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ABSTRACT
In the XIX century and earlier such physicists as Newton, Mayer,

Hooke, Helmholtz and Mach were actively engaged in the research
on psychophysics, trying to relate psychological sensations to inten-
sities of physical stimuli. Computational physics allows to simulate
complex neural processes giving a chance to answer not only the
original psychophysical questions but also to create models of mind.
These lecture notes review relevant fields of science sketching the
path from the brain, or computational neurosciences, to the mind, or
cognitive sciences.

I. INTRODUCTION TO PSYCHOPHYSICS

Basic concepts of physics, such as energy, mass, time, tem-
perature or strangeness are highly abstract metaphors useful
in constructing models of reality. These models relate obser-
vations and measurements to other observations and measure-
ments. In the early history of physics results of the measure-
ments were directly related to sensory experiences. In Galileo
times confirmation of two independent senses was required to
acknowledge a new phenomenon and to avoid self-deception
(telescope, giving only optical measurements, was therefore
highly suspect). Understanding the relation of objective mea-
surements to psychological sensations was very important.
Newton tried to model spectral hues by points on a circle,
Helmholtz and later Schr¨odinger [1] by curved Riemannian
manifolds. Psychological spaces for representation of pure
tones, odors and tastes were also proposed.

Creation of good models to relate various features of sen-
sory perception proved to be much more difficult than cre-
ation of models based on objective measurements of physical
quantities. Methods of measuring the strength of psycholog-
ical sensations in relation to the intensity of physical stimuli
were developed by E.H. Weber (1834, 1846) and G.T. Fech-
ner, whose classic bookElements of psychophysics was pub-
lished in 1860. This book had strong influence on Ernst Mach,
who developed measurement theory and wrote that “a psy-
chophysical measurement formula assigns numbers to sensa-
tions in the same way a thermometer assigns the temperature
to a state of heat.”

Psychophysics has another important aspect, even more dif-
ficult than quantification and description of psychological sen-
sations. “Psychophysical problem”, also know as the mind-
body problem, concerns the very relations between the men-

tal and the physical. Thus psychophysics should be placed on
the crossroads of psychology, physics and philosophy. Prob-
lems rised in XIX century are still not resolved, as the recent
review of the history of psychophysics has showed [2]. Psy-
chophysics has been of marginal interest to physicists (with
notable exception of acoustics and optics communities con-
cerned with tone, speech and visual perception). This situa-
tion may change since it became recently clear that the way
to understand the mind leads through modeling of neural pro-
cesses at many levels, from biophysical to the systems level
[3]. Computational physicists will undoubtedly play a major
role in these modeling attempts. The final goal - understand-
ing the brain and building artificial mind - encompasses much
more than the original goals of psychophysics. In a sense it
may prove to be the last goal of science as we know it.

I will present here a sketch of a path that leads from com-
putational models of brain functions to models of the mind,
a path fromphysis to psyche, something that Wofgang Pauli
always wanted to achieve. In 1952 he wrote [4]: “It would
be most satisfactory ifphysics andpsyche could be seen as
complementary aspects of the same reality”. We are slowly
reaching this point.

II. COMPUTATIONAL BRAIN

Psychophysics in a broad sense must be based on computa-
tional physics of brain processes. Mind is an emergent prop-
erty of the brain, a very complex, modular dynamical system.
Some physicist argue that incorporation of mind or mental
processes to natural sciences is possible only using quantum
mechanics [5]. The long time scales of higher cognitive pro-
cesses associated with conscious perception, requiring from
tenth to several seconds, are in agreement with the typical
times of cooperation of assemblies of noisy neurons via elec-
trical excitations, slowed by the synaptic processes mediated
by biochemical neurotransmitters. It is hard to imagine quan-
tum processes that would be so slow.

Penrose [6] has argued that cognitive processes are non-
computational in nature since formal systems are not able to
answer some G¨odel-type questions related to their own spec-
ification. These arguments have been discussed already by
Gödel himself and repeated many times by Turing, Lucas and
other philosophers (for a discussion see Penrose [6]). Human
brain is too complex to contemplate any questions of G¨odel
type requiring full formal specification of neural machinery,
therefore claims that humans are able to answer such ques-
tions and computational systems are not able are greatly ex-
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aggerated. It is not possible to create computational equiva-
lent of God, a system that will have a perfect knowledge of
everything, but humans do not posses such knowledge either.
From the G¨odel argument Penrose concludes that completely
new physics is required to understand human mind, physics
that should be based on noncomputable processes, but fails to
find any clues how such processes could look like. This is an
example of extremely speculative approach, lacking precise
definition of the problem and certainly not directed at under-
standing of the human cognition.

Another common misunderstanding is the computational
power of the brain. With a total of about 40 billion neurons
(including about 10 billion neurons in the neocortex) and 1014

synapses operating with the speed of about 100 times per sec-
ond and a resolution of about 7 bits there is enough adap-
tive parameters to account for various aspects of human mem-
ory and cognition. The problem is not in the complexity or
speed of information processing, as some authors looking for
faster computational processes in cellular microtubules sug-
gest [6], but with organization. The brain contains dozens of
large structures with rather different neuroanatomy and func-
tions, and even neurocortex has modular structure. Some
proponents of the quantum mechanical approach to mind [5]
try to understand “thoughts” as some philosophical entities.
Empirical Theory of Mind is much more precise and ambi-
tious. It should explain: basic facts about perception, e.g.
stereoscopic vision and psychophysical data; dynamical op-
tical illusions such as color phi, metacontrast, Stroop inter-
ference, tachistoscope results [7]; thousands of facts from
cognitive psychology, such as the typing skills or the power
law of learning [8]; stages of development, from infancy to
adulthood, such as learning to walk, learning basic percep-
tual categories and knowledge structures [9]; various types
of memory and amnesia; conscious and subconscious per-
ception, relation of perception to brain events; qualia, mental
content, meaning of symbols; states of consciousness, such
as the dream states, daydreaming, hypnotic and other unusual
states of mind; formation of ego, personality, Multiple Per-
sonality Disorder (MPD); intuition and immediate response
behavior; linguistic competence, thinking and reasoning; psy-
chiatric disorders, from anxiety and dyslexia to schizophre-
nia, blindsight, hysterical blindness; exceptional abilities, e.g.:
“idiot savants” syndrome and many other cognitive phenom-
ena. Great advances have been made recently in most of these
areas.

Cognitive processes performed by the brain allow for con-
struction of an internal model of reality from the sensory data.
A natural approach to models of mind should therefore start
with models inspired by the brain, models capable of learning,
categorization and internal representation of the sensory data.
The task may be roughly divided into two parts: low-level
cognition, or preliminary analysis and preprocessing of the
incoming sensory signals in the sensory reception and higher-
level cognition, where the internal representations are manip-
ulated during perception, thinking and problem solving. The
low-level processing of sensory data by computational maps
is modeled by self-organizing, unsupervised neural networks.

The central problem remains: how to bridge the gap between
the mind and the brain? How to link the mental and the physi-
cal? In the following sections I will sketch the solution to this
problem. A short review of cognitive modeling will be given
first, followed by some remarks on self-organization and to-
pographical maps and concluded by a section on resources for
neural modeling.

III. NEURAL AND COGNITIVE MODELING

Neural-network FAQ [10] defines an artificial neural net-
work as “a processing device, either an algorithm, or actual
hardware, whose design was motivated by the design and
functioning of human brains and components thereof.” Since
neural networks are popular and almost every approximation
or classification algorithm may be presented in a network form
there is a tendency to add the adjective “neural” in cases where
no biological motivations are justifiable. In such cases a name
“adaptive system” should be preferable to “neural network”.
Adaptive systemAW is a system with internal adjustable pa-
rametersW performing vector mappings from the space of
inputsX to the space of outputsY = AW (X). Neural networks
are certainly the best adaptive systems for all kinds of approx-
imation problems [11].

In these notes I will not write on general neural network al-
gorithms, only on those that are useful in elucidation of brain’s
function. One of the first attempts to model psychophysics of
perception at a neural level was published by Rashevsky in
1938. His book was republished in 1960 [12] and pioneered
the continuous neural models based on the dynamical systems
or differential equations, known as neurodynamics. The pa-
per of McCulloch and Pitts in 1943 (reprinted in Vol 2 of
[13]) was very influential and Rashevsky came to the conclu-
sion that “the proper mathematical tool for representing the
observed discontinuous interaction between neurons was not
differential equation but the Boolean Algebra of Logical Cal-
culus” [12]. Soon it became apparent that the relation of reac-
tion times to stimulus intensities modeled by differential equa-
tions are not easily reproduced by logical calculus. Rashevsky
came to the conclusion that his differential equations describe
average activity of a very large number of neurons. He devel-
oped a number of highly specific models for psychophysical
and neurophysiological phenomena and this line of research
is continued [14].

Although it is not clear how to divide the gray matter into
functional units over which one could average neuronal activ-
ity one idea is based on the concept of neural cell assemblies
(NCAs), advocated in the classical book of Hebb [15]. Some
neural modelers argue that the microcolumns of neurocortex
are the required functional units [16]. These microcolumns,
distinguishable using neuroanatomical techniques, contain be-
tween 104−105 neurons in a 1−2 mm high column spanning
six layers of neurocortex, within the cortical area of a fraction
of mm2. Vertical connections inside the column are excitatory
and their density is of an order of magnitude higher than the
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connections with neurons outside of the column. Axons of
some NCA neurons spread horizontally on several milimeters
enabling mutual excitation of different NCAs. Small (about
100 neurons) functional groups of neurons with inhibitory
connections were also considered [16]. Although such NCAs
should play important role in brain models they require rather
complex dynamical models themselves. Neurons integrate the
incoming signals and, if the potential on their body in a short
time exceeds a threshold value, they send a series of spikes. To
simplify the models the average firing frequency of the neuron
is taken as a measure of its activity. To determine the output
from a given neuron its activation is computed as the weighted
sum of the incoming signals (average firing frequencies) of the
neurons connected with it:

I(t) = ∑
i

Wixi(t) (1)

where the coefficientsWi represent different couplings (due
to synaptic conductivities) and are positive for excitatory and
negative for inhibitory connections. If this total activation is
larger than some threshold value the neuron outputs a signal
with strengthf (I(t)) that is a monotonic function ofI. If in an
assembly of stochastic neurons the distribution of the thresh-
olds for firing is normal (Gaussian) with some meanθ then the
probability of firing is described by a sigmoidal function, i.e.
a function growing sharply above the threshold and reaching
saturation for large values of the argument. The most common
type of function with the sigmoidal shape is:

σ(I) = (1+ e−(I−θ)/T)−1 (2)

The constantT determines the slope of the sigmoidal func-
tion around the linear part andθ is the inflection point. It
should be stressed that the use of such neuron transfer function
is based on rather unrealistic assumptions and neural models
useful in modeling neurophysiology phenomena on a single
neuron level are based on very complex models of neurons
provided by biophysicists.

Sigmoidal functions have non-local behavior, i.e. they are
non-zero in infinite domain. The decision regions during clas-
sification – i.e. if the output of the network of neural elements
is checked for non-zero values – are formed by cutting the
input spacexi piecewise with hyperplanes (combinations of
sigmoidal functions). There are a few disadvantages of such
classification: there are no regions of indecision, the system
“pretends” that it knows everything, which is quite false es-
pecially far from the sample data regions where hyperplanes,
extending to infinity, enforce arbitrary classifications. If the
network is large and the training data is small the positions of
the hyperplanes is to a large extent undetermined, depending
on the initial state of the network. The accuracy of approxima-
tion grows with the number of adaptive parameters (weights
Wi j in neural networks), but if the training data set is finite the
network may change into a look-up table and may not gener-
alize smoothly on the test set (similarly as in the “overfitting”
case). For sigmoidal processing nodes powerful mathematical
results exist showing that if there is enough data for training a

universal approximator may be built from only a single layer
of processing elements [17].

Another class of powerful functions used in the approxima-
tion theory is called the radial basis functions (RBFs). Some
of these functions are non-local while some, such as the Gaus-
sian functions, are localized. RBF networks are also universal
approximators [18]. One may argue that processing functions
localized in the input space are biologically plausible since
some neurons act in a very selective way as feature detectors.
In the network of spiking neurons not only the value of signals
but also the timing or the phases of the incoming trains of im-
pulses are important, leading to high activationsI(t) only for a
very specific combinations of the incoming signals. Most net-
works use averaged values of the incoming signals instead of
the spikes and it seems justified that the model neurons should
use localized functions [17].

Neurodynamical models pioneered by Rashevsky had ran-
dom and recursive connections (cf. review article on the early
models [19]). Models with excitatory connections (positive
weights only) tend to the maximal or minimal values of ac-
tivity but models with excitatory and inhibitory connections
show a rich and interesting stable behavior. Another style
of neural modeling based on stochastic approach to neurons
was inspired by statistical mechanics [20] and nonequilibrium
thermodynamic [21] instead of classical dynamical systems.
This line explored the fruitful connections with the Ising and
spin glass models [22] and has lead to a number of inter-
esting applications in modeling brain functions [23]. In the
real brain random organization in the small scale is combined
with highly specific organization of groups of neurons. Many
groups of randomly connected cells, called netlets, were used
for simulations showing interesting cooperative effects, in-
cluding cyclic attractors [24]. Deterministic models try to get
rid of the randomness by some kind of averaging procedures.
However, there is experimental evidence that some groups of
neurons behave in a chaotic way, for example in the olfactory
bulb [25] chaotic EEG behavior is observed in the absence of
stimuli and synchronized behavior when odorant is present.

One of the most interesting early attempts to create a com-
putational theory of brain’s functions was made by Caianiello
[26]. His guiding principle was the conviction that dynamical
laws obeyed by the brain concern large neuronal assemblies
and are not necessarily very complicated. Caianiello proposed
to divide the dynamics of the brain neural network according
to the time scale. Fast dynamics, related to the retrieval of
information, is described by the neuronic equations. Slow dy-
namics, related to the synaptic plasticity and learning, is de-
scribed by the mnemonic equations. This “adiabatic” approx-
imation is well justified for the long-term memory, although
there are some fast learning processes, such as LTP [27]. The
neuronic equations may be written as:

ai(t + τ) = Θ

[
∑
k, j

W (k)
i j a j(t − kτ)−θi

]
(3)

whereΘ is a step function (neurons are either activea i = 1
or nonactiveai = 0), τ is the time step,Wi j is the strength of
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synaptic connection between neuronsi and j; θ i is the thresh-
old of excitation of the neuroni andk numbers previous times
steps that can influence new activityai(t + τ). In the absence
of learning the dynamics of this system, identified with the
“thought processes”, has stable states of activity, described by
the vectora = (ai) determined by theWi j matrix.

The mnemonic equations used by Caianiello are rather
complicated:

dW (k)
i j (t)
dt

= (4)[
α(k)ai(t)a j(t − τ)−β(k)Θ

(
W (k)

i j (t)−W (k)
i j (0)

)]
×W (k)

i j (t)Θ
(

A(k)
i j −W (k)

i j (t)
)

+ inhibition

The inhibitory terms are quite similar to the excitatory
ones. The first term in these equations is of the Hebbian type
[15], i.e. it is proportional to the product of the pre- and
post-synaptic activities. The last term restricts the connec-
tion strenght to maximum values preventing their unbounded
growth. Networks of processing elements operating in accor-
dance with the neuronic and mnemonic equations were used
by Caianiello to study learning, forgetting, conditioning, anal-
ysis and spontaneous formation of patterns of reverberations.
Logic plays a role of constraints on the type of behavior of
the dynamical system. One may expect all kinds of effects
in such complex system, including chaotic and quasi-periodic
attractors and nonlinear rezonances. Characterization of this
system requires determination of spontaneous modes of rever-
beration from neuronic equations. Short reverberations appear
with the frequency of 10 Hz (assuming realistic time quantiza-
tion connected with the average firing rate of biological neu-
rons), in agreement with the observed EEG recordings. In the
brain stable reverberations of a few neurons were observed
lasting for minutes [26]. Epileptic seizures are one possible
form of catastrophic instabilities in the network. Analyzing
the mnemonic equations Caianiello points out that more real-
istic description of the brain should contain at least two ad-
ditional structures: reticular activation system necessary for
attention and thalamic structures controlling emotions.

Many other models of neural networks have been devel-
oped, for example perceptrons and the multilayered versions
of perceptrons that are so popular in applications [13], but
these models are not too interesting for cognitive modeling.
In fact the model of Caianiello, although quite successful
for qualitative explanations, is not specific enough to explain
quantitatively experimental data. The book by D.S. Levine
[28] reviewing various cognitive models does not even men-
tion his model. More specific models of associative learning,
sensory representation, lateral inhibition, competitive learn-
ing, conditioning, attention, reinforcement, coding and cate-
gorization, control, optimization and knowledge representa-
tion are discussed.

Experimental data on neural mechanisms leading to a for-
mation of orientation and ocular dominance maps in the pri-
mary visual cortex are quite detailed. More than 10 compu-
tational models have been proposed [29] and compared with

experimental data. Competitive Hebbian models describe the
development of visual system on the mesoscopic level close to
the resolution of neurobiological experimental data. In orien-
tation and ocular dominance maps these models predict global
disorder and anisotropies, singularities and fractures, simulate
learning under exposure to a restricted set of oriented visual
features, including monocular deprivation. Correlations be-
tween the two type of maps are also well reproduced. Such
models are based on the self-organizing feature maps of Ko-
honen [30]. Response properties of cortical cell groups lo-
cated at positionr in the visual neurocortex involve the reti-
nal location(x(r),y(r)), the degree of preference for orien-
tation q(r)sin(2φ(r)),q(r)cos(2φ(r)) (orientation maps code
for 180 degree periodic orientation), and the ocular dominance
z(r). Feature vectorΦt(r) composed from these five features
evolves according to:

Φt+1(r) = Φt(r)+αhS(r,r′)[Vt+1−Φt(r)] (5)

0< α < 1 and the stimulusVt+1 is chosen at random using
some probability distribution. The local neighborhood func-
tion

hS(r,r′) = exp(−||r− r′||/2σ2) (6)

r′(V,Φ(r)) = min
r

||V−Φ(r)||

Each presentation of a stimulus leads to a change of features
aroundr′, i.e. features coded by the group of neurons that are
already most similar to the stimulus itself.

IV. FROM BRAIN TO MIND

The ambitious model of Caianiello has not influenced the
mainstream of neural models of cognition because it lacked
the modularity and specificity of different structures of the
brain. Some of the insights offered by this model may ulti-
mately prove to be true. It is clear that stable reverberations
in the brain are connected with thoughts and perceptions. Di-
rect observation of neural activity during such cognitive tasks
as smelling [25], hearing words and meaningless sounds [31]
or watching the pictures by monkeys [32] shows that global
reverberations, interpreted as synchronized activity of a num-
ber of neural cell assemblies, correspond to perceptions and
thoughts. Synchronization of oscillations of groups of neu-
rons in the gamma band of EEG has been observed in many
areas of neocortex as a result of visual stimulation [33]. At-
tractor character of the neural dynamics [23] has been demon-
strated already in the experiments performed on cats by John
et.al. [34]. Cats were trained to react to two different frequen-
cies of pulsating light. Intermediate frequencies were leading
to one of the two dynamics of the visual neurons and to the
corresponding behavior of the animal.

Unfortunately neural systems showing interesting behav-
ior are complex and difficult to analyze. Dynamical systems
in physics are usually analyzed in a low dimensional space,
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rarely higher than five dimensional. Networks showing inter-
esting properties may have hundreds or thousands of neurons
and such large number of parameters makes them difficult
to control. One way to simplify these models is to observe
that the most important information about brain states is in
the structure of attractors and transition probabilities of differ-
ent attractor states. How are these attractors formed? Stable
reverberations of neural cell assemblies, identified with de-
termination of categories, thoughts and perceptions, arise be-
cause slow learning processes (“mnemonic equations” of Ca-
ianiello) make synaptic changes creating appropriate condi-
tions for them. Due to the evolutionary selection processes the
brain has learned basic categorization of lines, colors, shapes,
visual objects, sounds, smells and other sensations. The low-
level processing, developed in an unsupervised way by the
computational topographical maps in the brain, provide the
stimuli for the cell assemblies and some of these NCAs start
to respond by reaching an attractor while the others stay in
a chaotic state. In psychological terms this means that in
the space of internal features of representation a particular
combination of these features, corresponding to a category of
perception, has been recognized and is kept active for some
time. Such feature spaces (mental spaces, conceptual spaces
or mind spaces) were used in psychology since a long time
[35]. The correspondence of categories in feature spaces and
attractors in the dynamics of the brain is the bridge between
the mental and the physical [36].

This approach solves the neurons vs. symbols debate [37]
defining the language useful in description of the cognitive,
mind events and relation of these events to the dynamics of
the brain. The problem of mind modeling is reduced from the
problem of neural dynamics to a problem of finding the best
approximation for this dynamics, for example by a geometri-
cal representation of objects in the mind spaces. From a tech-
nical point of view one can do it in many ways, depending on
the particular interest. Models of cognitive systems based on
the mind space concept are realized in a natural way by neu-
rofuzzy systems, combining neural optimization of adaptive
parameters (learning) with symbolic representation based on
fuzzy logics [17]. Learning and categorization is presented in
such systems as a problem of constructing an appropriate geo-
metrical model of the data in feature spaces of much lower di-
mension than the number of parameters necessary to describe
the dynamics of the underlying network.

At present we have considered several ways to approach the
problem of simplified description of feature spaces. First, the
functional approach leads to a generalization of the Radial Ba-
sis Function model [18], especially in its constructivist form,
where the network grows with the incoming data while the
clusters in the feature space are constructed. This approach
has been generalized in the Feature Space Mapping (FSM)
system [17] where learning is presented from the geometrical
point of view as finding the best possible description of “mind
objects” in the feature spaces. From this point of view the best
neural processing functions should have small number of pa-
rameters and should allow for great flexibility in defining re-
gions of non-vanishing density in the feature space. Recogni-

tion is identified with the local maximum of density in which
information about the object is stored. The input is composed
from distorted or partially known vector of features pointing
to a region in the feature space where the search for the ob-
ject (local maximum of density) is made. Some applications
to the “naive physics” and qualitative physics problems, i.e.
mind models of understanding the basic ideas of physics, ap-
plications to recognition of the molecular or stellar spectra of
the functional approach have been presented [17].

Another way of describing the mind space based on func-
tional approach is to use Hilbert space formalism defining
transition probabilities by overlaps of the densities represent-
ing different attractors, i.e. states and categories. Field com-
putation in the brain based on a continua of microfeatures
were developed into a model of asimulacrum, a continuous
representation of information [38]. Other connections worth
exploring are deterministic finite automata (DFA) and their
stochastic versions, which may be used to model transitions
between different attractors in dynamical systems and vice
versa [39]. A theory of conceptual mental spaces has been
developed in cognitive linguistics [40]. A rather different ap-
proach is based on the local coordinate transformations. In-
stead of functional description of mind objects the topology
of the mind space is described by a local, noneuclidean co-
ordinate systems parametrized in a non-linear way. In both
cases network realization of systems describing feature spaces
is natural.

Psychophysics should lead from Artificial Intelligence to
models of Artificial Minds. Concepts of the mind space, mind
function and mind states, the role of fuzzy logic and the dy-
namics of mind states, associations as coupling of attractors,
adaptive resonances and descriptions of the mind space based
on analogies with quantum mechanical formalism seem to be
fruitful in establishing the bridge between neurosciences and
cognitive psychology.

V. RESOURCES FOR NEURAL MODELING

Some resources that can be found in the Internet for de-
veloping neural models are listed here. WWW entry to the
neural network Frequently Asked Questions is very useful
[10]. In the same catalog FAQs of the comp.ai Usenet groups
on evolutionary computation, fuzzy logic and artificial intelli-
gence may be found. Neural network FAQ lists, among other
things, free and commercial software packages for simulation
and gives the addresses for software and preprint archives and
databases.

Papers on neural networks (usually from the statistical me-
chanics perspective) are published in physics journals, for ex-
ample in the Physical Review A or the Journal of Physics A. A
large number of journals devoted to neural networks appeared
in the last few years: Neural Networks (Official Journal of
International Neural Network Society), Neural Computation,
Network: Computation in Neural Systems, IEEE Transactions
on Neural Networks, International Journal of Neural Systems,
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International Journal of Neurocomputing, Neural Processing
Letters, Neural Computing and Applications, Neural Network
News, Connection Science: Journal of Neural Computing,
Artificial Intelligence and Cognitive Research, International
Journal of Neural Networks, Sixth Generation Systems (for-
merly Neurocomputers).

Other journals related to cognitive modeling: Cognitive
Science, Artificial Intelligence, Journal of Complexity, Cog-
nition, Cognitive Psychology, Journal Of Mathematical Psy-
chology, Complex Systems, Biological Cybernetics (Kyber-
netik), The Journal of Experimental and Theoretical Artificial
Intelligence, The Behavioral and Brain Sciences, Bulletin of
Mathematical Biology, Machine Learning, Intelligence - The
Future of Computing, Journal of Mathematical Biology, Jour-
nal of Complex System, Computer Simulations in Brain Sci-
ence.

Neural anonymous ftp archive site ftp.funet.fi directory
/pub/sci/neural contains the public domain software and pa-
pers. A few good addresses for WWW browsing:
http://www.idiap.ch/html/idiap-networks.html
http://www.neuronet.ph.kcl.ac.uk
and the Neurosciences Internet Resource Guide
http://http2.sils.umich.edu/Public/nirg/nirg1.html

Genetic Algorithms are used to optimize structure of neu-
ral networks, simulating evolutionary and developmental pro-
cesses. Genetic algorithms start with a population of en-
coded procedures mutating them stochastically and using se-
lection processes to determine the most promising directions
of search in the optimization procedure (mutants with high fit-
ness). Selection process involves mutations, recombinations,
crossovers and other operators. A newsgroup dedicated to
the field of evolutionary computation is called comp.ai.genetic
(for FAQ of tthis group see [10]).

Ultimately large and complex models of brain structures
will have to be simulated using neural hardware. Several
large-scale projects, some based on custom neural chips, are
in the design phase (for a review see [41]). Brain-size neu-
rocomputer (about 1010 neurons), build using current tech-
nology chips organized according to a “fractal architecture”,
would fill the room 32 by 10 by 10 meters (about the size of
Mark I, one of the first computers), and should have about 25
TBytes of RAM [41]. Such a large size is due to the essen-
tially two-dimensional structure of integrated circuits.

VI. SUMMARY

In the broad sense psychophysics is still being born. It
should be one of the core sciences exploring the relations
between the brain and the mind. Many branches of science
contribute to the emerging identity of cognitive science as a
unique science aimed at understanding the information pro-
cessing capabilities of the brain, including mental phenom-
ena. Neurosciences, cognitive psychology, linguistics, com-
puter science (artificial intelligence) and even philosophy have
contributed to cognitive science. Contribution of physics is in-
direct, via the experimental techniques in the brain research,

via biophysical models at the level of single cell, statistical
methods applied to the recurrent neural networks [23] and var-
ious dynamical models of the brain processes [13,26]. Contri-
butions of physics to cognitive science will not be recognized
until psychophysics, the branch of physics devoted to under-
standing the relations of the brain and mental processes, will
not establish itself within physics first. If physics is under-
stood as an attempt to understand Nature than understanding
of the brain is its greatest challenge and it is a job for compu-
tational physicists.
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