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ABSTRACT 
 
 

A new measure of complexity or information content for finite systems is proposed. For systems 
composed from a number of interacting substructures the size of the minimal graph representing 
all possible structures is taken as its complexity. This type of complexity measure may also be 
used in a knowledge-based system to measure the semantic information. An algorithm for finding 
the minimal graph is given. Examples of applications include complex systems such as genes, 
proteins, language dictionaries and games. 
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1.  Introduction: information and complex systems 
 
What is a complex system? A working definition, given at a recent conference on the subject 
[1], is: “... systems that exhibit complicated behavior but for which there is some hope that the 
underlying structure is simple in the sense of being governed by a small number of degrees of  
freedom”. 
 
Another definition recently given is: “A system is loosely defined as complex if it is 
composed of a large number of elements, interacting with each other, and the emergent global 
dynamics is qualitatively different from the dynamics of each one of the parts” [2]. Fractals 
and cellular automata are perhaps the simplest systems, in which almost infinite complexity is 
generated from extremely simple dynamics. In many-body physics few-body structures 
cannot be analyzed in details using mathematical models and may exhibit complex behavior. 
On the other hand this definition seems to be too restrictive. What about those complex 
systems for which there is no simple underlying structure? There are complex physical 
structures, like proteins and other biomolecules, which cannot be analyzed using theoretical 
methods of quantum mechanics because they are too complicated - the number of degrees of 
freedom is certainly not small. The size may not be that important. Large molecular 
aggregates, like crystals, may have high degree of symmetry which simplifies theoretical 
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analysis. Large carbon complexes, like fullerenes, are highly symmetric. However, such 
molecules are exceptional among about 10 million of chemical compounds synthesized so far. 
Complex structures are too small and irregular for statistical mechanics and too large for 
fundamental theories to tackle. Another example of complex system not covered by the 
quoted definition is the structure of natural language. Words and sentences have some 
regularity but it is very hard to find the "deep grammatical structure" that will allow us to 
parse complex sentences. Vocabularies are complex, relatively large systems of information 
hard to analyze via mathematical means and apparently without simple underlying mechanism 
that could generate them. Problem solving in artificial intelligence leads to the representation 
spaces and decision trees that show combinatorial explosion, thus leading to complex 
behavior or complex structure of their solution spaces. 
 
In some sense “complex system” means “irregular” and large enough to defy analysis by 
fundamental theories. Whenever complexity of a system or of behavior of a system is 
generated by some simple underlying mechanism we will say that it is a complex system of 
the first kind. Whenever complexity is more fundamental and cannot be reduced or explained 
by some simpler structures we will say that we have a complex system of the second kind. Of 
course it may be that only trivially complex systems of the first kind exist in nature and the 
essentially complex systems of the second kind are just artificial constructions of the human 
mind. Nevertheless, at the present stage of scientific inquiry it seems appropriate to develop 
also an approach that should allow for characterization of complex systems of the second 
kind. 
 
One source of inspiration for the theory of essentially complex systems could come from the 
theory of information, devised by Shannon (Shannon 1948) to measure the amount of 
information in an arbitrary data system. Different definitions of information exist now, 
including axiomatic definition (Ingarden and Urbanik 1961, 1962), algorithmic information 
(Chaitin 1987) and pragmatic information (von Weizsäcker 1974). In particular various 
algorithms for data compression use this kind of analysis, creating “hashing tables” for 
commonly encountered groups of symbols. One could define the amount of information in the 
complex system as infimum over all compression methods. This definition gives us at least an 
upper bound to the amount of information in the system, for example, if we have a text data 
we can compress it using different algorithms and claim, that it contains at least as much 
information as the number of bits in the smallest compressed file we obtain. 

 
2logCI N=  

 
More than 40 years after the definition of information appeared in the landmark paper of 
Claude Shannon (Shannon 1948) we still do not have a satisfactory definition of information 
that would be in accord with our intuition and that could unambiguously be applied to such 
concepts as biological information or linguistic information. We will propose here a practical 
way of measuring the syntactic as well as semantic information content in the finite systems 
which is very much in accord with the idea of pragmatic information. This new concept of 
information will lead to interesting ways of representing information and thus new 
computational techniques. Syntactic information is concerned with the amount of bits needed 
to store a certain data structure. Semantic information refers to the meaning of the data, an 
elusive concept that we shall try to formalize. 
 



2.  What is wrong with the conventional definitions of information? 
 
The first approach to the quantitative definition of information is based on combinatorics 
(Kolmogorov 1968).  If a variable x belongs to the set of N elements giving it a definitive 
value x=a an "combinatorial information" is transmitted. For example, in a list of all k-digit 
binary strings N=2k and the number of bits of information gained by sending one such string 
is k. This measure of information simply shows, how many binary digits one has to use to 
code an information. Numbering the set of arbitrary N elements IC  binary digits are sufficient 
to distinguish each element. The total combinatorial information contained in a list of all 
binary strings is therefore kN = k2k , i.e. it gets larger with the length of the strings. If this is a 
full list we can sum the information with one sentence: all k-digit binary numbers. This length 
of this statement is independent of k or N. If there are a few exceptions we would keep a list 
of the "exceptional" strings, and only in the case when a completely unrelated list of strings is 
given k2k digits will be kept. Combinatorial information evidently refers to the rather 
uninteresting situation when the list of N elements has no internal structure.  
 
Interesting applications of combinatorial information to the estimation of “entropy of a 
language” have been reported (Kolmogorov 1968). The entropy of words in a dictionary is 
considerably higher than the entropy of words in a literary text, indicating that there are some 
constrains (grammatical and stylistic) in literary texts.  
 
The second approach is based on the probability. It was introduced in the theory of 
information transmission by C. Shannon (1949). The concept of probabilistic information is 
based on Shannon's formula 
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requiring specification of probabilities pi of events i. It is identical (except for the units) with 
the physical entropy of the system. If we know in which state the system is, i.e. all pi =0 
except for one pk=1, we gain no information observing the system, i.e.  IP=0. If all N states are 
equally probable the information gain is the largest and equal to IP= lg2 N. 
 
Let as suppose that we want to find the amount of syntactic information contained in a 
dictionary of words, constructed from an alphabet using some grammatical rules. In contrast 
with the artificial grammars and alphabets natural language contains only a very small 
fraction of all possible words, that could be constructed according to the grammatical rules. 
Shannon information is directed rather at transmission of signals than of larger units. In a 
larger dictionary or other lexicographical structure the probabilities of letters are close to 
estimated probabilities for the language. If all 27 letters of English alphabet (including space) 
were equiprobable in a dictionary containing N words with Nav length there are N(Nav+1) 
letters and spaces, therefore information contained in it is equal to N(Nav+1)1/27 lg2 27 ≈ 
0.176 N(Nav+1) bits, so for a dictionary of 100000 words of length 10 it is 193 kbits. Taking 
into account the unequal probability of letters this number may be on a factor 3-4 smaller. 
Unfortunately this information does not give any measure of complexity of the data involved; 
the amount of information for complex as well as for simple repetitive structure is exactly the 
same. 
Asymptotic behavior of the IP information measure also does not seem satisfactory. It assigns 
the largest information to the data structures that are uniform. Suppose that we have a list of 
n-digit binary numbers. If there is a complex algorithm producing those numbers with 
unequal frequencies we have a chance of obtaining rather low value of IS  because for 
transmission a coding of frequently appearing binary digits in a short binary string will 



significantly reduce the amount of data for transmission. On the other hand if all numbers 
between (0..2n−1) appear only once on the list Shannon information is largest and is equal to 1 
bit per digit, or n bits per word, a total of n2n bits (since all pi = 1/2n). Because bits appearing 
on such a list are statistically independent higher order correlations are all powers of 1/2 and 
the second-order and higher entropies per word are all equal to n bits. It is easier, however, to 
specify that all digits are present than to give a list of 10 or more randomly selected binary 
strings. Moreover, if we remove from the list one string the information will hardly change; 
for large n the change in the Shannon information may be in fact arbitrarily small. Again our 
intuition tells us that we need more information to specify that one string is missing if the 
string is longer. Probabilistic measure of information is not that much a complexity measure 
of a system as it is the measure of uncertainty of a given state or of a surprise at an event. 
 
Another measure of information, called algorithmic or Chaitin-Kolmogorov information is in 
use in computer science (Kolmogorov 1965,1968, Chaitin 1966,1990). Algorithmic 
information or the relative complexity of an object y with a given object x is defined as the 
minimal length of the program p for obtaining y from x. Algorithmic information captures 
some intuitive features of information: a binary string obtained by truly random process 
cannot be compressed and carries the amount of information equal to the number of its digits. 
An apparently random string may, however, be easily computable from some short algorithm, 
for square root or the value of π but because of Gödel and related theorems it is not possible 
to decide whether the string is random or simple to compute. Although this definition of 
information has more intuitive features it is not practical either, referring to the concept of 
universal computer. It is usually very hard to compute the amount of algorithmic information 
in any non-trivial structure. The amount of computations needed to restore object y from x, 
called “computational depth” in the literature, is a separate issue - there are cases when simple 
structures of small complexity require an almost infinite time to restore them from other 
structures. Algorithmic complexity has found interesting applications in theoretical computer 
science to estimate the number of steps necessary to solve certain classes of mathematical 
problems. Some attempts were made to apply this concept to molecular biology, but in a 
recent book “Information theory and molecular biology” (Yockey 1992) there are no 
applications of  this concept.  
 
Lloyd and Pagels (1988) introduced an interesting measure of complexity in statistical 
physics, based on the concept of the “depth of a state”. Their formulation stresses the 
importance of evolution of a system and leads to rather paradoxical and counter-intuitive 
results. Cyclomatic information measure has been introduced recently in computer science by 
McCabe [16]. The concept of cyclomatic information is very useful in practice, enabling 
evaluation of the complexity of software. 
 
Below we are going to present yet another definition of information, free from the difficulties 
connected with the algorithmic information and more in line with natural intuitions about 
information. This definition refers to the actual complexity of finite systems and is not related 
to the difficulty of creating them. Our intuition tells us, that the amount of information in a 
data structure should be proportional to the size of this data structure and the complexity of 
the data. It is not enough to look at the number of data bytes, as is quite common among 
computer users. Much better characterization of information contents is afforded by various 
algorithms for data compression, creating "hashing tables" for commonly encountered groups 
of symbols. One could define the amount of information in the complex system as infimum 
over all compression methods. This definition gives us at least an upper bound to the amount 
of information in the system, for example, if we have a text data we can compress it using 



different algorithms and claim, that it contains at least as much information as the number of 
bits in the smallest compressed file we obtain. Although it is possible to formalize this notion 
it is as hard to use it in practice as the Kolmogorov-Chaitin information measure. Moreover, 
we do not see any natural extensions towards the semantic information measures. 

3.  Syntactic information in practice 
Let us first define a measure of syntactic information. We can use various equivalent 
languages to formulate it: automata theory, statistical correlation matrices or graph theory. Let 
us first make a simple example to show, how to express the same fact in these 3 formalisms. 
Imagine that our dictionary contains all n-digit binary numbers, from (0000...0) to (1111...1). 
Since this is a regular structure a simple automata is sufficient to recreate it: 
 

Ai(x) = 0,1;   i=1..n  
 
Graph G0  representing this situation is given below.         

 
We can also specify a 2 by n matrix giving a probability of finding 0 or 1 at each position in 
the string: 

,
1 ; 1.. , 0,1
2ii x iM i n x= = =  

with constant values of all higher-order correlation matrices. Thus if we have completely 
regular structure it may be specified by a short algorithm and thus its algorithmic information 
will be small. 
 
For structures that are less regular algorithmic description will be longer. We shall present the 
results only in the forms of graphs from now on, although an equivalent description may be 
obtained by specifying corresponding automata. To get more information we can use 
somehow more elaborate graphical structure G1.     
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Here each node of a graph gives us an information about the number of 1's and 0's in the 
binary string passing through the node. Removing a node or an arc in such a graph gives us 
slightly less regular structure that cannot be represented by the G0 graph. Minimal graphical 
structure which has still some regularity may be represented by combining the G0 and G1 
graphs. A set of randomly chosen binary strings may not be representable by such a minimal 
structure, but it can always be represented by a tree-like data structure G2. Number of nodes in 
this type of graph is 2n+1-1. 
   
Although in the example presented above all 3 graphs are equivalent in general this is not the 
case. The tree G2  may represent an arbitrary sequence of binary strings or an arbitrary 
dictionary of words. Each node in a tree may be reached in one way only, thus the tree 
contains full information about the path reaching it. In an n-level binary tree there are 2n+1-1 
nodes. G2 graph contains the same information, however, there is a number of path reaching 
each node, the only information that we can find is that these path have fixed number of 0's 
and 1's. G1 graph does not allow even that. 
 
There are two extremes: if the dictionary is completely regular it may be presented in the form 
of a compact graph, rather than a tree. If it is completely irregular it corresponds to a tree with 
every subbranch unique. An intermediate example is shown below: one path is removed from 
the regular graph.    
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In the example given above for n-digit strings the graph for all binary strings has 2n arcs, 
while the graph for all strings with one string removed has at most 4n-3 arcs, with 2 strings 
removed at most 6n-8, ect, so that the difference is proportional to the number of digits in a 
string as one should expect, since the number of digits one has to write in order to specify the 
exception to the rule is proportional to n.  
 
What is the amount of Shannon information in all binary numbers of n digits? There are 3 
characters only, 0, 1 and space. Total number of characters is Nt=2n (n+1) and the probability 

of each is p0 = p1 = 2n n/2Nt = 1/2, ps = 2n /Nt =1/(n+1), so the amount of information is around  
2n n/2+2n n/2+1 = n2n  bits, i.e. is proportional to the number of bits on the list. This is 
certainly true if the bit strings were completely random. However, once we know that the list 
of strings is complete or that it is regular, for example composed to the same string 
101010...10 repeated 2n  times our intuitive understanding of what information is tells us that 
it should differ from the random list. Removing one or more binary strings from a long 
sequence of strings changes this number insignificantly. 
 
In most cases there is some additional structure in such trees, they can be simplified folding 
certain parts of the subbranches into single nodes. In particular various algorithms for data 
compression use this kind of analysis, creating "hashing tables" for commonly encountered 
groups of symbols. One could define the amount of information in the complex system as 
infimum over all compression methods. This definition gives us at least an upper bound to the 
amount of information in the system, for example, if we have a text data we can compress it 
using different algorithms and claim, that it contains at least as much information as the 
number of bits in the smallest compressed file we obtain. 
 
Definition: The information contained in a dictionary is proportional to the size of the 

minimal graph encoding it. 
 
Finding the minimal graph may at the first glance look as a NP-complete problem, requiring 
pattern matching techniques to find subgraphs that are the same in different parts of the graph 
and than choosing some subgraphs as supernodes and gluing together some other nodes. 
Fortunately it is not so bad and we shall give an algorithm for finding the minimal graph 
below. 
 
An important class of problems is addressed if only the head and the tail fragments are 
allowed to be folded. No supernodes are introduced in this process, only gluing of vertices 
will be used to reduce the size of the graphs. The algorithm of graph reduction folding the tail 
patterns is described below. 
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Preliminary step: using the depth search loop over all nodes in the graph and assign weights to 
the nodes of the graph, adding to the weight the number of nodes visited below given node. 
 
Reducing the number of vertices: for each non-terminal node: 
  find a node to the right with the same weight;  
  check the patterns below; if they are the same glue the nodes  
 
The complexity of this algorithm is of the order of the number of nodes in the graph squared. 
Applied to the completely regular graph G3 it is going to transform it to the minimal graph G1 
in a series of steps, illustrated below: 
 
The dotted line shows at each stage which nodes are going to be glued. One can also fold the 
lowest level by adding an additional, terminal node. If the length of the strings (words) in the 
graph is not constant such additional level may be useful. The algorithm described above 
folds the graph in this case to the minimal size.  
 
Another way to fold the graph is based on sorting in the reversed order. We have estimated 
the complexity of these algorithms to be of the same order. We have implemented (Duch and 
Jankowski, 1993) these folding algorithms in a computer program, applicable to any lists of 
words composed of some alphabets.  
 
Fractal images are very interesting example of objects with infinite complexity. However, 
looking at their pictures we may compare their complexity in an intuitive way. Can the 
proposed definition capture this intuition? First, we should note that algorithmic information 
is not useful in this case, because all Julia sets obtained from z2+C iterations have the same 
complexity. For different complex constant C they are, however, very different. For C=0 we 
get circle, for C=i rather complex picture. Although the complexity of fractal images is 
infinite (except for some degenerate cases) we should be able to introduce an isotonic relation 
(?) that will compare the actual pictures, with finite resolution, as we see them. Each little 
square of a given color is assigned the color number, 8 bits for 256 colors for example, and 
each line is a word on the list. The complexity of the list of words is measured by the size of 
the minimal graph again. Interesting questions that arise are: 
 
Although the complexity of the structure goes to infinite with the resolution of the fractal 
image going to infinity can we prove that the relation "more complex than" is preserved, at 
least starting from some resolution smaller than a fixed one? 
 
In general finding the smallest possible representation requires not only folding of the existing 
nodes in the graph but introducing "supernodes" for subgraphs of the same structure that 
appear in the few  places in the graph. Unfortunately an algorithm for optimal selection of 
such supernodes is NP-hard, leading to the classical problems of combinatorial optimization, 
such as the knapsack problem. 
    
It is obvious that the amount of information, in the sense of coding theory, depends on the 
model of data we have. In particular one can compress information of arbitrary length into 
just one bit. Suppose that M is the given message to be transmitted. The code for this message 
is composed of bit 1 while the codes for all other messages start with bit 0.  
 



4.  Alphabet, words and correlation matrices 
 
There is an analogy between the theory of complex systems and linguistics. If the system is 
not completely chaotic we can find an alphabet, a list of substructures or elements of 
behavior, which, due to some interactions, generate complexity. Interactions in this case are 
analogous to the grammatical rules. 
 
Let us imagine a simple example: 4-letter combinations from a 3-letter alphabet. 
               
 letter         abcd 
letter   1   1000         
 no.               2   0110                  
            3   1000                  
            4   1000 
 
Third order structure, for example XOR problem, contains the following vectors:  
 
(1 1 0), (1 0 1), (0 1 1), (0 0 0) 
 
and gives uniform first and second-order correlation matrices. In this case adding one more 
fixed bit, like (1 0 1 0), (1 0 0 1), (0 0 1 1), (0 0 0 0), reveals the structure in second order 
correlation matrices! 
 
It is interesting to look at the minimal graph generated by the grammars of different type (cf. 
Chomsky 1959). The structure of these graphs reflects the hidden dynamics due to the 
production rules. In case of artificial languages it is easy to go from the grammatical rules to 
the minimal graphs showing all possible words constructed using these rules. In case of 
natural languages the task of linguists is to find the rules from the words in dictionary. Since 
the rules are only approximate, with a number of exceptions, one can analyze the graph 
disregarding minor irregularities. 
 
Hierarchy of such correlation matrices may be introduced. The challenge is to find minimal 
structures which strictly encode the original list! Search in correlation matrices for what is 
acceptable corresponds directly to a tree structure of alphabetically ordered words. If there are 
some words created by interference they are required for the structure to be more regular. It 
should be quite interesting to compare this structure after folding with the structure of the true 
graph after folding. Here is the scheme: 
 
List => Graph => MinGraph 
List => Mcorr => GraphM => MinGraphM 
 
Are the MinGraphM more regular (i.e. smaller number of arcs per word coded) than 
MinGraph? Connection of minimal graphs and correlation matrices may introduce explicitly 
allowed versus explicitly forbidden cases. Correlation matrices contain probabilities for 
Shannon information IN.  
 
Another area where information measure based on graph theory is useful is the computer 
science. Imagine that each of the nodes in the graphs presented in Fig. 1-3 represents a 
fragment of the computer code and the graph itself represents possible flows of computation, 
from the starting node to one of the final nodes. Each node from which more than one path 



follows is equivalent to a piece of sequential code followed by a decision statement. Such a 
representation of the computer program is called a “flowgraph” and frequently used in 
computer science. In fact one of the most successful and used commercially approaches to 
measurements of software complexity, called “cyclomatic complexity” [17], is simply based 
on the number of decisions in the flowgraph: 
 

v(G) = number of decision statements +1 
 
Correlation between the values of cyclomatic complexity and the number of errors in the 
program and enabled predictions of performance of programmers on comprehension, 
modification and debugging of the programs.  
 

5.  Semantic information 
 
Once we have accepted the definition of syntactic information given above the definition of 
semantic information is not much harder. Semantic contents or meaning is relevant only if we 
have some cognitive system. Words and ideas have different meanings and different 
information contents for different people therefore it is not possible to give a universal 
definition. Why is the meaning different for different people? Because their internal 
representation of the world is different. We must refer to some representation of the world to 
define semantic information. Suppose that we have build an expert system, based on a set of 
rules stored in a knowledge base. This knowledge base, together with the rules of inference, 
define our universum of facts, representing knowledge or some model of the world M. 
 
One of the ways of storing such a knowledge base is via semantic networks. We can organize 
these networks in such a way that the minimal graphs are used to describe them. The 
information contents of this knowledge base is defined as the size of this minimal graph. Let 
us add now one new assertion to the knowledge base and try to determine the amount of 
information that this assertion adds to our knowledge. This will be a measure of “meaning”, 
or semantic contents, of such an assertion. Adding new rule to the knowledge base requires 
accommodation of this knowledge with the other knowledge, resolution of possible conflicts 
ect. This process is analogous to the process of relaxation in the neural network. For example, 
when a new fact is learned by a human it takes from several seconds to minutes, days or even 
years before this process of relaxation or accommodation of a new fact takes place and the 
"meaning" is understood. Years of repetition of basic facts in mathematics and natural 
sciences are required to really digest the information: once it has been integrated into our 
"knowledge base" we can review the information contained in the schoolbook in a day.  
 
Comparing the size of the minimal network after adding one rule and accommodating it with 
the size it had before gives us the measure of semantic information contained in the new rule 
relatively to a given knowledge base. Thus the same fact has different semantic information 
contents depending on the knowledge base that is used.       
 

6.  Possible Applications and Open Problems 
 
Does it fit to intuitive feeling of semantic information? Rather well. We have developed (W. 
Duch and N. Jankowski, unpublished) a computer program to measure the amount of 
syntactic information in complex structures. As a first step it analyses the data to determine 



the alphabet; then it generates the graphical structure and makes multiple passes over it to 
determine minimal structure. 
 
There is one problem left - it does not allow us to define absolute amount of semantic 
information in the knowledge base. A large number of particular rules, requiring rather large 
semantic network to represent them, may have a weaker predictive power than one general 
rule, requiring smaller network and thus, according to our definition of information, 
containing less information. While the concept of meaning of a single rule seemes to be well 
captured by the resulting change in the size of the knowledge base data structure the absolute 
amount of information requires a concept of predictive power (what facts can the knowledge 
base generate) which is not only dependent on the knowledge but also on the inference 
mechanisms. Basing on the predictive power we could introduce an ordering relation between 
2 knowledge bases, fixing the inference mechanism. 
 
Another problem is how to extend the measure of information described here to infinite 
systems. An obvious way is to discretize them but there might be better ways of doing it. 
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