninter�  N�
p 	loop in �� to �nd

redundancy contributions
 where  Np means the averaged number of parents 	  Np � Nref
�  Ninter

the averaged number of interactions 	non zero elements in rows of PsHPs#  Ninter �� Nrefn




and n is the dimension of the basis set�

B� Convergence problems

In the formalism two possibly dangerous denominators appear� The �rst one is the C��Im factor
in eq� 	��

� As mentioned before this factor disappears in the �nal dressing� The second
denominator appears in the de�nition of �iIm 	eq� 	���

 and there is a danger of numerical
instability or divergence if the quantity

A !
X
J

HiJC
m
J 	��
�


is small 	and may eventually become zero
� Looking at the eigenequation for ci�X
J�S

HiJC
m
J �

X
k ��i

k�s

Hikc
m
k ! 	Em �Hii
c

m
i 	��
�


we see that the de�nition of the parentage coe�cient �miI assumed that the coe�cient cmi is
essentially determined by the �rst summation

cmi !

P
J�S HiJC

m
J

	Em �Hii

!
hij "Hj "PS�mi
	Em �Hii


	��
�


i�e� by the �rst order of perturbation theory from "PS j�mi 	otherwise also the second summation
would appear in the de�nition of �miI � see ref� �����
� If this assumption is valid� then the
quantity A is small only when cmi is small too� in which case the dressing (m

ii will have a
negligable in�uence and may be forgotten�

A more troublesome situation happens when

jAj � j
X
k

Hikc
m
k j 	��
�


i�e� when the coe�cient cmi is not determined by the �rst order perturbation or in other words by
the interaction with the reference determinants� but by the second order 	i�e� the interactions
occurring in PsHPs
� In this case the parentage becomes irrelevant and actually it is better
to remove the determinant i from the �rst order interaction space� This leads to a selection
procedure� if there exists a reference I 	for a given determinant i
 such that

j cmi HiIP
J�S HiJc

m
J

j � � 	����


���



where � is a threshold equal to about one� then the determinant i is excluded from the s space�
The above inequality comes from the analysis of the coe�cients and parentage in terms of
coupled cluster expansion� and it simply expresses the fact that all amplitudes should be smaller
than one 	see Sec� ���
�

In practice in all numerical tests one observes that�

i
 the number of determinants to be excluded remains small

ii
 they do not contribute much to the energy

iii
 the results are weakly dependent 	to about ��� mH
 on the precise value of the threshold
�

For example� the MR	SC
�CI energies for water molecule at stretched geometry 	
Re � see Table
���
 are ������� ������ and ������ mH with thresholds set to ���� ��� and 
�� respectively� The
number of removed determinants decreases from 
� with threshold ��� to 
� with the biggest
one 	the total number of MRCI determinants is ���� in this case
� The number of iterations of
dressing procedure increases in turn from � to �� showing that convergence is in�uenced by large
amplitudes� On the other hand the speed of convergence is not dependent on the size of the
problem� In fact the threshold was not always necessary 	as for water at equilibrium geometry

but for the sake of consistency it was kept in all calculations�

In Sec� ��� we shall discuss a revised version of the parentage which starts directly from the
psedoamplitudes and avoids the dangerous denominators in the present form�


���� Results

	H�
�� 	H

� and 	H�O
� dimers have been used to verify the separability of the method in tests
of the program� In all cases the localized MO�s 	subsystems separated at very large distance

and reference spaces of the CAS type located either on one 	i�e� on the second system only the
single reference determinant was involved
 or on both subsystems have been used� In all those
tests the additivity of the MR	SC
�CI energy has been con�rmed within tens of microhartrees�

H
 The H
 model has been extensively used in studies on single and multireference coupled
cluster methods ����� Already in the minimal basis set it represents an example of a non�trivial
system owing to near degeneracies occurring in various geometrical arrangements� Here we use
the rectangular arrangement called in ref� ���� P�� consisting of two parallel H� molecules with
a �xed 	stretched to 
 a�u�
 bond length� The distance R between the two molecules is varied
in this model� changing the degree of quasidegeneracy �����

Using the minimal basis set and the HOMO� LUMO orbitals with two electrons as CAS
reference space makes the dressing irrelevant� There is nothing left out of CASCISD space�
Therefore the model has been modi�ed slightly ����� by adding four additional �s atomic or�
bitals� two bond centered and two located between H� molecules� forming a rectangular shape
with �s orbitals in the middle of every side� Such a system has the same properties as the
original one � at the square geometry exact degeneracy occurs� However the precise values of en�
ergies are certainly slightly di�erent 	correlation energies are di�erent on about ��� mH at some

��




geometries
� It makes the direct comparison impossible but in this case we are rather interested
in the qualitative observations such as the percentage of the correlation energy reproduced and
the general behavior 	stability
 of the method near degeneracy and in other regions�

Only distances R larger than 
 are considered here� The results are given together with
the results of SSCCdCI method in Table ��� 	see Sec� ���
� The MRCI calculations with
determinants 	��


�	��

� and 	��


�	��

� 	�i� i ! �� � � � � � corresponds to the increasing orbital

energy
 as references are done� starting from the HF MO�s for the triplet state� As one can see
MR	SC
�CI method adds about ��� mH to the corresponding MRCI energy and �nally gives
almost constant 	��������� -
 part of the correlation energy independently on the degree of
quasidegeneracy ����� Two or three dressing iterations were su�cient to achieve the convergence
in all cases� The results will be compared to those of di�erent MRCC schemes in the next
section�

The approximate MR	SC
�CI� scheme gives quite signi�cantly shifted results at all listed
geometries� lower on about � mH� e�g� at R ! 
���� the MR	SC
�CI� energy is equal to �������
mH with the �rst iteration 	i�e� the new Davidson�like correction referred to as NQ
 giving
�������� This re�ects the relative importance of EPV contributions for that small system�

H�O Symmetrical bonds stretching in water molecule is very well known benchmark ����� that
has been used to test and calibrate many methods� In the Table ��� the results of CASSCF�
MRCI 	MRCI � Davidson correction denoted by MRCIQ
 and MRLCC of Laidig and Bartlett
������ MRCPA	�
 and MRCPA	

 of Tanaka et al ����� MRACPF of Gdanitz and Ahlrichs
	reported in ref� ����
 and MRAQCC of Szalay and Bartlett ���� are collected 	for explana�
tion of acronyms see Discussion ��
��
 together with the results for the new MR	SC
�CI and
MR	SC
�CI� 	as well as NQ
 algorithms �����

Comparing di�erent forms of MRCEPA	�
 scheme one notices that MR	SC
�CI� is in the
best agreement with FCI results 	the error of the MRLCC method is smaller at equilibrium
geometry but the potential curve deviates more from FCI and the errors for stretched bonds
are larger
� The behavior of MRCPA	�
 is somewhat intriguing in the light of other results of
MRCEPA	�
 type approximation 	see also similar calculations in DZP basis set by Ruttink et al

�����
� underestimating the FCI results more than MRCPA	

� This seems to be in opposition
to what we know about the cancellation of two errors� namely neglect of higher orders linked
contributions of triples and quadruples and neglect of EPV terms� which usually manifests in
more accurate results of this kind of approximations�

Regarding the �exact CEPA� results of MR	SC
�CI method one notices that it removes about

� - of the MRCI errors in this case and it almost precisely reproduces the shape of the MRCI
potential curve� Comparing to ACPF method and its more rigorous modi�cation MRAQCC� one
can estimate the in�uence of approximated treatment of EPV terms� which furnishes however
better results due to the cancellation of errors mentioned above� The new extensivity corrections
NQ are a little bit worse than the usual Davidson corrections but they are remarkably parallel
to the FCI curve�

As was mentioned before the reference space does not have to be of the CAS type� To
illustrate this another set of calculations for water molecule in the same basis set and the same
geometries but with numerically selected reference determinants has been done� CIPSI procedure

���



Table ���� Results for water in DZ basis set�

Method Re ���Re 
Re

FCI ��������� ��������
 �������
�
SCF ����� 
���� �����

CASSCF ���� ���
 ����

MRCI 
�� 
�� 
��

MRCIQ ���� ���� ���

MRCPA	�
 ��� ��� ���

MRCPA	

 ��� ��� ���

MRLCC ���� ��� ���

MRACPF ���
 ��
 ���

MRAQCC ��� ��� ���

This work

NQ ���� ���� ����
MR	SC
�CI� ���� ���� ���

MR	SC
�CI ��� ��� ���

Geometry from Saxe et al ������ Energy errors in millihartrees� with respect to the full CI energy given
in the �rst row� CAS reference space as speci�ed in ref� ���	��
MRCPA���� MRCPA��� 
 ref� ����� MRLCC 
ref� ���	�� CASSCF� MRCI� MRCIQ 
 ref� ���	� and this
work� MRACPF� MRAQCC 
 ref� �		�� SCF� FCI 
 ref� ������

���� was used to generate the MRCI spaces� in the �rst step threshold � is set to choose references
and in the second step all singles and doubles are produced with zero threshold� Two di�erent
selection thresholds � ! ���� and � ! ���� give MRCI results 	with respect to FCI
 ��� mH
	� ref�
� ��� mH 	
� ref�
 and ��� mH 	
� ref�
 respectively in the �rst case and ��� mH 	
�
ref�
� ��� mH 	�� ref�
 and ��� mH 	�� ref�
 with the second threshold� Numerical selection
with usual HF orbitals provides here less balanced description of the potential surface� which
is then re�ected in the MR	SC
�CI results being respectively� 
��� ��� and ��� with the larger
threshold 	MR	SC
�CI� approximation behaves surprisingly well in this case giving ����� ����
and ���� mH
 and ���� ��� and 
�� mH with the smaller one�

CH� The �ve lowest states 	���
 �A� of CH�� for which the FCI results are known ������
were used as a test of ACPF method by Gdanitz and Ahlrichs ����� As in the ref� ����� one
starts from the CASSCF orbitals optimized for the average of the �ve states and then MRCISD
calculations are performed with all 	��
 determinants in the CAS space as references� The results
are displayed in Table ��
�

The MR	SC
�CI method gives better results 	except for the �rst root
 than those of ACPF
method� Even for the �fth root the error is only ��� mH 	for this root ACPF fails because of
much lower contribution of the reference determinants to the MRCI wavefunction � the same

���



Table ��
� Results for CH� 	��� �A� states
�

Root � 
 � � �

FCI ��������� ����
���� ��������� ��������� ��������

CASSCF ���� ���� ���� �
�� ����


MRCI ��� ��
 ��� ��
 
��

MRCIQ ���� �
�� �
�� �
�� ����
MRACPF ���
 ���� ���� ���� �����

This work

NQ ���� ���� �
�� ���� ���

MR	SC
�CI� ���� ���� �
�� �
�� ���


MR	SC
�CI ��� ��� ��� ��
 ���

Energy errors in millihartrees� with respect to the full CI energy given in the �rst row� Basis set� geometry
and reference space from Bauschlicher et al ������
MRACPF 
 ref� ����� CASSCF� MRCI� MRCIQ 
 ref� ����� and this work� FCI 
 ref� ������

concerns the generalized Davidson correction
� The MR	SC
�CI� approximation overestimates
the FCI energy 	except the last root
 and is in worse agreement with it than the MRCI energies�
As one see from the table the new form of extensivity correction 	NQ
 shows quite erratic
behavior� for the third and fourth root the convergence of MR	SC
�CI� is not monotonous and
the �rst iteration gives results that are lower than those at convergence� For the fourth root NQ
overestimates the FCI result by about � mH�

Summarizing brie�y the numerical results one may state that MR	SC
�CI method gives
typically about ��� of the MRCI error and never exceeds the FCI energy� The MR	SC
�CI�
energies are also in quite good agreement with the exact ones� exceeding them by not more than
��� mH in all tested cases� The newly proposed extensivity correction may overestimate the
FCI result quite severely as observed for CH�� It suggests that one could rather use for such
corrections estimates in terms of ratios of GCPF method� which are expected not to be much
sensitive to the iteration process�


���� Discussion

The MR	SC
�CI method should be compared with other size�consistent multireference algo�
rithms 	for recent and comprehensive review of the MRCEPA type of procedures see ref� ����
�
First of all one should stress the fact that it cannot compete in principle with the MRCC meth�
ods since it only dresses the SD diagonal energies Hii to eliminate the unlinked e�ects of the
triples and quadruples� taking correctly into account all EPV e�ects� while CC methods also
incorporate their linked contributions� For the single reference case these linked e�ects have
also been treated through an approximate �total dressing� ����� A dressed�CI formulation of new
state�speci�c MRCC algorithm is introduced in the next section�

���



The method most related to MR	SC
�CI is probably that proposed by Ruttink et� al� ������
Starting from a multicon�gurational function of the CAS type� they apply excitation operators
and introduce diagonal energy shifts to functions obtained in this way� The energy shifts are the
same for a given number of inactive holes and inactive particles in the excitation in a manner
which is somewhat similar to that proposed in ref� ���� for the special case of CAS type reference
function� This takes properly into account the possible redundancy e�ects� Some EPV terms are
also treated correctly as a by�product of this procedure� but for the single reference case� when
there are no redundancies it is equivalent to CEPA	�
� In light of the above the MR	SC
�CI
method appears to be di�erent in

i
 its uncontracted character� revising the content of the reference space 	which moreover
does not have to be of the CAS type� although in such a case it may be not separable


ii
 accurate treatment of exclusion e�ects

Another quite similar proposal is due to Tanaka et� al� ����� They develop a contracted
scheme as well and the perturbative evaluation of the amplitudes� Finally the EPV�s are not all
included� as in the CEPA	

 method� The numerical tests of Tanaka and Ruttink�s schemes are
very encouraging�

Other MRCEPA schemes have been proposed recently by Fulde and Stoll ����� through a
cummulant expansion and by Fink and Staemmler ������ Both methods are contracted and
make simpli�cations in the treatment of EPV�s� The version proposed by Fink and Staemmler
introduces a speci�c shift of each excited con�guration in an averaged way�

Somewhat further from the present approach one might mention the QDVPT 	quasi de�
generate variation perturbation theory
 of Cave and Davidson ���
� which introduces a unique
energy shift of the diagonal energies of the s space determinants� the ACPF method of Gdanitz
and Ahlrichs ���� and MRAQCC method by Szalay and Bartlett ����� where the size�consistency
of the CI is restored by a proper change of the normalization� as discussed previously� The last
method improves the multireference linearized coupled cluster scheme 	MRLCC
 by inclusion
of the EPV quadratic terms that violate the Pauli principle through the occupied MO�s only�
The ACPF method is not contracted 	see Part A of this chapter
�

The MR	SC
�CI method is a unique proposal which conserves the symmetry of exclusion
e�ects with respect to occupied and virtual MO�s� One of its main advantages is its uncontracted
character� Problems arise where the interaction between determinants in S and s spaces changes
completely the content of the wavefunction in the reference space� A famous example is the
LiF problem where the valence CASSCF level predicts a curve crossing at � bohr� which is
pushed by the dynamical correlation to �
 bohr� changing completely the valence content of
the wavefunction in a large domain of distances� Any contracted scheme will lead to dramatic
artifacts in such problems ����� Second very important feature of MR	SC
�CI method is its
�exibility� any 	e�g� numerically selected
 reference space is allowed� Another advantage is that
one can use the usual CI machinery�

���



��� State�speci	c dressing of CC type of MRCISD matrix


���� Theory

In the following we shall use the same notation as previously and consider a multireference
space S spanned by reference determinants I and a space s consisting of the determinants i
obtained by the single and double substitutions "ek on the references that do not belong to S�
The corresponding projectors are "PS and "Ps� Hereafter the model space will be chosen as the
union S � s and the associated projector will be labeled "PS�s�

Let us also recall that for a state j�mi 	ground or excited state


j�mi !
X
I�S

Cm
I jIi�

X
i�s

cmi jii�
X

���S�s

cm� j�i 	����


one can de�ne an intermediate e�ective Hamiltonian "Hint ! "PS�s	 "H � "(m
 "PS�s� where "(m is
a dressing operator� such that "PS�s j�mi is an eigenstate of "Hint with the eigenvalue Em� where
j�mi and Em are the exact eigenstate and eigenvalue "Hj�mi ! Emj�mi� If one can write the
coe�cients of the outer space determinants as a sum over references

cm� !
X
J�S

cm�J 	���



then one may introduce a dressing of the �rst columns of the matrix 	of the PS�sHPS block


(
�m
iJ ! 	

X
���S�s

Hi�c
m
�J
	C

m
J 
�� 	����


A� Coupled Cluster type of dressing

The above proposal is purely academic if one does not have a reasonable evaluation of the
coe�cients cm� of the outer space determinants� Remember that these determinants are here
triples and quadruples with respect to at least one reference I � S and singles or doubles with
respect to some of the singles and doubles i � s�

The strategy to approximate the outer space coe�cients is grounded in the CC assumption
that the higher�body e�ects may be reasonably described in terms of two�body 	and one�body

cluster amplitudes� In the following we shall assume a separate cluster expansion for every
reference determinant I � S� implying for the wave operator

"%m !
X
I

"%m
I 	����


where "%m
I has the form

"%m
I ! e

�Tm
I "PI 	����


The index m means that we shall try to de�ne a state�speci�c ansatz�
Since the MRCISD matrix is dressed the cluster operators are truncated and involve single

and double excitations only
"Tm
I ! "Tm

��I � "Tm
��I 	����


���



In the second quantized form

"Tm
��I !

X
a

p

dap	I

m"eap	I
#

"Tm
��I !

X
a � b

p � q

dabpq	I

m"eabpq	I
 	����


where the vacuum is given by jIi and de�nes the occupied and unoccupied indices� The symbols
dap� dabpq are used instead of tap� t

ab
pq since the coe�cients dap are not the independent variables

and can be only interpreted as pseudoamplitudes� In the following we shall not use the second
quantized notation but the notation introduced already in Chap� �� If all singly and doubly
excited determinants from the references are included in the model space we may equivalently
de�ne the cluster operators as follows

"Tm
��I !

X
k�S�I�

dmkI "ek# "Tm
��I !

X
k�D�I�

dmkI "ek 	����


where S	I
 	D	I

 designates the set of all singly 	doubly
 excited with respect to jIi determi�
nants and the summmations run over all determinants k belonging to S	I
 or D	I
 respectively�
According to the convention de�ned in Chap� � the excitation operator "ek is by default de�ned
with respect to the vacuum given by the reference function "ek acts on

"ekjIi ! jki 	����


and is determined as the relative excitation generating determinant jki when acting on jIi�
In the following we shall also assume that the disconnected part coming from 	 "Tm

��I

� for

doubles may be neglected� This means that we have for the coe�cients of determinants belonging
to the s space

cmi !
X
I

jii��eijIi

dmiIC
m
I 	����


For the outer space determinants we shall have decompositions into products of two model
space pseudoamplitudes dmkI only� Thus� the coe�cients of the outer space determinants are
approximated as

cm� !
X
I�S

��

X
�k�l�

j�i��el�ek jIi

dmlId
m
kIC

m
I 	����


where the second sum runs over all possible decompositions of j�i with respect to a given
reference determinant� More precisely� the summation over pairs 	k� l
 is restricted to such
determinants k� l that de�ne excitations 	with respect to I
 "ek and "el such that

"e�jIi ! "el"ekjIi 	���



Since the summation indices are not ordered here the factor ��
 must appear�
Using eq� 	����
 one is able to introduce a column dressing according to eq� 	����
� The

partitioning of the outer space coe�cients with respect to references is clearly given by

cm�J ! ��

X
�k�l�

j�i��el�ek jJi

dmkJd
m
lJC

m
J 	����


���



leading to the column dressing of the form

(
�m
iJ ! ��


X
�k�l�

j�i��el�ek jJi

HJj d
m
kJd

m
lJ 	����


where jji and the matrix element HJj are given by the particular decomposition of j�i involving
jii

j�i ! "ej"eijJi ! "ej jii 	����


The crucial thing here is the de�nition of the state�speci�c cluster amplitudes dmkI � In the
next section we shall partition the dressed MRCI coe�cients ci with respect to references to
obtain pseudoamplitudes dmiI �

The procedure will be iterative� starting from the undressed CI coe�cients 	weighted to
obtain initial pseudoamplitudes
 we shall dress the MRCI matrix and diagonalize it� Using the
new pseudoamplitudes 	de�ned by the new coe�cients
 the new dressing may be evaluated�
The process is repeated until self�consistency is achieved� In fact this new procedure� which
will be referred to as State Speci�c Coupled Cluster type of dressing of the 	MR
CI	SD
 matrix
	SS�CCdCI
� is a generalization of the MR	SC
�CI scheme ���� to a �total� dressing that includes
also linked e�ects of triples and quadruples 	which are present in CCSD method
 with respect
to the reference determinants�

B� Reference�speci�c state�speci�c amplitudes

As one see from the previous subsection� we actually have in common with the state universal 	or
Hilbert space
 approach� that we employ separated cluster ans�atze for references ���� 	for more
detailed comparison see Sec� �����
� In this approach a given determinant i � s is associated with
a set of excitations with respect to its parents� by which it is obtainable� and the corresponding
set of amplitudes coming from expansions for the parent references� All these amplitudes �enter�
the corresponding CI coe�cient 	as in eq� 	����

�

Consider now the reference space of the CAS type� In such a case the most numerous
inactive double excitations generate determinants having one parent only� The corresponding
reference�speci�c amplitudes are thus uniquely de�ned by the proper coe�cients� The semi�
active excitations introduce determinants which might have many parents� One may hope that
for such determinants an appropiate scheme of partitioning of their 	dressed
 MRCI coe�cients
will provide a reasonable de�nition of the reference�dependent amplitudes�

Let us try now to de�ne state�speci�c and reference�speci�c psedoamplitudes for all substi�
tutions leading from S to s space� Let us remark that the coe�cients of the eigenvector j*�mi
of the dressed matrix *H ! H � (

�m satisfy the eigenequation 	we shall omit the tilde accents
for the actual coe�cients
X

I�S

*HiIC
m
I �

X
j�s

j ��i

Hijc
m
j � 	Hii �Em
c

m
i ! � 	����


In the following we shall only dress the HiI columns 	 *HiI �! HiI
� This suggests two possibilities�
One may either

���



i
 consider the second sum of eq� 	����
 as negligible comparing to the �rst one 	since the
CI �s are supposed to be larger than ci�s� being respectively of order zero and order one in
terms of a pertubative expansion from j*��

mi !
P

I�S C
m
I jIi
# thus

cmi �
P

I�S
*HiIC

m
I

Em �Hii
	����


This suggests to postulate cmi �PI�S
*HiIC

m
I � (�

m
i or directly for the amplitudes

dmiI !
*HiI

(�mi
	����


where (�mi is an e�ective energy di�erence� In order to obey strictly the basic eq� 	����

(�mi should be de�ned as

(�mi ! 	Em �Hii
� 	
X
j�s

j ��i

Hijc
m
j 
	c

m
i 


�� !
X
J�S

*HiJC
m
J 	cmi 


�� 	����


ii
 or consider the full eq� 	����
 and write

cmi !

P
I�S

*HiIC
m
I �

P
j�s

j ��i
Hijc

m
j

	Em �Hii

!

P
I�S	

*HiI �
P

j�s

j ��i
Hijd

m
jI
C

m
I

	Em �Hii

	����


Hence the set of linear 	assuming that one may replace *HiJ by HiJ 
 equations

dmiI !

HiI �
P

j�s

j ��i
Hijd

m
jI

Em �Hii
	����


Although the second de�nition avoids the denominators of eq� 	����
� which may be prob�
lematic when some ratios cmj �c

m
i 	see eq� 	����

 become large� it is rather impractical� since it

introduces M �body dressing operator 	diI will not disappear even if HiI ! �
� Regarding the
�rst possibility� for practical proposals one may be tempted to replace *HiJ in the de�nition of
eqs� 	����
 and 	����
 by HiJ � This gives

dmiI !
HiIc

m
iP

J�S HiJC
m
J

	���



and further we shall assume that the reference�speci�c pseudoamplitudes dmiI are given by eq�
	���

�

The above de�nition corresponds to the weighting of MRCI coe�cients proposed for MR�
CEPA type dressing 	see ref� ����
� If one postulates that pseudoamplitudes diI �s come from a
normalized� reference dependent partitioning of ci coe�cient

cmi !
X
I

�iImc
m
i #

X
I

�iIm ! � 	����


�
�



and on the other hand cmi !
P

I d
m
iIC

m
I and the de�nition of eq� 	���

 is employed� one is led

to

�iIm !
HiIC

m
IP

J�S HiJC
m
J

	����


which is partitioning suggested by eq� 	����
� proposed already in ref� ����� However� as
mentioned before� the resulting diI �s may become undesirably large 	or even in�nite
 when the
quantity

P
J�S HiJC

m
J becomes small 	or even zero
 due to cancelation of contributions with

di�erent signs�
In MR	SC
�CI 	see ref� ����
 procedure the amplitudes are chacked and when some of them

become large� the underlying determinants are removed from the MRCI space� As the numerical
tests show� such a selection concerns only very small part 	usually much less than �-
 of all
determinants and� insuring nice convergence� does not in�uence practically the �nal results�
which are very encouraging ����� Therefore this de�nition is kept as a basic one� although
several other de�nitions may also be proposed� One might use the equal weight approximation
for instance 	dmiI ! cmi �	C

m
I Np
 where Np denotes the number of parents of i
� for the rare

determinants governed by the second sum of eq� 	����
�
Another possibility� which scales the quantities diI not only on the strength of the interaction

HiI but also on the energy gap between Hii and HII � is to start from amplitudes optimized
variationally in 
 dimensional CI space spanned by jIi and jii

jIi jii

jIi
jii

�
HII HIi

HiI Hii

	

and then normalize them� in order to satisfy eq� 	����


dmiI ! d��miI cmi �C
m
I # d��miI !

jd��miI jP
J jd��miJ j # d��miI !

c�i
C�
I

	����


where C�
I � c

�
i are variationally optimized coe�cients� The primitive amplitudes d��miI

d��miI !
(�

q
(� � �H�

iI


HiI
when HiI �! �# � otherwise 	����


where ( ! Hii�HII � depend on both HiI and Hii�HII 	with the latter one in the numerator
�
These amplitudes remain 	in absolute values
 smaller than one� provided that we always take the
root with C�

I larger than c�i � They never diverge � if one refers to Quasi Degenarate Perturbation

Theory ���� the wave operator %
���
I at �rst order de�nes diI ! HiI�	HII �Hii
� which diverges

when HII ! Hii�
Anyway� when some single or double substitutions have much larger coe�cients than those

of reference determinants ci �� CI 	i�e� we actually face the intruder states problem
 some
amplitudes might again become very large and destroy the convergence� The remedy for that
is the carefull and reasonable choice of the reference space� Let us notice however that when
ci � CI i�e� when ci is of the same same order of magnitude as C�

I nothing wrong should happen�

�
�



It is not always possible to choose the reference space in such a way to avoid the intruders�
Therefore some dumping of large amplitudes would be desirable� There are three situations�
which should be distinguished and may be treated in a di�erent manner�

i
 ci �� CI and I is the only parent of i� Then there is no risk of small denominator and
the de�niton 	���

 may be applied�

ii
 consider the following model situation� let determinant i has two parents � and 
� ci �� C�

and ci � C�� Then we may shift the large amplitude di� on ref� 
 as follows

ci ! di�C� � di�C�# di� ! � � (i�

d�i� ! �# d�i� ! di� � (i�
C�

C�

where (i�	C��C�
 remains small since C� �� C��

iii
 i has many parents� but for all of them the relation ci �� CI hold� In such a 	rare

situation i might be treated as having no parents� With this special status i would be
dressed according to 	SC
�CI scheme� with respect to a reference determinant K chosen
such that CK � ci and i being triple or quadruple from K�

To choose the best de�nition of pseudoamplitudes further numerical tests of the method are
needed�

C� Comparison with MRCC formalisms

The MRCISD matrix dressed in this way may be considered as providing an eigenvalue 	pseu�
doeigenvalue� due to the dependence on the coe�cients
 formulation of a state�speci�c Mul�
tireference Coupled Cluster Singles and Doubles 	MRCCSD
 method� To remain closer to the
rigorous CC approaches one may distinguish the amplitudes of the single substitutions

amkI ! dmkI 	����


if "ek is a single substitution with respect to I 	 "Tm
��I !

P
k�S�I� a

m
kI "ek
 and introduce the proper

amplitudes of the double substitutions

bmlI ! dmlI � ��

X
�i�j�

�el��ei�ej

amiIa
m
jI 	����


where i� j � S	I
� Eq� 	����
 takes only into account "T� "T� and "T �
� � In order to strictly obey the

assumed exponential form of "% one should also introduce the amplitudes of the triples coming
from the third power of single substitutions 	 "T �

� 
 and the amplitudes of quadruples coming from
"T �
�
"T� and "T 


� � However� one may notice that this rigorous formulation di�ers from the simplest
one only by e�ects of orders higher than two in the wave function and higher than four in
the energy� In fact the restriction of "T to "T� and "T� is an approximation which omits some
important �th order corrections for the energy i�e� the linked contributions of the triples� The

�





exact treatment of �th 	resp� �th
 order corrections coming from "T �
�
"T� and "T �

� 	resp� "T 

� 
 is not

worthwhile in view of this error� except if some "T� terms have very large amplitudes�

The present state�speci�c formulation di�ers deeply from the dominant trends in the MRCC
research� Most of them 	as mentioned in the introduction
 belong to two families which assume
a very universal structure of the wave operator� The �rst one 	VUCC or Fock space CC
 exploits
the Valence Universal wave operator ���� and is less important in our considerations� The second
family 	SUCC or Hilbert space CC
 is based on the reference dependent choice of the vacuum�
The wave operator is expressed as a sum of independent wave operators de�ned with respect to
reference determinants

"% !
dX
K

e
�TK "PK 	����


Such an ansatz was originally proposed by Jeziorski and Monkhorst ����� Its basic feature is
that we have as many independent amplitudes as the number of references times the number
of amplitudes in the single reference case� As a result we have to consider the manifold of all
d states simultaneously to build enough equations� The so�obtained amplitudes are reference�
dependent but they are state universal i�e� they are solutions of the whole system of equations
	for all roots in the model space
�

The philosophy� which is behind the SS�CCdCI procedure� is a very modest one� since one
de�nes a state�speci�c expansion for the wave operator "%� The ansatz we exploit here has a
form similar to that of SUCC approach

"%m !
X
I�S

e
�Tm
I "PI 	����


where the summation over I is restricted to S space only 	and does not concern the whole model
space S�s
 and "Tm

I denote state�speci�c operators with reference�dependent pseudoamplitudes
obtained by a proper partitioning 	di�erent for di�erent states
 of dressed CI coe�cients with
respect to reference determinants�

In the theory of traditional e�ective Hamiltonians the e�ect of outer space determinants is
�rst included in the e�ective Hamiltonian 	via the wave operator
� which is then diagonalized
in the model space to provide d exact roots� Here we not only restrict 	as usually for the
intermediate e�ective Hamiltonians
 the manifold of states to be reproduced to the main model
space� Another basic di�erence follows from the fact that the wave operator of eq� 	����
 is not
built explicitly� However the self�consistent dressing of MRCISD matrix� as de�ned in Sec� 
B�
is equivalent to the traditional scheme

"He�
"PS j�mi ! "PS "H "%m "PS j�mi ! Em

"PS j�mi 	����


"PS�s	 "H � "(m
 "PS�sj�mi ! Em
"PS�sj�mi 	���



From the practical point of view it means that instead of a set of non�linear equations we may use
the CI machinery for the pseudoeigenvalue problem� which is hoped to be much less troublesome�
On the other hand� as the model space is now formally much larger� one has to take care of
redundancy e�ects coming from "T� "T�� "T �

� ���� since for instance some quadruples with respect to

�
�



one of the references may still belong to the s space� being doubles from other references� This
may complicate the algorithm� especially for incomplete reference spaces�

Several other state�speci�c MRCC schemes have been originally proposed 	see ref� ��
�
� In
the very beginning of the MRCC development Sinanoglu and Silverstone ���� proposed a state�
speci�c expansion� but it was rapidly recognized that their formulation introduced an exceedingly
large number of amplitudes which could not be de�ned� Linearized version of MRCC Hilbert
space method 	LMRCC
 with prediagonalization� proposed by Laidig and Bartlett in the early
���s ������ in which the manifold of states is decoupled� also belongs to this category� Recently
Piecuch and Adamowicz ��
� have formulated another practical proposal referred to as State
Selective 	SS
 CC method� which employs the single reference formalism with a state�speci�c
selection of higher rank excitations introduced by model space determinants� Li and Paldus
��
� have proposed another� spin�adapted SSCC method using unitary group approach� The
SS�CCdCI scheme is truly multireference i�e� the amplitudes are reference dependent� there is
no determinant playing distinguished role and it does not need prediagonalization�

D� Size�consistency

Starting from the the MRCISD coe�cients� which are not size�extensive� one repeats the dressing
procedure until self�consistency is achieved� One may demonstrate that the method is size�
consistent i�e� at convergence the desired eigenstate of the dressed MRCISD matrix provides
additively separable energy for a supersystem A � � �B composed of two non�interacting systems
A and B�

We shall employ the same assumptions and notation as for the generalization of the proof of
separability of MR	SC
�CI method� Thus� the MO�s are supposed to be localized on subsystems
A and B and the reference space for the supersystem is supposed to be separable

SAB ! SA � SB 	����


The Singles and Doubles from the references form space sAB and the supersystem model space
is MAB ! SAB � sAB � Again iAjB determinants� where iA and jB are single substitutions in
subsystems� which are formally doubles� but they do not interact with references IAJB shall
not be included in the model space� In order to restore size�consistency in case of these special
doubles included one would have to take into account the disconnected part of the coe�cients
of doubles in eq� 	����
�

Consider now� as previously� two eigenstates j�A
p i and j�B

q i of the dressed subsystems corre�

sponding to the pth and qth roots� with EA
p and EB

q respectively� and let us form their product

j�AB
m i 	projected onto the supersystem model space MAB


j�AB
m i ! "PMAB

j�A
p ij�B

q i 	����


We shall prove that this function� with coe�cients satisfying eqs� 	����
 	thus being products
of the corresponding subsystem determinants coe�cients
 is an eigenfunction of the dressed
supersystem MRCISD matrix with an additively separable energy

EAB
m ! EA

p �EB
q 	����


�
�



The demonstration might follow the proof of separability of MR	SC
�CI method� in which
the dressing operator is factorized into non�interacting subsystems contributions� It is possible
however to prove a more general statement which may be applied to both methods 	and other
similar procedures
 in order to show their size�consistency�

De�nition ����� We shall call an intermediate� e�ective Hamiltonian "H � "(m separable� if
it accepts function �AB

m as an eigenfunction with an additive eigenvalue EAB
m ! EA

p �EB
q �

Let now the indices �� � refer to localized determinants belonging to S� s or outer spaces�

De�nition ����� The outer space coe�cients are factorizable if for each supersystem deter�

minant �AB ! �A�B its coe�cient is the product of coe�cients of the corresponding subsystem

determinants	 cm�AB ! cp
Ac
q
	B
�

Statement ����� If the outer space coe�cients are factorizable the "H � "(m is separable�

Proof Let� according to our assumptions� the coe�cients of determinants belonging to the model
space MAB be factorized as speci�ed in eq� 	����
 and those of the outer space determinants be
factorizable according to de�nition ����
� "H � "(m is diagonalized in the model space� so that
we have to consider equations for two types of determinants� namely IAJB and iAJB � For the
latter one we have 	for simplicity of notation we shall write the diagonal matrix elements with
a unique index between square brackets � e�g� H�I� 	 HII


	H�iAJB� � EAB
m 
cABiAJB �m �

X
IAKB

HiAJB �IAKB
CAB
IAKB�m

�
X
�

HiAJB ��c
AB
��m�

�
X

KB ��JB

HJBKB
CAB
iAKB�m

�
X

jA ��iA

HiAjAc
AB
jAJB �m

! � 	����


where � may represent two types of outer space determinants� namely those which are triples
or quadruples on A 	resp� B
 i�e� of the type �AJB 	resp� IA�B
 and those which are singles
or doubles on both A and B� i�e� of the type iAjB� Eq� 	����
 is satis�ed for EAB

m ! EA
p �EB

q

when the assumed factorization of the inner and outer space coe�cients holds

�	H�iA� � EA
p 
c

p
iA

�
X
IA

HiAIAC
p
IA

�
X
�A

HiA�Ac
p
�A

�
X

jA ��iA

HiAjAc
p
jA
�Cq

JB
�

�	H�JB� � EB
q 
C

q
JB

�
X

KB ��JB

HJBKB
Cq
KB

�
X
kB

HJBkBc
q
kB
�cpiA ! � 	����


since the quantities in the square brackets � � are zero 	the are the eigenequations for iA and JB
respectively� in the dressed separated subsystems
� For the lines corresponding to the reference
functions IAJB analogous derivation is straightforward� �

Thus� as long as we approximate the c��s in a separable manner� the method is size�consistent
and statement ����� provides a universal tool� which enables to check size�consistency of dressing
procedures� We shall prove now that our de�nition of outer space determinants coe�cients used
for CC type dressing has the desirable property� The proof goes through the following steps

�
�



i� notice that
dmiAJB�IAJB ! dpiAIA 	����


This is a direct consequence of the de�nition of the amplitudes 	���

 and of the fact that iAJB
interacts only with references of the type KAJB

dmiAJB �IAJB !
HiAIA � cpiAC

q
JBP

KA
HiAKA

� Cp
KA

Cq
JB

	����


It is easy to show that amplitudes resulting from variationally optimized primitives 	see eq�
	����

 satisfy eq� 	����
 as well� Since

( ! H�iAJB � �H�IAJB � ! H�iA� �H�IA� 	����


we have
d��miAJB�IAJB ! d��miA�IA 	����


and then

d��miAJB �IAJB !
jd��miAJB �IAJB jP
KA

jd��miAJB �KAJB
j !

jd��miA�IA jP
KA

jd��miA�KA
j 	���



Therefore eq� 	����
 holds again�

ii� as pointed out previously there are two types of outer space determinants� namely �AJB
	resp� IA�B
 and iAjB� Using the de�nition of the c��s 	eq� 	����

 and eqs 	����
� 	����
 one
may show for both types the desired factorization

cm� !
X
IAKB

X
�k�l�

j�i��ek�eljIAKBi

dm��ekIAJB�IAKB
dm��elIAJB�IAKB

Cm
IAKB

!

for �AJB
!
X
IA

X
�k�l�

j�AJBi��ekA �elA jIAJBi

dm��ekAIAJB�IAJB
dm��elAIAJB�IAJB

Cm
IAJB

!

X
IA

X
�k�l�

j�Ai��ekA �elA jIAi

dp��ekAIA�IA
dp��elAIA�IA

Cp
IA
Cq
JB

! cp�AC
q
JB

	����


and for iAjB

!
X
IAKB

X
�k�l�

jiAjBi��ekA �elB jIAKBi

dm��ekA IAKB�IAKB
dm��elB IAKB�IAKB

Cm
IAKB

!

X
IA

dpiAIAC
p
IA

X
KB

dqjBKB
Cq
KB

! cpiAc
q
jB

	����


Thus the dressing is separable and our trial function 	eq� 	����
 is an eigenfunction of the dressed
supersystem hamiltonian with the eigenvalue EAB

m ! EA
p � EB

q �

�
�




���� Numerical example

In the following the same modi�cations of H
 model in the rectangular arrangement called in
ref����� P� as in the Sec� ��
�� are used to illustrate the e�ciency of the present proposal ������

The results are given in Table ���� The MRCI results are already quite good in this case
and the dressings do not contribute too much� As one can see the SS�CCdCI method adds from
���� mH 	at 
���� and ���� au
 to ���� mH 	at R !��� au
 to the corresponding MRCI energy
and �nally gives almost constant 	����������� -
 part of the correlation energy independently
on the degree of quasidegeneracy� This is an important message� The MRCC results remain
between MRCI and FCI ones in the whole region� for strong and weak quasidegeneracy as well�
Near square geometry the MRCC correction is about ��� of the di�erence between MRCI and
FCI� whereas for large geometries it riches ���� However� the di�erence between MRCC and
MR	SC
�CI is biggest in the intermediate region 	it is equal to ���� mH at R !���
 where the
total contribution of MRCC method 	with respect to MRCI
 is biggest as well�

Table ���� Results for H
�

R�au� SCF �H � MRCI MR	SC
�CI SSCCdCI ��Ecorr� FCI


���� ��������� ������� ������� �����
� �		���� �������


��� ��������� ����
�� ����
�
 ������
 �		���� �������


�� ��������� ������ ���
�� ���
�� �		��
� ������


�� ��������
 ����
� ������ ���
�� �		���� ������

��� ��������� ������ ���
�� ���
�
 �		���� ������

��� ������
�� ������ ������ ������ �		���� ������

��� ������
�� ������ ������ ������ �		�	
� ������

��� ������
�� ������ ������ ������ �		�	�� ������

���� ��������� ���
�� ���
�� ����
� �		�	�� ������

Modi�ed P
 model �minimal basis set with additional �s atomic orbitals located between H atoms� with
two determinantal reference space� Energy di�erences in millihartrees� with respect to the SCF energy
given in the �rst column 
 all signs reversed �except SCF energies�� At R � ����� the coe�cients of
references are respectively C� � ��	�� and C��

��
� ���	�� ������

At in�nite separation 	with both references localized on one H�
 both dressings give just the
sum of single H� FCI energies 	including the presence of bond centered orbitals
� con�rming
separability 	notice that CISD is equivalent to FCI for this 
 electron system
� Two or three
dressing iterations were su�cient to insure the convergence in all cases without any screening of
large amplitudes 	the de�nition of eq� 	���

 for diI �s were employed
�

The VUCC 	valence universal coupled cluster
 or SUCC 	state universal coupled cluster

results for the original P� model have been recently reported ���� ����� The exact values of
correlation energies for the original P� model are very similar to those presented here 	the dif�
ference is not larger than ��� mH at all geometries
� However� there is a qualitative di�erence in
behavior of VUCC and SUCC results compared to SS�CCdCI procedure� The valence universal

�
�



method gives ������ ������ ����� ���� and ���� 	VU�CCSD,A of ref� ����
 percent of the corre�
lation energy respectively at R ! 
���
� 
��� ���� ���� ����� In the case of SUCC 	MRCCSD��
of ref� ����
 one obtains ������ ������ ������ ����� and ����� percent of the correlation energy
at the same geometries� As discussed in ref� ���� the linear MRCC theory 	L�MRCCSD
 has
singularities at two geometries�

As one can see� in case VUCC and SUCC method one is not able to describe properly various
degrees of quasidegeneracy 	it concerns especially large geometries where the second and third
determinants become relatively close
 using reference space with two determinants� The SS�
CCdCI approximated scheme does not face similar di�culties� As one can see from Table ���
there is no problem with stability of our multireference method in the whole region� for strong
and weak quasidegeneracy as well� The error with respect to FCI results never exceeds ��� mH�


���� MRCEPA type of dressing revisited

The formalism introduced in this section may also be applied to MRCEPA type of dressing
of the MRCISD matrix i�e� to the MR	SC
�CI method� Using psedoamplitudes dmkI one may
reformulate the MR	SC
�CI procedure in the new language�

As we already know in the MR	SC
�CI scheme the outer space contributions are e�ectively
shifted to the model space S � s through a diagonal multireference dressing� Its form is �xed
by assumption that one can weight MRCI coe�cients with respect to reference determinants

�miI !
HiIC

m
IP

J HiJC
m
J

	����


Then the energy shifts of the references are transfered to the determinants i � s according to
the parentage ratios�

Now we can introduce the amplitudes dmkI � recognizing them easily in the de�nition of parent�
age ratios 	����
� It enables us to reformulate the method in this new language� In the following
we shall neglect for simplicity the EPV and R terms�

As a direct consequence of de�nitions 	���

 and 	����
 we have

�miI !
HiIC

m
I c

m
iP

J HiJC
m
J

	cmi 

�� ! dmiI 	c

m
i 


��Cm
I 	����


It implies that
(m
ii !

X
I

hmII�iIm ! 	cmi 

��

X
I�P �I�

dmiI 	
X
k�s

cmk HIk
 !

! 	cmi 

��

X
I�P �i�

X
k�s

X
J�P �k�

dmiId
m
kJC

m
J HIk 	����


where by P 	i
 we denote a set of parents of i and we used relation 	����
 cmk !
P

J�P �k� d
m
kJCJ �

Comparing this with eqs� 	���

 and 	����
 one sees that we postulate for the coe�cient of the
outer space determinant j�i ! "ek"eijIi� obtained from jii ! "eijIi by substitution "ek# jki ! "ekjIi�
the following form of its partitioning

cm�I !
X
J

dmiId
m
kJC

m
J 	����


�
�



cm� !
X
I

cm�I 	����


�
�



Chapter �

Multistate dressing of CC type of

the MRCI matrix


�� Introduction

We have been considering state�speci�c dressing procedures so far� The state�speci�c coupled
cluster type dressing presented in the Sec� ��� is based on the partition of the state�speci�c CI
coe�cients� which are weighted to obtain state�speci�c reference�dependent pseudoamplitudes
dmiI � In this way one decouples the Jeziorski�Monkhorst multistate ansatz into a state�speci�c
decontracted expansion�

Some arguments rationalizing possible de�nitions of the partition of the CI coe�cients giving
reasonable approximation to the real CC amplitudes have been presented in the previous part
of this chapter� It is a matter of numerical tests to choose the optimal weighting� However all
the de�nitions of such obtained pseudoamplitudes must contain some arbitrariness�

To avoid this drawback one may propose another solution which is a generalization of the SS�
CCdCI procedure to the multistate or state�universal dressing of MRCI matrix� The Multistate
Coupled Cluster type dressing of Con�guration Interaction matrix or MS�CCdCI procedure will
start from a set of CI eigenstates to de�ne a state independent dressing in terms of the state�
universal CC amplitudes� coming from an adjusted CC approximation with the cluster operator
truncated to excitations remaining in the CI space�

The new multistate CC type dressing is a generalization of the exponentialization of an
arbitrarily truncated CI expansion and of the resulting CC type of dressing of the corresponding
CI matrix with respect to the ground state introduced in Sec� ���� It was suggested and formally
developed by J�P� Malrieu and the author of this thesis in collaboration with L� Adamowicz and
R� Caballol ������


�� The method

Let us consider a set M of M exact states M ! fj�mi#m ! �� � � �Mg having the expansions

j�mi !
X
I�S

Cm
I jIi�

X
i�s

cmi jii�
X

� ��S�s

cm� j�i m ! �� � � �M 	���


���



where S denotes a reference space and the s space may contain single� double and some higher
excitations from the references�

Let us then assume that the reference space S was chosen in such a way that it consists of
M determinants and diagonalization of the Hamiltonian in S space provides reasonable approx�
imations to the exact states�

Now� we would like to de�ne a multistate intermediate e�ective Hamiltonian "PS�s	 "H �
"(
 "PS�s� where "( is a multistate dressing operator� such that

"PS�s	 "H � "(
 "PS�sj�mi ! Em
"PS�s j�mi m ! �� � � �M 	��



j�mi and Em being the exact eigenstates and eigenvalues

"Hj�mi ! Emj�mi m ! �� � � �M 	���


We demand M exact energies 	M �dimensional main model space
 when acting on the M pro�
jections of the exact eigenvectors onto the model space�

The ith rows in the matrix representation of the eigenequations 	���
 areX
I�S

HiIC
m
I �

X
j�s

j ��i

Hijc
m
j � 	Hii �Em
c

m
i �

X
���S�s

Hi�c
m
� ! � m ! �� � � �M 	���


To de�ne a desired dressing procedure i�e� to reproduce these equations as dressed CI equations
one has to transform the last summation of the above equations into proper matrix elements of
a dressing operator� included in one of the �rst three terms� In other words one has to e�ectively
shift the last summation into the model space�

In the following we shall postulate a dressing operator limited to the M columns involving
the reference determinants

(iI �! � I � S 	���


(m
ik ! � k � s 	���


such that the eqs� 	��

 hold i�e� "PS�s	 "H � "(
 "PS�s accepts "PS�s j�mi as eigenvectors with the
energies Em� The multistate dressing operator "( should carry an additional index "(M but for
simplicity of notation we shall drop the M index in most cases�

Let us denote the terms to be included in the dressing by vmi

vmi !
X

� ��S�s

Hi�c
m
� 	���


Taking into account eqs� 	��

 and 	���
 � 	���
 one obtains

vmi !
X
I�S

(iIC
m
I m ! �� � � �M 	���


Notice that if the s space involves all Singles and Doubles with respect to the reference determi�
nants the quantities vmI and (IJ are zero and the dressing operator only concerns 	N �M
M
matrix elements between the S and s spaces� N ! dim	s
� In a general case� for example for nu�
merical selection of the s space� the "PS "H "PS block of the CI matrix would also remain undressed

���



by the e�ect of the not selected Singles and Doubles because their approximated coe�cients 	in
terms of model space ones
 are not available�

Since we want to calculate vmi quantities we must estimate the coe�cients cm� of the outer
space determinants� coupled with the model space� As suggested in the introduction it will be
based again on the CC arguments� More precisely we shall employ separate CC ans�atze from
the M reference determinants in the spirit of the state�universal MRCC scheme of Jeziorski�
Monkhorst �����

As pointed out in the part devoted to the state�speci�c solution� the Jeziorski�Monkhorst
MRCC expansions for the M states read 	FCC indicates not truncated expansion


j�m
FCCi !

X
I�S

Cm
I e

�TI jIi m ! �� � � �M 	���


in consistency with the postulated form of the wave operator

"% !
X
I

"%I 	����


where "%I is
"%I ! e

�TI "PI # "TI !
X
i

tiI "eiI 	����


Therefore the state�speci�c coe�cients are products of state�speci�c coe�cients Cm
I of the ref�

erence determinants and state independent amplitudes tiI �
Here we shall assume the same form of the expansion of the wave function� There are however

two basic di�erences in the present proposal� Now� in eqs� 	���
 the Cm
I coe�cients will come

from the diagonalization of the intermediate e�ective Hamiltonian in the model space S� s and
not in the reference space S� which plays a role of a model space in the traditional approach� The
truncation scheme of the cluster operators "TI is also di�erent� As for the full exponentialization
of an arbitrarily truncated CI expansion with respect to the ground state introduced in Sec� ���
we shall write

"TI !
X
i�s

tiI "eiI �
X

���S�s

t�I "e�I ! "TI�s � "TI�out 	���



Then the cluster operators "TI are truncated by putting

"TI�out ! � 	����


rather than according to the traditional excitation level scheme� giving

j�m
CCi !

X
I�S

Cm
I e

�TI�sjIi m ! �� � � �M 	����


Our next step will be to evaluate CC amplitudes tiI from the CI coe�cients� For the exact
expansions i�e� exact coe�cients and amplitudes we have for the model space determinants
cmi ! hij�m

FCCi or more explicitly

cmi !
X
I�S

Cm
I hije �TI�sjIi !

X
I�S

Cm
I diI 	����


��




where diI ! hije �TI�sjIi� The state independent pseudoamplitudes diI satisfy the known cascade
of equations de�ning amplitudes of the subsequent k�body operators "eiI from the coe�cients

d
�k�
iI and the amplitudes of l�body operators 	l � k
�

d
���
iI ! t

���
iI 	����


d
���
iI ! t

���
iI �

�




X
�j�k�

�ejI �ekI��eiI

t
���
kI t

���
jI 	����


� � �
Once we know the pseudoamplitudes diI we may easily �nd the true CC amplitudes tiI � In order
to determine diI coe�cients one has to solve the set of linear equations 	����
�

For the outer space determinants in turn one has cm� !
P

I�S C
m
I h�je �TI jIi� This may be

approximated in terms of the model space decompositions according to our truncation scheme
"TI�out ! � by

cm� !
X
I�S

Cm
I h�je �TI�sjIi !

X
I�S

Cm
I d�I 	����


where d�I ! h�je �TI�sjIi� The equations for the approximate CC amplitudes are de�ned by
substituting cmi of eq� 	����
 and cm� of eq� 	����
 into eq� 	���
� On the other hand� taking into
account eqs� 	����
 and 	���
 one may write in general

vmi !
X
I�S

	
X

� ��S�s

Hi�d�I
C
m
I 	����


and the matrix elements of the dressing operator are given by

(iI !
X

���S�s

Hi�d�I 	��
�


Let us now assume that we start from the truncated 	S� s
CI problem having only approx�
imate pure CI coe�cients� They will be used as a starting point of the dressing procedure i�e�
we shall assume that the CI expansions are �rst approximations to the CC ones i�e�

"PS�s j�m���
CC i ! j�m

CI i m ! �� � � �M 	��
�


Comparing the explicit de�nitions of these two expansions one gets

"PS�s
X
I�S

C
m���
I e

�T

��
I�s jIi !

X
I�S

C
m�ci�
I jIi�

X
i�s

c
m�ci�
i jii m ! �� � � �M 	��




and then by projecting on the left by hI j and hij respectively� one obtains C
m���
I ! C

m�ci�
I and

c
m�ci�
i !

X
I�S

C
m�ci�
I d

���
iI m ! �� � � �M 	��
�


���



Then through the previously de�ned cascade of equations one may determine amplitudes t
���
iI �

outer space coe�cients c
m���
� and the dressing terms v

m���
i � The latter ones are to be added to

the CI matrix through the dressing operator as speci�ed in eq� 	��
�
� The so�dressed CI matrix
is diagonalized furnishing the new set of dressed eigenvectors�

The procedure de�ned above is iterated until self�consistency is achieved� At convergence of
the dressing procedure one obtains the desired amplitudes of the j�m

CCi CC expansions from the
dressed CI coe�cients resulting from the diagonalization of the dressed CI matrix� Certainly
one gets simultaneously all M energies�


�� Discussion

The actual S � s space may be generated with respect to a larger reference space S�� S 
 S��
Thus in general we shall consider two di�erent partitions of the S � s subspace of the total
Hilbert space

S � s 	 S� � s� 	��
�


S 
 S�# s� 
 s 	��
�


where S� is a CI reference space and s� is a space of excited with respect to reference determinants
de�ning the starting MRCI spaces� When interested in M roots only� M � dim	S�
� we shall
distinguish a M �dimensional subspace S 
 S� which could be called a generator space since the
multireference expansions will be de�ned with respect to it� Nevertheless it will be called simply
a reference space� In order to avoid confusion we shall denote the reference space of the MRCI
problem as S� if it is di�erent from S� The s space contains an orthogonal complement of S 	in
S�
 and the s� space�

As indicated above one may for instance consider a CASCISD matrix and a reference gen�
erators subspace S 
 S� 	 CAS with the corresponding manifold of states included in the full
manifold derived from the CAS space� Nevertheless for logical and physical consistency it may
be desirable to assume that if S��s� is a MRCI space then all the reference determinant belong to
S i�e� S 	 S� and s 	 s�� in consistency with the state�universal scheme of Jeziorski�Monkhorst�
Certainly� instead of enlarging the set of desired roots to the full CAS manifold one may rather
restrict the MRCI space to the minimal S � s� su�cient for desired accuracy of description of a
given chemical system�

Regarding the practical implementation of the MSCCdCI procedure let us �rst remark that
the use of the block Davidson�like diagonalization procedure ���� for simultaneous evaluation of
M lowest eigenvectors of the 	dressed or not dressed
 CI matrix is desired for practical e�ciency
and is a natural choice� It is impossible to predict a priori the behavior of the block Davidson�like
diagonalization method while adding the new multistate dressing terms to CI matrix� This may
be only veri�ed by numerical tests� Nevertheless� on the grounds of the experience accumulated
so far concerning various dressing schemes one may expect good convergence as long as the
dressing introduces reasonable corrections 	i�e� relatively small with respect to the dominating
matrix elements in the undressed eigenproblem
�

One of the basic steps of the new procedure is determining pseudoamplitudes diI through

���



the solution of the set of linear equation

*Cdi ! ci 	��
�


where 	ci
T ! �c�i � c
�
i � � � � � c

M
i � and 	di
T ! �di�� di�� � � � � diM � are vectors of the state�speci�c CI

coe�cients cmi and state independent pseudoamplitudes diI respectively� The *C matrix contains
the coe�cients of the reference determinants Cm

I in expansions for statesm ! �� � � �M and reads

*C !


�����
C�
� C�

� � � � C�
M

C�
� C�

� � � � C�
M

���
� � �

���
CM
� CM

� � � � CM
M


����� 	��
�


The small set of linear equation 	��
�
 has to be solved for every model space determinant i� It
is an ideal task for parallel computers to perform the N matrix multiplications

di ! 	 *C
����ci 	��
�


N being the number of the model space functions� On the other hand these matrix manipulations
do not signi�cantly increase the computational cost as long as M remains small� which is true
in most cases of potential applications� One may also remark that the *C matrix may be easily
reversed as long as the vectors Cm ! �Cm

� � C
m
� � � � � � C

m
M �� m ! �� � � �M 	rows of *C
 are not

linearly dependent�
Another important aspect of determining pseudoamplitudes diI via the set of equations 	��
�


should be pointed out� The quantity diI is de�ned even if HiI ! � i�e� when determinant i is
more than doubly excited with respect to a given reference determinant I � It means that many�
body operators will appear in the wave operators "%I increasing the complexity of the cascade
of equations 	����
 for determining the real CC amplitudes tiI from diI � If jii is for instance a
quadruple excitation from jIi the pseudoamplitude diI contains the amplitude tiI traditionally
included in CCSDTQ 	by "T

 and products of amplitudes associated with all decompositions of
jii in terms of other model space excitations de�ned with respect to jIi� This is the price to pay
for the adjusting of the CC expansion to the CI model space�

In light of the above it is clear that the method is practical only if the reference space S 	the
number of roots
 and the CI space are su�ciently reduced� To avoid this bottleneck one could
consider an approximate scheme of the MRCEPA type that would account only for the disjoint
decompositions of the outer space excitations� It would then consist in writing

d�I ! diI tjI # j�i ! "ejI "eiI jIi 	��
�


instead of d�I ! h�je �TI�sjIi and would require only partial decomposition 	up to the amplitudes
of Doubles
 of quantities dkI �

It is worth to compare the new proposal to the previously de�ned computational schemes of
the state�speci�c character� The new multistate procedure may be reduced to the single state or
state�speci�c while restricting the number of desired roots to one 	M ! �
� provided that there
is a dominating determinant in the expansion for this root�

���



Consider for instance the MRCI space S ��s� assuming that one of the determinants belonging
to the CI reference space S� is a reasonable approximation to a given mth exact state and will
form our one�dimensional reference generator subspace S� All other model space determinants
will receive single pseudoamplitudes diK with respect to the reference determinant jKi � S 	
fjKig from which one can get real amplitudes of the single reference 	more precisely SR	MR


CC expansion for the mth state�

Thus the new MS�CCdCI algorithm in the limit of one state is di�erent from the state�speci�c
SS�CCdCI procedure for the same state� in which one introduces state�speci�c weighting of CI
coe�cients with respect to all CI references in S�� If the chosen state m is the ground state one
obtains the ground state CC type dressing of an arbitrarily truncated CI matrix introduced in
Sec� ����

The size�consistency of the MSCCdCI procedure will be discussed in the next section�


�� Size�consistency

One may demonstrate that the method is size�consistent i�e� at convergence the desired M eigen�
states of the dressed MRCI matrix furnish M additively separable energies for a supersystem
A � � �B composed of two non�interacting systems A and B� under the following constraints�

� The MO�s are supposed to be localized on subsystems A and B

� The reference space for the supersystem is supposed to be separable i�e� it is the tensorial
product of subsytem reference spaces

SAB ! SA � SB 	����


� The respective subsystem spaces sA and sB contain all the Singles and Doubles from
the references in SA and SB and may also contain some determinants� which are more
than Doubles with respect to all references 	selected for instance as Single or Double with
respect to larger CI reference spaces S�A or S�B


� The supersystem model space is MAB ! SAB�sAB where the space sAB has the following
structure

sAB ! 	sA � SB
� 	SA � sB
� P 	sA � sB
 	����


where P 	sA � sB
 denotes a subset of sA � sB

� � P 	sA � sB
 � sA � sB 	���



Thus sAB contains all the determinants of the form iAJB and IAjB and a part of composite
excitations iAjB � sA � sB introduced by the actual truncation scheme e�g� doubles
composed of localized singles�

Consider now M ! P � Q pairs of eigenstates j�A
p i and j�B

q i of the dressed subsystems

corresponding to the pth� p ! �� � � �P and qth� q ! �� � � �Q roots� with EA
p and EB

q energies

���



respectively� Let us form their products j�AB
m i 	projected onto the supersystem model space

MAB

j�AB

m i ! "PMAB
j�A

p ij�B
q i m ! �� � � �M 	����


where p ! �� � � �P # q ! �� � � �Q� In the expansions of trial functions of the supersystem all the
coe�cients are products of the corresponding subsystem coe�cients

CAB
IAJB �m

! CA
IA�p

CB
JB�q

# cABiAJB�m ! cAiA�pC
B
JB �q

# cABIAjB �m ! CA
IA�p

cBjB �q 	����


and for iAjB �MAB

cABiAjB �m ! cAiA�pc
B
jB�q

	����


We shall prove that the functions j�AB
m i� m ! �� � � �M are eigenfunctions of the dressed

supersystem MRCI matrix with additively separable energies

EAB
m ! EA

p �EB
q m ! �� � � �M 	����


where again p ! �� � � �P # q ! �� � � �Q�
The demonstration will follow the proof of separability of SS�CCdCI method� We shall

�rst generalize to multistate situations the previously introduced statement specifying su�cient
condition for the size�consistency of the dressing procedures as factorizability of the coe�cients of
the outer space determinants� Then the desired property of the approximation to the coe�cients
of the outer space determinants will be veri�ed�

The de�nitions of the separable dressing and factorizable coe�cients may be generalized for
the search of M states as follows

De�nition ��	�� We shall call a multistate intermediate� e�ective Hamiltonian "H � "(M M�

separable� if it accepts functions �AB
m as the eigenfunctions with the additive eigenvalues

EAB
m ! EA

p � EB
q for each m ! �� � � �M �

De�nition ��	�� The outer space coe�cients are M�factorizable if for each supersystem de�

terminant �AB ! �A�B

cm�AB ! cp
Ac
q
	B

m ! �� � � �M

The indices �� � refer to localized determinants belonging to S� s or outer spaces� as previously�

Statement ��	�� If the outer space coe�cients areM�factorizable the "H� "(M isM�separable�

Proof We shall follow the logic of the proof of the statement ������ Let the coe�cients of
the determinants belonging to the model space MAB be factorized as speci�ed in eqs� 	����
 �
	����
 and those of the outer space determinants be M�factorizable according to def� 	���
�

Now� three types of determinants belong to the model space� namely IAJB � iAJB and some
iAjB� The presence of the latter ones in the model spaces means that we have to consider
another set of rows of the matrix representation of the pseudoeigenproblems 	��



	H�iAjB� � EAB
m 
cm�AB

iAjB
�
X
IA

HiAIAc
m�AB
IAjB

�
X
KB

HjBKB
cm�AB
iAKB

�

���



�
X

kA ��iA

HiAkAc
m�AB
kAjB

�
X

lB ��jB

HjB lBc
m�AB
iAlB

�
X
�A

HiA�Ac
m�AB
�AjB

�
X
�B

HjB�Bc
m�AB
iA�B

! � 	����


for each m ! �� � � �M � The summations over determinants kAjB and iAlB respectively include
both the model and outer space determinants of this form� Recall also that the diagonal matrix
elements are denoted by a unique index between square brackets � e�g� h�I� 	 hII �

Eq� 	����
 is satis�ed for EAB
m ! EA

p �EB
q when the assumed factorization of the model and

outer space coe�cients holds

�	H�iA� � EA
p 
c

p
iA

�
X
IA

HiAIAC
p
IA

�
X
�A

HiA�Ac
p
�A

�
X

kA ��iA

HiAkAc
p
kA
�cqjB�

�	H�jB� �EB
q 
c

q
jB

�
X
KB

HjBKB
Cq
KB

�
X
�B

HjB�Bc
q
�B

�
X

lB ��jB

HjB lBc
q
lB
�cpiA ! � 	����


since the quantities in the square brackets � � are zero for each p ! �� � � �P � q ! �� � � �Q� They
are simply the rows of the eigeneproblem for iA and jB respectively� in the dressed separated
subsystems eigenequations�

For the rows corresponding to the reference functions IAJB and iAJB determinants the
derivation is analogous to the previously considered in the context of the SSCCdCI procedure�
The only di�erence is that in the iAJBth rows the model space determinants iAjB resulting from
the composite excitations will certainly not appear in the sum over outer spaces determinants�
but in the separate term without any in�uence on the �nal conclusion since it may be factorized
into subsystem contributions as the other terms� �

We shall prove now that our de�nition of the coe�cients of the outer space determinants
used for the multistate CC type of dressing has the desirable property� The proof goes through
the following steps

i� Recall that the coe�cients of the outer space determinants are given by eq� 	����
� which
for the supersystem problem reads

cm�AB !
X

IAKB�SAB

Cm�AB
IAKB

d�AB �IAKB
	����


Since we have assumed that the coe�cients of the reference determinants are M�factorizable it
is su�cient to prove that the supersystem pseudoamplitudes d�ABIAKB

are M�factorizable�

ii� Notice that there are in general six types of the supersystem outer spaces determinants�
�AKB� IA�B� �AjB� iA�B� �A�B and iAjB ��MAB � Thus it is su�cient to show that

a
 d�AKB�IAKB
! d�AIA # b
 d�AjB �IAKB

! d�AIAdjBKB
#

c
 d�A�B�IAKB
! d�AIAd�BKB

# d
 diAjB �IAKB
! diAIAdjBKB

#

���



iii� Consider now the supersystem model space pseudoamplitudes� For iAKB we have

cmiAKB
!

X
IAJB�SAB

Cm
IAJB

diAJB �IAJB m ! �� � � �M 	����


where on the right hand side the terms with JB ! KB may only survive� whereas for iA in the
subsystem problem

cpiA !
X

IA�SA

Cp
IA
diAIA p ! �� � � �P 	����


Subsequently multiplying all equations of the above set of linear equations by Cq
KB

� q ! �� � � �Q
we see that diAKB �IAKB

and diAIA satisfy the same set of linear equations� Thus� since the model
space coe�cients cmiAKB

and Cm
IAKB

are assummed to be M�factorizable

diAKB�IAKB
! diAIA 	���



Similarly one can check that for kAlB �MAB one has

dkAlB�IAKB
! dkAIAdlBKB

	����


iv� From the model space pseuamplitudes we may then get the real cluster amplitudes� Through
the cascade of equations 	����
� 	����
� � � � we get for iAKB

t
���
iAKB�IAKB

! d
���
iAKB�IAKB

! t
���
iAIA

	����


t
���
iAKB�IAKB

! d
���
iAKB�IAKB

� �




X
�k�l�

�ekAIA�elAIA��eiAIA

t
���
kAIA

t
���
lAIA

! t
���
iAIA

	����


� � �
For the second type of model space determinants� namely kAlB one gets that all amplitudes

t
�k�
kAlB�IAKB

are zero� It is clear that for the amplitudes of singles t
���
kAlB�IAKB

! � because such
composite excitations are at least doubles� Then� because of eqs� 	����
 and 	����
� assuming
additionally that the charge transfer excitations that would introduce another decompositions
have zero amplitudes� we get

t
���
kAlB�IAKB

! d
���
kAlB�IAKB

� t
���
kAIA

t
���
lBIB

! � 	����


It may be easily generalized for the amplitudes of an arbitrary k�body operator� This fact is
crucial for separability�

v� Let us introduce now the partition of the cluster operators "TIAKB �sAB into parts with local�
ized subsystem excitations and composite excitations

"TIAKB �sAB ! "TIAKB�sAB 	A
 �
"TIAKB �sAB	B
 � "TIAKB�sAB 	AB
 	����


���



where for instance the part involving only excitations localized on subsystem A is

"TIAKB�sAB 	A
 !
X
kA

tkAKB �IAKB
"ekAIA 	����


Since� according to iv
 tkAlB �IAKB
! � we have

"TIAKB�sAB 	AB
 !
X
kAlB

tkAlB�IAKB
"ekAlB�IAKB

! � 	����


Moreover
"TIAKB�sAB 	A
 !

"TIA�sA #
"TIAKB�sAB 	B
 ! "TKB�sB 	����


vi� From the de�nition of the outer space pseudoamplitudes

d�ABIAKB
! h�AB je �TIAKB�sAB jIAKBi

follows that they are expressed in terms of sums of products of CC supersystem model space
amplitudes�

Let us �rst explicitly consider the �rst case� namely a
 of ii


d�AKB �IAKB
! h�AKBje �TIAKB�sAB jIAKBi ! h�Aje �TIAKB�sAB �A�jIAi !X

�kA�lA�����

j�Ai��ekAIA�elAIA jIAi

tkAKB �IAKB
tlAKB�IAKB

� � � � 	����


In this case certainly only excitations localized on subsystem A may survive by projecting on
the left� Finally taking into account eqs� 	����
� 	����
� � � � we get

d�AKB�IAKB
! d�A�IA 	���



For the other types of supersystem determinants i�e� �AjB� �A�B and iAjB ��MAB one needs
the eq� 	����
 of v
� which states that all composite excitations have vanishing cluster amplitudes�
We shall also use eq� 	����
� Let us consider for instance the determinants iAjB ��MAB i�e� the
case d
 of ii


diAjB �IAKB
! hiAjBje �TIAKB�sAB �A�� �TIAKB�sAB �B�jIAKBi !

! hiAjhjBje �TIAKB�sAB �A�e
�TIAKB�sAB �B�jIAijKBi ! diAIAdjBKB

	����


In the same way one may demonstrate that the su�cient conditions as speci�ed in ii
 are satis�ed
for the other types of outer space determinants�

Thus the MS�CCdCI dressing is separable and our trial functions 	eq� 	����
 are eigenfunc�
tions of the dressed supersystem hamiltonian with the eigenvalues EAB

m ! EA
p � EB

q �

���



Chapter �

Size�consistent self�consistent

combination of selected CI and PT

The computational cost of the dressing procedures presented in the previous chapters may
increase too rapidly with the size of the considered systems to apply them to large molecules�
even in case of the relatively simple methods of the type of MRCEPA� Further approximations
may be still necessary� The �exibility of variuos dressing procedures opens a way to such
approximated schemes�

In principle one may dress any kind of CI matrices e�g� even two by two matrix and then
join it with a dressing of other CI problems� An example of such combined scheme� suggested
by Malrieu and developed in collaboration with Heully and the author of this thesis ������ is
used to illustrate the potential merits of such lower order methods�

The present chapter contains a brief presentation of a consistent combination of two compu�
tational schemes� namely a Selected 	SC
�CI method and a non divergent 
nd order perturbation
evaluation 	see below
� The method treats Large Doubles 	and any set of higher excited deter�
minants
 in a variational manner and the Small Doubles in a perturbative mode� with reciprocal
dressings of the CEPA type and exact treating of the EPV terms� Strict separability into closed
shell subsystems is insured if the localized MOs are used and the selection procedure introduces
only localized excitations� The results and short discussion of some illustrative calculations
	NH� in DZP basis set and H�O in DZ basis set
 are also presented�

��� The method

In the following we shall restrict ourselves again to the closed shell ground state problem� Let us
consider a two dimensional CI problem spanned by the ground state determinant and a doubly
excited determinant with respect to the ground state� This de�nes a CI model space fj�i� jiig
and the outer space containing the rest of excited determinants� When we diagonalize two
by two problems it provides a non�perturbative evaluation of the coe�cients of doubly excited
determinants called in ref� ����� an Independent Excitation Approximation 	IEA
� Then we may

���



dress the small CI matrices

j�i
jii

�
H�� � ��� H�i

Hi� Hii � �ii

	

by the e�ect of outer space detrminants using diagonal energy shifts

��� !
X
j ��i

cjh�jH jji 	���


and

�ii !
X
j

�ej jii���

cjh�jH jji 	��



where jii ! "eij�i certainly represents a redundancy e�ect� These dressings incorporate the e�ects
of the doubles jji ! "ej j�i for j�i 	except i
 and of quadruples "ej jii for jii� When all coe�cients
of the doubles are evaluated from such dressed two by two problems one is led to a self�consistent
and non�divergent evaluation of the 
nd order perturbation type correlation energies ���
�� The
cost of this self�consistent 
nd order 	dressed IEA
 procedure is a few times that of a classical
MP
 calculation and the so far reported ���
� behavior of the potential energy for single bond
breaking is very encouraging� However� this simple method could not be applied to the breaking
of multiple bonds�

As expressed in Chap� � the 	SC
�CI method may be applied to any selected CI including
arbitrary fractions of the various classes of excitations with respect to the ground state determi�
nant� It means that one can apply this procedure to improve results of a numerically selected CI
method� A large fraction of doubles may be eliminated from the CI expansion because of small
coe�cients� Then one might think of obtaining ci by a perturbative techique if jcij is small�
The traditional PT may however diverge and one may use the dressed IEA amplitudes instead�
joining the two self�consistent size�consistent processes�

The algorithm proposed here is only relevant when selected doubles are included in the
variational CI step� otherwise it reduces to the 	SC
�CI algorithm� On the other side it reduces
to the dressed IEA method when the number of selected deteminants falls down to 
� The
method goes continously from dressed IEA to 	SC
�CI by increasing the number of the doubles
included in the variational CI� It is always possible to add the important triples and quadruples
to this selected space� The method will be referred to as 	SC
�	CI�PT

 ������

From the practical point of view for the determination of ci it is su�cient to consider the
shifted matrix �

� H�i

Hi� Hii �H�� � �ii � ���

	

where

�ii � ��� ! �
X
j

�ej jii��

cjh�jH jji� cih�jH jii

��




and then the dressing reduces to the summation over EPV terms� Regarding the CI matrix we
do the same as in the 	SC
�CI procedure� so that the dressing has the form

�ii !
X
j

�ej jii���� �ej jii��S

cjh�jH jji

with the only di�erence that now summation over doubles j runs over all of them independently
on the origin of the cj coe�cient�

Thus we have a unique and complete set of coe�cients of all Doubles� coming from either
small 
� 
 or large CI diagonalizations that can be used in the mutual dressing of all matrices
	small or large ones
�

The above procedure is size�consistent as long as the selection for the supersystem A � � �B
does not introduce composite excitations resulting from the simultaneous excitations on A and
B� The demonstration follows the same logic as that given in ref� ���� 	with the later erratum
in the ref� ����
 except for the fact that the small coe�cients result from 
� 
 diagonalizations
and is subject to the same general assumptions that the MOs are localized on either A or B and
the intersystem double excitations have zero amplitudes�

Table ���� Results for ammonia in DZP basis set�

V ar� space Small Doubles Energies

dim nLD Evar nSD �mp� �scpt *E *E � �mp� bE
��� ��
 ������ ��
� ��
�� ����� ������ �
���� �
����
���� ���� ������ ���� ����� �
��� ������ �
�
�� �
����

��� 
��� ������ ���
 ���� ���� ������ �
��� � �
����
���� ���� ������ 
��� �
�� �
�� �
�
�
 �
���� �
����
���� ���� �
���� ���� ���� ���� �
���� �
���� �
����
����� ���
 �
���
 ��� ��� ��� �
���� �
���� �
����

Geometry and basis set are from Knowles and Handy ������ �s orbital frozen� Energy di�erencies
in milihartrees� with respect to the SCF energy� The full CI energy is �
���� mH ������ nLD

means the number of large doubles and nSD the number of small ones� Evar refers to undressed
CI� *E to 	SC
�CI energy 	dressed only by large doubles
 and bE refers to 	SC
�	CI�PT
 energy�
�mp� and �scpt denote the usual MP
 and SCPT contributions of small doubles� respectively
������

��� Test calculations

Summation over EPV terms uses e	a� � � �
 quantities 	����
� The calculation of the diagonal
dressing �ii becomes straigthforward then since it only requires summations over the holes and
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particles of i� In practice all determinants are dressed by all possible double excitations� The
scheme of the algorithm is given in Appendix ����

The e�ciency of the above proposal has been tested through three sets of computations
������ The �rst one concerns the NH� molecule in DZP basis set for which an estimate of the
full CI energy has been proposed a few years ago ������ The results appear in Table ��� and
Fig� ��� for di�erent variational spaces selected according to the CIPSI scheme� These spaces
contain from �- to ��- of all doubles� plus the most important triples and quadruples� The
error never exceeds � mH�

Comparing the results from ref� ���� and from Table ��� one can notice that including 
���
doubles and ��� most important triples and quadruples in the S space and treating the other
���
 doubles in a perturbative mode one gets a better energy 	���
�� a�u�
 than including all
doubles in the SDCI 	������ a�u�
 or in the 	SC
�SDCI 	���
�� a�u�
 method� This example
proves the importance of including the most signi�cant higher excitations in the variational
process while treating small doubles at a low level� As one can see from Table � small doubles
still give ��� mH� In cases with much larger number of double excitations� where only a fraction of
them could be treated variationally and where any MRMP
 calculations would be very di�cult
	if possible
� the advantage of the combination of 	SC
�CI and 	SC
�PT
 may be even more
pronounced�

Figure ���� NH� correlation energies 	relative to FCI
 for di�erent dimensions of the variational
space
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In order to test the behavior of the 	SC
�CI�PT method for bond breaking process� the
H�O molecule in the DZ basis set has been examinated� The results are given in Table ��
�

The CIPSI MRMP
 and MREN
 methods give similar or slightly smaller errors 	in the
absolute numbers
 comparing to the present results� But the perturbative CIPSI step is much
more expensive and the present proposal is free from the uncertainty coming from the choice of
"H��

Table ��
� Results for water in DZ basis set�

V ar� space Small Doubles Energies

dim nLD Evar nSD �scpt CMP CEN bE
� � � �
� ������ ������ ������ ������
� � ����	 ��
 ���	�� ���
�� ������ ������
�� �� ��	�� ��� �	��	 ������ �����	 ���	�	

�re �� �� �	��� ��� ����� ��
��� ��
��� ��
���
��� ��
 ��
��� 
�� ���� ��
��� ��
��� ��
���
�
�� ��	 ��
��
 ��� ����� �� � � �� ��
��	
CISD � ��
��� CISDTQ � ��
���

� � � �
� ������ ��	��� ������ ������
�� �� ������ ��� �����	 ��		�� ������ ������
�
 �� ������ �	� ����� ������ ������ ������

���re ��� ��� ������ ��
 ����
 ���
�� ������ ������
���	 ��� ���	�� ��� ���� ���	�	 ������ ���	��
�	�� ��� ���	�� ��� ����� �� � � �� ������
CISD � ������ CISDTQ � ���	�	

� � � �
� ��
��� ������ ���	�� ��
���
�� �� ������ ��	 �����	 ������ ���
�
 ������
�� �� ���
�� ��� ����	 ������ ������ ��	
�


�re ��� �	 ������ ��� ��
�� ������ ���	�
 ��	���
�
�� ��� ��	��� 
�� ���� �����
 ���	�
 ������
���� �
	 ���
�� �	� ����� �� � � �� ������
CISD � ��
	�� CISDTQ � ������

Geometry and basis set from Saxe et� al� ������ Energy di�erencies in milihartrees� with respect to the
SCF energy� The full CI energies are 
�
���� 
������ 
����� mH for �re� ���e and �re respectively ������
nLD means the number of large doubles� whereas nSD the number of small ones� Evar refers to undressed
CI� bE to �SC���CI�PT� energy� �scpt denotes SCPT contributions of small doubles� whereas CMP and
CEN denote M�ller�Plesset and Epstein�Nesbet CIPSI energies� Single reference CISD and CISDTQ
energies are also given for comparison�

The separability property has been veri�ed as a practical test for the program by calcu�
lating two water molecules at very large distances� using localized MOs� When the selection
introduces only doubles in the variational space� for the supersystem AB as well as for A and
B� the variational space is the simple union of those coresponding to the subsystems and the
additivity follows from the proof given in ref� ���� and ���
�� In the case where using the same
thresholds for selections the variational space contains some intermolecular quadruple products
of intramolecular doubles the results are no longer separable 	contrary to what is stated in ref�
�����
�

���



��� Discussion

It is worth comparing the present procedure to some popular multireference MP
 methods� al�
though the perturbative part is based on a single reference� Standard MRMP
 methods proceed
�rst to the diagonalization of the PSHPS matrix and perturb later the multicon�gurational
vector� while here we take into account an outer space e�ect before diagonalization� This point
is crucial to insure size�extensivity �����

Obviously some e�ects treated in MRMP
 methods are neglected in the present scheme�
mainly the MP� contribution incorporating the interactions between small and large doubles�
The MRMP
 methods calculate all matrix elements between the model space determinants i
and the outer space determinants �� hijH j�i while here one uses explicitely the matrix elements
of the �rst row h�jH j�i� Therefore the computational cost of the new procedure is simply that
of the diagonalization plus that of an MP
� while in MRMP
 techniques the bottleneck is the
perturbative step with the cost that increases rapidly with the number of reference determinants�

Let us remark �nally that although the test calculations have not been performed on real
scale problems since they concerned medium basis sets and small numbers of electrons� they
illustrate the e�ciency and possibilities of the method� The reciprocal dressing of the variational
and perturbative type treatments improves signi�cantly the results when the contribution of the
small doubles remains important� This should be the case for the relevant domains of application
of the method�

The above procedure may be generalized to open shell and excited states multireference
situations� As proposed by Malrieu et� al� ����� one may generalize Independent Excitation
Approximation 	IEA
 to MRIEA method� This generalization concerns CAS reference spaces
and de�nes relatively small variational problems including the reference functions and excitations
involving a given �xed set of inactive orbitals� Then all those excitations obtain a unique
diagonal shift taking into account the outer space e�ects� The procedure goes through a set
of such reciprocally dressed diagonalizations� Nevertheless the MRIEA method has not been
implemented as yet and its usefulness must be evaluated�

���



Perspectives and conclusions
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Remark� towards large scale problems

The tremendous development of computer technology and parallel progress in methodology
of Quantum Chemistry have made possible accurate investigations of small to medium size
molecular structures using ab initio methods� Unfortunately the computational costs of such
methods increase with the size of the molecular system much faster than linearly � in case of
methods accounting for the correlation energy usually faster than n
� n being the number of
electrons in the system� Simple and e�cient procedures that enable to predict with reasonable
accuracy various electronic phenomena are highly desirable� They should allow to attack larger
systems using large basis sets� The e�orts reported in the previous chapters were motivated
by such reasoning� The new algorithms presented here result from looking for a compromise
between contradictory requirements i�e� desired precision and computational cost�

Development of general formalisms of the MRCC type is a point of reference for further
development of hopefully more practical proposals of the MRCEPA type� The same concerns
the Sup�CI method� Although in principle one could include higher order e�ects� the multiref�
erence third order version implemented here seems to be an optimal choice� Nevertheless� as
the computational cost increases so rapidly with the size of the considered systems� even such
relatively simple methods can be only applied to moderate systems and further approximations
may be necessary�

Regarding the Superdirect Con�guration Interaction Method some simpli�ed correction vec�
tors could be used to built the e�ective short CI expansion as suggested in Chap� 
� The
�exibility of various dressing procedures opens even greater possibilities for some approximated
schemes due to the fact that one may dress any kind of CI matrices and combine it consistently
with a dressing of other CI problems�

Summary

In this work several computational schemes for the electron correlation problem were formally
derived and implemented� The following paragraphs contain summary of the thesis and some
�nal remarks concerning the new methods of the Con�guration Interaction type� which have
been developed by the author of this thesis in collaboration with prof� W� Duch and prof� J�P�
Malrieu�

The Superdirect Con�guration Interaction method

The Superdirect Con�guration Interaction 	Sup�CI
 method proposed by Duch ���� was pre�
sented� The method uses compact CI expansion in terms of contracted functions of the pertur�
bative type� A version in which third order contributions are computed for a relatively small
	������
 space of reference and �rst order correction vectors has been implemented using modi�
�cation of SGGA�CI program for matrix elements computations ����� Several numerical tests on
benchmark problems are included in Sec� 
��� The MBPT like formulas for the matrix elements
have been also derived� using the Symmetric Group Approach 	SGA
 to CI and an algebra of
circular operators� invented for this purpose by Duch ����� Various formal and graphical devel�
opments have been introduced by the author of this thesis in order to simplify the evaluation

���



of these matrix elements according to general algorithm proposed by Duch� The derivation of
general open shell third order Sup�CI matrix elements is the subject of Chap� ��

As long as the �rst order correction vectors are used the Sup�CI method is an approximation
of the MRCISD method� The Sup�CI method may be useful for computations of molecular prop�
erties and potential energy surfaces� since the relative errors for di�erent geometries are much
smaller than the absolute errors� CIPSI procedure for selection of the reference space applied at
the preliminary stage of potential energy calculations will identify all relevant con�gurations and
allow to �x one reference space for all geometry points used� increasing reliability of calculations�
The results reported in Chap� 
 are superior to all single reference methods� including CI and
many�body perturbation theory� On the other hand the method properly programmed should
be an order of magnitude more e�cient than multireference CI giving results of similar quality�

One should stress that from a formal point of view increasing the number of �rst�order
correction vectors obtained from di�erent reference CSFs leads to convergence to the exact so�
lution of Schr�odinger equation� Another� faster but computationally more demanding� way of
improving the results would involve going beyond the �rst order corrections by computing ap�
proximations to the higher�order Hamiltonian expectation values� either by dividing integrals
into di�erent classes or by statistical sampling techniques� The most direct approach is to use
approximate second�order correction vectors� for example by allowing only pair�pair interactions
in the Hamiltonian used to create second�order correction vectors� Since the method is varia�
tional even approximate correction vectors must improve the energy� However� in calculation
for water it has been veri�ed that about one half of the improvement for second�order correction
vectors comes from interactions involving integrals with all four indices di�erent� which are not
so easy to include�

The biggest problem that remains in Sup�CI as well as MR�CI is the size�extensivity error
due to neglecting of the higher�order excitations� Although a posteriori corrections applied to
Sup�CI energies remove a part of this error it is desirable to �nd more accurate corrections for
this method� Another problem is the complexity of the resulting formulas presented in Chap�
� and in the Appendix� E�cient programming of such formulas is a challenge comparable to
programming of MBPT	�
 method or MRPT methods�

Dressing of CI matrices as a bridge between CI and CC methods

Chapter � plays basically an auxiliary role� It introduces the concept of dressing of CI matrices
based on the theory of the intermediate Hamiltonians ���� ����� Roughly speaking dressing
means adding non�linear terms� such as the non�linear terms appearing in CC methods� to the
corresponding CI matrix� This may be viewed as size�consistent modi�cation of the CI method
in case of simpli�ed dressings of the type of CEPA method or as particular method of solving
the non�linear equations of the CC type through a dressed� pseudolinear set of CI equations�

Methodological background of this new approach was presented� Some previous applications
are traced and relationships between di�erent methods that may be regarded as particular forms
of a dressing are explained by the author of this thesis using the existing literature� Moreover a
new proposal� namely Generalized Coupled Pair Functional 	GCPF
 was proposed� The GCPF
method is a special form of dressing of the CEPA type of the overlap matrix� It has been
suggested and developed by Malrieu and the author of this thesis�
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Mutireference state�speci�c size�consistent procedures

A partition of the coe�cients of the Singles and Doubles from a multireference space� as obtained
from a MRCISD wave function has been proposed� This partition makes possible the de�nition
of state�speci�c reference�dependent amplitudes for the single and double excitations� compatible
with a partition of the state�speci�c operator "%m into a sum of reference�speci�c state�speci�c
operators

"%m !
X
I�S

"%m
I 	���


Then it is possible to assume an exponential form for each of the "%m
I �s

"%m
I ! e

�Tm
I "PI 	���


and one obtains directly a coupled cluster expansion of the multireference wave function� The so�
obtained leading contributions to the coe�cients of the Triples and Quadruples 	i�e� of "T � type

are used to dress the CISD matrix according to the state�speci�c intermediate Hamiltonians
formalism� in the iterative� self�consistent manner� This proposal may be viewed as a dressed
CISD formulation of the CCSD method for the multireference case� as previously proposed for
the single reference ����� One should also note that this procedure decouples the Jeziorski�
Monkhorst multistate ansatz ���� into a state�speci�c decontracted expansion� The new method
is referred to as State Speci�c Coupled Cluster type of dressing of the MRCI matrix 	SS�CCdCI

������ The results of a preliminary application of this method to the H
 problem� which happens
to be di�cult for VU and SU MRCC approaches� are very encouraging� They are presented in
Chap� �� Nevertheless� it is certainly desirable to re�ne the de�nition of the reference dependent
state�speci�c amplitudes within the general framework proposed here�

The state�speci�c CC type of dressing was inspired by the previous formulation of MR	SC
�CI
method� proposed by Malrieu et� al� ����� The 4weighted genealogy� of this method is logi�
cally connected to the partition of the coe�cients of single and double excitations with respect
to their parent references exploited here� Convergence problems that arise when using such a
weighting may be overcome� The numerical results of the MR	SC
�CI method� implemented by
the author of this thesis� are very promising� They are presented in Chap� ��

Mutireference state�universal size�consistent procedures

The state�speci�c coupled cluster type of dressing is based on the partition of the state�speci�c
CI coe�cients� All de�nitions of such a procedure must however contain some arbitrariness�
To avoid this drawback a generalization of the SS�CCdCI procedure to the Multistate or State�
Universal Coupled Cluster type of dressing of the MRCI matrix has been proposed ������ The
MS�CCdCI procedure starts from a set of CI eigenstates to de�ne a state independent dressing
in terms of the state�universal CC amplitudes� More precisely� one assumes again the separate
cluster ans�atze in the spirit of the Jeziorski�Monkhorst Hilbert space MRCC method but with
the truly multistate amplitudes and truncation of the cluster operators to the corresponding CI
model space�

In order to de�ne the CC amplitudes one solves a set of linear equations obtained by compar�
ison of the linear CI expansions for a set of the exact states and the corresponding CC expansions

���



in terms of products of the state�universal amplitudes and state�speci�c reference coe�cients�
One may then consider for any truncated CI expansion 	actually for a set of CI expansions
for a set of states
 its exponentialization i�e� an adjusted CC approximation with the cluster
operators truncated to excitations remaining in the CI space� The products of such excitations
de�ne through the CC expansion the approximate amplitudes of the outer space determinants
	i�e� those that not belong to the CI space
 amplitudes and the dressing terms that has to be
added to the CI equations in order to obtain the CC equations� At convergence one obtains
amplitudes of CC approximation adjusted to the CI space from the dressed CI coe�cients�

In the MS�CCdCI one has to take into account all the possible decompositions of all model
space determinants 	not only singly and doubly excited ones
 when considering expansions with
respect to subsequent references in the Jeziorski�Monkhorst ansatz spirit� Thus� the amplitudes
of triples or quadruples with respect to a given reference may appear in the dressing of the MR�
CISD matrix� This certainly increases the complexity of the method� One may however hope
that the approximate scheme of the MRCEPA type� which requires decompositions involving
doubly excited functions only and is therefore relatively cheap� will be an interesting alterna�
tive to the existing multireference size�consistent procedures� The MS�CCdCI method and its
approximated MS�CEPA version have not been implemented as yet� Both approximations have
been formally developed by Malrieu and the author of this thesis in collaboration with Adamow�
icz and Caballol ������ The proof of size�consistency of MS�CCdCI procedure and other proofs
of size�consistency included in this thesis come also from the author of this thesis�

The �SC��CI�PT method

Size�consistent self�consistent combination of selected CI and PT ����� is an e�ective combina�
tion of the dressing of CEPA type of selected CI matrix and a number of two by two dressed
diagonalizations providing coe�cients of the not selected doubly excited functions� This proce�
dure is more �exible and more powerful than an approximate SDCI going through a partition
into large doubles and small doubles� The advantage come from the size�consistency� but even
more important is the incorporation of higher order e�ects� including the most important triples
and quadruples� This should be especially important for many problems in quantum chemistry
where a subset of highly correlated electrons appears� while the electronic correlation of the
remaining electrons may be treated at a lower level of accuracy� One may think of chemical
reactions where only a few bonds are strongly a�ected� or of the � electrons 4above� the �

electrons in conjugated molecules�

Another �eld of application where size�extensivity is strongly desired is the interaction be�
tween molecules� At present the methods used for computation of molecular interactions are
either the single reference MBPTn expansions 	in practice MP
 in most cases
 or single reference
CC methods� The former ones are of poor reliability 	especially if some internal doubles have
large coe�cients
 whereas the second ones are very expensive� except for CCSD which may not
be su�cient�

In comparison with MRPT
 methods� the present scheme may be seen as more approximate
since it neglects the interaction between small and large doubles� but it is formally more rigorous
and certainly much cheaper for a given size of the variational space since we do not generate all
the determinants interacting with the selected con�gurations� The bottleneck is no longer the

��




perturbative step� allowing for larger dimensions of the CI space 	especially if one uses Direct
Selected algorithms
� The 	SC
�CI�PT method has been implemented by the author of this
thesis� Several numerical tests on benchmark problems are presented in Chap� ��
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B� Formulae for the Sup�CI matrix elements

Table ���� H� type diagonal matrix element� contractions
For explanations see Chap� �

� � jR�HR� j� � �� d��m� p � d��m� p �� jb��m� p � b��m� p � b�� p�m � j �

� d��m� p ��d�� e� p �� j b��m� p � b�� e�m � b�� p� e � j �

� d��m� g �� jb��m� p � b�� p� g � b�� g�m � j ��

� d��m� p � d��m� f� p� h �� j b��m� p � b�� f� h � b�� p� h�m� f � j �

� d��m� p � d�� e� g �� j b��m� p � b�� p� e�m� g � b�� g� e � j � �

d��m� p ��d�� e� f� p� h �� jb��m� p � b�� e� f�m� h � b�� p� h� e� f � j �

� d��m� f� g� h �� jb��m� p � b�� p� f� g� h � b�� g� h�m� f � j �� �

d��m�n� p� q � d��m�n� p� q �� jb��m�n� p� q � b��m�n� p� q �

b�� p� q�m� n � j �� d��m�n� p� q ��

d��n� q �� j b��m�n� p� q � b�� p�m � b�� q� n � j �

� d��n� p �� jb��m�n� p� q � b�� q�m � b�� p� n � j �

� d��m� q �� j b��m�n� p� q � b�� q�m � b�� p� n � j �

� d��m� p �� j b��m�n� p� q � b�� p�m � b�� q� n � j �� �

d��m�n� p� q ��

d�� e� n� p� q �� j b��m�n� p� q � b�� e�m � b�� p� q� e� n � j �

� d��m� e� p� q �� jb��m�n� p� q � b�� e� n � b�� p� q�m� e � j �

� d��m�n� g� q �� jb��m�n� p� q � b�� p� g � b�� g� q�m� n � j �

� d��m�n� p� g �� j b��m�n� p� q � b�� q� g � b�� p� g�m� n � j �� �

d��m�n� p� q ��

d��m� g �� jb��m�n� p� q � b�� p� q� n� g � b�� g�m � j �

� d��n� g �� j b��m�n� p� q � b�� p� q�m� g � b�� g� n � j �

� d�� e� p �� j b��m�n� p� q � b�� q� e�m� n � b�� p� e � j �

� d�� e� q �� j b��m�n� p� q � b�� p� e�m� n � b�� q� e � j �� �

d��m�n� p� q ��

d�� e� f� p� q �� jb��m�n� p� q � b�� e� f�m� n � b�� p� q� e� f � j �

� d��m�n� g� h �� j b��m�n� p� q � b�� p� q� g� h � b�� g� h�m� n � j �

� d�� e� n� g� q �� j b��m�n� p� q � b�� p� e�m� g � b�� g� q� e� n � j �

� d�� e� n� p� g �� j b��m�n� p� q � b�� q� e�m� g � b�� p� g� e� n � j �

� d��m� e� g� q �� jb��m�n� p� q � b�� p� e� n� g � b�� g� q�m� e � j �

� d��m� e� p� g �� jb��m�n� p� q � b�� q� e� n� g � b�� p� g�m� e � j �

�
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Table ��
� H� type diagonal mat� el� � distinct chains

CSC expanded with respect to indices repetitions� FTOS contributions
included� except for the S� FTOS contributions given in Table ��� and
S� terms from 	����
� For explanations see Chap� ��

d��m�n� s� q � d�� s� n� g� q �� j b��m�n� s� q � b�� s� s�m� g �

b�� g� q� s� n � j � � d��m�m� s� q � d�� s�m� g� q �� j b��m�m� s� q �

b�� s� s�m� g � b�� g� q� s�m � j �� d��m�m� p� q ��

d�� e� f� p� q �� j b��m�m� p� q � b�� e� f�m�m � b�� p� q� e� f � j �

� d�� e� e� p� q �� jb��m�m� p� q � b�� e� e�m�m � b�� p� q� e� e � j �

� d��m�m� g� h �� j b��m�m� p� q � b�� p� q� g� h � b�� g� h�m�m � j �

� d��m�m� g� g �� jb��m�m� p� q � b�� p� q� g� g � b�� g� g�m�m � j �

� d�� e�m� g� q �� j b��m�m� p� q � b�� p� e�m� g � b�� g� q� e�m � j ��

� d��m�m� p� p ��

d�� e�m� p� p �� jb��m�m� p� p � b�� e�m � b�� p� p� e�m � j �

� d��m�m� g� p �� j b��m�m� p� p � b�� p� g � b�� g� p�m�m � j ��

� d��m�n� p� q ��

d��m� g �� j b��m�n� p� q � b�� p� q� n� g � b�� g�m � j �

� d�� e� p �� jb��m�n� p� q � b�� q� e�m� n � b�� p� e � j �� �

d��m�m� p� q ��

d��m� g �� j b��m�m� p� q � b�� p� q�m� g � b�� g�m � j �

� d�� e� p �� jb��m�m� p� q � b�� q� e�m�m � b�� p� e � j �� �

d��m�n� p� p ��

d��m� g �� j b��m�n� p� p � b�� p� p� n� g � b�� g�m � j �

� d�� e� p �� jb��m�n� p� p � b�� p� e�m� n � b�� p� e � j �� �

d��m�m� p� p ��

d��m� g �� j b��m�m� p� p � b�� p� p�m� g � b�� g�m � j �

� d�� e� p �� jb��m�m� p� p � b�� p� e�m�m � b�� p� e � j �� �

d��m�n� p� q ��

d�� e� f� p� q �� j b��m�n� p� q � b�� e� f�m� n � b�� p� q� e� f � j �

� d�� e� e� p� q �� jb��m�n� p� q � b�� e� e�m� n � b�� p� q� e� e � j �

� d��m�n� g� h �� jb��m�n� p� q � b�� p� q� g� h � b�� g� h�m� n � j �

� d��m�n� g� g �� j b��m�n� p� q � b�� p� q� g� g � b�� g� g�m� n � j �

� d�� e� n� g� q �� jb��m�n� p� q � b�� p� e�m� g � b�� g� q� e� n � j ��

� d��m� t� p� q � d��m� t �� j b��m� t� p� q � b�� p� q� t� t � b�� t�m � j �

� d��m� t� p� p � d��m� t �� j b��m� t� p� p � b�� p� p� t� t � b�� t�m � j �
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� d��m�n� p� s � d�� s� p �� jb��m�n� p� s � b�� s� s�m� n � b�� p� s � j �

� d��m�m� p� s � d�� s� p �� jb��m�m� p� s � b�� s� s�m�m �

b�� p� s � j � � d�� t� n� p� q � d�� e� n� t� q �� j b�� t� n� p� q �

b�� p� e� t� t � b�� t� q� e� n � j� � d�� t� n� p� p � d�� e� n� t� p �� j

b�� t� n� p� p � b�� p� e� t� t � b�� t� p� e� n � j � � d�� t� n� s� q �

d�� s� n� t� q �� jb�� t� n� s� q � b�� s� s� t� t � b�� t� q� s� n � j ��

d��m�n� p� p ��

d�� e� f� p� p �� jb��m�n� p� p � b�� e� f�m� n � b�� p� p� e� f � j �

� d�� e� e� p� p �� jb��m�n� p� p � b�� e� e�m� n � b�� p� p� e� e � j �

� d��m�n� g� h �� jb��m�n� p� p � b�� p� p� g� h � b�� g� h�m� n � j �

� d��m�n� g� g �� j b��m�n� p� p � b�� p� p� g� g � b�� g� g�m� n � j �

� d�� e� n� g� p �� jb��m�n� p� p � b�� p� e�m� g � b�� g� p� e� n � j ��

� d��m�m� p� p ��

d�� e� f� p� p �� jb��m�m� p� p � b�� e� f�m�m � b�� p� p� e� f � j �

� d�� e� e� p� p �� jb��m�m� p� p � b�� e� e�m�m � b�� p� p� e� e � j �

� d��m�m� g� h �� j b��m�m� p� p � b�� p� p� g� h � b�� g� h�m�m � j �

� d��m�m� g� g �� jb��m�m� p� p � b�� p� p� g� g � b�� g� g�m�m � j �

� d�� e�m� g� p �� j b��m�m� p� p � b�� p� e�m� g � b�� g� p� e�m � j ��

� d��m�n� p� q � d��n� q �� jb��m�n� p� q � b�� p�m � b�� q� n � j �

� d��m� s � d��m� s� g� g �� jb��m� s � b�� s� s� g� g � b�� g� g�m� s �

j � � d��m� p ��d�� e� p �� jb��m� p � b�� e�m � b�� p� e � j �

� d��m� g �� jb��m� p � b�� p� g � b�� g�m � j �� � d��m� s �

d��m� s� g� h �� jb��m� s � b�� s� s� g� h � b�� g� h�m� s � j ��

d��m�n� p� p ��

d�� e� n� p� p �� j b��m�n� p� p � b�� e�m � b�� p� p� e� n � j �

� d��m�n� g� p �� jb��m�n� p� p � b�� p� g � b�� g� p�m� n � j ��

� d�� t� p � d�� e� e� p� t �� jb�� t� p � b�� e� e� t� t � b�� p� t� e� e � j �

� d��m�m� p� p � d��m� p �� j b��m�m� p� p � b�� p�m �� j �

� d��m�n� p� p � d��n� p �� j b��m�n� p� p � b�� p�m � b�� p� n � j �

� d��m�m� p� q � d��m� q �� jb��m�m� p� q � b�� p�m � b�� q�m � j �

� d��m�m� p� q ��

d�� e�m� p� q �� j b��m�m� p� q � b�� e�m � b�� p� q� e�m � j �

� d��m�m� g� q �� j b��m�m� p� q � b�� p� g � b�� g� q�m�m � j ��

� d��m� p � d��m� p �� j b��m� p � b��m� p � b�� p�m � j ��

d��m�n� p� q ��

d�� e� n� p� q �� jb��m�n� p� q � b�� e�m � b�� p� q� e� n � j �

� d��m�n� g� q �� jb��m�n� p� q � b�� p� g � b�� g� q�m� n � j �� �

d��m�n� p� q � d��m�n� p� q �� j b��m�n� p� q � b��m�n� p� q �

b�� p� q�m� n � j �
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� d��m� p � d��m� f� p� h �� jb��m� p � b�� f� h � b�� p� h�m� f � j �

� d��m� p � d�� e� g �� jb��m� p � b�� p� e�m� g � b�� g� e � j ��

d��m� p ��d�� e� f� p� h �� jb��m� p � b�� e� f�m� h � b�� p� h� e� f � j �

� d�� e� e� p� h �� jb��m� p � b�� e� e�m� h � b�� p� h� e� e � j �

� d��m� f� g� h �� j b��m� p � b�� p� f� g� h � b�� g� h�m� f � j �

� d��m� f� g� g �� jb��m� p � b�� p� f� g� g � b�� g� g�m� f � j ��

� d��m� s � d�� s� g �� j b��m� s � b�� s� s�m� g � b�� g� s � j �

� d�� t� p � d�� e� t �� jb�� t� p � b�� p� e� t� t � b�� t� e � j �

� d�� t� s � d�� s� t �� j b�� t� s �� b�� s� s� t� t � j �

� d�� t� p � d�� e� f� p� t �� j b�� t� p � b�� e� f� t� t � b�� p� t� e� f � j �

���



Table ���� H� type diag� mat� el� � 
nd and �d H expanded

CSC expanded with respect to indices repetitions� FTOS contributions
included� except for the S� FTOS contributions given in Table ��� and
S� terms from 	����
� c�	m� p
 !

P
k	mpjkk
	"nk � �mk
 � 	mjp
 and

c
	m� p� k
 !
P

k ��m�p	mkjpk
 are factors arising from "B�� For explana�
tions see Chap� ��

d��m�m� p� q �

�
d�� e� f� p� q �� jb��m�m� p� q ��

i�� e�m� f�m � i�� p� e� q� f � � e�m� f�m� p� e� q� f �

� i�� e�m� f�m � i�� p� f� q� e � � e�m� f�m� p� f� q� e ��j ��
�

�
d�� e� e� p� q �� jb��m�m� p� q � i�� e�m� e�m � i�� p� e� q� e �

� e�m� e�m� p� e� q� e � j �� d��m�m� g� h �� jb��m�m� p� q ��

i�� p� g� q� h � i��g�m� h�m � �p� g� q� h� g�m� h�m �

� i�� p�h� q� g � i��g�m� h�m � �p� h� q� g� g�m� h�m ��j ��
�

�
d��m�m� g� g �� jb��m�m� p� q � i�� p� g� q� g � i��g�m� g�m �

�p� g� q� g� g�m� g�m � j � � d�� e�m� g� q �� jb��m�m� p� q ��

i�� p�m� e� g � i�� g� e� q�m � �p�m� e� g� g� e� q�m �

� i�� p�m� e� g � i�� g�m� q� e � �p�m� e� g� g�m� q� e �

� i�� p� g� e�m � i�� g� e� q�m � �p� g� e�m� g� e� q�m �

� i�� p� g� e�m � i�� g�m� q� e � �p� g� e�m� g�m� q� e ��j �

�
�

d��m�n� p� p �

�
d�� e� f� p� p �� jb��m�n� p� p ��

i�� e�m� f�n � i�� p� e� p� f � � e�m� f�n� p� e� p� f �

� i�� e� n� f�m � i�� p� e� p� f � � e� n� f�m� p� e� p� f ��j ��
�

�
d�� e� e� p� p �� jb��m�n� p� p � i�� e�m� e� n � i�� p� e� p� e �

� e�m� e� n� p� e� p� e � j �� d��m�n� g� h �� jb��m�n� p� p ��

i�� p� g� p� h � i��g�m� h� n � �p� g� p� h� g�m�h� n �

� i�� p� g� p� h � i��g� n� h�m � �p� g� p� h� g� n� h�m ��j ��
�

�
d��m�n� g� g �� jb��m�n� p� p � i��p� g� p� g � i��g�m� g�n �

�p� g� p� g� g�m� g� n � j � � d�� e� n� g� p �� jb��m�n� p� p ��

i�� p�m� e� g � i�� g� e� p� n � �p�m� e� g� g� e� p� n �

� i�� p�m� e� g � i�� g�n� p� e � �p�m� e� g� g�n� p� e �

� i�� p� g� e�m � i�� g� e� p� n � �p� g� e�m� g� e� p� n �

� i�� p� g� e�m � i�� g�n� p� e � �p� g� e�m� g�n� p� e ��j �

�
�

d��m�m� p� p �

�
d�� e� f� p� p �� jb��m�m� p� p � i�� e�m� f�m �

i�� p� e� p� f � � e�m� f�m� p� e� p� f � j � �
�



d�� e� e� p� p �� j

b��m�m� p� p � i�� e�m� e�m � i�� p� e� p� e � � e�m� e�m� p� e� p� e �

��




j � � d��m�m� g�h �� jb��m�m� p� p � i��p� g� p� h � i�� g�m� h�m �

�p� g� p� h� g�m� h�m � j ��
�



d��m�m� g� g �� jb��m�m�p� p �

i�� p� g� p� g � i�� g�m� g�m � �p� g� p� g� g�m� g�m � j � �

d�� e�m� g� p �� jb��m�m� p� p ��

i�� p�m� e� g � i�� g� e� p�m � �p�m� e� g� g� e� p�m �

� i�� p�m� e� g � i�� g�m� p� e � �p�m� e� g� g�m� p� e �

� i�� p� g� e�m � i�� g� e� p�m � �p� g� e�m� g� e� p�m �

� i�� p� g� e�m � i�� g�m� p� e � �p� g� e�m� g�m� p� e ��j �

�
�

d��m�p � d��m�f� p� h �� jb��m� p ��

c�� f�h � i�� p�m� h� f � � f�h� p�m� h� f �

� c�� f�h � i�� p� f� h�m � � f�h� p� f� h�m �

� c�� f�h� r� � i��p�m� h� f � � r� � h� f� r� � p�m� h� f �

� c�� f�h� r� � i��p� f� h�m � � r� � h� f� r� � p� f� h�m ��j �

� d��m� p � d��m� p �� j b��m�p � b��m�p � b�� p�m � j � �

d��m�p ��d�� e� p �� j b��m� p ��c�� e�m � c�� p� e � � e�m� p� e �

� c�� e�m � c��p� e� r� � � e�m� r� � e� p� r� �

� c�� e�m� r� � c�� p� e � � r� �m� e� r� � p� e �

� c�� e�m� r� � c�� p� e� r� � � r� �m� e� r� � r� � e� p� r� ��j � �

d��m�g �� j b��m� p ��c�� p� g � c��g�m � �p� g� g�m �

� c�� p� g � c�� g�m� r� � � p� g� r� �m� g� r� �

� c�� p� g� r� � c�� g�m � � r� � g� p� r� � g�m �

� c�� p� g� r� � c�� g�m� r� � � r� � g� p� r� � r� �m� g� r� ��j �� �

d�� t� p �d�� e� f� p� t �� jb�� t� p ��

i�� e� t� f� t � i�� p� e� t� f � � e� t� f� t� p� e� t� f �

� i�� e� t� f� t � i�� p� f� t� e � � e� t� f� t� p� f� t� e ��j ��
�

�
d�� t� p �

d�� e� e� p� t �� jb�� t� p � i�� e� t� e� t � i�� p� e� t� e �

� e� t� e� t� p� e� t� e � j �� d��m� s � d��m� s� g� h �� jb��m� s ��

i�� s� g� s� h � i��g�m� h� s � � s� g� s� h� g�m� h� s �

� i�� s� g� s� h � i��g� s� h�m � � s� g� s� h� g� s� h�m ��j ��
�

�
d��m�s �d��m� s� g� g �� jb��m� s � i�� s� g� s� g � i�� g�m� g� s �

� s� g� s� g� g�m� g� s � j � � d��m�n� p� q � d��m�n� p� q �� j

b��m�n� p� q �b��m�n� p� q �b�� p� q�m� n � j � � d��m� p ��

d�� e� f� p� h �� jb��m� p ��

i�� e�m� f� h � i�� p� e� h� f � � e�m� f� h� p� e� h� f �

� i�� e�m� f� h � i�� p� f� h� e � � e�m� f� h� p� f� h� e �

� i�� e� h� f�m � i�� p� e� h� f � � e� h� f�m� p� e� h� f �

� i�� e� h� f�m � i�� p� f� h� e � � e� h� f�m� p� f� h� e ��j ��

d�� e� e� p� h �� jb��m� p � i�� e�m� e� h � i�� p� e� h� e �

� e�m� e� h� p� e� h� e � j � � d��m� f� g� h �� jb��m� p ��

i�� p� g� f� h � i�� g�m� h� f � �p� g� f� h� g�m�h� f �

� i�� p� g� f� h � i��g� f� h�m � � p� g� f� h� g� f� h�m �

� i�� p�h� f� g � i��g�m� h� f � � p�h� f� g� g�m� h� f �

� i�� p�h� f� g � i��g� f� h�m � � p�h� f� g� g� f� h�m ��j � �

d��m�f� g� g �� jb��m� p � i�� p� g� f� g � i�� g�m� g� f �

�p� g� f� g� g�m� g� f � j �� � d��m� p � d�� e� g �� jb��m� p ��

���



i�� p�m� e� g � c��g� e � � p�m� e� g� g� e �

� i�� p�m� e� g � c�� g� e� r� � �p�m� e� g� r� � e� g� r� �

� i�� p� g� e�m � c�� g� e � � p� g� e�m� g� e �

� i�� p� g� e�m � c�� g� e� r� � �p� g� e�m� r� � e� g� r� ��j ��

d��m�s �d�� s� g �� jb��m� s ��

i�� s�m� s� g � c�� g� s � � s�m� s� g� g� s �

� i�� s�m� s� g � c��g� s� r� � � s�m� s� g� r� � s� g� r� ��j �� d�� t� p �

d�� e� t �� jb�� t� p ��i��p� t� e� t � c�� t� e � � p� t� e� t� t� e �

� i�� p� t� e� t � c�� t� e� r� � �p� t� e� t� r� � e� t� r� ��j �� d�� t� s �

d�� s� t �� jb�� t� s �

�
�

�
i�� s� t� s� t � c�� t� s � � s� t� s� t� t� s �

�
�

�
i�� s� t� s� t � c�� t� s� r� � � s� t� s� t� r� � s� t� r� �

�
j ��

d��m�n� p� q �d��n� q �� j b��m�n� p� q ��

c�� p�m � c�� q�n � � p�m� q� n �

� c�� p�m � c�� q�n� r� � �p�m� r� � n� q� r� �

� c�� p�m� r� � c�� q� n � � r� �m� p� r� � q� n �

� c�� p�m� r� � c�� q� n� r� � � r� �m� p� r� � r� � n� q� r� ��j ��

d��m�m� p� q �d��m� q �� jb��m�m� p� q ��

c�� p�m � c�� q�m � � p�m� q�m �

� c�� p�m � c�� q�m� r� � � p�m� r� �m� q� r� �

� c�� p�m� r� � c�� q�m � � r� �m� p� r� � q�m �

� c�� p�m� r� � c�� q�m� r� � � r� �m� p� r� � r� �m� q� r� ��j ��

d��m�n� p� p �d��n� p �� jb��m�n� p� p ��

c�� p�m � c�� p�n � � p�m� p�n �

� c�� p�m � c�� p�n� r� � � p�m� r� � n� p� r� �

� c�� p�m� r� � c��p� n � � r� �m� p� r� � p� n �

� c�� p�m� r� � c��p� n� r� � � r� �m� p� r� � r� � n� p� r� ��j � �

d��m�m� p� p � d��m� p �� jb��m�m� p� p �
�
c��p�m �� �p�m� p�m �

� c�� p�m � c�� p�m� r� � � p�m� r� �m� p� r� �

� c�� p�m� r� � c��p�m � � r� �m� p� r� � p�m �

� c�� p�m� r� � c��p�m� r� � � r� �m� p� r� � r� �m� p� r� �
�
j ��

d��m�m� p� p ��d�� e�m� p� p �� jb��m�m� p� p ��

c�� e�m � i��p� e� p�m � � e�m� p� e� p�m �

� c�� e�m� r� � i�� p� e� p�m � � r� �m� e� r� � p� e� p�m ��j ��

d��m�m� g� p �� jb��m�m� p� p ��

c�� p� g � i�� g�m� p�m � � p� g� g�m� p�m �

� c�� p� g� r� � i�� g�m� p�m � � r� � g� p� r� � g�m� p�m ��j �� �

d��m�n� p� q ��d�� e� n� p� q �� jb��m�n� p� q ��

c�� e�m � i��p� e� q� n � � e�m� p� e� q� n �

� c�� e�m � i�� p�n� q� e � � e�m� p� n� q� e �

� c�� e�m� r� � i�� p� e� q� n � � r� �m� e� r� � p� e� q� n �

� c�� e�m� r� � i�� p�n� q� e � � r� �m� e� r� � p� n� q� e ��j ��

d��m�n� g� q �� jb��m�n� p� q ��

c�� p� g � i�� g�m� q� n � �p� g� g�m� q� n �

� c�� p� g � i�� g�n� q�m � �p� g� g�n� q�m �

� c�� p� g� r� � i�� g�m� q�n � � r� � g� p� r� � g�m� q� n �

���



� c�� p� g� r� � i�� g� n� q�m � � r� � g� p� r� � g� n� q�m ��j �� �

d��m�m� p� q ��d�� e�m� p� q �� jb��m�m� p� q ��

c�� e�m � i��p� e� q�m � � e�m� p� e� q�m �

� c�� e�m � i�� p�m� q� e � � e�m� p�m� q� e �

� c�� e�m� r� � i�� p� e� q�m � � r� �m� e� r� � p� e� q�m �

� c�� e�m� r� � i�� p�m� q� e � � r� �m� e� r� � p�m� q� e ��j � �

d��m�m� g� q �� jb��m�m� p� q ��

c�� p� g � i�� g�m� q�m � � p� g� g�m� q�m �

� c�� p� g� r� � i�� g�m� q�m � � r� � g� p� r� � g�m� q�m ��j �� �

d��m�n� p� p ��d�� e� n� p� p �� jb��m�n� p� p ��

c�� e�m � i��p� e� p�n � � e�m� p� e� p� n �

� c�� e�m� r� � i�� p� e� p� n � � r� �m� e� r� � p� e� p�n ��j � �

d��m�n� g� p �� jb��m�n� p� p ��

c�� p� g � i�� g�m� p� n � � p� g� g�m� p�n �

� c�� p� g � i�� g�n� p�m � �p� g� g� n� p�m �

� c�� p� g� r� � i�� g�m� p�n � � r� � g� p� r� � g�m� p� n �

� c�� p� g� r� � i�� g� n� p�m � � r� � g� p� r� � g� n� p�m ��j �� �

d��m�t� p� q � d��m�t �� jb��m� t� p� q ��

i�� p� t� q� t � c�� t�m � �p� t� q� t� t�m �

� i�� p� t� q� t � c�� t�m� r� � � p� t� q� t� r� �m� t� r� ��j ��

d��m�t� p� p � d��m� t �� jb��m� t� p� p �

�
�

�
i��p� t� p� t � c�� t�m � � p� t� p� t� t�m �

�
�

�
i��p� t� p� t � c�� t�m� r� � � p� t� p� t� r� �m� t� r� �

�
j ��

d��m�n� p� s � d�� s� p �� jb��m�n� p� s ��

i�� s�m� s� n � c��p� s � � s�m� s� n� p� s �

� i�� s�m� s� n � c�� p� s� r� � � s�m� s� n� r� � s� p� r� ��j � �

d��m�m� p� s � d�� s� p �� jb��m�m� p� s �

�
�

�
i�� s�m� s�m � c�� p� s � � s�m� s�m�p� s �

�
�

�
i�� s�m� s�m � c�� p� s� r� � � s�m� s�m� r� � s� p� r� �

�
j ��

d��m�m� p� p ��d��m� g �� jb��m�m� p� p ��

i�� p�m� p� g � c�� g�m � � p�m� p� g� g�m �

� i�� p�m� p� g � c�� g�m� r� � �p�m� p� g� r� �m� g� r� ��j ��

d�� e� p �� jb��m�m�p� p ��

i�� p�m� e�m � c�� p� e � � p�m� e�m� p� e �

� i�� p�m� e�m � c�� p� e� r� � �p�m� e�m� r� � e� p� r� ��j �� �

d��m�n� p� q ��d��m� g �� jb��m�n� p� q ��

i�� p�n� q� g � c��g�m � �p� n� q� g� g�m �

� i�� p�n� q� g � c��g�m� r� � � p�n� q� g� r� �m� g� r� �

� i�� p� g� q� n � c��g�m � �p� g� q� n� g�m �

� i�� p� g� q� n � c��g�m� r� � � p� g� q� n� r� �m� g� r� ��j � �

d�� e� p �� jb��m�n� p� q ��

i�� q�m� e� n � c��p� e � � q�m� e� n� p� e �

� i�� q�m� e� n � c��p� e� r� � � q�m� e� n� r� � e� p� r� �

���



� i�� q�n� e�m � c��p� e � � q� n� e�m� p� e �

� i�� q�n� e�m � c��p� e� r� � � q�n� e�m� r� � e� p� r� ��j �� �

d��m�m� p� q ��d��m� g �� jb��m�m� p� q ��

i�� p�m� q� g � c�� g�m � � p�m� q� g� g�m �

� i�� p�m� q� g � c��g�m� r� � � p�m� q� g� r� �m� g� r� �

� i�� p� g� q�m � c��g�m � �p� g� q�m� g�m �

� i�� p� g� q�m � c��g�m� r� � � p� g� q�m� r� �m� g� r� ��j ��

d�� e� p �� jb��m�m� p� q ��

i�� q�m� e�m � c�� p� e � � q�m� e�m� p� e �

� i�� q�m� e�m � c�� p� e� r� � � q�m� e�m� r� � e� p� r� ��j �� �

d��m�n� p� p ��d��m� g �� j b��m�n� p� p ��

i�� p�n� p� g � c�� g�m � � p� n� p� g� g�m �

� i�� p�n� p� g � c��g�m� r� � � p�n� p� g� r� �m� g� r� ��j ��

d�� e� p �� jb��m�n� p� p ��

i�� p�m� e� n � c�� p� e � � p�m� e� n� p� e �

� i�� p�m� e� n � c�� p� e� r� � �p�m� e� n� r� � e� p� r� �

� i�� p�n� e�m � c�� p� e � � p�n� e�m� p� e �

� i�� p�n� e�m � c�� p� e� r� � �p� n� e�m� r� � e� p� r� ��j �� �

d��m�n� p� q ��d�� e� f� p� q �� jb��m�n� p� q ��

i�� e�m� f�n � i�� p� e� q� f � � e�m� f�n� p� e� q� f �

� i�� e�m� f�n � i�� p� f� q� e � � e�m� f�n� p� f� q� e �

� i�� e� n� f�m � i�� p� e� q� f � � e� n� f�m� p� e� q� f �

� i�� e� n� f�m � i�� p� f� q� e � � e� n� f�m� p� f� q� e ��j ��

d�� e� e� p� q �� jb��m�n� p� q � i�� e�m� e� n � i�� p� e� q� e �

� e�m� e� n� p� e� q� e � j �� d��m�n� g� h �� jb��m�n� p� q ��

i�� p� g� q� h � i��g�m� h� n � �p� g� q� h� g�m� h� n �

� i�� p� g� q� h � i��g� n� h�m � � p� g� q� h� g� n� h�m �

� i�� p�h� q� g � i��g�m� h� n � � p�h� q� g� g�m� h� n �

� i�� p�h� q� g � i��g� n� h�m � � p�h� q� g� g� n� h�m ��j � �

d��m�n� g� g �� jb��m�n� p� q � i��p� g� q� g � i�� g�m� g� n �

�p� g� q� g� g�m� g� n � j �� d�� e� n� g� q �� jb��m�n� p� q ��

i�� p�m� e� g � i�� g� e� q� n � � p�m� e� g� g� e� q� n �

� i�� p�m� e� g � i�� g�n� q� e � � p�m� e� g� g�n� q� e �

� i�� p� g� e�m � i�� g� e� q� n � � p� g� e�m� g� e� q� n �

� i�� p� g� e�m � i�� g�n� q� e � � p� g� e�m� g�n� q� e ��j ��

���



C� Example of Maple code for algebra of generators

Function gcir transforms an arbitrary chain of replacement operators into a linear combination
of circular chains 	sse Chap� �
� In order to get the following chain "Eag

"Ebg
"Ega

"Egb as a linear
combination of circular chains one has to put�

gcir	�a� g� b� g� g� a� g� b�


The output has the form

. � 	�a� g� a� b� g� b�� �a� g� b� a�� 	.� �a� g� a��


which means EagaEbgb � Eagba � Eaga� aGroup is extracted from the Maple library and slightly
modi�ed� It de�nes an abelian group with multiplication designated by .� and inversion
denoted by .��
�define�aGroup���

proc�OpName�Identity�Inverse�

local x�

options �Copyright 	

� by Waterloo Maple Software��

if

nargs �
 � or not type�OpName�string� or not type�Inverse��name�procedure��

then

ERROR��invalid arguments��

fi�

proc��

local i�t�x�

options remember�

t �� �args��

t �� map�

proc�y�

if type�y�function� and op���y� � DOpName then op�y� else y fi

end �

t��

t �� sort�t��

t �� map�proc�y� if y �
 DIdentity then y fi end�t��

for i while i � nops�t� do

if t�i� � DInverse�t�i�	�� then

t �� subsop�i � NULL�i�	 � NULL�t�� i �� i�	

fi

od�

if nops�t� � � then RETURN�DIdentity� fi�

if nops�t� � 	 then RETURN�t�	�� fi�

RETURN�subs�x � op�t���DOpName�x����

end�

if type�OpName�protected� then

unprotect��OpName��� lprint��Warning� new definition for��OpName�

fi�

OpName ��

subs��DOpName� � OpName��DIdentity� � Identity��DInverse� � Inverse����

if type�op�Inverse��name� then

���



proc�a�

options remember�

if nargs �
 	 then ERROR��invalid arguments�� fi�

if type�a�function� and op���a� � DInverse then RETURN�op�a�� fi�

if a � DIdentity then RETURN�DIdentity� fi�

�DInverse�args��

end�

Inverse �� subs��DInverse� � Inverse��DIdentity� � Identity����

proc�a�

if nargs � 	 and type�a�function� and op���a� � DOpName then

if 	 � nops�a� then

DOpName�expand�DInverse�DOpName�op�� �� nops�a��a�����

expand�DInverse�op�	�a����

else DInverse�args�

fi

fi

end�

�expand���Inverse �� subs��DOpName� � OpName��DInverse� � Inverse���

else

if Inverse�Identity� �
 Identity or Inverse�Inverse�x�� �
 x then

ERROR��Inverse operator defined incorrectly��

fi

fi�

NULL

end�

define�aGroup������ ��� �������

delta	��proc�x� local i�j�k�l�nl�nl	�nl��

if type�x�list� and nops�x��� then

i��x�	�� j��x���� k��x���� l��x����

if j�k then nl	���i�l� else nl	��� � fi�

if i�l then nl��� �� �k�j� else nl���� � fi�

nl	 �� nl�

else

ERROR��Wrong number of type of arguments��

fi

end�

find	���proc�x�i�j� local n�k�

n��nops�x��

for k to n�� do

if x���k�	��j and x���k��i then RETURN�k� fi

od�

for k to n�� do

if x���k�	��j then RETURN�k� fi

od�

RETURN���

end�

shiftqtop��proc�xlist�p�q� local i�j�k�n�bp�aq�bpq�xx�xxn�cl�

if not type�xlist�list� then ERROR��Invalid argument�� fi�

xx��xlist�

n��nops�xlist��

if p�	 or ��q
n or p
q then ERROR��Invalid argument�� fi�

bp���op�	 �� ��p� xx���

if ��q�n then aq�� �� else aq���op���q�	 �� n� xx�� fi�

bpq���op���p�	 �� ��q��� xx���

k��nops�bpq����

xxn�� ���

for i to k do

cl��delta	��bpq���k���i�	��bpq���k���i����xx���q�	��xx���q����

���



if not cl��� then

if op���cl������ then cl���op�cl�� else cl���cl� fi�

if ��k���i�� then cbpqb�� � �

else cbpqb���op�	 �� ��k���i� bpq�� fi�

if ��k���i���nops�bpq� then cbpqe�� � �

else cbpqe���op���k���i�� �� nops�bpq�� bpq�� fi�

xxn���op�xxn�� op�map� proc�y�bp�aq�cbpqb�cbpqe�

if op���y������ then ����op�bp��op�cbpqb��op�op�y���op�cbpqe��op�aq���

else �op�bp��op�cbpqb��op�y��op�cbpqe��op�aq�� fi end� cl�

bp�aq�cbpqb�cbpqe���

fi

od�

cl�� �op�bp��op���q�	 �� ��q�xx��op�bpq��op�aq���

�� � cl� op�xxn� ��

end�

findxx��proc�x� local n�k�

n��nops�x��

for k to n�� do

if x���k�	��x���k� then RETURN�k� fi

od�

RETURN���

end�

shiftxx��proc�xlist�p� local i�j�k�n�bp�aq�xx�xxn�cl�

if not type�xlist�list� then ERROR��Invalid argument�� fi�

xx��xlist�

n��nops�xlist��

if p�	 or p
n then ERROR��Invalid argument�� fi�

if p�n then RETURN�xx� fi�

if p�	 then bp�� �� else bp���op�	 �� ��p��� xx�� fi�

aq���op���p�	 �� n� xx���

k��nops�aq����

xxn�� ���

for i to k do

cl��delta	��xx���p�	��xx���p��aq���i�	��aq���i����

if not cl��� then

if op���cl������ then cl���op�cl�� else cl���cl� fi�

if i�k then cbpqe�� � �

else cbpqe���op���i�	 �� ��k� aq�� fi�

if i�	 then cbpqb�� � �

else cbpqb���op�	 �� ��i��� aq�� fi�

xxn���op�xxn�� op�map� proc�y�bp�cbpqb�cbpqe�

if op���y������ then ����op�bp��op�cbpqb��op�op�y���op�cbpqe���

else �op�bp��op�cbpqb��op�y��op�cbpqe�� fi end� cl� bp�cbpqb�cbpqe���

fi

od�

cl�� �op�bp��op�aq��op���p�	 �� ��p�xx���

�� � cl� op�xxn� ��

end�

findxx���proc�x� local n�k�i�xx�

if op���x������ then xx��op�x� else xx��x fi�

n��nops�xx��

k��findxx�xx��

if k�� or k�n�� then RETURN��� fi�

for i to n���k do

if not xx���k���i�	��xx���k���i� then RETURN�k� fi

od�

RETURN���

end�

���



shiftxx���proc�x�p� local xx�

if p�� then RETURN�x� fi�

if op���x������ and type�op�x��list� then

xx��shiftxx�op�x��p��

if op���xx������ then xx���op�xx��

else xx���xx� fi�

xx��map�proc�y� �� �y� end� xx�

else

if type�x�list� then

xx��shiftxx�x�p��

if op���xx������ then xx���op�xx��

else xx���xx� fi

else ERROR��Invalid argument�� fi

fi�

�� �op�xx���

end�

extractxx��proc�xlist� local i�j�k�n�xx�it�

if not type�xlist�list� then ERROR��Invalid argument�� fi�

if findxx�xlist��� then RETURN�xlist� fi�

xx���xlist�� i��	�

while i
� do

ii���seq�j� j�	 �� nops�it����

xx��map�proc�y� local zz�

zz��shiftxx��y�findxx��y���

if op���zz������ then �op�zz��

else �zz� fi

end� xx��

n��nops�xx��

xx���seq�op�op�j�xx��� j�	 �� n���

it��map�findxx��xx��

i��max�op�it���

od�

�� �op�xx���

end�

getinter��proc�x� local n�k�i�c�ll�

n��nops�x��

ll��������

for k to n���	 do

c��x���k��

for i from k�� to n���	 do

if x���i��c and x���i�	��c then

ll��subsop�	�k���i�ll��

fi

od�

od�

ll�

end�

getinter	��proc�x� local k�i�j�ll�c�l�yes	�

ll��getinter�x��

k��ll�	�� i��ll����

if k�� then RETURN��� fi�

yes	��true�

for j to k do

c��x���j�	��

if j
	 then

yes	��true�

if x���j����c then yes	��false fi

���



fi�

for l from k�	 to i�	 do

if x���l��c and yes	 then RETURN��� fi

od�

od�

RETURN�k�

end�

findcirc��proc�xlist� local n�k�i�yes	�xx�

if op���xlist������ then xx��op�xlist� else xx��xlist fi�

if not type�xx�list� then ERROR��Invalid argument�� fi�

n��nops�xx��

for k to n���	 do

if not xx���k��xx���k�	� then

yes	��false�

for i to k do

if xx���k��xx���k���i�	� then

if i�k then yes	��true

else

if not xx���k���i�	��xx���k���i� then

yes	��true fi

fi

fi

od�

if not yes	 then RETURN�k� fi

fi�

od�

getinter	�xx��

end�

find	�bis��proc�x�p� local xx�i�j�k�l�n�

if p�� then RETURN��� fi�

if op���x������ then xx��op�x� else xx��x fi�

n��nops�xx��

i��xx���p�	�� j��xx���p��

xx���seq�op���p���k�xx�� k�	 �� n���p�����

l��find	��xx�i�j��

if l
� then RETURN�l�	�p� fi�

RETURN���

end�

shiftqtop���proc�x�p�q� local xx�

if p�� or q�� then RETURN�x� fi�

if op���x������ and type�op�x��list� then

xx��shiftqtop�op�x��p�q��

if op���xx������ then xx���op�xx��

else xx���xx� fi�

xx��map�proc�y� �� �y� end� xx�

else

if type�x�list� then

xx��shiftqtop�x�p�q��

if op���xx������ then xx���op�xx��

else xx���xx� fi

else ERROR��Invalid argument�� fi

fi�

�� �op�xx���

end�

getcirc��proc�xlist� local i�j�k�n�xx�it�

if not type�xlist�list� then ERROR��Invalid argument�� fi�

if findcirc�xlist��� then RETURN�xlist� fi�

xx��extractxx�xlist��

���



if op���xx������ then xx���op�xx�� else xx���xx� fi� i��	�

while i
� do

xx��map�proc�y� local zz�ll�

ll��findcirc�y�� lprint�ll��

zz��shiftqtop��y�ll�find	�bis�y�ll���

if op���zz������ then �op�zz��

else �zz� fi

end� xx��

n��nops�xx�� lprint�xx��

xx���seq�op�op�j�xx��� j�	 �� n��� lprint�xx��

xx��map�proc�y� local zz�

if op���y������ then

zz��extractxx�op�y���

if op���zz������ then zz���op�zz��

else zz���zz� fi�

map�proc�y� �� �y� end�zz�

else

zz��extractxx�y��

if op���zz������ then �op�zz��

else �zz� fi

fi

end�xx��

n��nops�xx�� lprint�xx��

xx���seq�op�op�j�xx��� j�	 �� n��� lprint�xx��

it��map�findcirc�xx��

i��max�op�it���

od�

�� �op�xx���

end�

shortcirc��proc�x� local i�j�l�n�xx�xxl�yes	�

yes	��false�

if op���x������ then xx��op�x�� yes	��true else xx��x fi�

l��xx�	�� xxl���l��

n��nops�xx����

for i to n�	 do

if xx���i��l then

xxl���op�xxl��xx���i���

l��xx���i�	�� xxl���op�xxl��l��

else

if xx���i��xx���i�	� then xxl���op�xxl��xx���i��

else ERROR��NON�CIRCULAR chain�� fi

fi

od�

xxl���op�xxl��xx���n���

if yes	 then �� �xxl� else xxl fi

end�

conj��proc�xlist� local i�n�xx�xxl�yes	�

if op���xlist������ then xx��op�xlist�� yes	��true

else xx��xlist� yes	��false fi�

n��nops�xx�� xxl�����

for i to n do

xxl���op�xxl��xx�n�	�i���

od�

if yes	 then �� �xxl� else xxl fi

end�

multpr��proc�xlist� local i�j�k�n�l�xx�xxk�xxl�

n��nops�xlist��

xxl����� xx��xlist�

while n
� do

l��	� xxk�����

for i to n�	 do

if xx�	��xx�i�	� or xx�	��conj�xx�i�	�� then l��l�	

��




elif xx�	�����xx�i�	�� or xx�	�����conj�xx�i�	��� then

l��l�	

else xxk���op�xxk��xx�i�	�� fi�

od�

if l�	 then xxl���op�xxl��xx�	��

else if not l�� then xxl���op�xxl��l�xx�	�� fi fi�

xx��xxk� n��nops�xx��

od�

�� �op�xxl���

end�

gcir��proc�xlist� local i�j�k�n�xx�it�

if not type�xlist�list� then ERROR��Invalid argument�� fi�

n��nops�xlist�� n��n mod ��

if not n�� then ERROR��Improper length of the chain�� fi�

xx��getcirc�xlist��

n��nops�xx��

if op���xx������ then xx���op�xx�� else xx���xx� fi�

xx�� map�proc�y� shortcirc�y� end�xx��

multpr�xx�

end�

���



D� The scheme of the 
SC��
CI�PT� program

�� Select reference space
S
�


� Diagonalize Hamiltonian matrix
in S space# PSHPS

�
�� Generate all doubles and �nd ci coe�� for them

from undressed 
� 
 matrices
�

�� For doubles belonging to S
take the ci from step no 


�
�� Built e�arrays from the updated coe�� ci

�
�� Having e�arrays dress CI matrix or 
� 
 matrices

for large or small doubles respectively
�

�� Undress the doubles belonging to S by the e�ect of these
doubles that lead again to S acting on a given double

�
�� From the new CI and 
� 
 matrices �nd

new energy bE and new ci� Go to step no �
Repeat until the self�consistency is achieved

�� In practice two iterations of CIPSI were done� so that some doubles and most important
triples and quadruples were included in S�

�� For a given doubly excited determinant jii ! D�
i j�i one uses the e�arrays as described

in Chap� � to evaluate �ii� instead of explicit summation over EPV 	with respect to i

contributions� Then the corresponding diagonal element in 
� 
 or CI matrix is modi�ed�

�� The undressing is done by the explicit decomposition of all selected triples and quadruples�
as described in the ref� �����

�� The contribution of small doubles is added to h�jH j�i element of the dressed CI matrix�
which is then diagonalized to obtain next value of bE and the coe�cients ci of large doubles�

���
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