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Application of the neural network methods to problems in physics and chemistry has rapidly
gained popularity in recent years. We show here that for many applications the standard methods
of data fitting and approximation techniques are much better than neural networks in the sense
of giving more accurate results with a lower number of adjustable parameters. Learning in neu-
ral networks is identified with the reconstruction of hypersurfaces based on a knowledge of sample
points and generalization with interpolation. Neural networks use sigmoidal functions for these re-
constructions, giving for most physics and chemistry problems results far from optimal. An arbitrary
data fitting problem may be solved using a single-layer network architecture provided that there
is no restriction on the type of functions performed by the processing elements. A simple example
illustrating unreliability of interpolation and extrapolation by the typical backpropagation neural
network learning of a smooth function is presented. Some results from approximation theory are
quoted giving a rigorous foundation to applications requiring correlation of numerical results with
a set of parameters.



I. INTRODUCTION

Neural computing and the field of neural network mo-
deling has become very fashionable in the last decade.
Availability of general neural network simulators [1] has
encouraged many scientists to try these new techniques
for solving their physics and chemistry problems. There-
fore 1t is of great importance to understand what neural
networks can do and when their application may lead
to new results, hard to obtain with standard methods.
A number of good books and review articles on neural
network models [2] have appeared in recent years, unfor-
tunately rarely giving a good mathematical perspective
of relevant theories, such as the theory of statistical de-
cisions or approximation theory.

Artificial neural networks (ANNs) are networks of sim-
ple processing elements (called “neurons”) operating on
their local data and communicating with other elements.
Thanks to this global communication the ANN has stable
states consistent with the current input and output va-
lues. The design of ANNs was motivated by the structure
of a real brain, but the processing elements and the archi-
tectures used in artificial neural networks frequently have
nothing in common with their biological inspiration. The
weights of connections between the elements are adjusta-
ble parameters. Their modification allows the network to
realize a variety of functions. In the typical case of a su-
pervised learning a set of input and output patterns is
shown to the network and the weights are adjusted (this
is called “learning” or “adaptation”) until the outputs
given by the network are identical to the desired ones.

In principle ANN has the power of a universal compu-
ter, 1.e. it can realize an arbitrary mapping of one vec-
tor space to another vector space. Since physicists and
chemists deal with such problems quite often one of the
applications of ANNs in these fields is to correlate pa-
rameters with some numerical results in hope that the
network, given a set of examples, or a statistical sample
of data points, will somehow acquire an idea of what the
global mapping looks like. One of the goals of this paper
is to investigate whether such a hope is justified.

ANNSs are especially suitable for problems where a high
error rate 1s acceptable, the conditions are ill-defined and
the problem mathematically ill-posed. The brain has evo-
Ived to process the data from the senses and works much
better at solving problems requiring perception and pat-
tern recognition than problems involving logical steps
and data manipulation. Most ANN architectures share
this quality with real brains. They are not suited for the
tasks that the sequential computer programs can do well,
such as the manipulation of symbols, logical analysis or
solving numerical problems.

The most common architecture of ANNs 1s of the mul-
tilayered feedforward type. The signals are propagated
from the input to the output layer, each processing ele-
ment being responsible for integration of the signals co-
ming from the lower layer and influencing all processing

elements of the next layer to which it is connected. If all
possible connections between the consecutive layers are
allowed the network 1s called “fully connected”. In some
cases 1t 1s better to use ANN that is not fully connected:
reduction of the number of adjustable weights may im-
prove not only the timing of computations for training
the network but also the accuracy of learning.

Backpropagation of errors (BP) is the most commonly
used algorithm to train such an ANNs [3] (for classifica-
tion problems feedforward learning vector quantization
and counterpropagation networks are most commonly
used) [2]. Although the BP learning rule is rather uni-
versal and can be applied to a number of different ar-
chitectures of neural nets a term “backpropagation net”
is commonly used to designate those nets that are tra-
ined using the BP algorithm. This learning rule compares
the desired output with the achieved output and error si-
gnals (differences between desired and achieved outputs)
are propagated layer by layer from the output back to the
input layer. The weights are changed using a gradient de-
scent or some other minimization method in such a way,
that the error should be reduced after the next presen-
tation of the same input. Although the BP algorithm is
rather slow and requires many iterations it enables the
learning of arbitrary mappings and therefore it is widely
used. Over 40 other learning rules for different network
architectures exist and new rules are still being discove-
red [2].

ANNs are interesting to the physicists as an exam-
ple of complex systems that are more general than the
Ising or the spin glass models. From this point of view,
as interesting dynamical systems, their evolution is inve-
stigated and the methods of statistical physics applied to
such problems as network capacity, efficiency of various
learning rules or chaotic behavior [4]. ANNs are also in-
teresting as models of various sensory subsystems and as
simplified models of the nervous system.

In this paper we are concerned only with applications
of neural networks as tools that can help to solve real
physical problems. The number of papers in the section
“neural networks” in Physics Abstracts has approxima-
tely doubled comparing the 1992 and 1991 entries. This
is a reflection of the enthusiasm with which ANNs are
received by the scientific community. Is this enthusiasm
well founded? Since the field is not well known among
physicists and chemists, in this paper we are going to
set neural networks applications in the perspective of a
better established mathematical theories.

In the next section we critically analyze a few recent
applications of ANNs to the problems in chemical physics
in which various parameters are correlated with output
data. We are going to summarize the idea behind such ap-
plications and in the third section elucidate what ANNs
are really doing. In the fourth section we describe some
alternative approaches and give an illustrative example
of learning a simple functional dependence by a backpro-
pagation ANN. In the last section we present a general
discussion on the use and misuse of neural networks in



physics and chemistry.

II. ASSOCIATIONS USING NEURAL
NETWORKS

The typical architecture of a neural network is presen-
ted in Fig. 1. The input signals x; are received by the first
layer of processing elements (called “neurons”), the input
layer. The results are obtained from the output layer, in
Fig. 1 consisting of only one neuron. Between the input
and the output layers there are a number of “hidden” lay-
ers; in case of Fig.1 only one such layer is present. These
hidden layers of neurons are not directly accessible to
the user who gives the inputs and sees the outputs from
the network. Connections are allowed only between the
layers, not within the layers. The input signals are propa-
gated in one direction, from the input layer to the output
layer, hence such an architecture is called “a feedforward
network”, in contrast to the “recurrent networks” with
feedback connections between the layers and within the
layers. If all possible connections between the layers are
allowed the network is called “fully connected”. For a
large number of neurons, to avoid an excessive number
of connections, partial connectivity is assumed (if each
neuron 1n the brain was connected with all others the
brain would have to be about 10 km in diameter).

The strength of the connections between the neuron
number ¢ and number j is a variable parameter W;;, cor-
responding to the strength of the synaptic connections
in real nervous tissue, called “the weight” of the connec-
tion. Adjustment of these weights allows the network to
perform a variety of mappings of input to output signals.
Each neuron performs a weighted sum of the incoming
signals

Xi =) Wijoj (1)
j

and processes the result via a function ®. Because of
the biological motivations most of the feedforward ne-
tworks assume for an output function of a neuron a sig-
moidal function

1
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where T'1s a global parameter, usually fixed for all pro-
cessing elements (neurons) of the network, determining
the degree of the non-linearity of neurons, and  is called
the threshold and is usually also fixed for all processing
elements. Thus the number of parameters adjusted du-
ring the adaptation of a network to a given set of data is
equal to the number of network weights.

This short introduction should be sufficient to under-
stand the applications described below. One of the pio-
neers in the field of neural modeling, T. Kohonen, wrote
in his 1984 book on associative memory [5]:

“... arithmetic problems are seldom solved in biological
tasks... Any attempts to build neural models for the ad-
der, subtractor, multiplier, and other computing circuits,
or even analog-to—digital converters are therefore based
on immature reasoning.”

Unfortunately many applications in physics and chemi-
stry are of this type. Here we shall write only about ap-
plications that use neural networks in the “most proper”
way, to form associations between the input and the out-
put values. The papers of Darsy et.al [6] and Androsiuk
et.al [7] are rather typical in this regard. The neural ne-
twork is taught solutions of the Schrodinger equation i.e.
correlation between the parameters of some Hamiltonian
and the energy. In case of the two papers quoted above
a two-dimensional harmonic oscillator Hamiltonian was
used. The potential is quadratic and the lowest eigenvalue
of this Hamiltonian is linear in both frequency parame-
ters:
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where A = h/2 is constant. A set of training data for
different (wg,wy), consisting of values of V(z, y;we, wy)
at a rectangular (z,y) mesh taken as inputs and the cor-
responding energy values E taken as outputs are given to
the network. The backpropagation algorithm is used to
change the weights of the ANN bringing the responses of
the net, identified with the E values, for the given input
V(zi, yi,we,wy), as close as possible to the desired E.

Perfect agreement is usually not possible or even not
desirable from the point of view of “a generalization” or
prediction of the unknown F values corresponding to the
new (wg,wy) parameters. When fitting the data one ra-
rely requires that the approximation function should pass
exactly through the given data points, because this may
lead to the “overfitting” or oscillatory behavior. The ac-
curacy and the speed of learning depends on the number
of hidden neurons and the architecture of the ANN. After
the training phase is finished a number of new parame-
ters (wq,wy) are selected and values of the V(z, y; ws, wy)
taken as a test data to check the ability of the trained
network to guess the new values of E. The accuracy in
learning and testing phases does not exceed a few per-
cent.

In the paper of Darsy et.al a fully connected network
with 40 hidden neurons was used, 49 values of V(z,y) on
7 x 7 mesh were given, the number of data sets for tra-
ining was 50 and the maximum error for the training data
was around 5%. Slightly better results were obtained by
Androsiuk et.al [7] with a backpropagation network that
was not fully connected: only 3 hidden neurons, 1 output
and 49 input neurons (one for each point on potential
surface) were used, the number of the data sets for tra-
ining was also 50, and the maximum error for the training
data was about 2.5%. The extrapolation of the results to



other values of (wy,wy) gives errors gradually increasing
as the parameter values move outside the test range.

Interpolation and extrapolation is discussed in these
papers in terms of “generalization of acquired know-
ledge”. One may be easily misled by the use of such
concepts. For example, the authors of the papers quoted
above conclude [6] that: “neural networks can be used to
investigate the more perplexing questions related to basic
issues of physics and chemistry” and [7] claim: “... we pre-
sented studies of a neural network capable of performing
the transformations generated by the Schrodinger equ-
ation required to find eigenenergies of a two-dimensional
harmonic oscillator”. In fact in both papers the authors
have trained a network to recognize points on a plane
in 3 dimensions (w,wy, E), and tested whether the ne-
twork can interpolate the data. Certainly such ability
has nothing to do with “the basic issues of physics and
chemistry” or with “transformations generated by the
Schrodinger equation” | but rather with the data interpo-
lation and extrapolation techniques.

A conceptually very similar, although computationally
more ambitious, example of using backpropagation ANNs
for correlation of data is found in a series of papers of
Sumpter et.al [8]. Internal energy flow in molecular sys-
tems was studied using the data from molecular dynamics
calculations. The ANN was taught the relationship be-
tween phase-space points along a classical trajectory and
energies for stretch, bend and torsion vibrations. The ne-
twork used after some experimentation had 84 nodes in
4 layers, with a total of 1648 connections. The input vec-
tors were 24-dimensional (coordinates and momenta for
4 atoms) and the output was 4-dimensional (energies of 4
modes). The accuracy of energy prediction after training
on 2000 examples of data points was between 5-20%. The
authors conclude that “a trained neural network is able
to carry out qualitative mode-energy calculation for a
variety of tetratomic systems”.

Many other examples of this sort may be found in the
literature. Although superficially they are similar to the
papers quoted below there is a crucial difference that we
will point out in the summary.

Peterson has used a BP network for classification of
atomic levels in Cm I, Cm IT and Pu T ions [9] according
to their electronic configuration. Each level was descri-
bed by 4 numbers: energy, angular momentum, g factor
and isotope shift, that should be correlated with a small
number (4 to 8) of electronic configurations. The network
used had less than 100 neurons and the accuracy of clas-
sification was between 64 and 100%.

Many papers have been published on applications of
neural networks to various problems in protein chemistry
[10]. The ANNs are used here for classification purposes
to find the correlation between the 3D structure and the
sequence of aminoacids. Since an average protein has a
few hundred aminoacids ANNs used in this case have
tens of thousands processing elements and hundreds of
thousands of weights and their simulation requires a large
amount of supercomputer resources.

The time to train a fully connected feedforward ne-
twork is very long (thousands or hundreds of thousands
iterations may be necessary) and selection of the archi-
tecture for networks that are not fully connected is a long
trial-and-error procedure. However, once the feedforward
network has been trained it gives the answers very qu-
ickly, in one iteration, since computation is reduced to
optimized function evaluation.

III. WHAT ARTIFICIAL NEURAL NETWORKS
REALLY DO.

Comments in this section are relevant mainly for the
most commonly used feedforward ANNs of the backpro-
pagation type. Applications of ANNs to various problems
in physics and chemistry are frequently not based on solid
mathematical foundations, but rather on the availability
of the software to simulate neural networks. In the appli-
cations mentioned in the previous section the ability of
neural networks for learning from examples, associating
a set of parameters with the output values (cf. [6]- [10])
and subsequently generalizing to new values, was used.
Accuracy of interpolation did not exceed a few percent
and the number of adjustable parameters (weights of the
network) was in most cases quite high, ranging from 10
to almost 10°.

The quotations from the papers reviewed in the pre-
vious section may mislead some readers into believing
that neural networks really solve physical problems or
carry out transformations of the Schrodinger equation,
i.e. do something intelligent. Therefore we should stress
that the problem of learning associations between para-
meters and output values is equivalent to the data fit-
ting, i.e. to the problem of approximation of an unknown
input-output mapping. Vice versa, all data fitting pro-
blems may be presented in the ANN form. Therefore the
question one should ask is: are neural networks efficient
in fitting the data and what is the functional form they
are using?

The general approximation problem is stated as fol-
lows [11]: if f(X) is continuous function defined for
X = (#1,..2y) € X, Fy(X) is continuous approxima-
ting function of X and some parameters W &€ W, then
finding the best approximation amounts to finding W
such that the distance ||Fy (X) — f(X)|| is the smallest
for all W in the parameter space W.

Consider the linear expansion Fy (X) in a set of ba-
sis functions ®;(X), approximating an unknown function
F(X) of many variables X:

Fy(X) = Z W; @i (X) (5)

Given a set of sample points (X3, fr, = f(X})) our task
is to find the best possible expansion coefficients W;. We
may imagine a network realization of the approximation



problem in several ways, for example, a single-layer ne-
twork that solves the problem is shown in Fig. 2, with
m hidden nodes (/m = 5 in this example), a single input
and single output node. Each input node is connected
with the weight equal to 1 to the hidden node and with
the weight equal to W; to the output node. The input
node sends unmodified signals to the hidden nodes that
have output functions equal to ®;(X) and the output
node performs the summation of all weighted contribu-
tions. Any linear or iterative method of data fitting may
be used as a learning algorithm to find the best “we-
ights” or expansion coefficients W;. This scheme covers
many approximation methods, including Fourier trans-
forms, spline interpolations and polynomial fits. Genera-
lization for vector functions (many-components) requires
many output neurons and realizes a general mapping be-
tween two vector spaces.

Most of the feedforward networks assume for an output
function of a neuron a sigmoidal function Eq. (2). Since
this function has as an argument z;, a weighted sum of
all signals o; received by a given neuron ¢ from neurons
j that are connected to its inputs

vi=y Wi (6)
j

the number of parameters adjusted during learning is
equal to the number of non-zero connections of the ne-
twork. In the examples presented in the previous section
the ANNs had hundreds of adjustable parameters. The
task required from these networks during training was to
fit the available (training) data to some functional form
by adjusting these parameters. Although one may think
that in using ANNs no functional form is e prior: as-
sumed this is obviously not true. How does an explicit
function realized by the backpropagation network look?
It is usually presented in the recursive way

—UZWP ZWP ZWS% )
(7)

where ¢ is the sigmoidal output function of the node
and the upper indices 1..k refer to the network layer. For
a network with 2 active layers (Fig. 1) the explicit output
function is not difficult to write:
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The formulas for the backpropagation of errors training
algorithm [3] may easily be obtained by computing the

gradient of this function with respect to the weights (ap-
proximation errors are proportional to this gradient). If
the signals z; are small and 7" 1s large we can expand the
exponential function and the geometrical series leaving
the linear approximation:

FW l‘l, ooy
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which has the same form as Eq. 5 with o(x;) as the
basis functions for the expansion. However, in the usual
case the dependence on the parameters W is non-linear.

In general sigmoidal functions can approximate any
continuous multivariate function [12], although high qu-
ality of this approximation requires in most cases a rather
large number of parameters W. Conditions for conver-
gence of such expansions have been found only recently
[13]. Neural networks may therefore serve as the universal
approximators. Many other neuron output functions lead
to networks that may serve as the universal approxima-
tors. Radial basis functions [14], and even more general
kernel basis functions [15] can be used for uniform appro-
ximation by neural networks. In fact many other types
of function may be used, for example rational functions
[16] for some approximation problems lead to networks
of lower complexity (smaller number of parameters, i.e.
faster convergence) than the networks based on sigmoidal
or radial functions.

For many problems linear approximation is the most
appropriate method and an attempt to use neural ne-
tworks or any other nonlinear approximators will lead to
low accuracy and lengthy computations. Periodic func-
tions (covering the prediction of time series in physics,
chemistry, economics and other fields) are much better
represented via Fourier, wavelet [17] or similar expansions
rather than by sigmoidal functions. Many other functions
useful in physics are of gaussian type. Why should we
hope that the ANN based on the sigmoidal functions will
give us better results than the fitting procedures?

The training algorithm modifies the weights (or logical
functions of the nodes in case of logical networks [18]),
slowly changing the landscape of the Fyy (X) function re-
alized by the net until it will approximately give in the
N sample points the same values as the f(X) function.
Since the initial form of the mapping depends on the ran-
dom set of weights W at the start of the training period,
the final form of the function Fy after training is to a
large degree arbitrary, except for the close neighborhood
of the N training points. Hoping that the ANN will find
an approximation far from the sample points (X;, f(X;))
is unreasonable. At most the accuracy that one may ob-
tain is equal to that of a fit with W;; parameters using
sigmoidal functions.

Fitting a set of data points to a linear combination
of basis functions by the least-squares procedure, in case
when the function is smooth, is not difficult. Formulated
as a neural network learning problem with just one out-
put neuron such an approach is known as the functional



link neural network [19]. Nonlinear fitting problems are
difficult and neural network approach is not an exception,
in fact even quite simple networks lead to NP-complete
problems [20]. A very interesting solution to this problem
is based on the idea of growing and shrinking networks,
allocating resources to new data and constructing the
approximating function incrementally [21].

The problem of fitting non-smooth functions in many
dimensions, as in the clustering analysis, is also difficult.
Fitting in a multidimensional space is much harder than
in one or two dimensions and it remains to be seen if neu-
ral networks can compete with least squares fits to expan-
sions 1n some basis set. Comparison of various nonlinear
approaches to classification for real world data shows that
the accuracy of neural networks is similar to nonlinear re-
gression and tree-induction statistical methods [22].

IV. EXAMPLE OF ANN BEHAVIOR

From the point of view of the approximation theory
physical and chemical problems treated in the literature
by ANNSs are in some cases trivial. Consider for example
the results of [6] and [7]: we do not need 50 sample data
points to conclude that the dependence of E on (wg,wy)
is linear. If there is no way of guessing the functional de-
pendence or if there is no global fit that will give small
errors we may try to use various spline functions to get
the correct local behavior and glue them together to get
a global description of the data. However, functional de-
pendencies for most physical problems are known (in con-
trast to problems in pattern recognition to which ANNs
are applied with some success, for example in high-energy
physics [23]). They result from the underlying simplified
physical models; parametrization of functions and data
fitting is a well-established and highly accurate method
for creating mathematical models.

Perhaps an explicit example will clarify the need for
rigorous methods in the reconstruction of functional de-
pendencies from sample data. In Fig. 3 we have pre-
sented a function f(x) = sin(v/2x)sin(2z) and various
fits and approximations based on the 11 sample po-
ints taken every 27/10 in the (0,2m) region. The ori-
ginal function f(z) is left for comparison on all dra-
wings (thin line). Polynomial fits of at least 8-th order
have to be used to give a sufficient number of minima
and maxima and such polynomials lead to large oscil-
lations between the sample points. Fig. 3a) shows the
original function and its approximation by a Fourier se-
ries based on an 11-parameter expansion in the functions
1,sin(x), cos(), ...sin(bx), cos(5x). It is a global fit, good
for interpolation in the whole (0, 27) region but comple-
tely failing outside of it. In the second drawing we see the
fit based on the highly non-linear local sigmoidal func-
tions with T=0.01. It has the following form:

F(z) = Z Wio(x — @) (10)

Results that one can obtain with this type of fitting
function represent the limit that an ANN of any archi-
tecture with 11 linearly adjustable parameters and sig-
moidal output functions of neurons may achieve (nume-
rical experiments with other, multi-layer networks with
non-linear parameters, always gave worse results). Varia-
ble thresholds for individual neurons, equivalent to the
centering of sigmoidal functions around the data points,
are a necessary prerequisite for a good local approxima-
tion in this case. For 7' = 0.01 the non-linearity of the
sigmoidal functions in the range of 47 /5 is rather strong
and the overall fit is poor. In Fig. 3b) one can see how
the approximating function is combined from steep sig-
moids — the shape of the sigmoid functions is also shown
in this figure. Networks with high non-linearities are sim-
ply not capable of a smooth modeling of the data in this
example.

The behavior of the approximating function for para-
meters outside the training range strongly depends on
the value of T'. This is illustrated by the next two dra-
wings, Fig. 3¢) and d), obtained with local sigmoidal fits
for T'= 0.5 and T'= 1. The accuracy of these fits is even
better than that of the Fourier series fit! In this case the
sigmoidal functions, shown in these figures, could be re-
placed by the semi-linear functions, and the approxima-
ting function by the semi-linear spline function. In our
experience it is hard to find a function f(z) for which
this would not be the case.

The last drawing shows the results obtained by a back-
propagation network with 11 non-zero weights trained
on the 11 input points and tested on 100 points in the
(—m, 37) range. The curve gives an overall idea of the qu-
ality of the ANNs approximation — the results can vary,
depending on the randomly set starting weights and the
parameter T'. Fig. 3e) shows the best results we could find
after many experiments with different network architec-
tures, hundreds of thousands of iterations and essentially
forcing the network to learn some points (giving the va-
lues of these points more frequently than the others). The
network learned the values of the 11 training points to a
very high precision (0.001).

Although the trained network is useful for interpola-
tion of the data the extrapolation properties of this ne-
twork are completely unreliable. A simple way to improve
the extrapolation is to use auto-regression, i.e. instead of
using pairs of points (#;, y;) for fitting or network training
one may use a set of y;, y;_1, ... points. The use of autore-
gression does not change the overall conclusion concering
the fitting procedures and the network behavior.

The strength of ANNs for some problems where
non-linear relations make it hard to find a global ap-
proximation lies in the local description of the appro-
ximated function around the training data vectors. The
accuracy of such a description is rather low. Looking at
the function realized by the untrained net, starting with



random weights, with the net outputting one real num-
ber for n-dimensional input vector, we get a hypersurface
in n + 1 dimensions, rather smooth but irregular. Lear-
ning input-output associations changes this hypersurface
to reproduce the output values around the training input
values, but most of the random structure of the initial hy-
persurface, including local minima and regions far from
the input data, remain unchanged. It is instructive to
look at this function during training, and to notice how
the model of the data that the network has is changing.

V. ALTERNATIVES TO ANNS

Approximation theory leads to regularization of func-
tions, a very important concept [24] especially for appli-
cations with noisy data (as usually obtained from expe-
riments). In essence regularization takes into account ad-
ditional information in form of constraints that should be
fulfilled by the approximating function, defining a func-
tional:

N
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where (X;, y;) are know data points, P is the constraint
operator and A is a real parameter determining how im-
portant the constraints should be. This functional is mi-
nimized over all functions f(X) belonging to some class
of trial functions. The approximation in the least-square
sense follows for A = 0 (no regularization). Elegant so-
lutions are know for many constraint operators, allowing
the avoidance of “data overfitting” effects in case of noisy
data inputs. For example, to smooth the approximating
function by minimizing the rapid variation of its curva-
ture P should include second derivatives:

NS (%) (12)

i=1 ji=1

Regularization may also be applied to the backpropa-
gation ANNs [25] and can be implemented by ANNs with
one hidden layer [26]. Poggio and Girosi [26] show how
regularization theory may be extended to what they call
“theory of Hyper Basis Functions”, containing the Radial
Basis Function (RBF) method [14] as a special case. The
RBF approach allows for multivariate interpolation in a
way that is better for most chemistry and physics pro-
blems than the ANN interpolation with sigmoidal func-
tions. The RBF method assumes the following functional
form to the approximate function f(X) given the value

at N points X; = (x(li), x(;), ng))

F(X) = Y G(IX = Xl + Y Dips(X) - (13)

where h is a continuous function centered at X; and p;
is a polynomial of some low order (in particular a con-
stant). Some of the h functions used with very good re-
sults for problems in physics [27] include linear and Gaus-
sian functions:

r= (X = Xlls h(r) = (14)
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Another branch of mathematics in which the appro-
ximation of multidimensional functions may be based is
the statistical decision theory (cf. [5] and references the-
rein), probabilistic Bayesian classifiers [28] and regres-
sion theory [29]. These approaches should be preferred
for classification problems [9], [10] and if the data cluste-
ring 1s rather strong. The best known programs based on
this theory are variants of the Learning Vector Quanti-
zation (LVQ) algorithm of Kohonen [30]. Other relevant
methods were developed by the high energy and plasma
physics communities and are known as function parame-
trization methods [31].

A recent comparison of various non-linear appro-
aches to classification and data modeling, such as neu-
ral networks, statistical pattern recognition, MARS and
BRUTO [22] shows that all these methods have their
weak and strong points, depending on particular appli-
cations. Fuzzy sets theory [32] and local coordinate trans-
formation methods based on differential geometry are
also strong competitors of ANN algorithms [33] offering a
well-defined mathematical background for local data ap-
proximation. ANNs are but one family of systems among
many types of adaptive systems reconstructing hypersur-
faces from the sample data by adjusting internal parame-
ters.

VI. SUMMARY

From the preceding sections it is clear that there are
many alternatives to the use of neural networks for
complex approximation problems. There are obvious ca-
ses when the use of neural networks is quite inappro-
priate: whenever linear methods are sufficient or whene-
ver least-squares fits in some basis functions works well.
Given a sufficient number of network parameters (weights
and processing functions) and a sufficient number of data
points an approximation to an arbitrary mapping may be
obtained [12]. For some problems approximation via sig-
moidal functions, especially with strong non-linearity, is
slowly converging — a reflection of the fact that no physi-
cal insight is used in the construction of the approxima-
ting mapping of parameters on the results. The number
of adjustable parameters (weights) in an ANN is usually
quite large. Time for training the ANN| tedious selection



of network architecture, neuron output function and glo-
bal learning parameters plus the dependence of results
on the initial state of the network make the use of neural
networks for solving physical problems a very unreliable
method.

Recently Bishop [25] proposed a fast curve fitting pro-
cedure based on neural networks. A trained ANN is used
to give quickly an approximation to the non-linear para-
meters of the iterative fitting procedure. It has already
been suggested in the context of Adaptive Logical Ne-
tworks [18] that after training the ALN net the function
that it has learned should be extracted: isn’t it better
to construct such approximating functions directly? Al-
ternative approaches, based on the approximation theory
and theory of statistical decisions have more rigorous ma-
thematical foundation and properly applied should lead
to better results with a smaller number of parameters.

Consider for example theoretical molecular physics and
quantum chemistry. We are trying to associate, using
some complicated computational machinery, certain pa-
rameters, such as geometric or one-electron basis set in-
formation, with the values of energy and other properties.
Does a global function of these parameters giving energy
E(p1,..pn) and other properties exist? Can we create an
approximating function containing a large number of ad-
justable parameters from computational results plus the
empirical data that will allow us to guess new values?
If good empirical or ab wnitio data is available for con-
struction of such a mapping it is to some degree possible
and this approach has been used for many years to obtain
reliable molecular (and more recently also solid state) po-
tential energy surfaces [34]. The results of such mapping
based on physical models for underlying expansions are
much more reliable than the results one may obtain using
ANNs [35].

Will the neural networks have significant impact on the
methods of solving the physics and chemistry problems?
Our conclusion 1s that using feedforward neural networks
to solve some of these problems is a rather inefficient way
of fitting the data to a specific functional form. However,
if there 18 no approximate theory but the data is not com-
pletely chaotic — as for example in the case of proteins
[10], QSAR and other problems in physics and chemistry
[38] or time series forecasting in economics or physics [36],
[37] — any data modeling tools are worth using, including
neural networks. There is no need to insist on sigmo-
idal processing functions, usually more accurate results
are obtained with a smaller number of parameters using
approximating functions based on gaussian or other lo-
calized functions [14]. Moreover, various methods such as
resource allocating neural networks and other construc-
tive algorithms [21] automatically adding more network
nodes to describe the data with higher accuracy may be
more convenient for data modeling. Another case when
neural network methods may have strong advantages is
when a large amount of data coming from experiment or
computations should be processed. Neural networks le-
arning algorithms lead to small changes of the network

parameters for each input data item presented, while glo-
bal fitting methods require access to all data.
Approximation theory and statistical decision theory,
especially if approximate functional dependencies are
known, give a firm mathematical background to the
treatment of many problems to which neural network
techniques are applied in an ad hoc manner. Instead
of backpropagation neural networks, applications based
on explicit, well-controlled construction of approximate
mappings should be preferred. Papers on applications of
ANNs to problems of physics and chemistry should at
least compare the results with the results obtained using
statistical methods and data fitting procedures.
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FIG. 1. The typical architecture of a feedforward neural
network. An input layer 7/, and output layer with a single
neuron, and a hidden layer o, with two sets of weights, be-
tween the input and hidden layer and between the hidden
and output layer. This network performs the function given
explicitly in Eq. 8 in the text.

FIG. 2. A neural network architecture for fitting the data
to a set of basis functions &.

FIG. 3. An example of effectiveness of various interpola-
tion and extrapolation techniques for f(z) = sin(+/2z)sin(2z)
function, shown in a thin line on all drawings, with 11 uni-
formly spaced (z, f(z)) data points taken from (0, 27) as the
training data. Approximations by: a) Fourier series, 5-th or-
der fit; b) fit using 11 strongly non-linear sigmoidal functions
centered on the data points, T=0.01; ¢) as above, but with
much lower non-linearity, T=0.2; d) as above, with T=1.0,
equivalent to linear splines; e) the best back-propagation neu-
ral network with one input, one output and 10 hidden neurons
(20 non-zero weights) we have found.
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Fig. 3c

12




13



-0.75 |

14



