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Preface 

The paper presents a self-contained review of both conventional and direct configuration 
interaction methods within the symmetric group approach. Special attention has been paid to 
make the presentation complete. On the other hand, we avoided unnecessary formal considera- 
tions trying to make the approach easily accessible also to readers not willing to be involved in 
mathematical subtleties. A rather extensive list of references reflects a multiplicity of approaches 
to configuration interaction and related methods. It may be useful to a reader willing to find his 
own way of dealing with the problem. However, in order to understand and apply the formalism 
presented, no reference to other papers is necessary except for inessential details of some 

derivations. 
The paper is divided into two parts. In the first part a general fo~ulation of the theory is 

given. The second part contains explicit formulae and, where it is essential, information on the 
strategy of their implementation. The formulae are presented in a compact, tabular form, which 
makes their classification and computer representation particularly simple. 



W. Duch, J. Karwowski / Symmetric group approach to CI methods 97 

PART I. BASIC PRINCIPLES AND CONCEPTS 

1.1. Introduction 

The nonrelativistic one-particle model, culminating in the Hartree-Fock (HF) approximation, 
is certainly a basis for most of our intuitions, concepts and terminology in the field of quantum 
chemistry as well as of atomic and molecular physics. When the particles do not interact with 
each other, the model gives an exact solution of the Schrodiner equation. However, if we move 
closer towards the physical reality, the model becomes inadequate. First - if the particles interact 
by the Coulomb forces, the exact solution of the HF equations (where only an average interaction 
is taken into account) differs in an essential way from that of the corresponding Schrodinger 
equation. The energy difference, termed the correlation energy (EC,,,) [l], is usually less than 1% 
of the total energy, but when the energy differences are concerned, the correlation energy 
constitutes often more than 100% of the difference (as e.g. in the case of atomic and molecular 
electron affinity values). Second - if the nonrelativistic approximation is not valid, the Schrodi- 
nger equation itself does not describe the system properly. The relativistic effects are small 
compared to the correlation ones only for the first row atoms and grow up very fast with the 
nuclear charge Z. Already for Z = 14 (silicon) the relativistic correction to the total energy (E,,) 

exceeds the correlation energy and for Z = 20 (calcium) Ere, = 3E,,,,. In consequence, beyond- 
Hartree-Fock methods of calculation are aimed at taking into account electron correlation and 
extending the basic formulation of the nonrelativistic theory. The first of these directions covers a 
vast majority of all the research works, including the present review. The second, though 
originated already in the thirties, received much interest only recently (for a review see ref. [2]) 
and culminated in excellent computer codes solving Dirac-Hartree-Fock equations for atoms 
[3]. Very little was done in studying correlation-relativistic cross effects, but it seems that also 
their role is far from being negligible [4]. 

The subject of the present study is the method of configuration interaction (CI) or, to be more 
precise, one out of many approaches to one out of many modes of its implementation. The 
method of configuration interaction is the most straightforward, the simplest and the most 
commonly used gateway beyond the one-particle model. It may also be very accurate - for small 
molecules it gave the most accurate results obtained so far [5] while for the medium size systems 
no real competition with CI exists. Various aspects of the CI method have been discussed in 
numerous papers, as e.g. excellent reviews by Shavitt [6] and by Roos [7], a monograph by Pauncz 
[8], proceedings of a workshop organized by Hinze [9], where further references may be found. 
The CI wavefunction becomes a formal solution of the nonrelativistic Schrodinger equation when 
the orbital basis set approaches completeness [lo]. This property, combined with a rather slow 
convergence, stimulates a drive towards an extension of the length of the CI expansion. New 
concepts such as direct CI (DCI) method [11,12] and powerful graphical techniques based on 
group-theoretical properties of the CI wavefunction [13,14], allowed to overrun recently a limit of 
106-term CI expansion [15]. 

The CI method originated from early papers of Hylleraas [16] and more extensive calculations 
of Boys [17], Parr et al. [18], Meckler [19] and others. Probably the first formally rigorous 
treatment of the method was given by Lowdin [lo]. The conventional formulation of the method 
has been implemented in a number of laboratories. The most extensive and the best known CI 



98 W. Duch, J. Karwowski / Symmetric group approach to CI methods 

procedures have been built into the systems MUNICH by Diercksen and Kraemer [20], 
ALCHEMY by Bagus et al. [21], POLYATOM by Neumann et al. [22], MOLECULE by Almlof, 
Roos and Siegbahn [23,12]. 

The matrix element evaluation algorithms aimed at implementation in the conventional CI 
programs range from very simple rules of Reeves [24] extended by Sutcliffe [25] and by Cooper 
and McWeeny [26], valid for bonded functions only, to more sophisticated, based on group-theo- 
retical techniques by Harris [27], Ruedenberg et al. [28,29], by one of us (JK) [30] and by many 
others. However, not the matrix element evaluation but rather storing CI matrices and searching 
for integrals appearing in a given matrix element, formed the real bottleneck of the conventional 
CI method. 

A qualitative advance started with the idea of the direct CI formulated by Roos [ll] a decade 
ago. In the conventional CI the Hamiltonian matrix elements are calculated explicitly to form the 
CI matrix. Next, a number of its eigenvalues and eigenvectors are obtained by a suitable iterative 
large-matrix procedure [31,32]. The core of such a procedure is always a multiplication of the 
matrix by a vector. The greatest advantage of the direct mode of calculation lies in constructing 
the product directly from a list of two-electron integrals, omitting the construction of the CI 
matrix itself. This kind of procedure reduces the storage requirements, but implies an increased 
mathematical complexity of the method. The formal problems connected with constructing 
general DC1 algorithms have been solved by Paldus [13] and by Shavitt [14,33] using the unitary 
group approach (UGA) and by the present authors [34] within the symmetric group approach 
(SGA). Both the approaches allow to determine configuration pairs which may be coupled by a 
given two-electron integral and to evaluate the coupling constants. 

The next milestone in development of the CI method was the concept of a global approach to 
the problem. Handling with entire spaces rather than with individual configurations was its 
essential novelty. The language of UGA introduced to CI methods by Paldus [13,74,75] and the 
direct mode of implementation, in a natural way suited to the global treatment of CI. Efficient 
implementations have been opened by Siegbahn’s idea of dividing the orbital space into internal 
and external parts [35] and by the graphical representation of the CI basis by Shavitt [14,33]. In 
effect, graphical unitary group approach (GUGA) has been formulated outdating all previous 
achievements. The GUGA has been implemented in 3 different modes: integral driven [35], loop 
driven [38] and shape driven [15]. The maximum length of the CI expansion, used in a 
calculation, grows up very fast - from 6 x lo4 in 1975 [39] to lo6 in 1982 [15]. Of course, the 
increase is not only due to an improvement of the algorithms but also due to a development in 
the computer technology. The newest developments, aimed at vectorization of the global CI 
algorithms [53] seem to announce a new quantitative step forward. 

Basic duality that exists between the symmetric and the unitary group causes that UGA and 
SGA are closely interrelated and that for each UGA result one can find its analog in SGA, and 
vice versa. Only recently, mainly due to work of Paldus and Wormer [85], these interrelations 
became clear. Though UGA is much younger than SGA [8], during the last decade the most 
important concepts have been developed within the UGA formalism [9]. Many of these concepts 
proved to be rather independent of the basic formulation of the theory. In particular, notions of 
the external and internal orbital spaces [35] or a graphical representation of the CI basis [14], 
originally introduced to UGA, are very general as far as their nature is concerned. Their transfer 
to SGA resulted in formulation of the symmetric group graphical approach (SGGA) [36,37]. In 
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fact, due to a separate treatment of the orbital and spin parts of the wavefunction, the global 
formulation of SGA proved to be even simpler than its UGA analogue. Nevertheless, to our 
knowledge, only one implementation of SGA has so far been done by Ruttink and Van Schaik 
[42]. - 
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A number of simplifications of the general CI scheme has been proposed. In some methods a 
part of the variational parameters is kept fixed [40,41]. In others, a part of the Hamiltonian 
matrix is treated within a perturbational scheme [43,44]. To another class belong methods based 
on the electron-pair approximation [45,46]. We shall not discuss these approaches in any detail, 
though when a general CI algorithm is developed, it may be applied within any of the simplified 
theories. 

The unitary group approach has been implemented not only in CI [15,35,47,48] but also in 
MCSCF [49], in complete active space SCF [50,51,52] and in CEPA [56] methods. Moreover, it 
was used in a formulation of an open-shell electron propagator theory [57], in the crystal field 
theory [58], in calculations of atomic properties [59], of one- and two-particle density matrices 
and of energy gradients [49,54]. We hope that SGA may constitute an useful alternative to UGA 
and that eventually, it will also be applied in equally many areas. 

The present review is aimed at presentation of algorithms based on the symmetric group 
approach to DC1 method. Similar aspects of UGA have recently been revived by Robb and Niazi 
[55]. A reader interested in conventional CI methods is referred to the already mentioned review 
by Shavitt [6]. Fig. 1 may serve as a guide to the sources and interrelations of the group-theory- 
based ideas useful in CI methods. A flow-chart of different DC1 implementation is shown in fig. 
2. 

1.2. The method of configuration interaction - fundamentals 

I. 2. I. Preliminaries 

The term configuration interaction method covers a class of approximate methods of solving an 
N-electron Hamiltonian eigenvalue problem 

based on the Ritz variational principle [105]. The problem is solvable if electron coordinates are 
the only variables in this equation. Therefore, if we are interested in solving the problem for a 
molecule, the nuclear positions are fixed to form a rigid frame. Since electrons are indistinguisha- 
ble, the Hamiltonian is symmetric in electron coordinates. It is Hermitean, from the first 
principles of quantum mechanics. It contains only one- and two-electron terms, h,(l) and 
& 2 (1, 2), respectively. Hence, 

A= ~K,(i)+~ir,(i, 
i=l i-=j 

where both hi and A, are Hermitean and A,( i, j) = A,( j, i). The operator A, includes operators 
describing interaction of an electron wiJh an external field and the free-particle energy (kinetic 
energy in the nonrelativistic case) while h, describes the electron-electron interaction. Though an 
exact Hamiltonian may consist of one- and two-electron terms only, in some approximate 
methods, as e.g. the ones based on cluster expansion techniques [46,106] or utilizing geminal-con- 
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taining wavefunctions [107], many-electron terms appear in an effective Hamiltonian. We shall 
limit our discussion to the case of a Hamiltonian given by eq. (2) only, though in principle CI 
methods may be developed for a more general case. 

CI method is distinguished by a special form of the trial function q. Using the functional 
analysis language we may say that in an N-electron CI calculation we are looking for a solution 
of (1) in a subspace of a model space taken as the antisymmetric part of the N-fold tensorial 
product Hi = *( V;z @ N, of the one-electron spaces V.2 = { xk}i!L, spanned by a set of 2n spin 
orbitals. The one-electron space itself is a product of the two-dimensional spin space V; = 

{ QiL1.2 and the n-dimensional orbital space Vno = { Q)~ }i= 1 spanned by a set of n orbitals: 
I’;: = V,S @ Vc. In practical terms it means that the trial function is taken in the form 

!P(l, 2, . ..) N)=Cc,&,(l, 2, *.*, N), (3) 
L 

where 1, 2, . . . , N stand for electron coordinates (including their spins), +!J~ are N-electron 
antisymmetrized products of spin orbitals (Slater determinants) and cL are variational parame- 
ters. If the spin orbitals are chosen to be orthogonal, then the Slater determinants form an 
orthogonal system of the basis functions. Index L is an abbreviation for an ordered set of N 
indices of spin orbitals taken out of the set { xk } y! 1 i.e. L = { 1; } r=, , I, < I, < . . . < I,, means 
that { x,,}~=r have been taken to construct qL. The sets L = { li}jv=, are often referred to as the 
spin-orbital configurations. 

Depending on whether a spin orbital appears or not in a spin-orbital configuration we say that 
its occupation number in this configuration is, respectively, 1 or 0. Correspondingly we introduce 
also the orbital occupation numbers ni = 0, 1, 2. If n, = 0, the orbital ‘pi does not appear, if 
n i = 1 it appears once (associated with one of the two spin functions) and if ni = 2 it appears 
twice (with both the spin functions) in the configuration. The singly occupied orbitals are referred 
to hereafter as singles, the doubly occupied as doubles and the empty ones as uirtuals. The 
maximum number of spin-orbital configurations is equal to (F). If all of them are taken into 
account in the expansion (3), we call \k the full CI solution. This kind of calculation, for 
practical reasons, may be performed only if 2n - N is small enough. Usually limited CI 
calculations are performed with K < (2 ), where K is the number of terms included in expansion 

(3). 
Application of the variational principle to (1) and (3) leads to a set of equations for cL 

C(%-~&)c,=O~ J=l,2,..., K (4 
L 

being solvable under condition that 

det( HJL - ES,, I= 0, (5) 

where 

(6) 



W. Duch, J. Kunvowski / Symmetric group upprouch to Cl methods 103 

Eq. (4) may be rewritten in a matrix notation 

Hc = ESc, (8) 

where H and S are square matrices and c’ is a column vector. Eq. (8) is the matrix eigenvalue 
equation with an eigenvalue E and an eigenvector c. The K eigenvectors c,, (with components clP 
and corresponding eigenvalues E,) are subject to the condition 

CJSC, = spy (9) 

and are numbered so that 

E,<E,< . . . GE,. (W 

Each eigenvalue E, of (8) is an upper bound to the corresponding eigenvalue of fi [108]. .4s 
additional terms are added to the expansion (3). eigenvalues EjK+‘) of the (K + I)-term 
expansion satisfy the inequalities 

and as the orbital set { vk } approaches completeness, the full CI solutions approach the exact 
solutions of eq. (1). 

I.2.2. Configuration state functions 

Methods based on eqs. (3)-(9) belong to the class of CI methods. In particular, one may 
formulate both relativistic and nonrelativistic CI methods though the former ones have never 
been implemented in large scale calculations. We consequently assume that the formulation is 
nonrelativistic, i.e. that the Hamiltonian does not depend upon spin variables. Then, all kinds of 
spin operators commute with &. In other words, the total spin S and its projection A4 form, with 
energy E, a set of constants of motion. Hence, * should be chosen as an eigenfunction of .!$’ and 
gz operators. This requirement imposes upon the variational parameters in expansion (3) certain 
restrictions. The restrictions may be taken into account assuming that a number of Slater 
determinants corresponding to the same set of orbitals, but differing in their spin parts, are 
grouped together to form eigenfunctions of $’ and $. The spin adapted combination of the 
determinants is referred to as the configuration state function (CSF). The set of orbitals, common 
to all the Slater determinants forming a given CSF, is called the orbital configuration or simply 
configuration. Hence, a CSF IX; SM, I), besides of being antisymmetric, 

P IX; SM, /) = c(P)IX; SM, 1) 

fulfils the following eigenvalue equations 

S’(X; SM, /) = S(S + 1)(X; SM, /), 

$]A; SM, 1) = MIX; SM, I). 

(12) 

(13) 

(14) 
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where P is a permutation operator of electron coordinates. E(P) is its parity (c(P) = (-l)“‘, 
where m is the number of transpositions P is composed of), h is an abbreviation for a set of the 
orbital indices used to construct a given CSF and index I has to distinguish independent 
eigenfunctions of 3’ and $ belonging to the same values of S and M. It may be shown (see e.g. 
ref. [S]) that I = 1, 2, , . . , f( S, s), where 

f(S, Q!..Li s +1 
s+l i 1 ts -s (15) 

and s is the number of singles in h. Expansion (3) may then be replaced by a spin-adapted one 

It means that instead of A( Vzz By) space, we take its subspace, A(SM), spanned by all CSFs 
corresponding to a given pair of S, M quantum numbers. The dimension of A(SM). i.e. the 
length of expansion (16) corresponding to full CI, is given by the Weyl-Paldus dimension 
formula 113,741: 

(17) 

Using the spin-adapted wavefunctions results in a very substantial reduction of the length of CI 
expansion. For example, in the case of a full CI calculation for N = n = 6, one can construct 
FiF; 924 Slater determinants, but only 175 singlet (S = M = 0) and 189 triplet (S = M = 1) 

Ha~ltonian (2), apart from the invariance with respect to permutation and spin operators, is 
invariant with respect to all symmetry transformations of the external potential field. In the case 
of a molecule the group of invariance G, i.e. the symmetry group of the Hamiltonian, is 
determined by the space distribution of the nuclei. In the case of an atom, G is the orthogonal 
group O(3). This kind of symmetry - the space symmetry - is more specific than those already 
discussed. In general, let 8, E G, p = 1, 2, . . . , ICI, be a set of symmetry operators such that 

[fi, L?,] =o. (18) 

Then, a symmetry adapted CSF (SACSF) ]h, F. i; SM, l) has to transform according to an 
irreducible representation F of the group G [109]. It means that 

~~jh,r,i;SM,I)=~Si(n,)(h,r,j;SM.(), i=l,2 ,..., d, 09) 
j-1 

where F,,(Q,) is an element of the irreducible representation matrix of dimension d. Each 
A (SM) space is reduced to a set of independent A ,-( SM) subspaces 

A(SM) = y &(SM). (20) 
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In consequence, we have a separate CI expansion in each of the subspaces, i.e. for each of the 
irreducible representations r, and effectively the length of the expansion is further reduced. 

SACSFs are, in general, linear combinations of CSFs. For each type of the point group 
different methods of constructing SACSFs have been developed. It is convenient to distinguish 
four different cases [6]. In order of increasing complexity they are: (I) Abelian groups, (II) 
non-Abelian axial groups, (III) cubic and icosahedral groups, (IV) the orthogonal group O(3). 
Since we are concerned with a general formulation of the CI method rather than with specific 
features resulting from symmetry considerations, we shall disregard in the following the space 
symmetry restrictions, i.e. eqs. (19), except for the case of the Abelian groups. Moreover, the 
cases of non-Abelian groups (II)- have not been worked out in all details within the 
formalism we are concerned with, and their discussion here would be premature. An important 
progress in adaptation of UGA to non-Abelian symmetry groups has recently been achieved by 
Rettrup et al. [110] and by Chen and Chen (1111. An extensive list of references concerning 
applications of the point groups in CI is given in the review paper by Shavitt [6]. 

In the case of an Abelian group 

[i-q a,.] = 0 

and d = 1. Eqs. (19) are then reduced to 

fig A“; SM, k) = r( L?Jx“; SM, It). 

(21) 

(22) 

We have introduced here a single index A”‘ since each orbital configuration h corresponds to a 
single representation r of an Abelian group. In each A,.( SM) space we have a separate CI 
expansion 

/(S. x) 

p; r, SM, k) = c c C$yk) A”‘; SM, 1) , (23) 

where, for a given r, the set of SACSFs 1X“; SM, 1) is simply a subset of CSFs 1X; SM, 1). 

I. 2.3. Hamiltonian in the orbital space 

A’. I= 1 

A specific choice of the set ( 9; }:_, of orbitals is one of the most important steps in a CI 
calculation. Usually, the orbitals are taken to be orthonormal, but methods based on nonorthogo- 
nal orbitals have also been formulated [112]. The only assumption we shall make about the 
orbitals is that they form an orthonormal set. One may show [113] that in the nonrelativistic case, 
i.e. when A, and A, do not contain spin variables, Hamiltonian (2) in the model space Hi, as 
defined in section 1.2.1, may be represented in an equivalent form 

A=&&+ f~(iilkl)(E,,E,,-&,,E,,), 
kl iik I 

(24) 
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where 
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(i(j) = (cp,lOP,). 

are the one- and two-electron integrals, we shall refer to as the molecular integrals 
orbitals may describe atoms, crystals, etc. as well). The operators E,, are defined as 

(25) 

(26) 

(though the 

11151 

(27) 

When they act on a product of orbitals they replace ‘p, by ‘pk. Therefore we can call them 
replacement operators * . They also may be expressed in terms of the fermion creation and 
annihilation operators [13.71]. Besides one may show that they are generators of the unitary 
group U(n) [71] which is an invariance group of V;:. The last property is a basis for developing 

the unitary group approach in CI methods [13,55.114]. From (27) immediately results an 
important commutation rule 

[ 6,. E,,] = Q% - b%,. (28) 

The main advantage of representing the Hamiltonian in the form (24) as far as applications in 
Cl methods are concerned, is that a CI matrix element (6) between SACSFs may now 
immediately be expressed in terms of one- and two-electron integrals: 

A::(r)= (A”: SM, ml E,,)p“: SM, m') (30) 

and 

where 

L?$‘( r) = (X”; SM. ml E,,EA, - ajk Ei, )p“; SM, m’) (31) 

are known as the coupling constants [12,34]. The indices p and q stand here as abbreviations for 
(hr. m) and (PI‘, m’) respectively. Henceforth, the point-group symmetry label, r, is omitted. As 
it is seen from (27) a matrix element of E,, between products of orbitals is equal to a 
combination of products of the overlap integrals 

(cpkl’pl) = a,, (32) 

* Let us note that the replacement operators are non-Hermitean (El, = E,, # Ek,). The Hamiltonian expansion is 
Hermitean because. due to Hermicity of A, and h2, the conjugate operators appear there with equal weights. 



W. Duch, J. Karwowski / Symmetric group approach to CI method 107 

and, in consequence, an evaluation of the constants A and B may be reduced to simple algebraic 
manipulations, see e.g. refs. [37,79,85]. In particular the values of A and B are independent of the 
nature of the orbitals. 

1.2.4. Molecular integrals 

The set of molecular orbitals { (Pi } z=, is usually constructued as a linear transformation of 
basis set orbitals { oP }j,“+, n < n’ 

k=l,2 ,..., n, (33) 

transforming according to an irreducible representation r of the pertinent molecular symmetry 

group 

it+ Iv:;) = i I;;(fip) lq&), i=l,2 9 -.., d. (34) 
j=l 

In order to simplify the notation, we use a single orbital index (k in eq. (33)) rather than the set 
of three indices ((r, m, i) in eq. (34)). Symbol rk is used henceforth to denote the symmetry of 

bk)* 

Most commonly the basis set consists of atom centered basis functions, the coefficients bpk 
being determined in a Roothaan-Hartree-Fock SCF procedure [116], though any other reasona- 
ble set of orbitals may be used instead. The molecular integrals can be obtained from analogous 
basis-set integrals by means of the transformation (33) 

The integral transformation, though formally very simple, in the case of large basis sets 
requires extensive computational resources. In fact, it is also one of the most time-consuming 
steps in a CI calculation. The number of terms in the two-electron transformation formula (eq. 
(36)), is proportional to nr4; the number of molecular integrals is proportional to n4. Hence, the 
total number of terms to be computed, when eq. (36) is applied in a straightforward way, is 
(nn’)4 = n8. A number of methods aimed at an efficient performing of the transformation has 
been developed [48,117-1191. Roughly speaking, they are based on breaking up the four-fold sum 
in eq. (36) into a sequence of four partial summations. In effect the transformation becomes n5 
rather than n8 process. Since the integral transformation problem is common to all kinds of CI 
calculations it will not be discussed here. It has been treated extensively in the papers by Shavitt 
[6] and by Saunders and Van Lenthe [48] (see also proceedings of the NRCC workshop [119]). 
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A further reduction of the amount of computations necessary to perform the integral 
transformation procedure may be reached by an explicit use of symmetry. One may distinguish 
two kinds of the integral symmetry: the index permutation symmetry and the point-group 
symmetry. 

I. Index permutation symmetry. Since &, is Hermitean and symmetric in electron coordinates, 
the following relations hold: 

(ilj) = cili) (37) 

and 

(ijl kf) = (kff ij) = ($1 fk) = (f/c/ ji) . (38) 

Hence, out of 4! = 24 two-electron integrals corresponding to four different orbitals, only 6 are 
different: 

J, = (ijlkf), J2 = (ill jk), J3 = (ikl jl), (39) 

Ji = (ijifk), J; = (ilikj), J; = (&l/j). (40) 

In the most common case the orbitals are real. Then 

JP= J;, p=l,2,3 (41) 

and the number of different integrals is reduced to 3. In the following we shall assume the 
orbitals to be real. In general, as a consequence of the index permutation symmet~, the number 
of different one-electron integrals is 

n, = n(n + 1)/2 = n2/2 (42) 

and similarly of the two-electron ones is 

n,i = n,(n, + 1)/2 = n4/8. (43) 

2. Point-group symmetry. The point-group symmetry of integrals results from the symmetry of 
molecular orbitals. Its practical importance results from a theorem stating that integrals (ii j) 
(and (ij],W)) vanish, unless in the products of representations r’ Q? I” (and Tk @ F’) appears the 
identity representation [109]. In the case of an Abelian group it means that f’= I’j (and 
Tk = r’). Hence, the nonzero integrals may be collected into blocks labeled by the symmetry 
group representation indices. The number of one-electron integrals in each of the blocks is equal 
to 

n,(r) = Q)(n(IY + 1)/2, (44) 

where n(r) is the number of MOs belonging to the representation F. Similarly, in the case of 
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two-electron integrals 

109 

(45) 

Since usually ni *C,n,(T,) and ni, %Cpc4 ,I n (r,, r,), taking into account the point-group 
symmetry, results in an essential reduction of the necessary computations and of the storage 
requirements. 

Efficient procedures for determining the smallest set of the symmetry-distinct integrals have 
been developed by Davidson [120] and implemented in his algorithm for the integral transforma- 
tion. An extensive review of this subject has been given by Shavitt [6]. 

I, 2.5. The matrix eigenvalue problem 

The CI energy and the corresponding wavefunction are obtained by solving the eigenvalue 
equation (8). In a general case, when the CSFs are nonorthogonal eq. (8) defines a generalized 
eigenvalue problem. Though efficient methods which can treat also the nonorthogonal problems 
have been developed [121], it seems to be preferable either to transform first the H matrix to a 
basis of orthonormal CSFs or to start with orthonormal CSFs. Therefore we shall consider only 
an orthonormal eigenvalue equation 

Hc = EC. (46) 

In the case of a small-size CI calculations (matrices of order up to about 300), any standard 
method for finding the eigenvalues is appropriate (as e.g. Householders’ tridiagonalization 
method [123] with a subsequent use of the QR algorithm [124]). An extensive discussion of the 
algebraic eigenvalue problem has been given by Wilkinson [125]. 

In the case of large matrices, more suitable are iterative methods as e.g. the Davidson’s 
modification [32] of the Lanczos method [126] or a version of the optimum relaxation method 
[31,127]. It seems to be commonly accepted that the Davidson’s algorithm is the most convenient 
because of its fast convergence and numerical stability even in case of nearly degenerate roots. 

The most time-consuming part of all the iterative methods consists of a multiplication of the 
Hamiltonian matrix by its approximate eigenvector 

b(k+i) = He(k), 
(47) 

where the superscripts refer to the iteration number. At this step two alternative strategies have 
been proposed. In the first one, known as the conventional CI [6], the Hamiltonian matrix 
elements are computed in a systematic sequence and stored. Then the eigenvalue equation is 
solved iteratively. The main disadvantages encountered in this mode of operation are: the need of 
a random access to the molecular integral file during Hij evaluation, an extensive storage 
required to accommodate the H matrix and, as a consequence, a very high proportion of the 
computation time expanded in locating and accessing data and in general organizational tasks. In 
the second strategy, known as the direct CI (DCI) method [12], first formulated by Roos [ll], the 
product vector bck+i) is constructed directly from the list of molecular integrals, without the 
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construction of the H matrix. This avoids the auxiliary storage problems and dramatically reduces 
the data transferring tasks. Moreover, it is possible to optimize the DC1 procedures in a way not 
accessible to the conventional ones [48]. In consequence, a comparison of the direct and the 
conventional modes of calculation shows that the former one, if properly implemented, is more 
economic (except for very limited CI expansions) [48]. 

In the next parts of this paper we shall give a detailed presentation of an approach to DC1 
method employing the permutational symmetry of the wavefunction. 

1.3. Symmetric group approach 

A spin-adapted and antisymmetric (i.e. fulfilling eqs. (12)~(14)) CSF may be expressed in the 
form 12%30,66,67] 

where 

is the antisymmetrization operator, 

& = ( N!/2”)“2 

(491 

is the normalization constant, ]SM, I> is a pure spin function being an eigenfunction of s2 and 
$ and IA) is a spin-independent orbital function. The orbital function is chosen to be a product 
of N orthonormal orbitals defining configuration A, sA of them being singly- and d, doubly-oc- 
cupied: 

where r,, rZ, .+., rN stand for the coordinates of electrons and, for simplicity, we write X,(j) 
rather than ~~,(r;.) and s/d rather than s,/d,. The numbers of singles and doubles in X are 
connected by the obvious relation 

sA + 2d, = N. W> 

We adopt hereafter a convention that in all products of orbitals the position index of an orbital 
in the product is equal to the designation index of the electron described by this orbital, i.e. if 
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cpx,(q) is contained in a product, then i =j (unless otherwise stated). As a consequence of this 
convention we usually omit the electron designation indices in products of orbitals. 

We need two kinds of identification of an orbital: the first is the orbital index (Xi in the case 
of (Pi,), the second is the position index of the orbital in a configuration (i in the case of (Pi,). In 
what follows, unless otherwise stated, we employ small latin letters to represent the orbital 
indices. The position index of an orbital is indicated by adding a bar to its orbital index, i.e. if 
‘px, = (Pi, then i = k. In a process of matrix element evaluation two configurations are involved. If 
the position index refers to the ket configuration, then it will be supplied with a prime. We 
assume that in the orbital parts (51) of CSFs the position indices of singles are always less than 
those of doubles. Moreover, both the singles and doubles stand in (51) in an ascending order of 
their orbital indices, i.e. 

&<A,< . . . <x,, A,+,=X,++X,,,=h,,,< . . . <&,=A,. (53) 

Since IX), as described by eq. (51) is symmetric with respect to transpositions within doubles, 
the corresponding spin function must be antisymmetric. Therefore the spins of those electron 
pairs which correspond to doubles must be coupled in ]SM, /) to two-electron singlets, i.e. 

( 01, 02, *.., a,NISM, l) = (ai, u2, ...) uslSM? l) ti (“$+2j-l, us+2jJooV l), (54) 
j=l 

where u,, u,, . . . , uN stand for spin coordinates of electrons and (IJ~+~~_~, u,+~~]OO, 1) is a 
singlet-coupled pair (SCP) spin function. The spin functions having property (54) are called 
geminally antisymmetric spin functions [29,85] (they change their sign upon a transposition of 
electrons forming a double). Their properties were discussed in detail by Paldus and Wormer [85]. 
Examples of spin functions which can be defined to fulfil condition (54) are Yamanouchi-Kotani 
[63,64,67], Serber [62] and spin-bonded [24,25] functions. Condition (54) implies that with each 
orbital configuration there is associated a vector ]SM) with the components ]SM, r), I= 
1, 2, . ..) f(s, s). Consequently, we define a configuration state vector (CSV) IX; SM), whose 
components are given by eq. (48) with I = 1, 2, . . . , f( S, s). 

Spin functions belonging to a pair of S, M (S 2 ]M]) quantum numbers form a basis for an 
irreducible representation of S,,, [67]. In other words, the set of matrices {U,“(P); P E S, }, 
where 

U,“(P),,=r(P)(SM, kp[SM, l), k, l=l,2 )...) f(S, N), (55) 

is an irreducible representation of S, [66,67] *. One may easily prove that the matrices are 
M-independent [67]. Property (55) is valid for all kinds of linearly independent spin functions, 
including the nonorthogonal ones (as e.g. bonded functions). We assume that the spin functions 
are orthonormal. Then the representation matrices are unitary, i.e. 

u,“( P-‘) = ut( P)?. (56) 

* Two sets of matrices, U:(P) and c(P)Uf(P), P E S,, form two, mutually dual representations of S,. 
Definition (55) allows us to absorb the parity factor r(P) into the representation matrix, so that it does not appear 
explicitly in Hamiltonian matrix element formulae. 
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Orthogonality of the spin functions implies that also CSFs are orthogonal. We designate [U:]fg 
an f X g block of lJ/ and assume the block to consist of the first f rows and g columns of USN, 
unless stated otherwise. 

The same CSF may be expressed in many forms, being equivalent from the formal point of 
view. However chasing one of these forms determines the way of the further proceeding, aimed at 
the coupling constant (or matrix element) evaluation. If CSF is represented by eq. (48), the spin 
eigenfunction is constructed before the antisymmetrization is performed. In consequence we have 
an explicit separation of the orbital part of the CSF from its spin part. As we shall see, in this 
approach the coupling constants (eqs. (30) and (31)) are expressed in terms of the representation 
matrices of S,. Therefore it is named symmetric group approach (SGA). Let us note, that if we 
start with the Slater determinants and construct spin eigenfunctions as their linear combinations, 
then the spin eigenfunctions are constructed after the antisymmetrization and a separation of the 
spin and orbital parts is more complicated. Also in UGA the separation, though may be 
performed [89], is not so simple and direct as in SGA. 

1.3.2. Hamiltonian matrix elements: general considerations 

A choice of an algorithm for Hamiltonian matrix element evaluation plays a central role in 
each CI scheme. The entire computational strategy depends upon the way the coupling constants 
are determined. A currency of the bonded functions, despite of the inconvenience resulting from 
their nonorthogonality, was mainly caused by a simplicity of the Boys-Reeves matrix element 
evaluation method [24-261. In SGA the splitting of the spin and orbital parts in CSFs makes a 
separate integration over spin and orbital variables particularly easy. In consequence also the 
SGA matrix element evaluation algorithm proves to be exceptionally simple [28-301. 

Let HLpp) = (A; SM, klI!&; SM, 1). Then, using eq. (48), after some algebra, we get [30] 

H’“P’= 2-(d”+d,)/2 
kl c 4P)(SW wpw r)(X@qp), 

PES, 

k= 1, 2, . . . . S(S, sx); l=l, 2, ..*, f(K sp>. (57) 

Let {II,} be a subgroup of S,, consisting of all products of transpositions within doubles in IX). 
Let a similar subgroup, { IIP}, be connected with 1~). A set { II,P,II,} is called the double coset 
generated by Pq. Since all permutations belonging to the same double coset give the same 
contribution to the sum in eq. (57), it may be replaced by [30] 

,+“ _ 2-(d”+d,,)/2 - (58) 
4 

where (P,XI means that Pq acts on the orbital indices in the product (51) rather than on electron 
coordinates and D,$, is the dimension of { Il,PJi,}. In eq. (58) we have applied the matrix 
notation, defined in the preceding section, with f = f (S, sA) and g = f (S, sp). 

One may show [30,37], that if 1~) is the configuration with more doubles than ]h), then 
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where t, is equal to the number of these transpositions within doubles in IX) which do not 
commute with Pq. In other words, t, is equal to the number of doubles which in (P,XI do not 
occupy any of the positions occupied by a double in (A], i.e. any of sX + 2j - 1, sh + 2 j, 
j=1,2 9 ***, d,, positions. In brief we say, that it is the number of doubles being “broken” by Pq. 

Eq. (58) is valid for an arbitrary set of CSFs (including the case of nonorthogonal orbitals 
and/or nonorthogonal spin functions) if the Hamiltonian is Hermitean and symmetric in 
electron coordinates. In our case further simplifications can be done [30,37]. 

I. 3.3. Integrals over orbital variables 

If the Hamiltonian is expressed according to eq. (24), the integration over orbital variables in 
eq. (58) is reduced to an evaluation of two kinds of matrix elements: ( PqXIE,&) and 
( PqAIEiiEk,Ip). Let ni and nf be the occupation numbers of cpk in IX) and in ]p), respectively. 
According to (27) Ek,, when acting on ]p), changes the occupation number ni to n$ + 1 and nf 
to nr - 1. Effectively it is equivalent to transforming 1~) into a linear combination of np orbital 
products in which one of the orbitals q, is replaced by (Pi. Using eq. (27) we have for example 

E,,(cp,cp, ) = c [%(i)>((P#f&)) [w(2)) = h%%). (60) 

And similarly 

I%G(pI(PI) = I%c(Pk(PI) + IQwwk)~ 

ITk(Pk(PI(PI) = IVk(Pk(PkVPI) + IfJkcpk’pI’pk)~ (61) 

1~) = 0, if ny = 0. (62) 

may seem to violate the Pauli principle. However, one should remember that eqs. 
(60)-(62) represent intermediate results in matrix element evaluation procedure and have no 
physica! meaning. 

Let s2 stand for either Ek, or EjjEk, - Sjk Ei, and let $ be the “occupation number” of q,, in 
h(p). Then n; = np” + 4p, where A, = 0, + 1, & 2 depending on the relation between p and the 
orbital indices involved m !??. An integral (P$l&Jp) is equal to 0, unless ni = n;, p = 1, 2, . . . , n, 

and P, brings orbitals of X into a complete coincidence with those in one of the products 
composing &J). This specific permutation is called the line-up permutation, and denoted PO. 

Since, in general, fi]~) is a linear combination of several orbital products, there are several 
line-up permutations. However, all of them belong to the double coset { III,P017,}. Hence, for 
given X, p and 6, at most one of the permutations Pq in eq. (58) is the line-up permutation, and 

if P E {IIhPOIIr} and $=$+A,, p=l,2 ,..., n, 
oth;mise 

9 
(63) 

where, depending upon the case, m = 0, 1, 2, 4 [37]. 
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Table 1 
Nonzero (P,X$?j~) matrix elements: A, = ni - n: 

jl PII 
1. x=p: 

El1 f 

Ejj EIf - ‘j,‘jt I 

Eij”;, - 4, (j, /I, if nin, f 0 

2. X and ~1 differ by 1 orbital: Ak = 1, A, = - 1 

Eki P[Zi, - 

m 

8, 
n,(n, - aj,t 
1 

1 

Ei,Eki = Ek, E,, - E,,, i # k, I 

Ek/(Eii - SirI = (Ej, - Sik)Ekl 

(i, k)P,,i], if nr # 0 

PI&i, 

1 
nr - 8, = n;‘ - 6,, 

3. X and p differ by 2 orbitals: A, = Ai =l+ Sik, A, = A, = - 1- S,, 

EiIEkl P[Q.M] 

Ekj-E, P[Zj.l’i] 
1 + GitJj, 

We denote by I the identity operator, by (Ik, i) a transposition of qk and ‘p[, by P&i, - a 
line-up permutation which puts qk at the position i and shifts the orbitals located in the orbital 
product between k and 7, and by Pt;j,kjl- a line-up permutation which puts ‘pi at the position J 
and qk at the position i and shifts the orbitals located in between. Each line-up permutation may 
be assigned to one of the above mentioned kinds of permutations. Explicit expressions for the 
line-up permutations are given later in this work (table 9). All types of line-up permutations and 
the values of (P,x&?]~) matrix elements, classified according to X, p and fi are listed in table 1. 
Only nonzero A, values are specified in the table. 

The line-up permutations may be expressed as products of at most 4 cycles [37,79]. A cycle 
(p..q) is defined as follows: 

(p..q)=(p, pkl, Pf2*..., q)=(p, pIfr:l)(p+L Pt2)..*(qIfLqL 64 

where the upper sign corresponds to p -C q and the lower one to p > q. As an example let us 
consider the case of ni = n? = nf = n: = 1, k < i, I < j. The two sets of singly occupied orbitals 
are represented as a configuration pair diagram [30] in fig. 3. In the diagram, the orbitals forming 
X and p are represented by asterisks being set in two rows in the order of their position indices in 
the orbital product (51). The lower row stands for A, the upper one for /.L. The identical orbitals 
are linked together. Then the line-up permutation may be defined as the one which rearranges the 
asterisks in h so that all the links are represented by the vertical arcs, while the orbitals which 
appear in h only, are lined in a way determined by the operator 0 *. In the case displayed in fig. 

* A reader familiar with UGA may notice that an analog of the configuration pair diagram would have to contain 
also the empty orbitals. As a consequence the configuration pair diagram is then trivial since the orbitals are always 
lined up. However, the noncoincidences of the orbitals in matrix elements are then due to $ operators and the final 
result is exactly the same. 



W. Duch, J. Katwowski / Symmetric group approach to CI methods 115 

3 the line-up permutations consist of two cycles: 

pi--/-,,= (k..i’)(l..J’), P,G.,,= (I..i’)(k + 1-l’). 

Using the formulae displayed in table 1, one may extract from the Hamiltonian (24) these 
parts which give nonzero contributions to matrix elements between two given configurations. We 
define an index 

rxp=: i ICnrl (65) 
I=1 

equal to the number of orbitals configurations X and p differ by. Matrix elements (63) vanish 
unless rAa = 0, 1, 2. Hence, three cases may be distinguished: 

1. Diagonal part ( rx,, = 0): 

&=&(klk)+fn,(n,- i)(kklkk)] +i C (~,~,(~~III)+(E,,E,,- t~,)(lklki)]. (66) 
x k#i 

2. X and p differ by one orbital ( rA, = 1): 

“;1- n&=1, $-n;= -1, 

fit = [(k/l) +I3( nf” - 8;,)(iilk/)] Ek, i- c (i+i)E;,Ek,. 
I 

(iZi./) 

3. h and ~1 differ by two orbitals (T+, = 2): 

A 
nk -@=n”-n”=l+6. h 

I t rk ’ n/ 
- nr = n: - ny= -1 -S,/. 

. 
H, = 2-‘1’~,(ijlkl)~;iEk, + (1 - sik)(l - Sj,)(kjlil)EkjEi,, 

(67) 

(68) 

where i + j, 1 and k #j, 1. 

P ,*, <,, = (i;..r,(;.T’I 
k 

P 
1k,. II I = 1; T'likt1.r') 

Fig. 3. Example of configuration-pair diagram and line-up permutations for the case of A, = A, = 1, A, = A, = - 1, 
.;=.;=.+$=I. 



Eqs. (66)-(68) d o not depend upon the form of the wavefunction and therefore are common 
for both SGA and UGA (see e.g. table II in the review paper by Paldus 1131). 

L3.4. Integrals over spin variables 

In order to evaluate (SM, R]P]SM, I) integrals, we may exploit general properties of U/ 
matrices [67]. One easily notice that each permutation may be expressed as 

(59) 

where P" E S, acts on the singles only, Pd permutes doubles (singlet-coupled electron pairs) and 
Psd consists of transpositions breaking doubles. For the Yam~ouchi-Kotani (YK) spin func- 
tions [67] 

where f = f(S, sA) and g = f(S, .Q. It can be shown [30] that if P = PO than Psd = Ptd breaks at 
most two doubles, i.e. only 5 types of P{* permutations may appear: (d,, db), (u, d), 
(% 4(% 0, (4, &MU, 4) and (& 4Jt u,, d,)(u,, db), where u stands for a single, d, d’ 
for two members of the same double and subscripts a, b are used to distinguish different singles 
and/or doubles. As has been proved by Kotani et al. [67], all [lIc]ff blocks of the representation 
matrices may be reduced to Ui matrices corresponding to appropriate permutations of singles 
only. A complete set of the reduction formulae is given in table 2. For convenience the numerical 
factor resulting from eqs. (58) and (59) has also been there included. 

The theorem of Kotani et al. is of a fund~ental importance as far as implementations are 
concerned, since usually most of orbitals in CSFs are doubly occupied. In many methods its 
advantage has not been taken into account (as e.g. in refs. [28,29,85]. The resulting algorithms 
have to contain then a substantial redundancy. An elimination of doubles has been performed in 
the methods by Gallup and Norbeck [76] (note, that some cases are missing in their formulae), by 
Sarma and Rettrup 1791 and by one of us [30]. There are many methods of constructing Ui 
matrices [8,62,6?,67,77,82,86,128-1321 and a general computer program has recently been made 
commonly available f132]. The algorithm we consider to be the most appropriate for large scale 
calculations 11291 will be discussed in the next section. It is derived directly from the 
Yama~ouc~-Kotani method [67]. Here we outline the fundamentals of the YK method and of 

Table 2 
Formulae for reduction of [Uf( Po)lfz blocks to Uj(P~) matrices 

No. 

1 

2 

3 
4 
5 

Ps* 

(PI,, 4,) 

tu> 4 
fug,, dX@b, 4 
f4,,4Xw 4) 
(4 dbXu,> AX%,, dd 
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its implementation by Rettrup [128], to a degree necessary in small-size CI calculations, when all 
information necessary to construct the CI matrix may be kept in the core memory of a computer. 

Let ISM, k), k= 1,2, . . . . f(.S, S) be the YK functions. Then, by their proper ordering, we 
may assure that the matrices lJG( Ps-‘) for P.‘-’ E S,_, have a reduced (block-diagonal) form 

1671 

[ 

u.L;,2(ps-‘) 0 
Ui( p.y-1) = 

0 l&y/,( ps-') I . 
(71) 

If we take a sequence Ps-2 E $y_2, Psm3 E .!T_3, . . . . then each of the matrices lJg_’ may be 

further recursively reduced, according to eq. (71). On the other hand. a straightforward calcula- 
tion shows that lJ$((s’ - 1, s’)) has the following block structure [67] 

lJ$(( S’ - 1, s’)) = 1-i ; -; _;J (72) 

where dimensions of the consecutive blocks (going from the top along the diagonal) are 

f(S+l, S’-2), f(S, S’-2), f(S, s’--2), f(S - 1, s’ - 2) and a, = 1/(2S + l), h, = 

- Jl - a:. Now, the matrices for (s - 1, s), (S - 2, s - l), . . . , (1, 2) transpositions may be 
obtained combining eqs. (71) and (72). 

We should note that the spin functions for which relations (71) and (72) hold, do not satisfy 
condition (54), since the electron pairs (2j - 1, 2j) rather than (S + 2j - 1, s + 2j), j = 

1, 2, . . . . d, are here coupled to two-electron singlets. Also the ordering of the spin functions 
which implies the block-diagonal form (71) and (72) of the representation matrices is different 
from the one resulting from eq. (54). Therefore, before further proceeding. one has to renumber 
the electrons and reorder the spin functions. In section 1.4.1 of this paper we present an 
algorithm being free of this drawback. 

After the appropriate reordering of the rows and columns in Ui(( i - 1, i)) matrices and 
renumbering the electrons (i.e. replacing i by N + 1 - i), all the remaining lJi matrices can easily 
be constructued through matrix multiplication. For example, the relation 

(i, j+l)=(j, j+l)(i, j)(j, _j+l), j#i (73) 

yields 

U((i, j + 1)) = U((j. j + l))U((i, j))U((j. j + 1)). (74) 

According to eqs. (71) and (72) in each row/column of U(( j, j + 1)) there are at most 2 nonzero 
elements. Hence, each element of U((i, j + 1)) may be expressed as a linear combination of at 
most 4 elements of U((i, j)) [128]. 

The symmetric-group-based formalism of Kotani et al. [67], outlined in this section, may also 
be interpreted in terms of UGA. In fact, many of the Kotani et al. formulae have been 
independently rederived and generalized within the unitary group formalism. In particular, eq. 
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(72) corresponds to the matrix representation of the unitary group elementary generator in a 
basis of special Gelfand states [13]. 

1.3.5. Hamiltonian matrix element formulae 

Collecting eqs. (29)-(31) and (66)-(68) together with those displayed in tables 1 and 2, we can 
express the general matrix element formulae as a set of directly programmable equations [37,79]. 
According to (24), (58) and (59) coupling constants (30) and (31) may be written as 

(76) 

where Ahp and BxP stand for fxg blocks(f=f(S, s,,), g=f(S, 
of configurations X, /.t and f >, g, i.e. h is the configuration with 

s,)) corresponding to the pair 
at least as many singles as p. 

_. 
Now, as it results from section 1.3.3 and from table 1, for a given coupling constant, at most one 
permutation Pq gives a nonzero contribution to eqs. (75) and (76). Hence, the (P,XloIp) matrix 
element is a permutation selector, reducing sums over all double cosets to single terms. According 
to eqs. (66)-(68) 3 cases should be distinguished: 

and 

1. rxc=O 

Ha”)= i { n,(klk) +in,(n, - l)(kk)kk)}l 
k=l 

+ C n,n,((kkJll)l+(-2)“-“‘U~((k, I)“)(kljk)), 
kcl 

(77) 

where I stands for an f X f unit matrix, m = max( nk, n,) and (k, i)2 = 1, (k, i)’ = (k, 1). 

2. rhp = 1 (Ak = 1, A, = - 1) 

H~A“)=2r[U[(P~~iJ)]fR((kll)+~(n~-6,1)(iilkl)) 
i 

+ c 2’(1 - S,,,)[lJ,“((i, k)P,,i,)]‘g(illki). 

(i+Z,I) 

(78) 

3. rxr = 2 (A, = Ai = 1 + i&k, A, = Aj = - 1 - 8,j) 

Hihp)= (2’[U[(P~;j,k~1)]‘g(ij(kl)+2’(1 -aik)(l ~8~,)[U~(P~~~,;~~)]‘~(kjlil)), (79) 
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where t = (d, - d,)/2 + t, and t, equals to the number of doubles in h broken by Pa (cf. eq. 

(59)). 
The coupling constant blocks (75) and (76) have been expressed in eqs. (77)-(79) in terms of 

the representation matrices of S,. A simple algorithm of constructing the representation matrices 
has been given in section 1.3.4. Another one is discussed in detail in section 1.4.3. For the 
reduction formulae from S, to S, see table 2. More explicit expressions for the Hamiltonian 
matrix elements are collected in tables 7 and 9. Details of derivations of the equations may be 
found in refs. [30,34]. 

Eqs. (77)-(79) (or rather their explicit counterparts in table 7) contain a complete information 
necessary for evaluation of an f( S, sh) xf( S, sP) block of a CI matrix between two spin-adapted 
and antisymmetric CSVs corresponding to an arbitrary pair of configurations h and p con- 
structed as products of orthonormal orbitals. The formulae are well suited to a conventional CI 
method. They may be applied according to the following scheme: take two configurations 
differing by at most 2 orbitals, select case, give designations A, p, i, j, k, 1 so that conditions of 
table 7 are valid, use the formulas to construct H. The representation matrices may either be 
precalculated and kept in a tabular form or computed whenever they are needed. A reasonable 
compromise may be to precalculate and keep the representation matrices corresponding to single 
cycles and to transpositions while the remaining ones may be obtained through the matrix 
multiplication. 

Due to their simplicity, the formulae may be used not only as a base for all kinds of computer 
programs, but also to derivations of specific formulae and desk calculations when only several 
matrix elements are needed. If the CI basis is small enough and we do not have to care about 
data manipulation problems, the formulae may be considered as the final result of the symmetric 
group approach. Most interesting physical and chemical problems lead to rather lengthy CI 
expansions and complicated data manipulation. For this kind of task the formulae derived here 
are inadequate - a global description of the entire CI problem is then necessary. This problem is 
discussed in the next section. 

1.4. Global description of a CI problem 

In this section we shall explore the structure of A (SM) space. As has been explained, in SGA 
the A(SM) space is separated into the spin and the orbital spaces and correspondingly, the 
matrix element evaluation procedure is separated into two parts. It is convenient to describe the 
structure of these two spaces using graphical methods. In the case of the spin space the graph, 
known as the branching diagram, was introduced at an early stage of development of the 
quantum theory by Van Vleck and Sherman [133]. Its analog for the orbital space was recently 
described by us [36,37]. The very idea of using this kind of graphical representations of A in CI 
methods is due to Shavitt [14,33] and most of the terminology has been adopted from him. 
Though both spin and orbital diagrams may be used for many purposes (e.g. to visualize the 
recursive building up procedure and the degeneracy of the spin states [8]), for us most important 
is that they give global descriptions of the entire spaces. As a consequence the diagrammatic 
methods facilitate a construction of efficient CI algorithms exploiting the global structure of 
A( SM) space and avoiding repetitions and redundancy [9,14,33,37]. 
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For the reader’s convenience we tried to follow as closely as possible the way the graphical 
representation of the CI basis has been introduced to UGA [14,33]. In particular, the arrays TS 
(eq. (80)) and T (eq. (93)) are analogues of the Paldus arrays of UGA. The way, the lexical path 
indices are defined and calculated corresponds to that of UGA, etc. In section 1.4.1 the familiar 
spin branching diagram will be described in terms of the quantities specific for graphical 
representations of CI bases, so that it may also be considered as an educative example showing 
the way one constructs and uses graphs both in SGGA and in GUGA. 

I. 4.1. Spin functions: branching diagram 

A YK spin function, corresponding to the total spin S, of an N-electron system may be 
represented by an array 

TS(l)= [S,,, S, ,..., S,], 1=1,2, . . . . f(S, N), 

where S, is the resultant spin obtained by coupling spins of the first k electrons. Then, S, = 0, 
S, = +, S*=O, 1, . ..) S, = S. The array may be represented graphically on a grid in which the 
vertical position equals S, and the horizontal one k. The graphical representation of Ts( I) is a 
directed path consisting of segments (arcs) joining consecutively nodes { k, S, }fzO of the grid 
(vertices). To an arc contained between k - 1 and k we assign the number k. Its slope represents 
the way spin of the k th electron is coupled to S, _ 1 to form S,. Since there are at most two ways 
of the coupling [67,8], 

1. s, = Sk-, - I/2, if S,_, > 0 and S,_, > S -(N - k)/2, (81) 

2. S, = S,_, + l/2, if S,_, < S + (N - k)/2, 

k=l,2 ,..., N, (82) 

there are at most two arcs off a vertex. The first constraint for the coupling (S, _ 1 > 0) is obvious, 
thetwoothers(S-(N-k)/2<S,_,<S+(N-k)/2)aretosecurethat S,=S. 

Each path starts at (0,O) vertex (head) and ends at (N, S) vertex (tail). A set of the paths 
forms a graph. A graph containing all paths which may be constructed for given N and S forms 
a complete branching diagram. Usually, we need only a properly selected subspace of the entire 
space of { IS, M, 1>}{14”) spin functions. Such a subspace is described by a restricted branching 
diagram. An example of a complete branching diagram for S = 1, N = 6, and its extension to 
N = 8, is ,shown in fig. 4. 

We can establish a lexical ordering between different spin functions, i.e. between different 
Ts( 1) arrays. We say that T’(Z) precedes TS( l’) if in the sequence of differences { Ts( 1), - 
T’(I’),}\=, the first nonzero entry is positive. The consecutive paths (spin functions) are 
numbered, in lexical order, by a lexical index I,. In order to facilitate a simple evaluation of I, 
for an arbitrary path we assign to a vertex (k, S,) a number d,( k, S,) (lexical weight of the 
vertex) and to an arc contained between k - 1 and k a lexical arc index y,*( k, S,), where y+ 
means that S,_, < S, while y- means the opposite. The weight of a vertex is equal to the 
number of paths beginning at the head and passing through the vertex. It results from the mode 
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of the construction, that 

d,(k Sk) = d,(k - 1, s, - l/2) +d,(k - 1, Sk + l/2). (83) 

Moreover, by definition, 

The lexical arc indices are defined as 

Y:(k Sk)= 
i 

d,(k - 1, Sk + l/2), if vertex (k - 1, S, + l/2) belongs to the graph 
o (85) 

1 otherwise, 

y,(k sk) = 0. 036) 

It can easily be verified (for a detailed discussion see refs. [14,33]) that the lexical index I, of the 
path passing through an ordered set of vertices { k, S, }czo is given by 

4 = 1 + it yx(k Sk), 
k=l 

(87) 

where y, stands for either v,’ or y[. The lexical vertex weights and the lexical arc indices are 
both shown in the diagram in fig. 4. 

As already explained in section 1.3.4, the spin functions coupled according to the branching 
diagram scheme do not satisfy condition (54). In consequence they cannot be coupled with the 
orbital products (51) to form the CSFs (48). This may be easily seen from fig. 5a, where the set of 
lexically ordered paths corresponding to the diagram from fig. 4 is presented. To remove this 

Fig. 4. Branching diagram for S = 1, N = 6 (full lines). The broken lines show an extension to the case of S = 1, N = 8. 
At arcs and vertices their weights (if different from 0) are shown. The origin of the arc weights is indicated by arrows. 
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Fig. 5. The paths corresponding to 9 eigenfunctions of s2 for S = 1, N = 6 in the lexical 
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order (a) and in the reversed 

drawback, two operations should be performed: the reverse numbering of electrons and the 
reverse lexical ordering of the spin functions. 

A branching diagram corresponding to the reverse electron numbering (reversed branching 
diagram) has a rather different interpretation than the ordinary one. In the reversed diagram 
vertex (0, S) ((N, S) in the ordinary one) is its head and vertex (N, 0) ((0, 0) in the ordinary one) 
is its tail. In general, there is no relation between the weights d,(k, S,) of the reversed diagram 
vertices and f( S,, k) numbers, except that d,( k, 0) =f( S, k). The weights of the vertices 
corresponding to S f: 0 may be considered as counting indices only. The reversed lexical index E, 
is given by 

k=I 
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where y is either 

Y&k Sk) = 
d,(k- 1, Sk-- l/2), if vertex (k - 1, Sk - l/2) belongs to the graph, 
0 (89) 

, otherwise, 

or 

y:(k, Sk> = 0. 

Eqs. (88) and (89) are analogues of eqs. (87) and (85), respectively. There is, however, an 
important difference between eqs. (88) and (87). In the case of a reversed diagram the arc indices 
of SCPs are always 0. Therefore they do not contribute to I, and in eq. (88) it is sufficient to 
extend the sum over singles rather than over all electrons. An example of a reversed branching 
diagram is shown in fig. 6. The corresponding paths (in reversed lexical order) are displayed in 
fig. 5b. 

Since a contribution to I, from a SCP is always 0, adding to the reversed diagram an arbitrary 
tail consisting of SCPs does not change neither the indexing of the remaining part of the diagram 
nor the numbering of the spin functions. A more general case is shown in fig. 7. Here we have 
two subsystems of electrons. The first one, consisting of s1 electrons, is coupled to spin S (S = 1 
in fig. 7), the second one (s,-electron) to a singlet. Then, the N-electron diagram is composed of 
two: si- and s,-electron diagrams. There exists a simple relation between reversed lexical indices 
of N-, s2- and s,-electron cases: 

S 

t 

Fig. 6. Reversed branching diagram for S = 1, N = 12. Either 6 (full lines) or 8 (broken lines) electrons may be coupled 
in all the ways resulting from the YK scheme. The remaining electrons form SCPs. Designations as in fig. 4. 
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0 1 2 3 L 5 6 7 8 9 10 11 12 N 

Fig. 7. Reversed branching diagram for a twelve-electron (S = 1) system divided into two subsystems: the first 6 
electrons are coupled to a triplet. the second 6 to a singlet. Only vertex weights are inscribed into the diagram. An 
independent indexing of the singlet part is inserted above the vertices. 

Most important, the structure of the S-coupled (s,-electron) part of the diagram does not depend 
upon a specific form of the singlet-coupled (s,-electron) part. The total number of N-electron 
spin functions is then 

m, s1; s. s2) =f(O, $1 xf(.s. s,). (92) 

Particularly useful kinds of the singlet-coupled parts correspond to s2 = 2 (SCP. already dis- 
cussed) and to s2 = 4. The case of a singlet-coupled quadruplet (SCQ) appears to be of a 
fundamental importance when a general first-order-interaction space [134] is constructed. This 
subject will be discussed in more detail later in this work. 

1.4.2. Orbital functions: configuration graph 

A diagram representing a configuration set may be constructed in a complete analogy to the 
spin branching diagram. Similarly as in the spin case (eq. (80)). a configuration h may be 
represented by an array 

T’(I)= [Iv,, N ,,..., N,], l=l,2 . . . . . K,, (93) 

where K, is the number of configurations, NL is the number of electrons occupying the first k 
orbitals, i.e. N,, = 0, N,, = N and 

n k=Nk-Nk-, (94) 

is the occupation number of (Pi in X. The array may be represented graphically on a grid in 
which the horizontal position equals Nk and the vertical one k. The graphical representation of 
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TcA) is a directed path consisting of arcs joining consecutively vertices {k, Nk)izo. To an arc 
contained between k - 1 and k we assign the number k. The slope of the arc represents the 
occupation number nk. Since nk = 0, 1, 2, there are at most 3 arcs off a vertex. Each path starts 
at the head of the graph ((0, 0) vertex) and ends at its tail ((n, N) vertex). Similarly as in the case 
of the branching diagram we define a complete graph (describing a full CI basis ) and a restricted 
one. Examples are shown in figs. 8 and 9. 

To (k, Nk) vertex we assign the lexical weight of the vertex 

D(k, N,)=D(k-1, N,)+D(k-1, N,-l)+D(k-1. Nk-2) (95) 

equal to the number of paths beginning at the head and passing through the vertex. To the arc 

NUMBER OF ELECTRONS 

0123L56789101112 

NUMBER OF ELECTRONS 

ot23L5 

Fig. 8. Orbital graph describing full CI basis for the case 
of 5 electrons and 6 orbitals. The set of 126 configura- 
tions corresponds to 210 doublet, 84 quartet and 6 
sextet CSFs. At the arcs and vertices their weights (if 
different from 0) are shown. 
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Fig. 9. Orbital graph for 12 electrons, 8 internal and 8 
external orbitak. At least 6 electrons occupy the first 4 
internal orbitah. The external space may be occupied 
by, at most, 2 electrons. Vertex (7, 10) and the arc 
contained between vertices (8, 9) and (9, 10) have been 
removed from the graph and, in consequence, the num- 
ber of paths has been reduced from 11703 to 7056 (cf. 
ref. [37]). The shadow area indicates the part of the 
graph discussed in section 11.1.2. 
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contained between (k - 1, N, - nA) and (k, Ai,) vertices we assign the lexical arc index 

Y(k. Iv,)= c D(k- 1, Iv,-;). 
I = 0 

If eq. (95) or (96) refers to a vertex that does not belong to the graph, then 
contribution is 0, D(0, 0) = 1, and Y( k. N,) = 0 if n, = 0. The lexical index 
passing through the ordered set of vertices {k, Nk );‘=. is given by [14.33] 

- l+ 2 Y(k, NA). mx - 
k=l 

(96) 

the corresponding 
nrx of the path h 

(97) 

Both lexical weights and lexical arc indices are shown in the graph in fig. 8. 
As in the case of branching diagrams, the reversed lexical ordering may also be established in 

the case of configuration graphs. However, in this case it is not so important as in the spin case, 
though it may be sometimes helpful in forming loops over selected sets of configurations. The 
idea of the reversed lexical ordering is here similar to that in the spin case and therefore will not 
be discussed in more detail (in practice one may obtain the reversed lexical ordering by turning 
the graph upside down before assigning to it the indices). 

Every path in the graph represents an orbital configuration (X) and every configuration IX) is 
associated with an f(S, S) component configuration state vector IX; SM). A mapping of the 
lexical indices of the paths to the elements of the variational vector C of the CI method (eq. (16)) 
is facilitated by introducing the index vector l(m,). The component C, of the vector C 
corresponding to IX; SM, k). k = 1. has the address 

where s,, is the number of singles in the path with the lexical index m. The components of the 
index vector may be calculated recursively: 

I(m + 1) = I(m) +f(S, s,,). (99) 

The lexical indices of the paths may be mapped to the components of C in any other unique way. 
As a practical alternative of the lexical ordering it may be convenient to divide configurations 
into groups according to the number of singles, i.e. according to the number of components of 
the corresponding IX; SM) vectors. Then the elements of the index vector may be ordered with 
respect to two indices: the number of singles s and, for each S, the lexical index rni. 

For practical purposes, some of the configurations - usually the ones giving the most 
important contributions to the CI expansion (eq. (16)) - are distinguished as the reference 

configurarions. In discussing the strategy we assume that the only configurations to be included in 
the CI calculations are the ones which differ by at most two orbitals from at least one reference 
configuration. We say that only singly and doubly excited configurations are taken into account. 
A selection of the reference configurations may be based either upon physical intuitions or upon 
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results of some preliminary calculations, but there exists no formal limitation as far as their 
number or structure is concerned. The assumptions on a division of configurations into two sets 
are aimed at a minimization of the length of the CI expansion and, though they lead to a 
complication of the formal structure of the algorithm, are necessary if we intend to have an 
efficient CI program. We should note that these assumptions offer some additional options and 
do not limit generality of the method. In particular, an expansion described by an arbitrary 
graph, with no path removed (also the full CI expansion), may be obtained as a special case of 
the one described here, if all configurations are handled as the reference configurations. 

In connection with selecting the set of the reference configurations we divide the orbital space 
Vt into 3 major subspaces - the doubly occupied space B( n o), the active space &‘( nA) and the 
external space a( nE), i.e. 

v,” =Wb) @-ol(nA) @ @nE), 

where n,, nA and nE are dimensions of the corresponding subspaces. The doubly occupied space 
consist of the orbitals { d, }:I),, being doubly occupied in all the reference configurations. The 
external space consists of the orbitals being empty in all the reference configurations. All the 
other orbitals, { uk };Ik ,, belong to the active space. The orbitals belonging to either 9( n,) or to 
&‘( nA) are said to form the internal space /(n,) 

Then 

v,” =A4 @ah,). 

The last kind of division is most important as far as applications are concerned. The orbitals 
forming the internal space (internal orbitals) are designated i,, k = 1, 2, . . . , n,, or ‘pi, qj, qk, ‘p,. 
The external orbitals are designated ek, k = 1, 2, . . . , nEy or cp,, q6, cp,, (pd. 

Since in general the external space is on one hand rather large and on the other has a relatively 
simple structure, it is useful to consider the contributions from the internal and external spaces 
separately, as it was done by Siegbahn in the UGA context [35,101]. In fig. 10 several examples of 
external spaces of 6 orbitals are shown. The case presented in fig. 10a is particularly important. 
Therefore we shall discuss it in more detail. The external and internal spaces are joined together 
in 3 vertices labeled V, S, D. The paths, corresponding to configurations consisting of the internal 
orbitals only, pass through the vertex V. The paths which correspond to single and double 
excitations from the internal space pass through the vertices S and D, respectively. It is 
convenient to split vertex D into two subvertices Dl and D2 corresponding, respectively, to 
configurations with one external double and with two external singles. The numbers Kv, KS, 
K,, and K,, of paths passing through the vertices indicated as the subscripts are: 

KV = D(n,, N), KS = n,D(n,, N- I), 

KIX=~ED(~~, N-2), KD2=(TE)D(n,, N-2), 
mw 
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Fig. 10. External space. (a) The case discussed in detail in this paper. In configurations corresponding to the paths 
passing through vertices V, S, D, respectively, 0, 1, 2 electrons occupy the external space. Vertex D has been splited 
into subvertices Dl (1 external double) and D2 (2 external singles). (b) A simphfied version of (a) with vertices D2 and 
S being removed. Only doubles are allowed in the external space. In this case separation of the external space is trivial 
(cf. sections 1.5.2 and 11.2.3). (c) An example of the case of 4 electrons, but at most 2 singles, in the external space. The 
algorithms discussed in sections 1.52 and 11.2.3 may be generalized in a rather straightfo~ard way to cover also more 
general cases of 2 singles in the external space. 

Now we adopt the following numbering of the paths. Let the paths in the internal space be 
numbered lexically and let the numbering of the paths passing through V, S, D vertices be 
independent The lexical indices of the internal paths connected with each of these vertices are 

mv=l,2 ,..., D(n,, N), m,=1,2 ,..., D(n,, N-l), m,=l,2 ,.,., D(n,, N-2). 

(101) 

Then the consecutive numbers of the complete paths (including both internal and external space 
cont~butions) are 

J-6 = mv, i14s=Kv+n,(ms-l)ta, 

MD1 =K,-i-Ks+n,(m,-1)-l-a, 

Ml32 =Kvi-Ks+Ko,+ a,b=12 nn, , f “‘, 

where V, S, Dl, D2 refer to the vertices the paths pass through, and a, b are the orbital indices of 
the occupied external space orbitals. As seen, the contributions from the external space to the 
lexical indices of the paths have a very simple form. Therefore it is sufficient to form the index 
vector for the internal space only. The external space contributions may easily be calculated using 
eqs. (102). 

If the orbitals are symmetry-adapted then, in the case of the Abelian groups, the direct product 
of the orbital representations gives the representation of the wavefunction. The problem is 
essentially the same as in the GUGA. In the simplest method, proposed by Siegbahn (35,101], 
one removes the configurations with wrong symmetry by means of the index vector. One may 



also impose the symmetry restrictions upon the graph using separate labeling for different 
representations as proposed by Shavitt 11351 or expanding the graph as it was done by Brooks 
and Schaefer [38]. A useful compromise is to introduce the sy~et~ vertices in the external 
space only, so that instead of S or D vertices we shall get a number of S and D vertices, one for 
each representation. In the internal part of the graph we have to use the index vector in which the 
additional information about the symmetry of the externai part may be placed. 

Finally, a few words should be added about a computer representation of the graph. The 
information required is: for every orbital (Pi a list of all possible values of ii$. For every (k, Nk) 
pair only 2 numbers are needed - the values of Y( k, ZVk) for nk = 1, 2 (eq. (96)). A practical 
computer representation of the graph is given in part II of this paper. 

The graphical ideas presented here are closely related to the Shavitt’s graphical representation 
[14,33] of the Gelfand-Zetlin basis adapted to the molecular quantum mechanics by Paldus [13]. 
In particular, the spin branching diagram and the configuration graph, as described in this 
chapter, may be considered as subgraphs of the UGA graph. By removing from the UCA graph 
the vertices describing spin couplings, we obtain the orbital graph; if we draw the UGA graph for 
a single orbital configuration, we obtain the spin branching diagram (see also refs. [87]). In fact, 
the separate treatment of both the subgraphs (the branching diagram being completely indepen- 
dent of the CI basis actually used) is one of the most important advantages of SGGA. Due to 
removing the spin coupling information from the orbital graph, the number of paths is reduced 
and the index vector is much shorter than the vector C. For example, the length of the index 
vector (i.e. the weight of the tail) in the case presented in fig. 8 is 126 while the length of the 
vector C (i.e. the dimension of the CI basis) is, in the case of doublets, 210. 

I. 4.3. Representation matrices 

A permutation P, acting on a spin eigenstate ]SM, i), tr~sforms it into a linear combination 
of several other states ]SM, j), the coefficients of this combination being equal to c( P)L$‘( P)j, 
(cf. eq. (55)). The state (path) (SM, i) is referred to as the parent state (parent path) and the set 
of the states JSM, j), j # i, for which U,“( P)j, =+ 0 as the daughter states (daughter paths). The 
set of the daughter paths together with the parent one, is represented by the P-generated graph, 
being a part of the reversed branching diagram. 

The parent and the daughter paths form loops in the P-generated graph. The concept of a loop 
is very useful in formulating matrix element evaluation procedures. In UGA a loop in the UGA 
graph is associated with segment values which depend upon its location in the graph [33,137]. The 
value of a coupling constant is expressed as a product of the segment values. A similar concept is 
applicable also in SGA, though in a simplified form. For example, in the case of the USN matrix 
elements corresponding to single cycles (in UGA it corresponds to matrix elements of single 
unitary group generators), only two loops have to be considered [129]. 

a) Elemental transpositions 
A transposition (k, k - 1) which interchanges two adjacent elements is called an elementary 

transposition. When acting on spin functions represented by a reversed branching diagram, it 
affects only arcs k - 1 and k, i.e. the path segments contained between nodes with abscissae 
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k - 2 and k (segments no. k). There are four kinds of the segments: two upright ones 

A k = 
-1 2 A;= \ 

and two bend ones 

B k = 
-1 

A 
9 @=YJ, 

(103a) 

(103b) 

where the graphical symbols visualise the appropriate fragments of the path. All paths in a 
branching diagram may be divided into four groups, according to the kind of segment formed by 
the arcs k - 1 and k. To each of these groups a set of the reversed lexical indices of the 
corresponding paths is assigned. The sets of the indices are designated { A! 1 }, { A: } , { Bk , } and 
{ B,k}, according to the notation introduced by eqs. (103). If we wish to refer to a certain segment 
type (either to an upright or to a bend one), designations Ak and Bk will be used. 

We denote s(k - 1, k); the kth segment of 104, i). An individual spin function may then be 
denoted ISM, i) = IL;, s(k - 1, k);, Ri) where L, (R;) are the parts of the path standing to the 
left (right) of the segment no. k. More explicitly, l&V, i) may be represented in one of the 
following ways: ILiAklRi), IL,AfR,), IL,Bk_,R,), IL,BfRi). As results from eqs. (72) and (71) 

(k, k - 1) 1 LiAkRi) = 1 LiAkRi), (104 

(k, k- 1) ILiBk,Ri) = -ak (LiBk_,Ri) + b, ILiBtRi), 

(k, k - 1) I L~B/R~) = ak I L~B,~RJ + bk I L,B”_,R,), 

where 

ak = l/(2sk + l), bk = \il - ai . 

Then, according to eq. (55), 

U/((k, k- l))ii= -I’ 
i 

if iE {Ak}, 

-maky if iE {BL}. 

Similarly for the off-diagonal elements (j > i) 

(105) 

006) 

(107) 

(108) 

if Lj=Li, R,=R,, s(k-1, k)j=B!,, s(k-1, k)i=B:, 

otherwise 

(109) 
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and Us!<< k, k - 1) ij = U,“(( k, k - l))jj. Hence, a nonzero off-diagonal matrix element corre- 
sponds to the paths ISM, j) and ISM, i) forming a loop consisting of two bend segments. 

It is convenient to distinguish two different types of the loops, depending on whether the 
parent path contributes Bkr or B,k segment to the loop. Having in mind a generalization for the 
single cycle matrix element case (cf. the next section) we define, within each of the two types, two 
forms of loops depending on which arc (rather than which segment} belongs to the parent path: 
form R if it is either the upper-right or the lower-right arc, and form L, if it is either the 
upper-left or the lower-left arc. All these loops are shown in fig. 11. No other loops may appear if 
we limit our considerations to a single cycle. The arcs forming a loop are assigned with the arc 
values + ak and b,, as shown in fig. 11. Though matrix elements of lJ,“(( k, k - 1)) are 
determined by these values, their direct evaluation from eqs. (108), (109) is so simple that any 
reference to the corresponding loops is perhaps superfluous. As we shall see later, this is not the 
case if the permutation is more complicated. 

Since the contribution of Bk, to the lexical index is equal to d,( k - 1, S, - l/2) and that of 
Bf is d,( k - 2, S, - 1) (see eq. (89), the indices of nonzero off-diagonal matrix element (109) 
fulfil the relation 

j-i=d,(k-1, S,-l/2)-d,(k-2, Sk-l). (110) 

When combined with eq. (109) it gives the explicit structure of the representation matrix 

k-2 k-1 k k-2 k-1 kN 

k-2 k-l k k-2 k-l kN 

Fig. 11. Loops in a reversed branching diagram formed 
by two bend segments. Arcs of the parent paths used to 
determine the loop forms (either R or L) are indicated 
by heavy lines. In each case the arc values different 
from 1 are shown. 

012 3 4 5 6 7 89N 

P I(121 1t2311(341 1(45) ]CSSll l6711(76)((89) 

u u=& -1 -'/3 -1 l/j -1 -t -'/2 1 

U(23t~,~=U(45)~.~ = - ysf3‘ ;U(78),,, = -r312‘ 

Fig. 12. Parent path (fun line) and all the daughter 
paths (broken lines) generated from it by elementary 
transpositions in a reversed branching diagram (dotted 
lines). The arcs are provided with their nonzero weights. 
Nonzero matrix elements in which the parent path (no. 
9) is involved are also given. 
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corresponding to an elementary transposition. An example of a parent path and of daughter 
paths generated by all elementary transpositions is shown in fig. 12. Nonzero matrix elements in 
which the parent path is involved, calculated directly from the graph according to eqs. (108), 
(109) and (110) are also displayed in the figure. 

b) A single cycle 
Letusconsideracycle(k..l)=(k,k-l)(k-l,k-2)...(1+1,I), k>f.Thesequenceof 

the elementary transpositions transforms consecutive segments of the paths according to eqs. 
(104)-(106), and the cycle transforms the path representing ]S1M, i> into the cycle-generated 
graph. We may formulate the following rule for const~cting the cycle-generated graph: take a 
path ]SM, i) and move along it from the segment no. I + I to the segment no. k; whenever a 
bent segment Bi(j=l+l, t+2,..., k; m = - 1, 1) is met complete it to the loop correspond- 
ing to ( j, j - 1) transposition; assign to the arcs no. j - 1 of the loop the arc values D( j - I), 
equal to &uj or bj, as it is shown in fig. 11, loops R; if an edge of the newly formed loop makes 
together with an arc of the parent loop a bend segment, proceed in the same way. To the arcs of 
the cycle-generated graph to which no arc value has been assigned in the build-up procedure, 
assign value 1. Then, 

if in the R loop arc no. j - 1 is perpendicular to arc no. j of the 
parent path, 

if in the R loop arc no. j - 1 is parallel to arc no. j of the parent path, 

otherwise. 

For the cycle (I.. k) = (k..l)-’ the procedure is the same, except that we start from the segment 
no. k - 1 and that the loops L rather than R have to be used. Examples of the cycle-generated 
graphs are shown in fig. 13. 

The number of paths in a cycle-generated graph, rf k - l)i, ranges from 1 - if all the segments 
of the cycle-affected part of ]SM, i) are the upright ones - to r( k - I),,, where r(l)max = 2, 

r(2) max = 3 and r(n + l),, = r(n),, + r(n - l),,, - if ]SM, i) consists of the bend segments 
only. The value of r,,.,,, is equal to the number of nonzero elements in one row (column) of the 
representation matrix. It is interesting to note, that r,,, depends on the cycle length only and 
does not depend on the matrix size [129] *. 

Matrix elements U,“(( k..l))ji, for a given i, may be obtained by a successive application of eqs. 
(104)-(106) to the elementary transpositions forming the cycle. The matrix element is equal to 
the product of contributions from consecutive segments forming the jth path, multiplied by 
~(f k..I)) = (- l)k-‘. However, the simplest way to evaluate all nonzero elements of the ith 
column of Ul(( k.. f)) is to use the cycle-generated graph. As one can easily see 

* The sequence r(n) max is the Fibonacci sequence [136]. 
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Fig. 13. Examples of cycle generated graphs. At each arc its arc value (if different from 1) is shown. The origin of the 
arc values is indicated by arrows. 

where Do are the arc values of the arcs forming the path which corresponds to ISM, j). 
Examples are shown in fig. 13. 

When constructing U:(( k..l)) one can evaluate all nonzero elements of the ith column 
simultaneously. Ail of the r( k - ,); products given by eq. (112) can be calculated in one loop. 
Sintie many fragments of the paths in a cycle-generated graph are the same, it allows us to avoid 
reiterated multiplications. A detailed discussion of the optimization of the algorithm based on 
eqs. (111) and (112) is given in ref. 11291. 

c) Shift of a singlet-coupled pair 
Using relations (105) and (106) one may easily construct combinations of the YK spin 

functions which possess some required transformation properties. In particular, a combination 

t4- i--- 
1 +a, 

RJ = --y- 
J---- 

1 -ak 
iLjBfi,Ri) - --y- 1 LiBfRj) 

is antisymmet~c with respect to (k - 1, k) transposition 

(1131 

(k-l, k) ~Q-J R) = - ~Lp--d,), 
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Fig. 14. Shift of a singlet-coupled pair from 7, 8 to 3, 4 position in N = 8, S = 1 reversed branching diagram. 

i.e. represents spins k - 1 and k being coupled to a singlet. Similarly, the combination 
orthogonal to (113) 

i-- 

1 -ak 
p+R;)= ~ 

c-- 

1 +a, 

2 
ILiBk,Ri) + 2 [ LiBfR,) ow 

is symmetric with respect to (k - 1, k), i.e. spins k - 1 and k are here coupled to a triplet. 
Let us assume that a SCP has to be shifted from the position N - 1, N (in the reversed 

branching diagram) to the k, k + 1 one. The corresponding transformation of the branching 
diagram is shown in fig. 14. Since a SCP shift does not change the coupling schemes, except for a 
renumbering of spins in the part of the diagram affected by the shift, we may write for a spin 

eigenfunction )SM, i) = I&(1, 2,. . ., k - l)R,(k, . . ., N - 2)-) 

(k..N)(k..N) IL,& . . . . k- l)R,(k, . . . . N - 2)-) 

= IL,& . ..) k-l)-R,(k+2,..., N)), 

where Li and Ri stand for the pertinent parts of the path. Then, due to eq. (113), 

U,“((k..N)(k..N))ji = irn\l(’ - mak+,>/2 3 

i 9 

$Lrrt;sdl = (LiBtfI+lRil ) 

Eq. (116) leads to another useful relation 

(k..l) I... R,(k, k+l,..., l-2)- . ..)=(l..k) I... -R,(k+2, k+3, 

where only the parts of the paths affected by the cycles are written explicitly. 

(116) 

(117) 

o... >, 
(118) 
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Let _Y-( p, S,), and I;( p, S,,), be the reversed lexical arc indices (89) corresponding to the 
paths ISM, i) and JSM, j), respectively. The reversed lexical indices j and i of the paths giving 
nonzero matrix elements (117) are connected in a simple way 

i 

Yr3 P* s,),, ifp<k. 

L;( p. sp), = 01 ifp=k. k+l. (119) 

.K(P - 21 $I,+ ifp>k+l. 

and the indices i and j are given by eq. (88). The matrix given by eqs. (117) and (119) is a 
rectangular one: since the spins N - 1 and N in ISM, i) form a SCP. we have I’ = 

1, 2 ,..., f(S, N-2), whilej=l, 2 ,..., f(.S, Iv). The structure of this matrix is very simple - 

there is at most one nonzero element in a row and either one or two nonzero elements in a 
column. 

The results may be generalized in a straightforward way for the case of a shift of two (or more) 
SCPs. Eq. (116) generalized for the case of two SCPs, says: 

(/..N-2)2(k..N)2 IL,(l,.... k-l)R,,(k . . . . . I-3)R,,(1-2 ,..., N-4)- -> 

=/L,(l, . . . . k-l)-R,,(k+2 ,..., I-l)-R,,(/+2 ,..., N)) (120) 

and eq. (117) 

U’((/..N- 2)2(k..N)2),, 

I 

= lm,m,y’o - m,a,+,)O - m2%) /2- 

\ 

if (SM, jl = (L,B&+‘R,,R~‘R,,I , t1211 

0, otherwise, 

j=l.2 ,..., f(S,N). i=l,2 ,..., f(s.N-4), 

where at most 4 nonzero elements may appear in a column and at most 1 in a row, independently 
of the dimension of UC. Similarly as in the previous case, the relation between the reversed lexical 
indices of JSM, i) and ISM, j) may easily be expressed in terms of the pertinent reversed lexical 
arc indices. 

d) Products of two cycles 
As will be shown in the next section, eqs. (116) and (117) allows us to express all permutations 

met in the Hamiltonian matrix element formulae as products of at most two cycles and of a 
permutation shifting at most two SCPs 

P,, = (k../)( i..j) P,, (122) 

where Ps is the SCP shift operator. In particular, 

(k, ,)=(k..I+~~,)(l..k)=(I..k)(k-Ed,../), 
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where ckl = sgn( k - I). Therefore, the last algorithm we need to complete the considerations on 
the spin space properties, is the one to calculate the representation matrix elements of products of 
two cycles. Two cases should be considered: (i) nonoverlapping cycles, i.e. having at most one 
element in common, and (ii) overlapping cycles. 

Matrix elements for nonoverlapping cycles may be calculated using exactly the same method 
as the one developed for a single cycle. The graph generated by a product of two nonoverlapping 
cycles has the same properties as the one generated by a single cycle. Matrix elements of the 
representation matrix are given by eq. (112) except that the range of the product is extended over 
the two cycles. 

If the cycles do overlap, the overlapping part must be treated in a different way. Also in this 
case each lJ,N matrix element may be expressed as a product (or rather as a linear combination of 
two products) of appropriate segment values. However, on one hand, the algorithm is more 
complicated and, on the other, the overlapping parts of cycles are relatively rarely met. Therefore 
it seems to be more convenient to use the following very simple method based on the idea of 
multiplying properly chosen, sparse, single-cycle representation matrices [129]: 

- Express the overlapping part P” of a two-cycle product in terms of two- and three-element 
cycles 

PO = P”POP”’ = P”P,. . . PzPIPnr, (123) 

where P” and P”’ are the nonoverlapping parts of PO and P,, Pz, . . . , Pq are two- or 
three-element cycles. For example, 

PO = (3..8)(4..12) = (3, 4)(4..8)(4..8)(8..12) 

= (3, 4)(6..4)(7..5)(8..6)(8..12) = PnP3P2P,Pn’. 

- Construct the ith column of U,“( P”‘) matrix corresponding to the nonoverlapping part of the 
cycle according to eq. (112). In the example P”’ = (8..12). 

- Calculate nonzero elements of the consecutive rows of U,“( <,), according to eqs. (108), (109) or 
(112) and then the elements of the ith column of lJ,“( P,P” ). Since in a row of a two-element 
(three-element) cycle representation matrix three are at most ~(1)~~~ = 2 (r(2) max = 3) nonzero 
elements, an element of the new column is expressed as a linear combination of at most 2 (3) 
elements of the column already in the computer memory. 

- Repeat the same procedure calculating recurrently P2( PIP”‘), P3( P2P,Pn’), . . . . 

Calculating elements of a single column of USN rather than of the whole matrix may be 
essential as a space-saving approach, when dimensions of U,N are very large. Since 

lJF( P’) = UC(P)‘, (124) 

where T means transposition, a row of U,N matrix rather than a column may be constructed using 
the same procedure. If the method is used within a DC1 approach the column (row) of U,“( PO), 
after being constructed, may be multiplied by the appropriate part of the CI vector. 
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1.4.4. An analysis of the configuration graph 

In order to calculate a block H@@ one has b cheek in how many orbitats ~nfigurations X and 
p differ by and, if the number is 1 or 2, find the line-up permutations. The comparison of all the 
configuration pairs appears to be one of the most time-consuming steps in a large-scale 
calculation. No such comparison is necessary in the DC1 approach. However, the final expres- 
sions for the coupling constants depend upon the line-up permutations, many of them being 
either identical or related to each other. Therefore it is desirable to divide the configuration pairs 
into sets, gathering in one set all the pairs for which the line-up permutations are the same. The 
classification of the permutations and of the configuration pairs is facilitated by the configuration 
graph. A detailed discussion of the subject is given in our recent paper 137). Here we shall give a 
brief review of the basic concepts and a summary of the results. One should note, however, that 
the final formulae presented here differ from those in ref. f373; in the present paper, due to taking 
an advantage of the SCP-shift permutation, we have reduced the number of cycles in the line-up 
permutations to at most two. 

a) A single path 
A path in the configuration graph represents a symmetry adapted (for an Abelian symmetry 

group) orbital configuration h Fe The index vector components (99) for the symmet~ under 
consideration should be calculated during construction of the graph. The representation r to 
which configuration Xr belongs is given by the direct product of the representations according to 
which the orbit&s forming Xr transform 

Let rt,(F’) be the number of orbitals in hr belonging to rk. Since, for an Abelian group, the 
square of a representation gives always 1 (identity), the contribution to r from the orbitals 
belonging to I’k is either I (if tix(rk) is even) or Tk (if n,,(Tk) is odd}. Then 

where the tilde means that the product is extended only over these orbital symmetries for which 
the number of orbitafs in Xr is odd. In optimizing the molecular symmetry dependent procedures 
it is helpful if orbitals of the same symmetry are grouped together, within each subspace of the 
orbital space. 

Each path in the configuration graph is associated with a diagonal block I@‘\ (eq. (77)). There 
are two kinds of coupling constants in H$‘“). 

1) 

2) 

The coupling constants proportional to [I]“. They are associated with (klk), (kk 1 II) and, if 
nkn, + 1, with (kl ( Ik) integrals and depend only upon the occupation numbers of the orbitals 
in the path. The whole contribution may be calculated as one number for each path. 
The coupling constants associated with (k/l ik) integrals, where nknl = 1. Blocks of these 
coupling constants are given by appropriate Ui((k, i)> matrices. 
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If a kind of tree-search algorithm [138] is used to run over the graph, then the computation of the 
diagonal block contributions may be organized in such a way that repetitive calculations of the 
same contributions to different diagonal blocks are avoided (see part II of this paper). Since a 
diagonal block consists of many terms (approximately n( n + l)), the optimum strategy is to 
precalculate and store all the blocks. 

b) Loops in the graph 
Two paths X and p in the graph coincide in some arcs and in some others run separately. The 

nonparallel arcs of the two paths form a loop in the configuration graph. The shape of the loop 
determines the type of the matrix element formula. It remains in a one-to-one correspondence 
with the sets of the occupation numbers and with the appropriate configuration pair diagrams. 
Therefore, as far as the evaluation of a single matrix element is concerned, all these structures 
may be utilized alternatively. However, since a loop is associated with the graph, i.e. with the 
whole CI basis, we may easily identify all configuration pairs being connected by the same kind 
of loop, i.e. giving the same type (or even the same value) of matrix elements. 

Let us consider the case of configurations X and p differing by 1 orbital: (n; - n:) = -(np - 
nj‘) = + 1. Assume that 1~ k and sh 2 sP. Moreover, if sx = sP, then let m, < mP if min(nf, nr) 
= 1 and m, > mP if min(n:, ny) = 0 *. In consequence, four different sets of the occupation 
numbers are possible: 

(127) 

where the first column corresponds to A and the second one to p. The corresponding paths 
coincide between the head of the graph and level 1, they branch into two parallel paths (diverge) 
at level 1, join together (converge) at level k and coincide again between level k and the tail of 
the graph. 

All loops and configuration pair diagrams, which correspond to configurations differing by 
one orbital, are shown in fig. 15. A row in the array of occupation numbers representing a loop is 
called an orbital segment or simply a segment (not to be confused with segments in the branching 
diagram). In particular, the arrays (127) represent two-segment loops. Each orbital segment may 
be interpreted as the ternary representation of a single integer in the decimal system, i.e. 
10 l/-l, /O 21-2, 11 01-3 ,..., /2 l/ * 7. A compact representation of a loop is then 
obtained by arranging consecutively the decimal representations of the segments in an one-row 
array. For example, the two-segment loops (127) in the compact notation are 

(1 3}, (7 5}? (5 3}, (3 5). (127a) 

In the case of configurations differing by two orbitals, the loop may be composed of two, three 
or four segments. If in eq. (68) i = k and j = 1 (i.e. nk = nf + 2, n: = nr - 2) then we have a 

* These assumptions lead to a unique assignment of one of the configurations forming a loop as bra (i.e. A) and the 
other one as ket (i.e. p). Conditions determining the assignment have been chosen in a way which allows for a compact 
classification of the loops and, in consequence, of the line-up permutations. 
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Fig. 15. Loop shapes and configuration-pair diagrams corresponding to the pairs of configurations differing by one 
orbital, see also refs. [30,37]. 

two-segment loop. The loops consist of three segments if i = k and j # I, or i # k and j = 1 and 
of four if all the indices are different. One can show [37] that if rA, = 2 then there exist 1 
two-segment loop, 12 three-segment loops and 48 four-segment loops. The two-segment loop 
consists of two segments with no singles (( 0 2 ( and [ 2 0 j), the three-segment one contains one 
segment with no singles. In each segment of a four-segment loop one single appears. 

All loops in which the distribution of singles is the same form a chain of loops. The number of 
members in a chain is equal to the number of different distributions of doubles and virtuals 
satisfying the condition that the sum of the occupation numbers in both columns of the array is 
the same. The chains consisting of two-, three- and four-segment loops we designate (A), (B) and 
(C), respectively. Different chains within each of the groups will be distinguished by an index 
[(AI), (A2), . . . 1. Cases no. 1 and 2 of fig. 15 belong to one chain and cases no. 3 and 4 to another 
one. There are 3 chains of two-segment loops 

two chains of three-segment loops 

@I): ‘: :,, 

X 

(B2): : x 
x x x x 

(128) 

(129) 
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and eight chains of four-segment loops 

x 3 
x 1 
1 x 

,L x 
(Cl), 

X 1 I 
1 x 
x 1 

I 1 x/l 

w, 

x 1 
1 x 
1 x 
x 1 

(C3), 

x 1 
1 x 
1 x 
1 x 

(C4). 

1 x 
x 1 
1 x 
1 x 

(WY 

1X1X1X 
1X1X1X 
Xl 1X1X 030) 

1 Xl x 1 ,\I x/ 

(W- (C7), 0). 

where x means 0 or 2. Since n* f np in each of the loop segments (otherwise the arcs of h and p 
are either parallel or overlap and do not belong to the loop), 1 X X 1 means either 10 2 1 or i 2 0 1. 

As one can check (for details see ref. [37J) the (A3) chain consists of only one loop, (Al), (A2), 
(Bl) and (B2) of two and (Cl)-(C8) of six loops. Besides, each of the chains (Bl) and (B2) 
represents three different cases, since the 1 X X) segment may be located at the top, in the middle 
and in the bottom (as it is in (129)) of a loop. However, the matrix element formulae appear to be 
independent of the location of the 1 x XI segment. 

As one can see in table 2, the form of the permutations determining the coupling constants 
depends only upon the distribution of singles in the pair of configurations. Therefore the concept 
of a chain of loops facilitates selection of configuration pairs for which the line-up permutations 
are the same. A complete set of formulae for all chains of loops is given in part II of this paper. 
Details of derivations are, in some cases, rather tedious and are omitted. In principle they are 
based on an explicit consideration of each case and on a reduction of the line-up permutations to 
the products of cycles and SCP-shifting permutations. As an illustration we outline the deriva- 
tions for (Al), (A2) and (A3) chains. 

Chains (Al) and (A2) correspond to the pairs of configurations differing by one orbital. Let us 
rewrite eq. (78) in the form 

H{“p)=A~p(P,,) (kIf)+C(n;-Gi,)(iiIkf) +C'(l-s,,,)A,,(P;)(if(ki), i 1 I (131) 

where prime means i # k, f and A,,(P) are f~ g matrices. In the case of chain (Al) an 
inspection of fig. 15 and table 2 leads in a rather straightforward way to the following results: 

where P,, = (k-i’), P, = (k..; +ck,)(i..i’), cA, = sgn(k - I) and P = [UP, + bP,] means that 

(1.32) 

A,,(P) = 2’d~-dJ’2(a(U;( P,)]/y + b[Ui( P,)]‘R). (133) 
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To obtain P, the rule 

(i, k)(k../) = (k..i + Q;)(i..l) 

has been applied. It is worth-while to note that if k < i < i’, then the cycles forming P, do not 
overlap. 

For (A2) - cases no. 3 and 4 in fig. 15 - permutation (k..s)(i..s), where s = s,,, brings orbitals 
of X into the maximum coincidence with those of p locating (Pi and ‘p, at the positions s - 1 and 
s, respectively. However, due to identity 

(k..s)(i..s) = (I..k)(k - l..s)2 = (k..l)(l..s)2 (134) 

we may express the coupling constants using several equivalent expressions, as 

~((k..~)(i..~)) = u((i..k)(k - I...s)~) = u((k.i)(i..s)2). (135) 

The first of the representation matrices corresponds to a product of two overlapping cycles while 
the other two to a product of a single cycle by an SCP-shifting permutation. One can give a 
simple interpretation of this result. As it is seen from eq. (58), the U(P) matrix stands with the 
(PXIHlp) integral over the orbital variables. However if P = P,P,, then 

(PApI =(XjPL&) =(P,XpqP;p). (136) 

If P, =(i..k) then Py' = (s..k - 1)2, i.e. Py' moves a double in p from s - 1, s to k - 1, k. It is 
clear from fig. 15 that after such a shift is performed, a single cycle (j..k) acting on A, lines-up 
the orbitals in both configurations. 

A representation matrix of a permutation shifting a SCP has a particularly simple structure. As 
one can easily deduce from e_qs: (117), (119) and (112) matrix elements of U((k..i)(i..s)2) are 
equal to the elements of U((k..l)) multiplied by a numberical factor determined in eq. (117). 
Moreover, the result does not depend on whether the SCP was initially located at any of 
(s + 1, s + 2), (s + 2, 5 + 3), . . . . (N - 1, N) positions. Therefore it is convenient to introduce the 
notation 

PIi= P(i..s)', u(P)p u(P(i..s)2). (137) 

The complete set of formulae for (A2) may then be written in the following compact way 
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_ _ - 
where Po=(i..k)lk_l=(k..i)lir P,=(k..i+~~,)(i..i)ji, Pz=(l..i+c,,)(i..k)(-,_,. 

The last two-segment chain (A3) describes a pair of configurations differing by two orbitals 
and consists of one loop only. It corresponds to the case of i = k and j = I in eq. (79) i.e. 

H:A~)=Ahp(~J(k~~k~) 039) 

and 

(A3): :, 1; ;I = (2 6), P,= [I]. (140) 

The formulae for all the chains of loops met in CI calculations are collected in part II of this 
paper. In the case of (C) loops 

Hi*“)= A,,(P,)Ju + A&‘dJh (141) 

(for (B) loops H, (Xr) = Ax,( Pa) J,), where JO, Jh are defined in eqs. (39)-(41). In each of the 
chains the assignment of J,, J2 and J3 to J, and J,, in eq. (141) is different. Two simple rules are 
useful in classifying and programming the formulae [37): 

1) If in a loop all virtuals and doubles are replaced by each other, then the assignment does not 
change. 

2) Let us take two chains with the same number of singles in each of the configurations, say (Cl) 
and (C2). Then (C2) may be obtained from (Cl) by a transposition of the second and the third 
row: (C2) + (23)(Cl), i.e. the permutations Pa and Ph for the loops of (Cl) transform into the 
corresponding permutations for (C2) under the transposition of the pertinent indices. If, 
simultaneously, in (Cl) J, is replaced by J3 and J3 by J,, then also the assignment of the two 
electron integrals is the same as in (C2). 

Let us define an operator J aPv 
i I PT 

which, acting on a chain of loops, replaces J, by Jp, J, by Jq 

and J, by J,.. Then we may write 

(C2) = (23) J( :::)(cU (142) 

and similarly 

(C3) = (234) J( ;;;)(Cl), (C5) = (12) J( ;:;)(C4), 

(C6) = (123)J( i;;)(U), (C7) = (1234) J( ;;;)(C4). 043) 

From the second rule results, that only 3 independent chains ((Cl), (C4) and (C8)) are needed to 
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describe the four-segment loops. Note. that in (Cl)-(C3) sx = s,,, in (C4)-(C7) sA = s,, + 2 and in 
(C8) s,, = s, + 4. 

IS. Strategy of DC1 calculations 

The general strategy of SGA CI calculations may follow the same lines as the one developed 
within the framework of UGA. Some ideas of GUGA implementations may also be translated in 
a simplified form to the language of SGGA. Differences result mainly from the simplicity of the 
SGA graph and from the presence of [Ui( P)]‘” matrices in the expressions determining H(““. 

The most complete account on the strategy problem in CI has been given by Saunders and 
Van Lenthe [48] but it was also discussed in various aspects by other authors [35,38,53,137]. The 
strategy problem itself is a very extensive one and we shall limit its general discussion to several 
remarks which are necessary to understand the more detailed analysis of the algorithm, as given 
in part II of this paper. Since the DC1 approach proved to be superior to the conventional one, 
except for rather small-size calculations [48], we shall consider only the case of DC1 calculations. 

I. 5. I. Integrals 

An analysis of the problem in terms of the graph shape, symmetry. the number of internal and 
external orbitals must be performed at first. To facilitate an easy access to the integrals, the 
integral file should be resorted. Since some combinations of the integrals appear in all Hb”“’ or 
Hchr) elements 1 9 they should be precalculated, preferably during the resorting. The combinations 
are usually referred to as the Fock matrix elements 

(jl Flj] = (ilj) + C %[(ijJW - Wljk)] (144) 

(A+:. J) 

and the reference energy 

E,=tC77,[(ilj)+(~,-l)(jilji)+(jlFli)], (145) 

where 77, are fixed, but arbitrary, occupation numbers. 
The integrals should be divided into five classes: 

(i) (ii F(i), (iiijj). i>j, 

(ii) (ijlij), i>j, 

(iii) (i/FJj), (ij] J]), (iilij), i >j, 

(iv) (ijlkk), (ik]jk), i>j, 

(v) (ijlkl), (i/]jk), (ikljl), i > j> k > 1. 

(146) 

Integrals (i) and (ii) appear in the diagonal blocks. The diagonal blocks, or at lest the “scalar” 
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(proportional to [I]fi) contributions comprising class (i) of the integrals, should be precalculated 
and stored. Therefore there is no need for storing the first class integrals. Integrals (ii) enter, 
besides the diagonal blocks. matrix elements corresponding to (A3) loops. Chains of loops (Al) 
and (A2) comprise classes (iii) and (iv) of the integrals. The three-segment chains are connected 
with class (iv) and the four-segment ones with class (v) of the integrals. 

Within classes (ii)-(v), the molecular integrals are divided into subclasses IO, II, 12, 13, 14, 
depending on the number of the internal orbitals in an integral, where Ik contains integrals with 
k internal orbitals. The integrals in each of the subclasses are grouped in blocks. All integrals 
containing the same set of internal orbitals are collected in the same block. All integrals (at most 
3) which depend upon the same set of indices are processed and stored together so that only one 
packed integer may be used for their identification. Within each of the blocks the integrals are 
ordered according to the indices of the external orbitals, so that they may be processed as 
elements of an array. The following relation between the orbital indices is assumed 

IO: 

(e4e3]eZe,): e4 >, e3. e, > e,, e4 >, e2 and, if e4 = e,, then e3 > e,. (147) 

For the remaining subclasses of integrals relations (147) and i, < e, (for all k. I), imply that 

11: 

(e,e&,i,) : e3 > e,, 

12: 

(e2e,li2i,): e, 2 e,, i2 2 i,, 

(e,i,je,i,): e, > e,, and, if e, = e,, then i, >, i,, (148) 

13: 

(e,i,li,i,) : i, >, i,, 

14: 

(i4i3ji2i,): i, 2 i,, i, 2 i,, i, >, i,, and, if i, = i2, then i, 2 i,. 

1.5.2. Separation of the external space 

Since only double excitations from the reference configurations are allowed, there are at most 
2 electrons in E( nE) and at least 2( 1ro - 1) in 9(n,). The group of configurations with 2 
electrons in the external space is designated DhO. a f b (vu and q,, are singly occupied) or D,, 
(‘p, is doubly occupied). Configurations with one electron in the external space are designated S, 
(cp, is singly occupied), and configurations with all electrons in the internal space, V (compare 
fig. 10). The same symbols are used to designate individual members of each of these groups of 
configurations. 
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As resulting from, eq. (108), in the reversed lexical ordering of the spin functions 

Ui((S - 1, S)) ji = 

I 

8j; 3 if j<f,, 

- sji 9 if j>f,, 
(149) 

where s=sh, fi=f(S, s)-f(S, s - 2). We assume that the external orbitals, if singly occupied, 
are located at the last positions (i.e. s and s - 1) in the orbital product (51). In consequence the 
external space contributions to the coupling constants may be calculated independently of the 
internal ones [37]. This property of the external space, noticed in UGA by Siegbahn [35], is of 
fundamental importance in formulating a strategy of DC1 calculations. In particular, it allows for 
including all the external space contributions in form of a DO-loop over the external orbitals. 
The complete set of formulae allowing for a separation of the external space is given in part II of 
this paper. Here we give only an example and some general remarks. 

The coupling constants associated with IO integrals correspond to the paths X and p which 
coincide in the internal part of the graph. Hence, the coupling constants are determined by the 
external part exclusively. The line-up permutation must be either I or (s - 1, s). As one can 
easily check (see also ref. [37]), IO integrals (147) with a set of all indices different couple 3 pairs 

of configurations Deze4, De,=,; D,,,, De+, and De+, DeZe3. The Hamiltonian matrix elements are 

expressed in terms of the unit matrix I and the diagonal matrix lJ$ (eq. (149)) 

(De,,,lHJD,,,,> = I(e&l%) + MS - 1, s))(e,++%). (150) 

The formulae for the two remaining configuration pairs are obtained by changing the orbital 
indices. If e3 = e4 or e, = e2 then 

(De,e,l qQ,e2) = me,e,le34 (151) 

Then, in the case of IO integrals the coupling constants are either f 1 or a. Let us note, that the 
same integral and the same coupling constant correspond to all internal paths passing through 
the vertex D (see fig. 10). Similarly, (e,]I:]e,), e2 >, e,, couples a set of pairs S,,, Se2 and nE sets 
of pairs De,=,, D_, where k = 1, 2, . . . , nE. Also in this case the coupling constants are either + 1 
or fi [37]. 

In the case of 11 integrals only Dab, S, or S,, V pairs may be coupled. The integrals of (iv) and 
(v) classes (eq. (146)) may couple Dab, S, pairs only. The class (iii) may couple both Dab, S, and 
S , V pairs. The coupling constants are factorized to the external space contribution being k 1 or 

r 2 and to the internal one which is expressed in terms of a representation matrix of a single 
cycle. 

The cases of 12 and 13 are more complicated, therefore the internal parts of the coupling 
constant formulae are represented as chains of loops. In the case of 12 there are two kinds of 
internal loops: closed loops, if both paths enter the external space at the same vertex (either S or 
D) and open loops, if the paths enter the external space in two different vertices (V and D). In 
the case of 13 only open loops are possible (the paths pass either through V and S or through S 
and D). Finally, in the case of 14 both paths overlap in the external space. A discussion of this 
case follows exactly the one in section 1.4.4 of this paper. 
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Let us divide X and p into their internal (A,, p,) and external (A,, pE) parts, i.e. let 

(Xl = (VEIY IP) = lP*, PE)’ 1 n a similar way we distinguish in the corresponding loops their 
internal and external segments. Since in a configuration at most 2 electrons may be located in the 
external space, at most 4 external orbitals may be occupied when a configuration pair is 
considered. This case corresponds to A, = Dba, pE = D,,. The occupation numbers of the 
external orbitals are then nt = nt = n: = n$ = 1, nz = nf = nt = n: = 0. Therefore the 4-segment 
external loops may contain only (10 1 and (011 segments and only 3 different 
loops({1133}, {1313}, {1331}), being the first members of (Cl), (C2) and (C3) chains may be 
formed. The other 3 loops, being their Hermitean conjugate, do not have to be considered 

Table 3 
Classification of the external parts of configuration pairs and the optimum strategy of DC1 calculation 

No. PE External 
segments 

Subclasses of two-electron Optimum 
integrals coupling X and p strategy a) 

rk =l 5, = 2 

7 

8 
9 

10 

11 

12 

13 

14 

15 

16 

17 

Closed loops 
V V 

S, S0 
D a(I D I70 
D ba D 

S, SbbO 
D bb D bo 

D 

D,“.” 

D 

D,“,” 
D 00 Dbb 

D LI(I Deb 

Deb 00 D 

D,, D dc 

Open loops 
V S, 
S, V 

S, D 
D 
S,“” 

Soa” 
D 

D ba 

V 
D a0 
V 
D ba 

sb 

D (IO 
D bo 

SC 

Sbba 

D,, 
V 
D bo 

V 
D 
S,“” 

SC 

D bo 

{l) 
(3) 
(5) 
(‘1 

{41) 
(43) 

{21 
(6) 

(11) 
(33) 
(32) 
(16) 

(133) 

1311) 

0 

0 

0 

0 

1 

1 

1 
2 

2 

2 

1 

1 

1 

2 

2 

,2 

2 

I4 I4 
14, I2 I4 
14, I2 I4 
14, I2 I4 
I2 I2 

12, IO 

12. IO 

I2 

I2 
IO 

IO 

IO 

I3 

13, I1 

13.11 

I3 

I3 

I3 

I2 

I2 

I1 

11 

PMED 
PMED 
PMED 
PMED 
EID ‘, ISD 2,3 
EID 

ISD 
EID ‘, ISD 2.3 
PMED 

PMED 

PMED 

EID 
ISD 

PMED 

EID 
ISD 
EID 
ISD 
EID 
ISD 
EID 
ISD 
EID ‘, ISD ’ 

EID *, ISD 3 

a) Both sA 2 s,, and sA < sc are allowed: ’ sA > sp, 2 q, = s,,, 3 SA < sp. 
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explicitly because there are no internal loops in this case (four-segment external loops are 
complete). 

Three-segment external loops are not complete in this sense. Therefore, both the ones 
corresponding to A, = Dhar pE = S, ((133}, (313). (331)) and their Hermitean-conjugate coun- 
terparts corresponding to X, = S,, pe= D,, ({311}, {131}, (113)) must be considered sep- 
arately. 

To give a complete description of the external parts of configuration pairs we extend the 
notation of section 1.4.4. We introduce symbol (0) to designate the case of an empty external 
space and we write explicitly in the loop symbols all the external segments, including those with 
the same occupation numbers in h and in II, as for example { 134) for the case of Dho, DC0 pair. 

The external parts of configuration pairs are displayed in table 3. The sequence a > b > c > d 
is assumed for the external orbital indices. Each of the loops specified in the table corresponds to 
one specific assignment of the segments to the external orbitals, i.e. to one specific sequence of 
the segments. For example, { 413) (entry no. 7) means that { 4) = (1 11 corresponds to v~, { 1) 
=(O l( to (P,, and {3}=11 01 to ‘p,. However, the information shown in the table, i.e. the 
number of external orbitals h and p differ by (r,“,), the subclasses of two-electron integrals which 
may couple a given type of configuration pairs, and the optimum strategy of a DC1 calculation 
(cf. the next section), does not depend upon the assignment of the segments to the orbitals. Then, 
each entry in the table, in fact, represents a set of the external loops corresponding to all 
nonequivalent assignments of the external segments to the external orbitals. Coming back to our 
example of the entry no. 7, we see that it stands for 6 different A,, pE pairs: (413). { 4311, 
(143}, { 134}, (341), (314) (all 3! ways the segments may be assigned to ‘p,, (Pi and cp,). If both 
pairs of the mutually Hermitean conjugate external configuration pairs have to be considered 
explicitly they are set in table 3 under the same number. 

I. 5.3. First-order-interaction space 

In formulating criteria for an optimum choice of the Cl expansion, the concept of the 
first-order-interaction space (FOIS) is particularly important [134]. FOIS is spanned by the set of 
excited CSFs which give nonzero matrix elements with the reference CSFs. In this section we 
describe a method of construction FOIS in SGA. 

The set {II} R of all the reference configurations spans the reference configuration space. Let 
X P { p } R. A block H’“p” is nonzero if X is either singly or doubly excited relatively to cr. Hence, 
FOIS contains only singly and doubly excited configurations. Simple selection of these configura- 
tions is facilitated by a proper choice of the external space (see fig. 10). 

Each of the reference configurations contains not less than no doubles and not more than 
s=N-2n, singles. Then, the spin functions associated with the reference configurations 
contain at least n, SCPs, located as in eq. (54). These functions span the f(S, s) dimensional 
reference spin space. An example of the reference spin space for a 12-electron triplet (s = 6, 
n, = 3) is shown in fig. 6. A double excitation can. in general, break two SCPs and increase the 
dimension of the spin space up to f (S, s + 4). This increase may be very substantial - e.g., if 
S = 1, s = 6, then f (S, s) = 9 but f (S, s + 4) = 90. However, as we shall see, only 2f (S, s) spin 
functions out of f (S, s + 4) belong to the FOIS. 

Let h-FOIS be the subspace of FOIS corresponding to a doubly excited configuration X. It is 
spanned by the spin functions which for at least one ~1 E (p} R give a nonzero contribution to 
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H(““). In other words, h-FOIS is spanned by the spin functions giving nonzero contributions to 
P, ISM, i) or to P,ISM, i) where P, and Pb are the permutations appearing in eqs. (139) and 
(141) while ISM, i), i = 1, 2, . . . , f(S, s) are the reference spin functions. Then, the reversed 
branching diagram describing X-FOIS may be generated by P, and Pb from the diagram 
describing the reference spin space. It is clear that both dimension and structure of h-FOIS 
depend upon the specific form of P, and Pb. The least dimensions and the simplest structures are 
obtained if the orbitals are in ak < d, < e, order, where 1 < k < nA, 1 G l< n,, 1 < m < nE. 
Therefore we assume that in an orbital graph the doubly occupied orbitals are always located 
between the active ones and the external ones. 

If s’ is the maximum number of singles in h, then 3 cases should be examined: 
1. s’ < s. The spin functions belonging to X-FOIS are contained in the reference spin space. 
2. s’ = s + 2. There are 4 double excitation types corresponding to this case: 

d,d, + e,e,, d,d, + e,e,, d,d, + ale, and d,a, + e,e2. 
For the first two types P, = I and Pb is zero. In consequence the dimension of A-FOIS 
remains equal to f( S, s). For the last two excitation types, P, = (s + 2..Z,), Pb = (s + l..Z,). 
This part of the graph generated by P, and Pb which is not contained in the reference spin 
space is shown in fig. 16a. As seen the dimension of X-FOIS for d,d, + ale, and d,a, + e1e2 
is 2f(S, s). 

3. s’ = s + 4. The only excitation corresponding to this case is d,d, -+ e,e,. The line-up permuta- 
tions are 1 and (s + 2, s + 3). The graph generated by (s + 2, s + 3) is shown in fig. 16b. Also 
here the dimension of X-FOIS is 2f( S, s). 

The arc values of the parts of X-FOIS graphs which do not belong to the reference spin graph are 
shown in fig. 16. They are independent of the structure of the reference spin space. Also the 
reversed lexical indices of the X-FOIS spin functions may easily be expressed in terms of the 
reversed lexical indices of the reference spin space functions (compare eq. (91)). 

1.5.4. The optimum strategy 

In order to illustrate the strategy optimization problem in DC1 methods let us consider the 
contribution from (e,i,le,i,) type of integral in the case of the open loops formed by the Dab, V 

Fig. 16. The first-order-interaction spin space for the cases of s’ = s +2 and s’ = s +4. Only the spin functions 
represented by the broken lines interact with the reference onces (represented by the full lines) due to the line-up 
permutations. 
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pairs of configurations. Eq. (47) may be rewritten in the form 

where the superscripts stand for the vertices the paths corresponding to the respective configura- 
tions pass by. For simplicity, only the parts of the Hamiltonian matrix and of b and c vectors 
relevant to our example are shown in eq. (152). As one can see from fig. 10 and from eq. (100) 
there are D( n,, N) configurations V and N,D( n i, N - 2) configurations Dab, where Np = ( ;‘) is 
the number of different orbital pairs in the external space. Let us pick up, in the internal space, 
one path passing through vertex V and another one passing through D, and let the occupation 
numbers of only 2 internal orbitals be different from each other in both the paths, e.g. 
nu2 = n?z = 0, ny = nv = 1. We shall calculate the contributions to the vector b from all the 
external space continuations of the paths and find the optimum strategy for this calculation. 

From eq. (152) we have 

b” = b”(V) + b”(D,), 053) 

bD2 = bD2 (V) + bD2 (D, ) , 054) 

where bv(D2) = H VD~~D2 and similarly for the remaining symbols. The integrals considered by us 
appear in bD’(V) and bv(D2) only: 

ZDqV)&= [(ajpi)U(P,‘)+(aipj)U(P,“)]C;, (155) 

ZV(D2)ij = c [ (aj] bi)U( P,s)+ + (ail bj)U( Pf )+I C,D,z, (156) 
a<b 

where 2 and C are appropriate f = f (S, s) dimensional parts of b and c vectors. The subscripts 
ab and ij refer, respectively, to the external and internal parts of the paths. To evaluate the 
contributions to the vector b (eqs. (155) and (156)), three different strategies may be applied [48]. 
Each of the these strategies consists of two steps. In the following we write the formulae for each 
step, in the order of their execution in a computer. 

(i) Partial matrix element driven (PMED) strategy 

1. Hab,ij = (ajlbi)U( PO”) + (ailbj)U( P,S) for all a < b. (157) 

2. ZD2 (v) ob = H,,,ijCE> (158) 

Z”(Dz)ij = C HLb,ijCfi* 
o<b 

(159 



150 W. Duch, J. Karwowski / Symmetric group approach to CI methods 

(ii) Znternaf spin driven (ISD) strategy 

1. d;; = U(~~)C~, m = 0, 1, 

d$=U(P,‘,)*CF;, m=O,l,alla<b. 

2. Z”?(V).,= (Qjlbi)d~j+(aiIbj)d;‘i, 

ZV(D2)ij= c [(ajibi)d,“*+(aijbj)dP’]. 
u<h 

060) 

(161) 

(162) 

(163) 

(iii) External . zntegral driven (EID) strategy 

1. G,“” = (@ bi)CE, Gyb = (ail bj)CE., (164) 

ZV(D2);i = U( P;)‘G;j + U( P$G;‘. 067) 

The number of multiplications necessary to perform in each of these strategies is shown in table 
4. As can be seen from the table, when searching for the optimum strategy we should compare 3 

Table 4 
Comparison of different DC1 strategies, as applied to evaluate the DLlb, V contribution. In each case the number of 
multiplications necessary to calculate the contribution from ( bdzlai,) integrals to Z for all a < b pairs and one i,, i, 
pair is given. The optimum strategy is marked by an asterisk; Np = (“2”) 

Strategy 

PMED 

ISD 

EID 

Step 

1 
2 
l-t2 

1 
2 
l-I-2 

1 
2 
1+2 

Number of multiplications 

ZDWob Z”(Dz 1 

fZN, 

2f ‘Np 
f2N,o 

4f ‘NJ? 

2f2 2f2& 
2& 2fNP 
*zf(f+ NJ 2f(f+v$ 

2fNp 21Np 
2f ‘Np 2.P 
2f(f+l)N, *2f(f+ N,) 
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cases: 

PMED: M, = 4f2i$, 

_ ISD for b”(D,) and EID for bD2(V): M,= 4f(f+ l)N,, 

- EID for bV(D,) and ISD for n”?(V): M3 = 4f( f+ Np), 

where M,, M, and h/13 are the numbers of multiplications. Then, 

M,/M, = 1 + l/f 

and 

M,/M, = l/N, + l/f. 

(168) 
(169) 

070) 

071) 

(172) 

Therefore always iki, > M,. Since Np is usually rather big, we have 

M3 = M/f- 073) 

i.e., comparing to the PMED strategy, the number of multiplications is reduced as much as f 
times. 

The only case when M3 > M, is that off= 1. However, then Mj - M, = 4, i.e. the difference is 
negligibly small comparing to M3. 

It is clear from this example that no single optimum strategy exists and that the strategy 
optimization may result in an important increase of efficiency of the algorithm. Recommended 
strategies for different external parts of configuration pairs are given in table 3. Some cases with 

r+ = 1 may be improved by using more specialized strategies but the gain seems to be small 
comparing to additional complications of the algorithm. 

PART II. ALGORITHMS AND FORMULAE 

Problems encountered in implementations of SGGA may be solved in a number of ways. 
Searching for particular solutions we tried to find the simplest and the most efficient ones. We do 
not expect them to be ultimate, but they certainly offer a reasonable reference for more 
specialized formulations. 

This part of the paper consists of two sections. In the first one we consider a computer 
representation of the orbital graph and describe an algorithm for search the paths in the graph. 
The second contains tables with the matrix element formulae. The formulae are given in 3 
different forms: 

- General formulae for the conventional CI suitable for any matrix-element-based CI-type 
method (table 7). 

- Coupling constant formulae, classified using the chain of loops concept (cf. section 1.4.4) and 
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constructed to meet the conditions of a general direct CI method with no separation of the 
external space (table 8). 
Coupling const~t formulae with separated contributions from the external space (table 10) 
and optimum strategy for dealing with the external space (table 3) 

11.1. ‘Ibe graph in a computer 

IL 1.1. Co~p~teY representation of the ~o~~~ration graph 

The representation of the configuration graph in a computer, chosen by us, takes an advantage 
of its specific, simple structure and is perhaps one of the most economic, as far as an occupation 
of the computer memory is concerned. Assuming that the external space contributions are 
separated from the internal ones (cf. section 1.5.2), we need a representation of the internal part 
of the graph only. The vertices u( k, Nk) are numbered consecutively from ~(0, 0) = 1 to 
ufn,, N) = L. The counting number of an arbitrary vertex is given by equation 

v(k, ~~}=~,~~~+~~, (174) 

where B,(k), k = 1, 2, . . . , n, is an auxiliary array. Another auxiliary array, B2( k), k = 
1,2, .,., n I, describes the left-hand border of the graph. Its k th element is equal to the minimum 
value of Nk 

B,(k) = NFin. 

Then, the counting number of the leftmost vertex Gorrespondin~ to the orbital ~~ is equal to 

ufk, Nkdn) = B,(k) +B,(k). 0761 

If, as an example, we take the internal part of the graph from fig. 9, then n, = 8, L = 33 and 
B, = [2, 3, 4, 5, 8, 13, 18, 211, B, = [0, 2, 4, 6, 6, 6, 8, lo]. 

This graph is represented by a 3-row and L-column array. The first row, yO( u), contains the 
lexical weights of the vertices 

y&k, Nk)) = 
i 

+D’k’ N”’ 
0, if the vertex is remuved from the graph, 

where +D is taken if the arc (k, Nk) - (k + 1, Nk) belongs to the graph and -D if it does not. 
In the two remaining rows ( yi(u), i = 1, 2) the lexical arc indices corresponding to (k, Nk ) - ( k 
+ 1, Nk + i) arcs are collected. If an arc does not belong to the graph then we set yi = - 1, An 
example is shown in table 5. 

II. 1.2. Searching paths in the graph 

Finding all paths which connect two given vertices’ constitutes the most irnpo~~t among the 
elementary problems met in any implementation of a graphical representation of the CI basis. 
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Table 5 
An array representating the internal part of the orbital graph from fig. 9 

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
k 0 1 2 3 4 5 
NkO 0 12 2 3 4 4 5 6 6 7 8 6 7 8 9 10 

Yo 1 -1 -1 1 -3 -2 1 -6 -3 1 10 4 1 10 14 15 5 1 
y,o-1 10 -1 10 -1 1 0 4 1 0 14 is 5 1 0 
y*o 2 10 3 1 0 4 1 0 5 1 0 29 20 6 1 0 

continuation 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
6 7 8 

6 7 8 9 10 11 12 8 9 10 11 12 10 11 12 

-10 -24393421 6 1 -73 -97 94 61 28 -264 -252 -183 
-1 39 3421 6 1-l -1 94 61 28 -1 -1 -1 -1 
63 73 55 27 7 -1 -1 191 155 89 -1 -1 -1 -1 -1 

Here we describe one of the most straightforward and efficient algorithms solving this problem. 
Let us assume that we have to find all paths joining two vertices u1 = u( CI, A’,) and u2 = u( b, Nb), 
a c b. First we determine the two extreme paths joining the two vertices: the leftmost, passing 
through the vertices u,(k), and the rightmost, passing through the vertices u,(k), k = a, 
a+ 1, . ..) b. The paths, we are interested in, pass only through the vertices u( k, ZVk) contained, 
for each k, between u,(k) and u,(k), i.e. 

u,(k) < u(k, N,) < u,(k). (178) 

The set of the lexical path indices is constructed recursively. Let { mk( u)} be the set of the lexical 
index contributions from the arcs contained between the vertex u1 and another vertex u( k, Nk), 
conforming to condition (178). The number of elements in this set is equal to the number of 
paths connecting these two vertices. The elements of the sets (mi+‘} and { mz} are related in the 
following way *: 

The procedure starts with 

079) 

* For simplicity we designate elements of { mi( o)} as mi( u) and do not supply them with any counting index. 
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and terminates when the set rnk is constructed. At each step of the procedure (179) at most 3 
values of mi+’ may be obtained from one value of rni (since i = 0, 1, 2). If y,( u( k, Nk)) < 0 or 
condition (178) is not satisfied, the corresponding case has to be skipped. 

As an example let us find all the paths joining vertices u, = ~(3, 6) = 10 and u2 = ~(7, 9) = 27 
in fig. 9. It is easy to see that 

u,[lO, 11, 14, 20, 271, u, = [lo, 13, 17, 22, 271. 

From table 5 and eq. (180) we have 

Now, applying procedure (179) we obtain 

~(5, Nk + i), Nk = 6, 7, 8: 

{m:(u)}: 

where the case of u = (5, 10) = 18 has been skipped since it violates condition (178). The next 
step gives 

~(6, Nk+i), N,=6,7,8,9: 20 

I ! 

21 22 

{ m6(u)j: 14,4,0 29,19,15,5,1,0 24,20,10,6,5,1,0 

Table 6 
Representations and the multiplication table for D *,, symmetry group and its subgroups 

-. 
r D,l? D2 C 2h C 2v c2 CS ci Cl 

AG A AG Al A A’ AG Al 
BIG Bl BU A2 B A” AU 
B2G B2 BG Bl 
B3G B3 AU B2 
AU 
BlU 
B2U 
B3U 

Multiplication table 12345678 
21436587 
34127856 
43218765 
56781234 
65872143 
78563412 
87654321 
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where the cases of ~(6, 6)$ ~(6, 10) and ~(6, 11) have been skipped. The next step terminates the 
procedure 

~(7, N,+i), N,=7,8.9: ( 27 

{m’(u)}: 87, 77, 73, 63. 53,49, 39, 35, 34. 24. 20. 10,6. 5, 1.0 

As can be seen the algorithm may easily be organzed in such a way that as result an ordered 
set of the lexical indices of the paths joining two vertices is obtained. To execute the algorithm, 
only one pass over the set of vertices satisfying condition (178) is necessary. A generalization of 
the algorithm so that also a symmetry index and the number of singles along each path may be 
calculated is straightforward. The multiplication table for the point-group D,, and for all its 
subgroups, necessary in determining the path symmetries, is given in table 6. For remarks on 
taking into account the point-group symmetry see section 1.4.4. 

11.2. Formulae 

11.2.1. Notation 

The general formulae for CI matrix elements and for the coupling constants are given in the 
next sections. The information adequate for programming CI methods is summarized in tables 7 
(conventional CI), 8 (DCI, no external space) and 10 (DCI, external space separated). Table 9, 
being a supplement to tables 7 and 8, contains explicit expressions for the line-up permutations. 
All the formulae are complete in the sense that they cover the most general cases and are brought 
to the final, directly programmable form. The notation and the conventions used have been 
explained in detail in part I of this paper. However, for convenience, the symbols used in the 
tables are collected again at the end of section 11.2. Moreover, in order to make the presentation 
compact and the classification of the formulae transparent several new symbols have been 
introduced. Notation specific to each table is described separately. 

All CI formulae refer to a configuration pair. Therefore it is convenient to divide all symbols 
into two classes: to the first one belong the symbols describing the configuration pair, to the 
second the ones of more general character. In the lists of symbols. where it is possible. a reference 
to the corresponding equation in part I is given. 

II:‘2.2. Matrix elements and coupling constant formulae 

General matrix element formulae (for conventional CI calculations) and the coupling constants 
(for DCI) are collected in tables 7 and 8. The formulae are valid for the most general CSFs 
compatible with eq. (48) in which the orbital and the spin parts are determined by eqs. (51) and 
(54), respectively. The orbitals, configurations X and p differ by, are denoted i, j (if rxP = 1) and 
i, j, k, I (if rxP = 2). The orbitals which have the same occupation numbers both in X and in p 
are denoted p, r (if rx,, = 0) and p (if rx,, = 1). 

In determining the line-up permutations particularly important are the position indices of the 
orbitals which are singly occupied in one of the configurations only. The number of these orbitals 
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Table 7 
Matrix element formulae. Explicit forms of P,. Pz. PJ are given in table 9 

HI?X’=I ? [np(~I~)+S(nl,.2)(~~l~~)]+l i n,n,[(pplrr)-~(l-6(n,n,.I))(pr(pr)] 
p-1 per 

+ ? S(n,n,. l)Ui((P. r))(pr)pr) 
P<r 

HiA”’ = A hp(Pl)((ilj)+~(n,.2)(rJIII)+~(n,.2)(rll;;)+~~[n~(ill~~)-~(n:.2)(rp!lp)]} 
P 

+ &q n;. ~)AA,,(P, (P))(ipljp) 
P 

H(Zh”)= J‘A,,(P,)+ J’A,,( P,): J’ = (ijlkl). Jz = (illjk). J’= (ikljl) 

rhll bd v,” A 
“I 

x 
V2 Chain p, p, 

1 0 

1 

2 0 

0 

1 

0 

1 

2 

1 1 0 
0 1 1 

0 2 0 

1 0 1 
1 1 1 

0 2 1 
1 2 0 

0 2 2 

1 2 1 

2 2 0 

0 3 1 

1 3 0 

0 4 0 (C8) 

(Al) 

(A21 

(A3) 
(Bl) 

(B2) 

(Cl k-(C3) 

(C4)-(C7) 

p, 
- p, 

p, 

p2 
p2 

- p2 

p2 

( -pi3. 

\ -p2. 

p3 

i 

- P,, 

- p,, 

/ p2. 

\ PI. 

( 2: 

if nr = ni 

otherwise 

if ng = 2 

otherwise 

ifn:=2 

otherwise 

if n: = ny 

otherwise 

p2 
pi 

s(n;,O)P, + S(n:, 2)Pi 

p2 

p, 

p2 

9;. 

i ’ 

if nP = 2 / 
otherwise 

,;: , if flP = 2 

14. otherwise 

p / 3’ if nr = n5 

P 2’ otherwise 

in h (p) is denoted vt (VP) and v, = vf + vr. It is easy to check that v, is even and v, G 2rha. 
Under assumption that v: > VP, i.e. that s > s’. 6 different partitions of v, into v: and VP are 
possible. Depending on the case, the following designation for the orbital indices are used. 

v; = 4, vp = 0 i > j > k > I are all singles in A; 



Table 8 
DCI formulae. Explicit forms of P,, P2, P3 are given in table 9 

Designation of integrals: 

~~~~i~ in (755 and (351 

(Wi) in (75) and (531 

$(ijlpp). (ifj) in (Al) and (A2) 

(ijlkl) in (Cl)-(C8) 

in fA3) 

in (Al), (AZ), (Bl), (B2) 

in (Cl)-(C8) 

Assignment of coupling constants to the integrafs: 

J’A,,(P,), J’;A,,(P,.), x. y-1,2.3. 

Assignment of coupling constants to the loops: 

2. Two- and three-segment loops 

(Al), i> j (AZ), i > j (A31 (31). i>j (32). i > j 

2. Four-segment loops 

Chain Indices J’ J2 J3 Loops 

WI i> j>k>l J3 J2 Js (1133) f7755) {?I%) (f735) (7135) {17x3) 

621 i>k> j>f J3 Jz 5% (1313) (7575) (7513) (2375) ff315) (1573) 
(C3) k>i>j>l J2 J3 J1 (1331) (7557) (7531) (1357) (7351 f (1537) 

P, p3 - p3 - p2 

*Y p2 Pl pi 

KJ4) i> j>k>Z J1 Jz J3 (1353) { 7535) (13353 {7553} (1533) (7355) 

69 i>j>l>k Jl J3 Ja (3153) {5735} (31351 (5753) (5133) (3755) 

WY i>f>j>k J3 J1 J2 (3513) (5375) (33fSf (5573) {53f3j (3574) 
(G7) I>i> j>k Jz Jr J3 (X531] {5357) (335%) (5537) (5331) ( 35571 

P, pt - PI PI - PI p2 - p2 

5 p2 6 p3 e 5 pi 

VI i> j>k>l Jl Jz J3 (3553) f5335J (3535) (5353) {3355) (5533) 

PI PI Pl p3 
p, p3 p2 p2 
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Y: = 3, VI” = 1 i > j > k are singles in A, 1 is a single in p; 
V: = 2, vf = 2 i > j are singles in A, k > 1 are singles in p; 
v: = 2, VI” = 0 i > j are singles in A; moreover, if rxfl = 2, then k = I is a double either in X or in 

6 
vx= 1 VP 1 ‘I = 1 i is a single in A, j is a single in p.; moreover, if raP = 2, then k = I is a double 

either in X or in ,u; 

VI X=0 f VI fi = 0 k = i, I = j are two (different) doubles: one in A, another one in p_ 

In the part of table 7 corresponding to rxa = 2, the assignment of permutations P,, P2, P3 to 
P, and cY determines also the integral to appear in the matrix element formula; e.g., if P, = P,, 
cv = Pi, then l-Vhpf = J’A,,( PI) +J2A,,( Pi). If TV is not specified, then H(xf‘) = JxAx,( I’,). 

In some cases it is convenient to define the Fock matrix (ilFlj> (eq. (144)), the reference 
energy E, (eq. (145)) and a set of the reference occupation numbers vi, i = 1, 2, . . . , PI and 
express Hb’@) and Hj”) in terms of these quantities. The corresponding formulas are: 

H$W) ‘It IE,+~C[(~(~,~2~-~t1p~2))(ppl~~)+(~l,-rl,~(~l~l~~] 
P 

and 

where 

For explanation of the remaining symbols see section 11.2.4. 
Table 8 gives an assignment of the coupling constants to the integrals and to the configuration 

pairs (to the loops). This information ia basic for all DC1 algorithms. The table is, in principle, 
self-explanatory. The only comment regards a specific convention concerning the two-electron 
integrals. The integrals J,, f2, J3 are stored in an integral list in the standard sequence defined by 
eq. (146). It implies that J, = (ijlkl), J2=(illjk), J3 = (ikljl) while i >j> k > 1. Since the 
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sequence of the orbital indices is not retained in neither table 7 nor 8 (it may be different in 
different chains of loops, cf. section I-4.4), the integrals appearing in the tables are designated J’, 
J’, J3. Their assignment to J1, J2, J3 depends upon the sequence of the orbital indices i, j, k, I 
and is shown explicitly in the table. Also all the chains of loops together with the corresponding 
sequences of the orbital indices, are specified there. 

When the line-up permutations are known, the coupling constant values may be determined by 
eq. (133). A list of the permutations is given in table 9. As can be seen, for each case (i.e. for rxp, 
Ad, z$ set, i.e. for a chain of loops) we need at most 3 different permutations. A permutation in 
the table is expressed in 3 different forms: as a product of at most 4 cycles, as a product of a 
transposition and one (selected for each case) permutation, as a product of at most 2 cycles and a 
permutation shifting at most two SCPs. The first two forms are valid independently of the 
specific spin-coupling scheme, under condition that the spin function is compatible with eq. (54). 

Table 9 
List of line-up permutations (supplement to tables 7 and 8) 

r+ Ad Singles 

in h 

Chain Permutations 

in p 

1 0 i 

1 1 i>j 

2. 0 - 

2 0 i 

2 1 i 7 j 

2 0 i>j 

2 1 i> j>k 

i (Al) P, = (L j) 
P,=(i, p)P,=(Ljj+c. )(@..J) 
Pz = f&n;, l)P, - &n$Pz)P,]; Pi= [P, + scn;, l)P*] 

- (A21 P, = (i..s)(j..s)= (i..j)li 
P,=(j, lj)P,=(J..ii+r,,)(~..s)(;-l..s)=(J..ij+Eip)(P..j)l;_, 

Pd=(;.~)p,=(;..~+~,,)(ji..s)(j..s)=(I..iieCi,)(p..J)lj 

P2 = [6($, l)P,-qrr;.2)P,]: P;=[S(n~,l)Pd--G(n~,2)P,] 

- 643) P2 = I 

j W) Pz = (i.J) 

_ (W Pr = (L.s)(J..s) 5 (f..J)/, 

k > / (Cl)-(C3) P,=(I..i)(J+l,.q P,=(L.i+l)(J..q 

p3 = (I, j)p, = (j..i)(i..X) if ‘< i; p3 = (i.,K)(J..i) 

p, = [p* + 911 

I (C4)-(C7) =) Pi = (L)+)(I..i) = (;..J)(k.i)jj_6 
pz=(r, ~)P,=(~..~xJ-I..~N;-~..~)=(~..~xI..~)~~+, 
P3=(J,k)P~=(i..s~~..s~J-l..i)=(~..~~j‘+l..f)~~,, 

P;=[P,+P,]; P;=[p,+P,] 
- _ 

2 2 i>j>k>I - (W P,=(i..s)(j..s)(~..s)(i..s)=(k..~)(i..j)lj,i 

p,=(j, i)~,=(;..~)(J’..~)(~..~-i)(i..~-2)=(7..3)(;..i)1~,~ 
p3 = (3. ZIP, = (i..s)(J..s)(k..s -i)(i..~)= (jJ)(;..f)lx,i 

a) s= 1, in (05) and (C7), z = 

0, otherwise, 
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The last form is valid only under assumption of the YK spin coupling scheme. 
In order to outline a DC1 procedure based on Tables 8 and 9, let us consider the case of 

integrals with 4 different indices. Building up the DC1 procedure comprises the following steps. 

1. Make a DO-loop over integral indices. 
2. Fix a set of 4 indices (4 levels in the orbital graph) and take the corresponding J,, J,, J3 

integrals. 
3. Determine the numbers of singles which may appear between the levels and between the head 

of the graph and the uppermost level. 
4. Make a DO-loop over all possible distributions of the singles. 
5. Make a DO-loop over (Cl)-(CS) chains. 
6. Fix a chain, define J’, J2, J3, determine P,, Pz, P3 (table 9). evaluate A( P,). x = 1, 2, 3 

(according to section 1.4.3). 
7. Form partial matrix elements H CAP) = J’A( P.) + Jly P,,) for all the loops of the chain, * 

according to table 8. 
8. Find all the paths, and in consequence the components of the index vector, compatible with 

the conditions determined so far (cf. section 11.1.2). 
9. Multiply H (+) by the app ro riate parts of the CI vector. p 

The analogous procedure in the case of separated external space contains additional DO-loops 
over the external orbitals and depends upon a specific strategy choice. This subject is discussed in 
the next section in more detail. 

11.2.3. DCI formulae with the external space separated 

Separation of the external space is aimed at the following algorithm: given an internal space 
contribution to a set of coupling constants, determine its external space complements and 
calculate the entire external space contribution to the CI vector within a simple-structured 
DO-loop. In this section there are collected coupling constant expressions in which the internal- 
and external-space counterparts are separated and the dependence on the external orbital indices 
is explicitly shown. We designate 

where r = rhp and A,, pE = V. S,, D,,. D,,. If A, = pE then the internal-space contribution is 

designated H,( A”;, II’;) where II= V, S, Dl, D2 stand for the last vertex of the internal path. The 
expressions For H,( A’;, &) may be obtained from eqs. (181) and (182) of the preceding section by 
limiting the range of all the orbital indices to the internal space only. If X = p then we write 
H,( Al;, A’;) = H,( A’;). 

The coupling constant expressions are collected in table 10. The table is divided into two parts. 
In the first one, corresponding to rh,, = 0, 1, explicit formulae for the coupling constants (and for 
the matrix elements as well) are given. In the second part, for r+ = 2, the line-up permutations 
and the coupling constants for IO, 11, I2 and I3 integrals are displayed. The case of I4 is omitted 
here since it is given in table 8. 



W. Duch, J. Katwowki / Symmetric group approach to Cl methods 161 

Table 10 
Separation of external space; no. refers to an entry in table 3 

rxir = 0: u > b: eq. (181} 

no. x I.. internal internal-external space external 
space cross terms space 

V 

S” 
D ou 
D hrr 

H,(C) 
H”(g)+ 51” + J;’ + J” 

H,(X’?)+ 2J; -I- J” 
H”( x”)+ I Jf + J; + Jz”’ + J;’ + 1” + Jh + I(ua/hh)+E’(uh~uh) 

J”=~,.(~IIc)f~n~-l)(ccI~~); J;=C(n,-?,)[(pp]cc)-f(l-6(n,n,.I))(pclp~)] 
P 

J;“=~fi(ffp, l)[u;.((p. s-v))+~7&pc~pc); c=fJ. b: v=o, I 
P 

‘G =I; eqs. (182)~(185) 

no. X, Pi? internal internal-external space external 
space cross terms space 

Loops formed by ‘p,, q, orbitals. Q > b 

Loops formed by cp,, ‘p, orbitals: a > b 
11 V % 
12 Da, % 
13 D,, S, 

(a/Gii)A( P,)+ K” 
(o~Gji)A(~,)+K”+(io~aafA(~,) 

[(a(Gli)+(ai(bb)]A(P,f+K” 

+(ub]ib)A(P,.(s)) 

Loops formed by pa, qh orbitals; a > h or a < b 

5 S” % (~lGlb)l+K”~ 

6 I&w Q,, ~8~~[(a(Glb)+K”“] 

7 Do Dch ~;J(u~GI~)+K”~]~;* + S:,[(ablcc)+E”(uclbc)](f;;, 

=2 

Z! IO, II, 12 (open loops): a 3 h, i 3 j 

H$““= JA,,(P); J= 
i 

I(aw, lb4 if n = h or w, = w2 

I(aw, 1 bw,) + E”(aw,/ bw,), otherwise 
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case no. PE sequence of 
a, b, c, d 

Wl w2 internal P 
loops 

IO 

I1 

12 

(open 
loops) 

839, D,, Ddc cad 
SI 

d (01 
10 c<d c 

16, D ba SC c#a, b C i (11 
17 (51 

14, D bn V i j {11) 
15 (551 

1151 
(511 

i i 621 

Z 

(s -l..i) 
(I..s - 1) 

(S -l..j)(S..l) 
(L.S)(J..S -2) 
(i..S -l)(s -2..]) 
(J..S -2)(A) 
Z 

(II) I2 (closed loops): i > j 

H~AB)=J,A~,(P,‘)+J,A~,(P,); JI= (e,e2lii>, J2= (e&2i>, J3= (e,ilw’>, 
e, = max( a, b) 
e 

2 
=min(a b) 

no. A, PE sequence P,’ Py’ internal P, PY permutations 
of a, b, c loops 

5 %a sb px py (131 p2 P, = (i.. j) 
6, Do Dct, c<a, b Px Py (75) -?1 P3 Pz = (IA -l)(S..J) 

7 
1 

acc<b Ep PE, P3 = P, + P2 
b<c<a x Y (531 PI p2 P, = (i..s)(J..s) = (LJ)lj 

c>,a, b PX EP,,E’ 1351 Pl p3 P2 = (IA -l)(J..s) 
Pq = (IA -l)(.j..s -2) 

1. rh,, = 0 and rxp = 1 
The external space and the cross-term internal-external space contributions presented in table 

10 correspond to eqs. (181) and (182). We have assumed that q = 0 for p = n, + 1, . . . , n, since 
the simplest form of the external space contributions to H, .OPP . IS then obtained. Usually, the 
optimum algorithms can be derived if we set $, = 2 for p = 1, 2, . . . , n,. However, in special 
cases, other options may be more convenient. If q, = 0 for p = 1, 2, . . . , n, the formulae 
corresponding to the ones in tables 7 and 8 are obtained. For rx,, = 1, permutation P, is defined 
by eq. (183, while P, and P, are determined in tables 7 and 9 (chains (Al) and (A2)). In each 
case selection of the chain (either (Al) or (A2)) results from an analysis of the internal space 
contribution. For D,,-type configurations relation a > b is assumed, except for the case of 
rhr = 1, no. 5, 6, 7, where both a > b and a -c b sequences are allowed. 

2. rxp = 2 

This part of table 10 is divided into two sections. In the first one (left-hand side) external space 
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(III) 13; conventions as in table 8 

HiA”‘= J,A,,(P:)+ J,.A,,,( P,Y’); J, = (ailjk). J, = (aklij). J3 = (ajlik) 

no. A, pE sequence P,? P,” assignment of permutations J’ Jz 5’ permutations 
-- 

of a, 6 to internal loops 

11 v so p, pt. (Cl’): (133) {753) (735) J, J, J3 P, = (;..s)(j..k) 
12. D,, S, a 2 h F’, ff, (C2’): (313) (573) (375) J, Jj J, P~=(j..s)(;-l..k) 
13 a<h P,E P,.E (C3’): (331) (537) (357) J3 J, J, Pr= P, + PJ 

P,: P, -P, -91 
P,.: P? Pz p2 

(cd’): (533) (353) (335) J, J, J> Pt=(;..s)(j..s)(k..s) 

P,: P, P, PJ = (i..s)(j..k)l, 

Pv: P, Pz Pz Pz = (;..s)(]..s - 1)(x-.A) 
_ 

= (j..s)(i - l..k)li 

PJ = (i..s)(j..s- l)(k..s-2) 

= (X..s)(I - l..j)l,_, 

(B2’): (65) 
P,: - Pr 

J, Jz - Pz = (Id) 

11 s, v px p, (Cl”): (755) (135) (153) 

12. S, D,, aah P, P, (CZ”): (575) (315) (513) 

13 a<b EP, EP,. (C3”): (557) (351) (531) 

as for (Cl’), (C2’). (C3’). except 

Pi=(i...s-l)(j...s-Z)(s...k) 

=(/... ;-l)(s... k)l,_a 
p,: - P, P, 
Pu: P; P; 

P7 
P; Pi= P, + Pi: s = 

( 
; 

. 
fti;Li,, 

(C4”): (355) (535) (553) 

P,: P, PI 97 
P,: P, PZ p2 

(B2”): (23) 
P,: Pz 

as for (C4’) 

as for (BZ’) 

Designations: E=(s-1, s); E’=(s’-1, s’). 

dependence of the coupling constants has been shown. In particular, their assignment to IO, 11, 
12, I3 integrals and to the external configuration pairs A, and pE has been given. The second 
(right-hand side) section describes the internal space complements of A, and pr. Explicit 
expressions for the line-up permutations have been collected in the last column of the table. 

Let us consider a pair of external paths, both of them passing through vertex D. This pair 
corresponds to a set of configurations, each of them containing two electrons in the external 
space. Let the A, p pair be a member of this set. The line-up permutations P depend only upon 
position indices of orbitals in h and in cr. Then, P does not depend on whether the two electrons 
in the external space form two singles or one double. The representation matrices lJi( P), 
calculated for a given pair of the internal paths, under assumption that there are two external 
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singles in A and two in CL, may also be used if the electron pairs in d form one or two doubles. 
Taking into account this possibility results in a simplification of the algorithm since it signifi- 
cantly reduces the number of different cases to be considered. To this purpose we modify eq. 
(133) determining the coupling constants. Let d,“( d:) be the number of the external doubles and 
s,( s,!,,) the maximum number of singles in X(p). Then, the actual number of singles in the two 
configurations under consideration is 

.Yx = s, - 2df, sp = s:, - 2d;. (187) 

Now eq. (133) may be written as 

where a, = 2AS/4, aE = 2Ad(E)/2, As = IS,,, - &I, Ad(E) = Id: - d,“I, f=f(S, sA), g = g(S, s,,) 
and P has to be determined for d,E = d: = 0. All permutations in table 10 are determined under 
that assumption. The values of sx, sP and d E used in eq. (188) are very easy to calculate when 
the loops are given. For example, if h r = D,,, pE = D_ are associated with the internal loop 
(53}, then dt = 0, d: = 1, s& = s, - 2 and sh = s,, sP = s, - 4. The permutations, as displayed 
in table 10, have been determined for h E = Dho, p s = D,,. 

In the cases of IO, I1 and 12 (open loops) diagonal matrixes J (as defined in the table) should 
be processed rather than individual two-electron integrals. The chains of loops, as specified for 
13, are subsets of the chains for the case of I4 (table 8). For example 

(Cl): (1133}, {1753}, {1735}, {7755}, {7135), (7153); 

(Cl’): {133}, (753}, (735); (cl”): {755), {135}, (153); 

i.e. (Cl’) and (Cl”) may be obtained by removing the first segment from appropriate members of 

(Cl). 

II.2.4. List of symbols and abbreviations 

General symbols 
N no. of electrons, 

: 

no. of orbitals, 
total spin quantum number, 

(il.0 one-electron integral, 

(VW two-electron integral, 
;($) = 0, 1, 2 reference occupations numbers; eqs. (144), (145), 

f x g block of CI matrix; eq. (58), 

p,, p: permutations, 

P,(P) a permutation in which a dependence on an index jj is explicitly indicated, 

W P,) representation matrix of the N!-element permutation group; eq. (55), 

W( PXP f X g block of lJ[ (the first g columns of Ui), 

AA, f X g coupling constant matrix; eq. (133), 
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(I, 0 transposition, 

(I, i)” = 
i 

(k, 1). if m is odd, 

E” = Ug((s - 1, s,f’; 
if m is even, 

eq. (149), 
(I..i) cycle; eq. (64) 
(Z..Qi = (k..i)(J..s’ + 2)2; eq. (137), 
(z..i,l;i = (k..i)(l..d + 2)2(J..~’ + 4)2, 
(Al), (A2), (A3) chains of two-segment loops; eq. (128), 

(Bl), (B2) chains of three-segment loops; eq. (129) 
(Cl)-(C8) chains of four-segment loops; eq. (130) 

{ 131, {75}, etc. two-segment loops; eq. (127a), 
{156}, {1133}, etc. three- and four-segment loops, 
V 

%I 
D”, 
DlW 
$(n,? 
0,) 
Ik, k = 0, 1, 2, 

configurations with no external orbitals, 
configurations with one external orbital (cp,) singly occupied, 
configurations with one external orbital (<p,) doubly occupied, 
configurations with two external orbitals ((P,, and ~JJ,,) doubly occupied. 
internal space, 
external space, 
3, 4 a subclass of two electron integrals which depend upon indices of k internal 
orbitals; eqs. (147), (148), 

ek, k = 1, 2, 3, 4; qU, (Pi, TV, qd(a, b, c, d = n, + 1, . . ., n) external orbitals, 
i,, k= 1, 2, 3, 4; cp,. cp,, Q)~. 9, (i, j. k, I= 1, . . . . n,) internal orbitals, 
I f Xf unit matrix, 
S,, = 6( a, b) Kronecker delta, 
cik = sgn(i - k). 

Configuration-pair symbols 

x9 CL configurations; eq. (51), 
x El PE external parts of h, CL, 
x I’ PI internal parts of X, p, 
s = sx, SI = s p no. of singles in X, ~1; s > s’, unless stated otherwise. 

d,(d,) no. of doubles in h (p), 
Ad = d - d, = (s - s’)/2. 

d,F. (d,$) no. of external doubles in X(p), 
r = r+ the number of orbitals X and p differ by; eq. (65), 

Hi;? s), g=f(S s’) no. of independent spin functions associated with h, p; eq. (15), 

P P 
no. of the orbitals whose occupations in X and in p are different and which are 
p-fold occupied in X (p), 

i, j, k, I indices of the orbitals X and p differ by, 
i, J, k, i position indices of cp,, cp,, (Pi, q, in appropriate configuration, 

P. r indices of the orbitals whose occupations in X and in p are the same, 

nt (G) occupation number of (Pi in X (p), 

2,==max(& n,‘), 

P 
cP:L,, 
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Abbreviations 
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CAS 
cc1 
CI 
cs 
CSF 
csv 
DC1 
DC13 

EID 
FOIS 
HF 
ISD 
MC 
MCCS 
MO 
PMED 
S 
SACSF 
SCF 
SCP 
SD 
SGA 
SGGA 
UGA 
GUGA 
UHF 
VM 
YK 

Complete Active Space (SCF), 
Contracted CI, 
Configuration Interaction, 
Closed-Shell (reference state in CI), 
Configuration State Function, 
Configuration State Vector, 
Direct CI, 
Direct CI for 3 electrons, 
External Index Driven (strategy), 
First-Order Interaction Space, 
Hartree-Fcck, 
Internal Spin Driven (strategy), 
Multi-Configuration (reference state in CI; SCF method), 
Multi-Configuration Closed-Shell (reference state in CI), 
Molecular Orbital, 
Partial Matrix Element Driven (strategy), 
Singly (excited configurations, e.g. CI S), 
Symmetry Adapted Configuration State Function, 
Self-Consistent Field, 
Singlet Coupled Pair, 
Singly and Doubly (excited configurations, e.g. CI SD), 
Symmetric Group Approach, 
Symmetric Group Graphical (Global) Approach, 
Unitary Group Approach, 
Graphical (Global) Unitary Group Approach, 
Unrestricted Hartree-Fock, 
Vector Method, 
Y amanouchi- Kotani 
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