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Abstract. Understanding mind-brain-environment relations is one of the key topics in psychology. 
Kurt Lewin, inspired by theoretical physics, tried to establish topological and vector psychology ana-
lyzing patterns of interaction between the individual and her/his environment. The time is ripe to 
reformulate his ambitious goals, searching for ways to interpret objectively measured brain process-
es in terms of suitable psychological constructs. Connecting cognitive and social psychology con-
structs to neurophenomics, as it is done now in psychiatry, should ground them in physical reality.  
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1. Searching for bridges 

Psychology is based on constructs that were derived from common-sense understanding of 
mental processes and behavior, refined over the years, but without connection to physical pro-
cesses in the brain. Paul Churchland in 1981 article “Eliminative Materialism and the Proposi-
tional Attitudes” argued that common-sense understanding of the mind (or folk psychology) is 
false and that progress in understanding brain functions will lead to elimination of most con-
cepts that psychology is based on. Patricia Churchland in an influential book “Neurophiloso-
phy” (1986) has also supported eliminativist position. After all biology, chemistry and physics 
had to abandon many concepts and theories that in the past seemed reasonable, but were elim-
inated by deeper understanding of biological and physical processes. Many constructs intro-
duced by Freudian psychology have been rejected. Other constructs, such as distinction be-
tween different types of memory were gradually introduced: working memory (~1960), epi-
sodic and semantic memory (1972), implicit memory (1981). Such constructs may in future 
still be splitted into more subtypes that correspond to specific brain processes.  

Defining psychological constructs is harder than physics or biology constructs. Individual 
variability of brains, irreversible influence of experiments on cognitive systems, makes com-
parison and stability of results quite difficult. For that reason Smedslund (2016) concluded 
that psychology cannot be an empirical science. Failure of structuralism and move towards 
behaviorism created an interest in conceptual foundations of psychology, following the suc-
cess of physics. Kurt Lewin has published several influential books (1936, 1938, 1951) intro-
ducing psychological force field analysis, describing psychological processes in topological 
spaces, focusing on conceptual representations and measurements of psychological forces. 
Daniel Khaneman in his Nobel Prize speech (2002) said: “As a first-year student, I encoun-
tered the writings of the social psychologist Kurt Lewin and was deeply influenced by his 
maps of the life space, in which motivation was represented as a force field acting on the in-
dividual from the outside, pushing and pulling in various directions. Fifty years later, I still 
draw on Lewin's analysis of how to induce changes in behavior …”.  



Lewin has formulated field theory to describe behavior as a result of patterns of interactions 
between the individual and the environment. In his theory cognitive dynamics is represented 
as a movement in phenomenological (he has used the word “hodological”) space, a “life 
space” or a field that includes person's values, needs, goals, motives, moods, hopes, anxieties, 
and ideals. Forces in this field arise in social situations, driving cognitive movement toward or 
away from goals of the person. His description of the process of mental change include 3 
stages: unfreezing or escaping the inertia, transition without clear idea where it leads, and 
freezing or crystallizing new behaviors. These ideas can be linked to activity of neural net-
works, simulated in computer or observed in neuroimaging (Duch, 2010;2011).  

Perhaps the time is ripe to take ideas of Kurt Lewin seriously. I will first make a short review 
of different trends in psychology that were initiated by Lewin’s work, and then present some 
developments in neuroscience that should ground psychological constructs in objectively 
measured brain processes.   

2. Dynamical ideas in psychology 

Lewin’s “field theory” ideas, discussed in the next section, led to the development of Gestalt 
approach, avoidance conflict model, and personality psychology (Trempała, Pepitone, Raven 
2006). They have contributed to many trends in science that are briefly presented below.  

George Kelly (1955) has formulated personal construct psychology, as complete theory of 
cognition, action, learning and intention, using geometry of psychological spaces as alterna-
tive to logic. This may be considered as a simplification of Lewin’s field theory, making it 
easier to apply in practice. Subjective reality is expressed in terms of psychological con-
structs. Kelly (1955) assumed that "A person's construction system is composed of a finite 
number of dichotomous constructs." These constructs provide psychological dimensions that 
characterize people and mental events. Understanding people requires identification of con-
structs they use, defined by results of psychometric tests, mental states, and various other 
types of elements. This information is stored in a “Repertory Grid” matrix, with rows repre-
senting personal constructs that are relevant to some specific purpose, and columns that repre-
sent various elements, such as opinions, preferences, or potential actions. Techniques based 
on personal construct psychology (PCP) have wide applications in social psychology, psycho-
therapy, personality assessment and human resources in business context, supporting deci-
sion-making processes and helping to study personal and interpersonal systems of meaning 
(Abraham, Shaw, 1984). WebGrid (Gains and Shaw, 1997; http://webgrid.uvic.ca) approach 
has further developed the conceptual representation system, using graded constructs instead of 
simple dichotomies, providing interactive software tools to elicit and analyze mental models 
of individuals and groups within specific domains of experience.  

Many other grid-based software approaches were created to represent psychological con-
structs. Perceptions, beliefs, values, personality traits and other constructs may be represented 
in high-dimensional spaces, with measured or estimated values in particular dimensions. Rog-
er Shepard’s research on mental representations (Shepard 1987; 1994) was focused on under-
standing topology of such spaces, searching for interesting regular structures and invariants 
that represent universal psychological laws. Using non-metric multidimensional scaling ap-
proach he has shown how physical properties of stimuli, important from evolutionary point of 
view, are reflected in mental models. Perception of objects, spatial relations, color space, col-
or constancy, the pitch of sounds, tastes, and abstract numbers rely on neural transformations 
that support optimal generalization and categorization. Many experiments with human and 
animals perception proved that the use of inter-stimulus distances D to measure similarity of 
stimuli leads to exponentially decaying generalization probabilities P(D)=exp(D) of behav-



ioral reactions. Another universal psychological law says that the discriminative reaction time 
falls off as the inverse of the inter-stimulus distance (Shepard 1987; 1994) Both laws can be 
derived from optimal Bayesian principles. Psychological laws related to perception and men-
tal representation evolved over a long time, reflecting universal physical principles. For ex-
ample, 24-hour circadian rhythm is a consequence of the law of angular momentum conserva-
tion that warrants stable spinning of the Earth. Similarity and causal relations between mental 
representations of physical events are isomorphic to the relations between physical events 
themselves, although there is obviously no direct resemblance of mental representations to 
physical events. This second-order similarity is the basis for efficacy of learning by mental 
simulations of physical events, thought experiments, observed in mental rotation and imagery. 
Apparent motion is constrained by kinematic geometry in three-dimensional space, and re-
flects anticipations about object constancy. 

Geometric/dynamical ideas related to mental models may be found in many fields. Lewin’s 
ideas inspired decision field theory (Busemeyer & Townsend, 1993) and Discrete Process 
Model (DPM) theory (Rainio, 2009). In DPM psychic forces are defined as the probability of 
transition from one cognitive state in valence field to another. Rainio concluded “It seems 
obvious that Kurt Lewin’s brilliant intuitive insights concealed fundamental ideas which lead 
to new understanding not only in dynamical psychology but also in a much greater domain of 
philosophy”.  

Cognitive science book “Mind as motion” (Port and van Gelder, 1995) focused on dynamical 
systems approach as a general framework for theories of cognition, discussing developmental 
processes, language, articulation in speech, decision making, perception, learning, spatial ori-
entation and many other issues. Computational systems used by symbolic cognitive science 
models belong to a restricted subclass of dynamical systems. Most psychological processes 
change in a continuous way and cannot be represented by computational systems. Conceptual 
representation using discrete symbols, verbal descriptions of nonlinear dynamics, may not be 
a good approximation of behavior. Early cognitive science relied on symbolic artificial intel-
ligence in search for unified theories of cognition (Newell, 1994). Reasoning and problem 
solving were understood as search in discrete problems spaces. Several cognitive architectures 
(ACT-R, SOAR, CLARION and others) were proposed as computational models explaining 
many aspects of cognition (see the review in Duch, Oentaryo and Pasquier 2008). This ap-
proach had some successes, but it was never useful in understanding perception, motor control 
or imagery. Recent revival of artificial intelligence based on machine learning, deep neural 
networks and dynamical systems has led to great progress in technical applications. These 
approaches should be fully encapsulated in new cognitive architectures that will advance con-
nectionist models to a new level, providing simulations of many behavioral functions. Generic 
processes of self-organization and learning (Kelso 1997) lead to creation and evolution of 
complex patterned behavior that can be analyzed in psychological spaces.  

Dynamical approach has also been used in developmental psychology to describe grasping, 
crawling and learning to walk (Thelen and Smith,1996; Smith and Thelen 1993). It can ex-
plain many aspects of language, including some features of semantics and conceptual integra-
tion (Fauconnier, 1994), stream of thoughts represented by trajectories in psychological spac-
es (Elman, 1995), and development of natural categories and associations in language in spac-
es created by latent semantic analysis (Landauer and Dumais, 1997). In “The Continuity of 
Mind” (Spivey, 2007) a step towards connecting psychology with brain activity is made, by 
considering trajectories through the neural state space. This approach was applied to motor 
action, vision, formation of categories, language, memory and problem solving.  

Many recent discoveries in neuroscience show that interpreting brain neurodynamics in lan-
guage of dynamical systems leads to a deeper understanding of current psychological con-



structs, and to creation of the new ones, more specific and closely linked to the physical reali-
ty of objectively measured brain activity. Symbolic, conceptual description of continuous pro-
cesses may in most cases be useful as a rough description of behavior. However, more de-
tailed dynamical models of mental processes will be hard to describe conceptually. Some as-
pects of nonlinear dynamics may be visualized in psychological spaces. 

I have formulated definition of mental forces (Duch, 1996; 1997; 2012) similar to the Discrete 
Process Model of Rainio (2009), pointing out that such forces should be measured by the 
probability of transitions between brain states in neurodynamics. We can measure brain ac-
tivity using many techniques, such as EEG, MEG, NIRS, PET, fMRI and other approaches. 
How this neural activity is spread through the connectome to various regions of the brain, and 
how joint activity of these regions is related to behavior is not yet clear. Even worse, descrip-
tion of the phenomenology of mental states through introspections seems impossible, as 
shown for example by Hurlburt and Schwitzgabel (2007), and Schwitzgabel (2011). We can 
describe only those mental states that correspond to strong, repeatable brain activations asso-
ciated with linguistic tokens (Duch, 2012). Neurophenomenology proposed by Varela (1996) 
explores mutual constraints between brain activity and inner experience. Still most of neuro-
science and neuroimaging research ignores subjective experience, while psychological theo-
ries forget about the brain processes behind theoretical constructs they postulate.   

3. Kurt Lewin’s field theory and attractor neural networks 

Lewin was especially concerned with “A dynamic theory of personality” (1935), including all 
factors that may influence behavior. His famous equation B=f(P,E) expresses behavior B as a 
function of both the person P and the environment E. More precisely (Lewin 1951), behavior 
of a person depends on the: genetic and other factors that contribute to the brain structure on 
which personality of this person develops in a given environment; dynamic approach that in-
volves forces determining actions; psychological perspective of a person subjectively perceiv-
ing her/his “life space”, relevant internal-external factors; analysis of the situation, reflection, 
associations, understanding; finally behavior as a function of the total field containing all 
these elements changing in time, described in topological spaces divided into some regions. 
This has been illustrated in his book using a diagram that divides the field into regions and 
arrows representing forces based on valence. Fig. 1 represents positive central force field G 
(Lewin 1938, Fig. 33) and different regions that have influence on this central region. A per-
son P placed in region A exerts some force on C, denoted as fA,C. This is still a metaphoric 
description of intentional activity and goal-directed behavior.  

Fig. 1. Illustration of Lewin’s force field.  

According to Lewin psychology should use constructs to represent causal influences and con-
nections between observations. He has introduced several new constructs, such as valence, 
action research, sensitivity training, group dynamics, mind as a complex energy field, behav-
ior as a change in the state of this field, regions, life space, forces and tension, equilibrium 



states. Complex energy field can be presented in the language of dynamical systems. Trans-
formation between states of activations in neural space S(N) and between mental states S(M) 
described in psychological spaces is already to some degree possible. Brain-computer inter-
faces (BCI) analyze and interpret mental activity, changing it into intentional actions. Mind 
reading is an exciting and rapidly developing field. Mapping from Brain  Mind, or Objec-
tive  Subjective, may be represented in symbolic form as:   

S(B;E)S(M;E’), 

where environment E is reduced at the mental level to E’, psychological perspective of E, as 
Lewin has noticed. “Genetic factors” forming the foundations on which personality may de-
velop are now greatly expanded.  

National Institute of Mental Health (NIMH) in the 
USA has initiated an ambitious Research Domain 
Criteria (RoDC) approach to multi-level neuropsy-
chiatric phenomics (Insel et al. 2010). Instead of 
traditional description of mental disease by listing 
their symptoms deregulation of normal activity of 5 
large brain systems is considered: negative/positive 
valence systems, arousal-regulatory system, cogni-
tive system, and social processes system. These 
systems are characterized at many levels by genes, 
molecules, cells, circuits, physiology at the physi-
cal level, and description of behavior, plus subjec-
tive self-reports, collected using various research 
paradigms. While all physical levels influence be-
havior it is the activity at the neural system level, 
representing Lewin’s complex energy field, that is 
directly responsible for action. Neurodynamics 
explains cognition and behavior, it is measured 
using neuroimaging techniques, and can also be 
simulated computationally using neural network 
models. There is no simple causality here, as envi-
ronment and behavior may influence genetic level, 
changing the system through epigenetic regulation 
of gene expressions. The causal chain includes a loop:  

Environment => Genes => Proteins => signaling pathways, receptors, ion channels, synapses 
=> properties of neurons => development of neural networks, connectomes => neurodynam-
ics  => cognitive phenotypes => behavior, abnormal behavior => syndromes, mental disorders 
=> interactions with the environment. 

I will present here analysis of neurodynamical processes based on computational simulations 
and fMRI neuroimaging experiments, referring to Lewin’s ideas. Artificial neural networks 
are constructed from computational units representing neurons. They receive signals, do sim-
ple calculations and send signals to other neurons. The state of the network is characterized by 
the pattern of activity of neurons that changes in time. Biological neurons have very complex 
structures. Neural simulators should take into account at least basic biological properties of 
neurons, such as excitatory and inhibitory types of connections (activating ion channels in 
synapses of neurons that let positively and negatively charged ions form currents flowing be-
tween inter and extra-cellular space), and spontaneous depolarization decreasing activity of 
neurons (leak current channels). Neural simulator called “Emergent” is a suitable tool provid-



ing biologically inspired model of neurons and their net-
works (Aisa, Mingus, O'Reilly, 2008). The 3-layer model 
of reading has separate layers O for orthography, P for 
phonology, and a large layer S to represent semantics as a 
distributed activity over 140 neural units representing mi-
crofeatures defining concepts. Additional hidden layers 
transform signals flowing in both directions between lay-
ers O  P, O  S, and P  S. The system has learned to 
map each of the 3 layers to the other two for a set of 40 
words by adjusting strength of synaptic connections.  

Activation of the orthographic layer will lead to specific 
patterns of activation in the phonological and semantic 
layers, etc. These activations are not static, they fluctuate 
around specific pattern that persists for some time, depending on network properties and noise 
in the system. Since these quasi-stable patterns attract activity from similar patterns, compet-
ing with each other, they are called attractors of the dynamics. All states that are attracted to 
the same pattern belong to the basin of attraction for that specific pattern. Basins of attractors 
divide the space of neural activity into distinct regions. In case of semantic layer such patterns 
represent concepts, and are linked to symbolic representation in O and P layers. Neural net-
works that have this type of dynamics are called attractor networks.   

Transitions between attractor states are possible because neurons active in such states after 
some time will decrease their activity and desynchronize (due to the leak currents leading to 
spontaneous depolarization). Also noise in the system and new stimuli may push the system 
out of the attractor basins. This process has been described in Lewin theory in terms of psy-
chological forces that act on life energy field changing its state. In the model here neurody-
namics means changes in 140-dimensional patterns of semantic layer activity. This can be 
visualized using several techniques: recurrence plots, fuzzy symbolic dynamics or MDS visu-
alization (Duch and Dobosz, 2011). Presenting selected word as input in O or P layer the sys-
tem reaches attractor state representing the semantics of this word, and the S layer pattern 
fluctuates staying in the basin of attraction, and after some time making rapid transition to 
another attractor state. These transitions usually take place between concepts that have weak 
overlap, sharing some microfeatures. Transitions at the semantic level result in activation of 
the phonological layer that produce a stream of words, serving as a model of the stream of 
thoughts. Dwell time in attractor basin determines the speed of changes in the mental field, or 
speed of attention shifts.  

In Fig. 2 each point represents specific activity pattern in 140 dimensions. Recurrence plots 
(top left) show using color codes distance D(x(ti),x(tj)) between the current state at time ti and 
the state at time tj. Dark square areas along the diagonal show that the system stays in the at-
tractor basin, the trajectory x(ti) changes only slightly. After a short time there is a fast change 
to another attractor. Intermediate states during transitions are too short to activate symbolic 
representations and have no semantic interpretation. Wandering between different attractor 
states is clearly seen in the MDS representation (top right). Fluctuations of the patterns in the 
FSD representation show a few points during transition between basins of attractors and dense 
cloud of points inside the basin of attraction.  

This type of analysis shows the speed of attention shifts in semantic layer in reaction to exter-
nal stimuli or intrinsic dynamics. Certain dysfunctions at the single neuron or neural network 
level may lead to problems with attentions shifts, they may either be to slow or too fast (hy-
peractivity), as it is observed in case of autism or ADHD (Duch et al, 2012).  



  

 

 

 

Similar visualization of dynamics is possible with brain signals from EEG, MEG or fMRI. In 
this case some measures of activity of small brain patches that estimate brain cognitive activi-
ty are evaluated. In case of EEG or MEG it can be areas that have large clustering coefficients 
of Phase Locking Values (PLV) or other measures. In case of fMRI it can be clusters of 
voxels with increased or decreased activity. In this way patterns of correlated activity are dis-
covered, and knowing brain anatomy they can sometimes be interpreted in a meaningful way. 
One of the most exciting areas of brain research is network science (Bassett and Sporns, 
2017), analysis of active networks in the brain. Networks have nodes (localized  populations 



of neurons) that are activated when specific functions are performed. The best hope for under-
standing the sources of cognitive activity, elucidating details of cognitive processes, is based 
on network science. This approach is still in the early stages, our ability to extract meaningful 
information from brain signals is limited, but it already allowed for asking specific questions 
that could not be formulated at the behavioral level.  

Basic human brain anatomy is similar, with standard divisions between brain lobes, fissures, 
gyri, and sulci of the cerebral cortex, and subcortical nuclei, but individual variability is high. 
Are the functional networks similar in all brains, or are they highly individual? Are the brain 
regions highly specialized or are they flexible, and similar level of competence can be reached 
using different sets of network nodes? Can the whole-brain network properties change during 
active task performance? All these questions have important implications not only for under-
standing cognitive processes, but also for practical applications, for example in neurorehabili-
tation. The division between automatic and deliberate psychological processes is now com-
monly accepted. Global Neuronal Workspace Theory (Deahene et al. 1998) assumes two 
main computational spaces: a set of specialized and modular perceptual, motor, memory, 
evaluative, and attentional processors, and a unique global workspace composed of distributed 
and heavily interconnected nodes connected by long-range axons. Thinking, deliberation, 
problem solving, or in general intelligent behavior in new situations require flexibility at the 
global workspace level. If the need arises, for example cognitive load on the whole-brain net-
work is high, they may recruit additional brain regions, including regions that are usually ac-
tive in resting state (Finc et al. 2017). Higher network modularity is correlated with higher 
working memory capacity and better performance. Strong connectivity within modules and 
sparse connections between modules increases effective cooperation of brain regions, and is 
associated with higher IQ. Individual connectome and functional networks that can be activat-
ed in this neural space probably determine all personality traits, preferences, and cognitive 
abilities. They may be used to identify various mental disorders. For example, estimating the 
strength of the most important 16 functional connections was sufficient to reach 85% accura-
cy in distinguishing autistic people form the healthy ones (Yahata et al. 2016). 

4. Conclusions 

Psychiatry has been based on constructs that were derived from behavioral syndromes. The 
attempt to define Research Domain Criteria (RDoC) based on multi-level phenomics shows 
that traditional approach has exhausted its ability for description of abnormal behavior, be-
cause “… these categories, based upon presenting signs and symptoms, may not capture fun-
damental underlying mechanisms of dysfunction” (Insel et al. 2010). Neurocognitive phenom-
ics based on analysis of major brain networks and dynamical concepts is our best chance  for 
understanding abnormal but also normal behavior. Following psychiatry, it should be actively 
pursued in psychology and learning sciences (Duch, 2013). Such approach will confirm the 
basic insights of Kurt Lewin, linking psychology with neuroscience. Without relating psycho-
logical constructs to brain processes situation will be similar to parametric theories that ex-
plain sunsets and sunrises by fitting models to the data. Psychological constructs should “cap-
ture fundamental underlying mechanisms”, and that requires understanding of neurodynamics.  

Does it mean that classical psychological concepts should be eliminated, as Paul Churchland 
(1981) claimed? This is highly doubtful. Approximate description of causal structure of brain 
or behavioral states may sometimes be more informative at a macroscale, as shown by infor-
mation theory analysis (Hoel, 2017). Complex psychological concepts certainly need to be 
better aligned with neurocognitive phenomics. That includes self, personality, consciousness, 
intelligence, talent. Even in categorization experiments purely psychological explanations 



may be quite different than those based on nonlinear dynamics of neural networks (Duch, 
1996). Neurodynamics and neurocognitive phenomics are the key for further development of 
psychological constructs. Is there a shorter route to deep understanding of human behavior? 
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