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Abstract This paper introduces a model of Emergent

Visual Attention in presence of calcium channelopathy

(EVAC). By modelling channelopathy, EVAC constitutes

an effort towards identifying the possible causes of autism.

The network structure embodies the dual pathways model

of cortical processing of visual input, with reflex attention

as an emergent property of neural interactions. EVAC

extends existing work by introducing attention shift in a

larger-scale network and applying a phenomenological

model of channelopathy. In presence of a distractor, the

channelopathic network’s rate of failure to shift attention is

lower than the control network’s, but overall, the control

network exhibits a lower classification error rate. The

simulation results also show differences in task-relative

reaction times between control and channelopathic net-

works. The attention shift timings inferred from the model

are consistent with studies of attention shift in autistic

children.

Keywords Calcium channelopathy � Visual attention �
Autism � Neural network � Task learning

Introduction

The computational modelling approach is a relative new-

comer to neuroscientific enquiry, but can be a valuable tool

to generate hypothesis and complement the experimental

methods used in more traditional sciences of behaviour and

cognition. In particular it may be useful to study the effects

of channelopathies, dysfunctions of ion channels, on cog-

nitive functions. In this paper some aspects of the brain-to-

behaviour links are investigated. Defects to L-type voltage-

gated calcium channels (LTCC) are hypothesised to play a

role in certain cases of autism. A novel neural network

model of the influence of calcium channelopathy on bot-

tom-up visual attention (EVAC) is developed.

Autism is a pervasive developmental disorder of

unknown etiology which affects several aspects of the

behaviour, and is defined by a set of core symptoms. These

symptoms are highly heterogeneous, therefore the term

Autism Spectrum Disorder (ASD) is commonly used.

Because understanding ASD is a difficult scientific prob-

lem with important human and societal repercussions it has

been studied using a large spectrum of approaches (Zim-

merman 2008). Autism was studied from many perspec-

tives: molecular and clinical genetics, neurotransmitters

and cell signaling, endocrinology, growth, and metabolic

processes; immunology, maternal-fetal effects, and neu-

roinflammation, environmental influences, neuroanatomy,

brain imaging, and neural networks. While great efforts

have been devoted to genetics of ASD it is clear now that

hundreds of genes are involved affecting the neuroskeleton

and synapses (Michael et al. 2014). Genetics by itself can
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tell us only about neural structures that are broken, but will

not elucidate the mechanisms that lead to mental disfunc-

tions. Therefore in this paper the neurodynamical per-

spective is investigated (Duch et al. 2013; Duch and

Dobosz 2011; Dobosz and Duch 2010).

At the neurological end of the spectrum, neuroimaging

techniques still lack in either temporal or spatial resolution.

Hence, detailed observations of neural dynamics suffi-

ciently large in scale to unambiguously solve the problem

of autism causation can not be obtained. At the other, more

theoretical end, psycho-developmental theories of autism,

while intellectually attractive and elegantly designed to fit

existing frameworks, are not validated, for want of sub-

stantiating clinical observations. Computational modelling

has the potential to help the study of autism by filling the

gap between descriptive neuroscience and more abstract

psychology models. Explanations at the level of neurody-

namics may be linked to specific biophysical properties of

neurons resulting from protein and genetic abnormalities,

and may show how neurodynamical states of network

composed of such neurons lead to a specific cognitive,

emotional and behavioral dysfunctions. To achieve this

goal models of neurons should be sufficiently detailed to

distinguish, at least in a coarse way, between different

types of ion channels. Neural models of ASD that provide

only general sweeping view of neural dynamics may still

be useful but cannot be linked to experimental neuro-

science (Grossberg and Seidman 2006). In contrast, exist-

ing computational studies of low-level neuronal

mechanisms have demonstrated that accurate modelling of

neuronal response can lead to biologically realistic sys-

temic behaviours (Lanyon and Denham 2009).

The theory of autism causation is presented here in the

context of a computational model of bottom-up visual

attention derived from O’Reilly and Munakata (2000). It

aims at formulating a preliminary model of how autism

calcium channelopathy (Piedras-Renterı́a et al. 2007) can

lead to the disturbed attentional mechanisms observed in

some cases of ASD (Courchesne et al. 1994; Townsend

et al. 1996; Geest et al. 2001). While neither the mecha-

nistic model of bottom-up attention used here (O’Reilly

and Munakata 2000), nor the channelopathy hypothesised

to be at the origin of some cases of autism spectrum dis-

orders are novel (Duch et al. 2013; Dobosz and Duch 2010;

Wany and Wojcik 2014), their simulation and integration

into the model of emergent visual attention with chan-

nelopathy (EVAC) are new.

The EVAC model is a recurrent neural network that

implements the dual-pathway model of vision. In this

model, information from the retinas is first transformed

by a common processing pipeline of sub-cortical and

cortical maps (retina, LGN and V1 area), and later pro-

cessed by several cortical layers in two separate streams,

parietal and inferotemporal. The synaptic weights of the

artificial neural network must be trained to learn the

correct input-output associations, requiring recognition of

the spatial position and the type of object. In EVAC, the

majority of the learning is done using the Leabra learning

algorithm (O’Reilly and Munakata 2000; Aisa et al.

2008).

Besides the trained dual-pathway network, EVAC also

embodies the emergent theory of bottom-up visual atten-

tion, which was first modelled computationally by O’Reilly

and Munakata (2000). In this theory, a shift of attention to a

new salient stimulus is not the result of the activation of a

unique saliency map, but an emergent property of the

network that results from the accommodation property of

individual neural units. Neuronal accommodation mecha-

nism apprehend the decreasing response of neurons to input

after sustained activity. This phenomenon is mediated by

several processes, but mostly depends on the short-term

history of activity of the neuron, and the dynamics of

spontaneous depolarisation, affected by channelopathy.

Thus, it is expected that channelopathy affects reflex visual

attention. The model developed does not account for top-

down attention (see e.g. (Gu and Liljenstrm 2007) for a

computational model that includes prefrontal influence).

This is in part justified by the short timescale involved in

reflex visual attention.

The model of EVAC is instantiated with two different

parameter sets, resulting in: (1) a control network designed

to model attention shift of neurotypical subjects, and (2) a

channelopathic network that aims at modelling the atten-

tion shift in subjects suffering from calcium channelopathy.

The trained networks are tested on attention shift tasks in

the framework of the well-known Posner visual orientation

task (Posner 1980).

The change of activations of all layers partly mediated

by accommodation is observed to result in attention shift

with significantly different timings depending on the

presence of channelopathy. The error rates also vary, but to

a lesser extent. The simplifications made in designing the

network model do not allow for a direct translation of

simulated time units to real time. However, the relative

time differences between the channelopathic network and

the control network are expected to be qualitatively com-

parable to the clinical trials on Posner-type orientation task.

Hence, the results of the simulation of the control and

channelopathic EVAC networks on three attention shift

tasks results in several testable predictions about the rela-

tive attention shift performance of subjects suffering from

channelopathy compared to controls. As it is plausible that

channelopathy explains certain cases of autism, these

simulation results are compared to existing studies of reflex

attention in autistic children, showing concordance with

experimental results.
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Materials and methods

The structure of the EVAC model is specified by defining:

• cognitive function,

• structure of neurons,

• network architecture—connectivity and learning, and

• the model of channelopathy.

Here both the network model, and the cognitive function

simulated, are inspired by the computational studies of

O’Reilly and Munakata (2000). While Emergent does not

allow for detailed structure of individual neurons Bower

and Beeman (1998) it is easier to use in a large-scale

simulations providing insight into the mechanisms

involved Aisa et al. (2008). Simulations of cognitive

functions follow the Posner visual orientation task (Posner

1980).

The EVAC model uses eight layers of neurons to

implement the dual-pathway visual system. The Hodgkin-

Huxley type point neurons (Hodgkin and Huxley 1952) that

populate these layers connect bidirectionally adjacent lay-

ers by excitatory projections, while inhibition within each

layer ensures that activity is sparse, simulating winner-

takes-all dynamics of cortical minicolumns.

The synaptic weights are learnt using a hybrid self-or-

ganised and error-driven algorithm called Leabra, intro-

duced by O’Reilly in (O’Reilly 1996b). This algorithm

tries to approximate biologically realistic network

dynamics using distributed representations, inhibitory

competition, bidirectional activation propagation, Hebbian

competitive learning similar to Kohonen maps (Kohonen

1982) with the error-driven learning principles based on the

Generalised Recirculation algorithm (O’Reilly 1996a). The

model is implemented in the Emergent simulation envi-

ronment (O’Reilly and Munakata 2000; Aisa et al. 2008).

Relations between mutations of specific genes that have

strong expression in occipital lobe (such as MET, KCNS1,

NRXN1, SLC6A10P, NPY1R genes) has been noted in

(Duch et al. 2013). These genes influence neural circuits

relevant to the emergent synchronization necessary for

processing of complex visual stimuli, including faces. In

particular mutations of the KCNS family of genes involved

in forming leak ion channels (the two-pore delayed-recti-

fier potassium voltage-gated ion channels), contribute to

the spontaneous depolarization of neurons. This is captured

in our model by quantitative changes to parameters con-

trolling the dynamics of the response of neurons to their

polarization on different timescales. Such accommodation

or neural fatigue may slow down attentions shifts of

attention (ASD case) or prevent longer focus (ADHD

case). Many types of channelopathies may have similar

influence on neural dynamics, leading to a great hetero-

geneity of symptoms in autism spectrum disorder and other

attention-related disorders. In particular the role of calcium

signaling abnormalities, linked to the L-type voltage-gated

calcium channelopathies, has been documented in the lit-

erature (McEnery et al. 1998; Gargus 2009; Splawski et al.

2004; Krey and Dolmetsch 2007). This hypothesis of the

etiology of ASD and other disorders is modelled at the

neural network level changing the biophysical properties of

neurons to reflect influence of channelopathies on neural

dynamics.

Psychological tasks models

The aim is to model human visual attention capture and

measure its timing in a neuron-level simulation. For that,

we design several input/output tasks that the network then

performs repeatedly to collect timing and performance

statistics. These tasks are inspired by existing studies in

psychology and computational cognitive neuroscience

(O’Reilly and Munakata 2000; Posner 1980).

The attention experiment in (O’Reilly and Munakata

2000, p. 261) uses the simplest possible model of visual

processing1 to qualitatively illustrate that the timing dif-

ferences between valid and invalid trials are compatible

with bottom-up, emergent visual attention.

O’Reilly and Munakata also attempted to implement a

spatial attention shift model (O’Reilly and Munakata 2000)

using the PDP?? simulator, without success.2 Struc-

turally, the EVAC model of reflex visual attention is

improving on and implementing the attention shift model

by O’Reilly and Munakata (2000) in Emergent. The tasks

are inspired by the Posner paradigm (Posner 1980).

The Posner paradigm originally aimed at assessing the

influence of the covert orienting of attention on reaction

time in a simple task: the subject is first shown a visual cue,

followed by an off-centre stimulus. The cue may indicate

where to expect the stimulus to appear (this is called a valid

trial), or may be misleading (in an invalid trial). Posner

considers variations of in the timing between the appear-

ance of the second stimulus and the saccade towards it in

terms of of three phases: disengaging from the current

focus of attention, moving attention to the location of the

target, and engaging the target.

Our computational experiment comprises of three sim-

ple task conditions: Neutral, Gap, and Overlap. Like in the

Posner paradigm, these tasks allow the exploration of the

way interaction between the ventral and dorsal processing

streams enable the reflex orientation of attention. Each task

1 The model in (O’Reilly and Munakata 2000) uses a one-

dimensional input space comprising of 7 discrete locations, 2 input

categories input on a 14-units map diverging into a dorsal and a

ventral pathway, each comprising of one hidden and one output layer.
2 See authors’ note at grey.colourado.edu/CompCogNeuro.
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corresponds to one condition, and is either performed by a

network with units simulating channelopathy, or by a

control network, with nominal unit parameters.

The Neutral condition

The Neutral condition is meant to assess the time to fix

attention in the absence of any distractor, from a neutral

state of activity.

In this condition, the network is at rest, without any

input stimulus. After a short period of time, a stimulus

appears at a random location on the input map. The time is

measured from the appearance of that stimulus to the set-

tling of the dorsal and ventral maps on the correct location

and identity. Figure 1 is a time diagram of the Neutral task

condition, showing its two phases N(1) and N(2).

The Neutral condition is a control condition, as it is not

an attention shift task, but meant to be compared against

the other conditions that are directly related to attention

shift. In terms of the three phases of attention shift that

were posited by Posner, the Neutral condition should assess

the time to move attention to the location of the target, and

to engage the target. The disengagement from the current

focus of attention does not exist in the Neutral condition,

because the network is not presented with any input.

At the start of the task, the network activity is null, and

all neurons’ membrane potentials are at rest. Hence, it is

expected that, during the first phase of the Neutral task

condition N(1), in which there is no input, the output layers

of the control network remain inactive. The channelopathic

network should also remain inactive, as accommodation

and hysteresis, the two parameters affected by chan-

nelopathy, only affect the activity of neurons beyond a

short period of activity. During the second phase of the

Neural task condition N(2), the timing engagement of

attention to the emerging stimulus could be affected by

channelopathy. The task finishes when both output maps

have settled on the correct stimulus location and identity,

or failed to do so after a timeout.

The movement of attention is a psychological concept

that is expected not to have a great significance at the

neural level in the Neutral task, as attention is not shifted

from one location to another, or from one object identity to

another. Instead, activity is expected to emerge at the right

spatial location on the dorsal output map, and with the

correct output category, thanks to the interaction of all

maps’ k-WTA inhibition and bidirectional excitation.

The Gap condition

The Gap condition is the first of the attention shift tasks. It

is meant to study attention shift when the network has

recently been (but is not anymore) presented with a

distractor.

The four phases of the timeline of the Gap condition

are represented in Fig. 2. During phase G(1), the network

is first run without any stimulus for a small duration.

Afterwards, the input sequence is divided in three phases.

First, during phase G(2), a stimulus is presented to the

input map in a random location A. After a while, this

stimulus disappears, and the input map remains turned off

for a fixed duration [phase G(3)]. Finally, during phase

G(4), a new stimulus appears at a location B 6¼ A and

remains displayed on the input map until both output

maps show the correct stimulus location and identity, or a

timeout is reached. The duration of phase G(4) during a

successful trial determines the speed of attention shift to

the stimulus at location B.

Fig. 1 Organisation of the

Neutral task condition in the

simulated reflex attention shift

experiment
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In this condition, neurons start at rest, and should remain

so during phase G(1), for the same reasons as in the Neutral

condition. Similarly, during phase G(2), output maps are

expected to converge to the correct spatial and categorical

activations to reflect the input presented at A, and sustain

that activity until phase G(3). Once input activity ceases at

the start of phase G(3), the network’s overall activity is

expected to gradually decrease, until phase G(4). During

phase G(4), input is expected to drive the emergence of a

different pair of outputs than during G(2). However, the

remaining activity from past input A may temporarily

hinder convergence to category and spatial output repre-

sentations of input B. Furthermore, the accommodation and

hysteresis changes driven by channelopathy should affect

that convergence delay. This effect of the model of chan-

nelopathy are of primary interest.

The overlap condition

The Overlap condition, shown in Fig. 3 is the second task

meant to capture an attention shift process. In this task, the

target appears while the distractor is still present.

Phases O(1) and O(2) of the Overlap condition are the

same as G(1) and G(2) in the Gap condition. However,

phase O(3) consists in the simultaneous display on the

input map of the first stimulus at location A, and of a

second stimulus at a different location B. After a short

while, in the last phase of the Overlap condition, the initial

stimulus disappears, and the second stimulus remains dis-

played at location B [phase O(4)]. This last phase is fin-

ished when the output maps display the correct location

and identity of the second stimulus. Like with other con-

ditions, invalid outputs are those that have not converged to

the correct identity and location within the imparted time.

The total duration of phases O(3) and O(4) determines the

duration of reflex attention shift in the overlap condition, as

the second stimulus appears at the start of O(3).

The two first stages of the Overlap condition are the

same as in the Gap condition; the same behaviour is

expected. However, O(3), in which two stimuli are simul-

taneously active at A and at B, is very different from G(3),

without input. Whereas overall activity should gradually

decrease during G(3), it should slightly increase in O(3).

Indeed, the goal of the Overlap condition is to examine

reflex attention shift towards the new stimulus B in the

presence of the existing detractor A. As the stimulus at

A has already been displayed for the duration of O(2) when

O(3) starts, the units that collectively represent it in each

map of the spatial and object streams should be accom-

modated, allowing for the emergence of the representation

of the new stimulus at B and the relative fading of that at

A. Hence, during phase O(4) with only the newer stimulus

displayed, the attention shift may already be underway. As

the effects of autism channelopathy on the tradeoff

between focusing attention in one location and shifting

attention to a new one are the main focus of the experi-

ment, the effect of channelopathy on total attention shift

time is measured. The emergent attention hypothesis

implemented by unit accommodation and the dual-path-

ways vision model are the implementation context of this

study of the focus/shift tradeoff; they are assumed suffi-

ciently representative of the biological reality.

Model of channelopathy

There are two important mechanisms with respect to cal-

cium channelopathy and visual attention. First, at the unit

level, calcium channelopathy is assumed in the EVAC

model to have behavioural consequences in autism. Sec-

ond, the reflex visual attention processes are implemented

Fig. 2 Organisation of the Gap

task condition in the simulated

reflex attention shift experiment
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in EVAC both structurally, as the networks replicates

visual streams, and at neuronal level, using unit accom-

modation as the main driver of reflex attention shift.

Calcium homeostasis and signalling in autism is a rel-

atively unexplored topic in the literature. Existing studies

hypothesised the emergent attentional effects of specific

calcium channels defects as a possible root cause for some

symptoms observed in cases of autism and autism spectrum

disorders. They have indicated that calcium chan-

nelopathies may be common occurrences in autistic sub-

jects (Lu et al. 2012; Gargus 2009).

There is evidence that disturbed immune activity during

neurodevelopment may be part of the causal factors of

autism, as the symptoms of autism have repeatedly led

researchers to believe in a poorly regulated immune

response of autistic children (Ashwood et al. 2006; Vargas

et al. 2005). Such dysregulated immunity could impair the

development of the neural system, as the latter depends on

a balanced immune response (Ashwood et al. 2006). Fur-

thermore, the maintenance of calcium homeostasis is cru-

cially important in the functioning of immune cells,3 and

recent studies have revealed evidence of altered Ca2?

homeostasis in ASD (Palmieri et al. 2008; Napolioni et al.

2011). Together, these studies point towards a causal link

from channel-mediated intracellular calcium imbalance in

autism and the disturbed neurodevelopment of autistic

subjects.

There is also direct evidence of both offset calcium

homeostasis and disturbed calcium signalling pathways in

the autistic brain. Dysregulated calcium homeostasis has

been observed at the macro level by Palmieri et al. (2008).

This finding of dysregulated homeostasis was later linked

with calcium signalling defects by Napolioni et al. (2011).

It is known that voltage-gated calcium channels are

essential to neuronal maturation and differentiation, in

addition to their central function in neural information

processing (McEnery et al. 1998). The body of evidence on

these calcium signalling pathways anomalies in the neu-

rons of autistic subjects consists primarily in a growing

corpus of genetic studies. Indeed, the genetic evidence

linking autism and calcium channelopathies is clear, as

exposed by Gargus (2009). However, the exact nature of

that link is not yet understood. Among recent works, (Lu

et al. 2012) uses GWAS data to demonstrate that the cal-

cium channel genes contributing to neuronal function have

a definitive role in some cases of ASD.

The model of EVAC focuses on these potentially dis-

turbed transmembrane calcium channels. One type of cal-

cium channel, called voltage-gated calcium ion (Ca2þ)
channel (VGCC), is of particular interest in neuronal

dynamics. VGCC are very important actors in action

potential (AP) propagation, in addition to being involved in

muscular contraction, and endocrine and hormonal releases

(Dolphin 2006). Their role in AP generation and propa-

gation is cyclical, as it consists in further depolarisation of

the membrane in response to an initial decrease of elec-

trical potential. The modelled calcium channelopathy,

which results in increased overall neural activation but

3 Autistic subjects often suffer from a disturbed immune system

(Ashwood et al. 2006). In parallel, the importance of calcium

homeostasis in the immune response is evidenced by the cytopathic

effects of the Ca2? homeostatic imbalance triggered by several viral

infections, see for instance (Poggi et al. 1998; Zocchi et al. 1998;

Cheshenko et al. 2003). Misra et al. (1999) also showed that

beryllium toxicity is in part the result of altered Ca2? metabolism

in mononuclear phagocytes consequent to reversible opening of

plasma membrane channels, which not only reveals the central role of

calcium homeostasis in the immune system, but also that of

membrane calcium channels in that process.

Fig. 3 Organisation of the

Overlap task condition in the

simulated reflex attention shift

experiment
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longer accommodation, is hypothesised to model the effect

on neural activity of the VGCC anomalies conmorbid with

autism. Specifically, our working hypothesis of chan-

nelopathy is primarily justified by the recent linkage of

defects in a subtype of VGCC called L-type voltage-gated

calcium channels (LTCC) with the Timothy syndrome, a

well-known channelopathy. The Timothy syndrome is

notable for being one of the rare monogenic channelopathy

paradigms, and furthermore presents core autism as a major

symptom (Gargus 2009). Notably, the Timothy syndrome

is a condition proven to be caused by the mutation of a

gene (CACNA1C) encoding a sub-unit of LTCC (Splawski

et al. 2004), and as such is proven to be the root cause of an

autism-causing voltage-gated calcium channelopathy.

Furthermore, LTCC are of particular importance in a

number of the biological systems and processes whose

disruptions produce significant symptoms of autism.

Hence, the disturbed neurodevelopment and more frequent

immune and gut problems of autistic children gives rele-

vance to the hypothesis that calcium signalling distur-

bances (Krey and Dolmetsch 2007) is an important

component the etiology of the syndrome.

It is necessary to verify that the proposed model of

channelopathy triggers the expected electrical behaviour of

individual neurons. For that, we analysed various scenarios

by adjusting the parameters of the unit model and

observing the effects on the simulated electrophysiological

timeline.

The dysfunctions of LTCC present in cases of autism

lead to an excess of calcium influx (Piedras-Renterı́a et al.

2007). LTCC are the main actors of the chain reaction that

generates action potentials. We can model the excess of

calcium influx during AP generation by increasing �ge
above its control value, resulting in an increased depolar-

isation of the membrane for the same input. On short term,

the unit is more active, but on longer term, the hysteresis

and accommodation mechanisms, being activated by intra-

cellular calcium concentrations, are expected to modulate

the activity of the unit earlier.4

Accommodation and hysteresis are each modelled by

one ionic channel that can be seen as letting positive or

(respectively) negative charges into the cell, although it is

likely that the phenomena of hysteresis and accommoda-

tion in biological neurons involve more channels and other

triggers.

Figure 4 illustrates the behaviour of the model neuron

subject to the approximations of accommodation and hys-

teresis (control unit), as compared to channelopathic units.

The net input on Fig. 4 traces the external stimulus send to

the unit, turned on from cycle 10 to 200; membrane voltage

is the membrane potential, net current traces the transfer of

electrical charges through the membrane, and net output

shows the rate-coded cell output.

Figure 4 superposes the activation of the control unit

(faded traces, �ge ¼ 0:4, dtbh;inc ¼ dtba;inc ¼ 0:01) to the

activation of the unit implementing the proposed ion

channel disturbances (dark traces, �ge ¼ 0:45; dtbh;inc ¼
dtba;inc ¼ 0:03). The authors could find no published studies

that would quantify the change in electrical properties of

channelopathic neurons. Consequently, the values of the

disturbed ion channel parameters were determined heuris-

tically, so that the qualitative behaviour corresponds to the

expected raised maximal excitability, earlier hysteresis,

delayed and longer accommodation that can be expected

from their functions (Lipscombe 2002) as illustrated in

Fig. 4. The net input, the membrane potential, the transfer

of electrical charges through the membrane, and the rate-

coded cell output are all traced twice, once for the control

unit, and once for the channelopathic unit. We observe that

the model of channelopathy triggers a higher net input,

following the larger �ge, and an increased output rate,

expected result of the raised excitability. Hysteresis takes

place much earlier, and the start of the accommodation is

slightly delayed by the influence of the larger earlier

activity that on the basis variable. Accommodation and

hysteresis lasts longer than in the control unit. While the

total depolarisation obtained after hysteresis is higher than

in the control, the difference is entirely accounted for by

the larger initial depolarisation, and the additional offset

brought by hysteresis is the same. Similarly, the hyperpo-

larisation that results from accommodation is of the same

amplitude as in the control case. The fact that the voltage

offsets of hysteresis and accommodation do not vary with

channelopathy is reasonable, because hysteresis and

accommodation are the phenomenologically modelled

effects of a variety of cell mechanisms that are not

expected to make direct use of LTCC (O’Reilly and

Munakata 2000).

Visual pathways

The structure of the neural network of EVAC is designed

following current knowledge and theories of visual path-

ways and reflex visual attention.

The hypothesis that channelopathic neurons lead to

cortical networks with dynamic properties that are symp-

tomatic of ASD only constrains the properties of the neu-

ron model, and not of the network. The choice of which

cortical network to model remains up to us modellers. It is

reasonable to choose to model a subsystem for which

existing computational models are known to replicate the

4 These changes in timings of accommodation and hysteresis are

simulated by decreasing respectively dtba ;inc and dtbh ;inc, as explained

in Eqs. 4 and 5.

Cogn Neurodyn (2016) 10:49–72 55

123



neural implementation with reasonable fidelity. Choosing a

neural subsystem that is sufficiently well-understood is

advantageous to build a simplified model with some under-

standing of the consequences of the simplifications made. In

our case, we also want to have easily understood and

experimentally accessible correspondences between the

inputs and outputs of the model of EVAC and those

observable in a similar psychological experiment on human

subjects. To directly map model inputs to non-invasive

experimental stimuli, the input layer of the model must

correspond to a sensory area. Similarly, if one is to easily

interpret the model response in terms of externally measur-

able behaviour, the output of EVAC should readily translate

into expected muscular, physiological, or ERP5 recordings.

Considering the above factors, we found that the reflex

orientation of visual attention6 seems an appropriate

mechanism to model. Reflex attention designates the

involuntary and fast focus of the abstract ‘‘attentional

spotlight’’7 towards a stimulus. In the case of visual reflex

attention, the focus is physiologically measurable by the

orientation of the gaze, which occurs either by the saccadic

rotation of the eyeballs alone or by the rotation of the head

together with the compensated eye saccade. Hence, the

output of a model of visual attention should translate into a

physically measurable event. Input to the model is also

sensory and well-understood. Furthermore, the mammalian

visual systems are among the least misunderstood central

nervous subsystems (Turiel and Parga 2003), and numerous

computational models exist that accurately predict prop-

erties of the human visual system. Finally, several studies

have revealed abnormal reflex orientation of visual atten-

tion in ASD subjects [see for instance (Elsabbagh et al.

2009; Geest et al. 2001; Townsend et al. 1996, 2001;

Zwaigenbaum et al. 2005)]. Altogether, these properties

make the study of the reflex orientation of attention in the

visual system a prime candidate for the projection of the

effects of calcium channelopathy on behaviour. In addition,

there is a potential for generalisation of some results to

Fig. 4 Trace of the activation

of a single unit with

accommodation and hysteresis.

The traces in faded lines

correspond to a unit with

standard parameters, and in

saturated lines, to a unit

modelling a calcium

channelopathy

5 Event-related potentials are EEG-recordable correlates of motor or

cognitive events.
6 Throughout this paper, reflex visual attention is also called bottom-

up visual attention, visual attention capture, or, where there is no

possible ambiguity, visual attention.

7 The term ‘‘attentional spotlight’’ is mostly used to illustrate the

selectivity of attention. It may not be a good illustration of the

neurological processes underlying attention.
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other modalities. First, the cortical networks are rather

uniform in their microstructure. Second, primary sensory

cortices share organisational features. So results obtained

with a model of low-level visual attention may guide the

explorations of aural, tactile or other modalities.

Overview of the visual system

In the human brain, visual information from one side of the

visual field is processed by the contralateral hemisphere.

Schematically, data are transmitted to successive cortical

maps,8 in a serial flow with recurrent modulatory

connections.

The concept of receptive field of a neuron on a cortical

map is central to the whole chain of visual processing. For a

given neuron i receiving an input projection from an input

mapM, a receptive field of i onM is a set of topographically

adjacent neurons ofM that project their outputs on i. Figure 5

illustrates how each unit receives its input from a patch of

topographically adjacent units of the preceding map.

This organisation results in an increasingly broader

indirect coverage of the visual field by units farther along

the processing chain. In Fig. 5, units are grouped into

minicolumns, and sections of the input and post-synaptic

maps with adjacent minicolumns are respectively denoted

by A and B. Neuron j1 in neural map B receives inputs from

several adjacent units of the preceding layer A. Its neigh-

bour, neuron j2, is part of the same cortical minicolumn,

and as such receives inputs from a similar set of neurons in

A. All units in the minicolumn j have the same receptive

field, and units from adjacent minicolumns share a portion

of the receptive fields of their neighbours.

We follow Ungerleider and Haxby (1994), who schema-

tise the organisation of the visual system using a dual path-

way theory. The signal propagates from the retinas in the

eyes, to the extrastriate cortices (V1 and V2), following the

path of the optic nerves. These nerves start at the retina and

transmit visual information to the optic chiasm, in which the

nerve bundles are rearranged by hemisphere.9 Then, the

signals reach the LGN,which processes them to extract some

microfeatures in both spatial and temporal domains. The

processed signal is then transmitted to the primary visual

cortex (V1), which performs further microfeatures extrac-

tion from several components of the visual signal using its

receptive fields on theLGN.The same principles underlie the

functioning of the secondary visual cortex (V2), which takes

its inputs from the first visual cortex (V1), extracting slightly

more complex features. After passing through V2, the visual

pathway diverges into two separate streams, leading up to the

splitting of the processing pathways into dorsal and ventral

streams. The dorsal stream units are more sensitive to loca-

tion information (position and motion), while the ventral

stream units activate in response to the presence of geometric

features of increasing complexity andwith decreasing spatial

location sensitivity. This where-what duality makes these

two streams complementary. The ventral visual stream is

considered to end in the inferior temporal cortex (IT), and the

dorsal stream, in the posterior parietal cortex (PPT)

(Ungerleider and Haxby 1994).

The EVAC model simplifies the biological pathways by

only representing the identity of a simple visual stimulus

(ventral pathway output) and its coarse spatial location

(dorsal pathway output). It omits the more complex pro-

cessing and interactions of later stages (Schenk and

McIntosh 2010).

Each neural map of the visual system contains neurons

that are each sensitive to one feature, but covering alto-

gether the entire visual field with a wide variety of features.

Most features are not absolute, but rather consist in local

spatial or temporal differentials. In EVAC, we only tune

A

B

Fig. 5 Diagram illustrating the organisation of receptive fields (RF)

in topographical cortical maps

8 Cortical map is the term used to name a sheet of cortical neurons

with similar functions.
9 This decussation of the optic nerves does not affect the information

processing in EVAC.
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V1 neurons to the contrast orientation feature at a specific

spatial frequency, because the input samples are unmoving

black-and-white line drawings.

Neural unit model

Overview

The EVAC uses a point neuron model. The point neuron is

a conductance-based model of biological neurons that

abstracts the complex electrical state of the neuron into a

vector of numbers aggregating the values of its ionic

concentrations and trans-membrane ion flows. We choose

this type of neuron model because it entails a level of

abstraction that suits the goals of the model: the Hodgkin-

Huxley equations used provide sufficient modelling power

to represent channelopathy, while keeping the computa-

tional cost of the simulation manageable. The neuron

model used comprises of five types of channels: the leak

channel l, the excitatory input channel e, the inhibitory

channel i, the accommodation channel a and the hysteresis

channel h, in a system formalised and implemented by

O’Reilly and Munakata (2000). For convenience, we use

symbols similar to (O’Reilly and Munakata 2000).10

Three parameters model the state of each trans-mem-

brane ionic channel a: Ea; g
t
a, and �ga.

Parameter Ea represents the reversal potential for the ion

carried by channel a. This is the difference of electrical

potential between the inside and the outside of the nerve cell at

rest when the trans-membrane diffusion force of this ion is

exactly countered by the electric force. The relative concen-

trations of ions oneither side of the cytoplasmicmembrane are

considered constant because the currents are small and as

biologicalmechanisms exist tomaintain these concentrations.

This first parameter is a static property of the cell.

Parameter gta represent the proportion of the total

number of channels a that are open.

Parameter �ga indicates the total conductance for a when

all of the channels for a are simultaneously open. The

product gta�ga consequently represents the conductance for

channel a at time t.

At timestep t, the current I for some channel a is cal-

culated using Ohm’s law, as the conductance for that

channel at t multiplied by the potential for that channel at t.

The potential Vt
a for a at t depends on the membrane

potential at t (Vt
m) and on the equilibrium potential of a

denoted Ea; V
t
a ¼ Vt

m � Ea. This gives Eq. 1:

Ita ¼ gta�ga Vt
m � Ea

� �
ð1Þ

The above expression applies to all five a channels and thus
models all ionic currents of the point neuron. It constitutes

the basis to build the model of ionic current, and the

dynamics of trans-membrane voltage. The following

describes these five channels.

a ¼ l The leak parameters model the constant potassium

leak channels that the membrane of all neurons

exhibits. The reversal potential of the leak channel

is El ¼ 0:15, its maximal conductance is �gl ¼ 0:1

and is always reached, so the proportion of open

channels gl ¼ 1 at all times.

a ¼ e The excitatory input synaptic channels let Naþ

enter the cell when glutamate released by the

presynaptic cell binds to the synaptic receptor.

Hence, the point unit model of the neuron lets gte
directly and linearly depends on the excitatory

input, and is by definition within 0; 1½ �. gte is
therefore practically confounded with the unit’s

net input, as used in a traditional ANN. The

arbitrary voltage and conductance units of the

simulation are chosen such as Ee ¼ 1 in the default

case and �ge ¼ 1. The expression of the share of

open excitatory input channels gte is derived

further below.

a ¼ i The inhibitory channels are most often GABA-

sensitive receptors that let Cl� ions in to drive

back the membrane potential towards the resting

potential, as the reversal potential is the same as

the membrane potential, -70mV (0.15 in

simulation units).

a ¼ a Together with hysteresis (subscript h),

accommodation allows the neuron to temporally

integrate its state. The accommodation parameters

are an abstraction of all ionic channels that are

sensitive membrane potentials and ionic

concentrations indicative of electrical activity, and

which opening results in re-polarisation, and hence

in inhibition. The mechanism of accommodation

models neuronal fatigue. The default value of the

resting potential Ea ¼ 0 follows from the expected

behaviour of accommodation to bring back the

membrane potential to the resting value, while the

value of �ga ¼ 1
2
is empirically determined.

a ¼ h Hysteresis is the reciprocal of accommodation: it

designates the excitatory opening of channels in

response to cell depolarisation, even in the absence

of immediate synaptic input. This phenomenon

does not conflict with accommodation because it

operates on shorter time scales. The equations

involved are formally the same, but the default dtbh
parameter is larger than dtba , resulting in the time

scale differences observed in vivo.

10 In equations, literal symbols that relate to a particular channel are

subscripted by a letter that identifies the channel, or by a for a generic

expression applicable to several channels.
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For all channels, Ea and �ga remain constant throughout

each simulation. The leak channels do not adjust their

opening rate, so typically gtl ¼ 1. For other channels, gta is

variable. The precise update equation depends on the

channel a considered, as ionic channels are sensitive to the

different factors described above.

The functioning of ionic membrane channels approxi-

mation is shown for each type of channel (Eqs. 2–5).

Excitatory channel

Before giving the update equation of the excitatory input

channel, it is necessary to describe the organisation of the

unit inputs into projections. A projection consists in the

conceptual grouping of inputs from the same cortical

region. Projections are useful in EVAC because activity

levels of inputs from different regions can greatly differ.

The excitatory conductance of the projection k (Eq. 2) is

the the average of normalised inputs scaled to correct for

expected activity ak:

gtek ¼
1

ak
xtwh ik ð2Þ

The total input to the unit is the average of the excitatory

conductances of all np projections
1
np

P
k gek . To update the

excitatory conductance of the whole unit, an arbitrary term

dtnet 2 0; 1� ½ is used that scales gtþ1
e to a value between the

previous value gte and the net input. The effect of a unit bias

weight term b that aggregates all differences in excitability

that arise between any two neurons is integrated (O’Reilly

and Munakata 2000).

The resulting expression (Eq. 3) updates the net input to

a unit.

gtþ1
e ¼ 1� dtnetð Þgte þ dtnet

1

np

X

k

gtþ1
ek

þ b
N

 !

ð3Þ

Accommodation and hysteresis

The update equation of the conductance of the accommo-

dation and hysteresis channels have the same form, shown

in Eq. 4:

gtþ1
a ¼

gta þ dtga 1� gta
� �

whenbtþ1
a [Ha;a

gta þ dtga 0� gta
� �

whenbtþ1
a \Ha;d

(

ð4Þ

where dtga is a reactivity constant, and the variable ba
(introduced below) is compared to an activation threshold

Ha;a or a deactivation threshold Ha;d.

Equation 4 is hence naturally defined piece-wise, in

terms of this estimate of recent unit activity bta. bta is

defined by Eq. 5:

btþ1
a ¼ bta þ dtba ytþ1 � bta

� �
ð5Þ

where yt is the rate-coded output of the unit, and the term

dtba adjusts the reactivity of bta, hence reflecting how much

time is integrated. The relatively longer setting delay of

accommodation compared to hysteresis is implemented by

varying the time integration parameters dtba and dtga pre-

sent in Eqs. 4 and 5.

Inhibition

The inhibition of a unit is a function of the network

structure because it integrates the recent activity of other

units in the same neural map. Consequently, it is defined in

‘‘Modelling of lateral intra-map connectivity’’ section, after

the network structure and connectivity has been. The

numerical expression of gi is shown in Eqs. 10 to 12.

Cell membrane current and voltage

Having determined how to compute all dynamic channels’

conductances ga, the current flow at the cell membrane Ia
can be calculated at each timestep using Eq. 1.

From there, the trans-membrane electrical potential Vm

is updated at each timestep following Eq. 6:

Vtþ1
m ¼ Vt

m � dtvm
X

a¼e;i;l;a;h

Ita ð6Þ

where dtvm is a time-averaging parameter slowing down the

change in membrane potential (O’Reilly and Munakata

2000) and Ita is the total electrical current going through the

membrane at time t.

The integrate-and-fire mechanism of the neuron is

modelled by Eq. 7 approximating the activation rate yt.

yt ¼
c Vt

m �H
� �

þ
c Vt

m �H
� �

þþ1
� N x;

1

200

� �
ð7Þ

where H is the membrane threshold for action potential

generation, Vt
m is the trans-membrane electrical potential,

and N x; 1
200

� �
is a Gaussian noise kernel with variance

0.005. Equation 7 is the positive half of a sigmoı̈dal acti-

vation function with a gain parameter c (defaulting to 600),

like often encountered in artificial neural networks. In the

present case, it is convoluted with a Gaussian function in

order to better simulate the effects on instantaneous firing

rate of the activation noise observed with live nerves. The

parameter values have been determined by O’Reilly and

Munakata (2000).
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Network design, connectivity, and learning

Layer structure and connectivity

The architecture and processing mechanisms of the mod-

elled network in EVAC aims at imitating some aspects of

human visual pathways.

In reality, the human brain transmits richer visual sig-

nals and along more complex pathways. The EVAC model

only retains those mechanisms essential for object-based

reflex attention tasks. These mechanisms are based on the

relevant biological visual pathways, following the general

principles of cortical connectivity:

• afferent connections are accompanied by symmetrical

efferent connections, effectively making networks

recurrent (Sporns et al. 2007),

• the structure of maps and intra-map connectivity follow

similar principles all across the cortex,

• inhibitory competition dynamics regulate intra-layer

activity levels, and

• learning is implemented as a biologically plausible mix

of Hebbian learning and two-phases error propagation.

The model of attention was build on previous simpler

models of vision and of attention from O’Reilly and

Munakata (2000). The connectivity follows the general

principle of layered cortical maps with receptive fields

(RF) connectivity and feedback. The units of each cortical

layer are organised in cortical minicolumns, topographi-

cally adjacent ones covering adjacent regions in input

space with some amount of RF overlap. Assuming a uni-

form distribution of input over the visual field, all the

minicolumns of one layer can be set up to share a common

set of weights.

The specific connectivity parameters and the general

architecture of EVAC stem from the literature (O’Reilly

and Munakata 2000). Figure 6 presents an overview of the

network. The input layer accepts contrast images (in

greyscale).

The input pattern is imposed onto a 48� 48 input layer,

from which lateral geniculate nucleus (LGN) units take

their input. The LGN layer combines the processing of

centre-surround ganglion cells of the retina and of the

thalamus. This encoding enhances contrast areas of the

input picture, letting cells of the first visual cortex (V1)

respond to oriented edges with a polarity preference. V1 is

an edge detector and is modelled by a 24� 24 mini-

columns map of 8 units per minicolumn, whose fixed

weights form a set of Gabor filters that selectively respond

to a specific orientation and polarity in the RF. Over the 8

units of each V1 minicolumns, 4 respond to edges oriented

at 0�, 45�, 90� and 135� over RF of 6� 6 on-centre LGN

units, and the 4 other units of the V1 minicolumn respond

to the same angles, but over 6� 6 RF of the off-centre

LGN map.

V1 is connected to V2, a feature detector layer of 12� 12

minicolumns. Each minicolumn contains 36 units with recep-

tive fields of 16 V1 minicolumns. V2 cells respond to more

complex features, while remaining spatially representative.

The dorsal steam (left on Fig. 6) then specialises in responding

to the spatial location of the stimulus, while the ventral stream

(right) learns to respond to the category of the input.

V2 is connected to a simple ventral pathway starting

with 6� 6 minicolumns V4 map with 81 units per mini-

column. The RF of these minicolumns on V2 is 4� 4

minicolumns with a 50 % overlap. The output of V4 is

fully connected to a simple map of 12� 12 units labelled

IT, an intermediary representation which output is input of

a semantic output layer. That output layer of 6 units is

trained to associate one unit per object identity. It is meant

to represents very roughly any higher level abstraction of

the input (past the inferotemporal cortex); this abstract

knowledge is learnt in a supervised manner, so as during

the running phase, the semantic output layer shows the

identity of the object.

Fig. 6 Overview of the structure of the visual attention network
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Backward connections run back through both streams

down to V1. Such feedback projections are also a typical

pattern of connectivity throughout the cerebral cortex

(Kandel et al. 1991). Backwards connectivity is omnipre-

sent in the cortex; it is modelled here because it is assumed

to be both a primary learning mechanism, used for the

back-propagation of error signals, and to have a central role

in the amplification of changes in relative activation due to

neuronal fatigue.

All inter-layer connections are excitatory (arrowheads)

and reciprocal starting from V1, letting higher layers

influence feed-forward processing during learning and

testing. All hidden and output layers recurrently inhibit

themselves (k-WTA intra-layer inhibition), thereby regu-

lating their own maximum activity levels.

All neural maps are typographically toroidal to avoid

the effects of under-connectivity at the edge. Indeed,

in vivo, networks are of much larger scale, and maps are

regions of a continuous neural substrate. Consequently,

edge effects are not observed and should be avoided in

simulation.

Cortical networks structure

Cortical intra- and inter-map connectivity into logical

layers is adapted from (O’Reilly and Munakata

2000).

Cortical maps are physically six-layered, and concep-

tually three-layered. The term ‘‘layer’’ will henceforth

mean an abstract layer if not otherwise qualified. The input,

hidden and output layers of a cortical map respectively

correspond to physical layers 4, 2 and 3, 5 and 6. This

tiered organisation is very consistent across the whole

cortex, although the preponderance of each type of layer

varies according to the use of the map.

The connectivity between and within layers of a cortical

map is illustrated in Fig. 7.

The circular connectors represent inhibition, and the

triangular ones are excitatory. Long-range cortical con-

nections happen at physical layers 2 and 3. In the diagram,

some abstract cortical regions a, b and c are chained into a

processing pathway starting at input map a, passing

through the ‘‘hidden’’ map b, and ending at output layer

c. This shows how such structures integrate to form the

connectivity between cortical regions.

Another principle of cortical networks is the bidirec-

tional character of map connectivity (Kandel et al. 1991),

hence the feedback connections from b to a and c to b on

Fig. 7. This is a necessary condition for map development,

as error-driven learning has to imply a form of error

backpropagation, and a primordial mechanism of the reg-

ulation of reflex of visual attention.

Modelling of lateral intra-map connectivity

Within each map, the lateral connectivity is inhibitory on

long neighbourhood range, and excitatory on shorter range.

Lateral excitatory connections are represented by Gaus-

sian-weighted connections to the topographical neighbours,

while the more global inhibitory mechanisms are not

explicitly modelled using inhibitory interneurons, but by

the application of a map-level algorithm, the k-Winners-

Take-All (k-WTA) inhibition scheme.

The k-WTA algorithm is directly derived from classical

SOM learning algorithm, widely used in neural modelling

(Kohonen 1982). In maps where units are functionally

clustered in several minicolumns, the algorithm is applied

twice. It is first applied among all units in a minicolumn

and then to all units in a layer.

In its simplest form, the k-WTA function computes a

common inhibitory channel opening gi for all units of the

map so that the k units with the highest excitatory input ge
are the only ones above threshold.

The expression of the inhibitory conductance at the

threshold gHi in Eq. 8 is derived from Eq. 1:

gΘ
i =

It
net − It

i (without bias)

net current for l, a, and h

α∈{l,a,h}
(gαḡα (Θ − Eα)) +

net excitatory current

g∗
e ḡe (Θ − Eα)

Ei − Θ

potential between inhibitory equilibrium and AP threshold

ð8Þ

whereH is a threshold membrane potential value, gHi ðlÞ is the
inhibitory conductance at the thresholdH of unit l, which is the

inhibitory conductance necessary to bring unit l to the AP-

production threshold given its current excitatory input, andg�e is

the excitatory input deprived from the bias input b (see Eq. 3).

From that point, two ways of computing the proportion

of open inhibitory channels gi are proposed:

– A simple mechanism consists in ordering units by their

current level of excitatory input ge and taking gi between

the inhibitory conductance at the threshold of unit k. Unit k

is to be the weakest activated unit still included in the k

winners, and unit k þ 1, the strongest activated unit of the

losers. A parameter q, defaulting to 1
4
, determines how close

to gHi ðk þ 1Þ and gHi ðkÞ the value of gi is taken:

gi ¼ gHi ðk þ 1Þ þ q gHi ðkÞ � gHi ðk þ 1Þ
� �

ð9Þ

– A more sophisticated calculation consists in taking the

distributions of the top k units and of the remaining units by

placing gi between the respective averages of g
H
i for the top

k units and bottom N � k units, as in Eq. 10:
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gi ¼ gHi
� 	

N�k
þ q gHi

� 	
k
� gHi
� 	

N�k

� �
ð10Þ

where the average of the inhibitory conductances at the

threshold of the top k units is:

gHi
� 	

k
¼ 1

k

X

j¼1

k

gHi ðjÞ ð11Þ

and for the bottom N � k units:

gHi
� 	

N�k
¼ 1

N � k

X

j¼kþ1

N

gHi ðjÞ ð12Þ

The formulation in Eq. 10 is used in the model of EVAC.

Combined self-organised and error-driven learning

The learning algorithms set the weights of the synaptic

connections so as the resulting pattern is likely to model the

pattern of synaptic strengths in the corresponding areas in

the brain.

In artificial neural networks, synaptic form often follows

the details of the learning algorithm used. Thus, if we want

the synaptic weights to form a network that is likely to

reasonably model its cortical analogue, we have to employ

a learning algorithm that mimics learning in the cortex. For

that, we employ the Leabra algorithm, published by

O’Reilly (1996b) and implemented in Emergent (O’Reilly

and Munakata 2000). Additionally, the network is trained

using a sure self-organising Hebbian association for fea-

tures learning in the LGN-to-V1 projections.11

The self-organised map (SOM) learning (Kohonen 1982)

performed by EVAC extracts statistical correlations from the

input patterns through re-normalised and contrast-enhanced

Hebbianweights update. Forhidden (non-clamped)units, once

the net input has been computed, the k-WTA activation algo-

rithm is applied. The weights from LGN to V1 are fixed so as

each V1 unit responds to an oriented over its receptive field,

and all unit or a V1 minicolumn are complementary in their

coverage of orientations.

Weights between other layers are updated following the

Leabra algorithm (O’Reilly 1996b), as a weighted combi-

nation of error-driven learning as per the Generalized

Recirculation task learning rule and conditional principal

components analysis (CPCA) model learning (O’Reilly and

Munakata 2000) in the SOM context. Thus, for a unit

indexed in its topological map by the subscripts i and j,

Eq. 13 describing the weight update rule is obtained:

Dwij ¼ � khebbDwhebb
ij þ 1� khebb

� �
Dwerr

ij

� �
ð13Þ

where Dwhebb
ij is the associative learning of Eq. 15 and

Dwerr
ij is the error-driven change in weight defined in

Eq. 18a. khebb controls the proportional influence of Heb-

bian association in total learning.

Oja’s rule for Hebbian learning (Oja 1982) has been used to

create learning algorithms that can be shown to converge to a

representation of the principal components of the training set

(Oja 1982). Oja’ learning rule can be expressed as

Dwij ¼ � yjðxi � yjwijÞ, where i and j index respectively the

pre-synaptic and post-synaptic units, and x and y denote input

and output. O’Reilly and Munakata (2000) proposed a varia-

tion of Oja’s rule that performs CPCA when used in presence

of the inhibitory competition mechanics expounded in

‘‘Modelling of lateral intra-map connectivity’’ section.

The basic CPCA weight update is defined in Eq. 14:

Fig. 7 Abstraction of cortical

intra and inter-map connectivity

[adapted from O’Reilly and

Munakata (2000)]

11 The model’s V1 minicolumns can be minimised into 8 units,

covering 4 segments orientations and 2 polarities. In that case, LGN-

to-V1 projection weights are not learnt but pre-defined. This is the

case in the final implementation of EVAC.
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Dwij ¼ � yj xi � wij

� �
ð14Þ

The Hebbian learning rule in EVAC uses the CPCA

weight update that is re-normalised by the sending layer’s

activity a shown in Eq. 15:

Dwhebb
ij ¼ � yixi

:5

a0
� wij


 �
þ yj 1� xið Þ 0� wij

� �
 �
ð15Þ

The parameter a0 is a function of a, the expected layer

activity level of the sending layer, of �, a learning rate set

heuristically, and of q, a parameter that balances the

renormalisation of the layer:

a0 ¼ 1

2
� q

1

2
� a


 �
ð16Þ

when q ¼ 0, Eq. 15 becomes the basic (not re-normalised)

CPCA weight update equation.

With the Leabra algorithm, the learning of the hidden

layers and output layers weights is aimed at being a bio-

logically realistic mixture of Hebbian learning and error-

driven learning (O’Reilly 1996b).

Error-driven learning is a fundamental problem in

neural networks, and as such has been given numerous

solutions, including the most notable back-propagation

algorithm (Rumelhart et al. 1986).

Instead, the Emergent simulator offers a solution based

on the Generalised Recirculation algorithm, or GeneRec,

introduced in (Hinton and McClelland 1988). The GeneRec

algorithm assumes that task learning involves two succes-

sive phases, ‘‘minus’’ and ‘‘plus’’. In the minus phase, the

inputs are used to generate an expectation, as the output

units run free. In the plus phase, both input and output units

are clamped.

The supervised learning of GeneRec consists in modi-

fying the weights according to the difference between the

activations of the receiving units in each phase, propor-

tionately to the average activation of the sending unit

between the two phases (Eq. 17).

D0wij ¼ � yþj � y�j

� �
xih i�;þ ð17Þ

where yþj represents the activation of the post-synaptic unit

in the plus phase, and y�j , its output during the minus phase.

xih i�;þ is the average activation of the pre-synaptic unit

during the two phases. The learning rate constant � is

arbitrary and empirically chosen.

It can be shown that GeneRec approximates back-

propagation (O’Reilly 1996a). This update mechanism is

only valid when connectivity is roughly bidirectional and

symmetric, so the average of the weight update in both

directions is used to update the weights, leading to Eq. 18a,

which corresponds to the update mechanism of the Con-

trastive Hebbian Learning (CHL) algorithm.

Dwerr
ij ¼D0 wij þ D0 wji

2
ð18aÞ

¼ � xþi y
þ
j � x�i y

�
j

� �
ð18bÞ

Equation 18a is the task learning update rule. Together

with the Hebbian model learning update rule of Eq. 15,

they form the basis of the Leabra algorithm (O’Reilly

1996b), used in the model of EVAC to train the network

weights.

Implementation framework

We decided to implement and run EVAC using the

Emergent environment.12 Emergent is the successor of

PDP??, a piece of neural simulation software originally

developed by McClelland and Rumelhart (1987).

One reason why Emergent is more appropriate for the

implementation of the proposed model is that the reference

book (O’Reilly and Munakata 2000) contains simplified

models of emergent visual attention, on which EVAC is

based. Although these models are much smaller in scale

and do not feature accommodation-based reflex attention

shifts, they provide a good basis for the incremental

development of the larger-scale and more complex EVAC

model.

In (O’Reilly and Munakata 2000), the authors also dis-

cussed a more complex model of visual attention which has

been a source of inspiration for the EVAC model. How-

ever, this model of (O’Reilly and Munakata 2000) often

fails to perform attention shifts from one object to the

other, in what would be similar in their tasks models to the

Overlap condition of EVAC.13 The network structure is

simpler, with a 2-layer spatial pathway connected laterally

to V1 and V2. This model is implemented in PDP??, and

has not been successfully ported to Emergent.

Emergent offers the possibility to work at the appro-

priate level of abstraction for the EVAC model of reflex

attention. The neuron models are Hodgkin-Huxley point

units and Emergent gives the possibility to add additional

channels that model accommodation and hysteresis,

mechanisms central to the EVAC model of attention shift.

The major drawback of using Emergent is its relative iso-

lation fromothermodelling software. First, model description

files are not implemented in or exportable to an open standard

such as NeuroML or NineML. Second, an Emergent com-

putational experiment is scripted in an esoteric language

called C-Super-Script, used only by Emergent.

12 Emergent version 5.0.2, 32 bit, available freely on Internet at grey.

colourado.edu
13 See authors’ notes on their website at grey.colourado.edu/

CompCogNeuro.

Cogn Neurodyn (2016) 10:49–72 63

123

http://grey.colourado.edu
http://grey.colourado.edu
http://grey.colourado.edu/CompCogNeuro
http://grey.colourado.edu/CompCogNeuro


Despite these limitations, we have found that alternative

software at the same level of abstraction do not cover our

modelling needs, often by lack of appropriate neuron

models to simulate accommodation and hysteresis. Thus,

Emergent stands out as the most appropriate modelling and

simulation environment for EVAC.

Statement of human and animal rights

This article does not contain any studies with human or

animal subjects performed by the any of the authors.

Results

Statistical analysis

The network’s response is measured in the three task

conditions described in ‘‘Psychological tasks models’’

section: Neutral, Gap and Overlap. The Neutral condition

measures the reaction time when the stimulus appears

immediately after 50 time units without any stimulus. The

Gap condition measures the reaction time when an interval

of 50 time units separates the disappearance of the central

stimulus and the appearance of the peripheral one. The

Overlap condition measures the reaction time when the first

stimulus remains visible during 50 time units after the

second stimulus is displayed.

In these three conditions, maximal excitability, accom-

modation and hysteresis parameters are varied to simulate a

channelopathy. As explained above, due to recent clinical

studies of L-type voltage gated calcium channels (LTCC)

and their role in the Timothy syndrome, L-type calcium

channelopathy is hypothesised to result in increased cal-

cium influx during action potential generation, and in

increased overall neural activation but longer accommo-

dation. In the model, the increases in maximal excitatory

conductance and in the hysteresis and accommodation time

integration constants correspond to these expected changes

in calcium dynamics. The values of the parameters that

vary between the two networks are as follows:

�ge dtbh ;inc dtba ;inc

Control 0.4 0.01 0.01

Channelopathic 0.45 0.03 0.03

Each of the three task conditions of the experiment is

repeated between 3900 and 4300 times per each of the two

sets of parameter values. One parameter set corresponds to

one group of subjects in the experimental setup. Invalid

trials are defined as those with no response after 300 time

units, or where the final spatial or semantic output mis-

match the second stimulus. Such invalid trials are removed

from all datasets.

The response time of the channelopathy-simulating

(henceforth channelopathic) network is very different from

that of the control network. This is first visible by the 10 %

higher mean response time of the control network (58.3 vs

54.5 simulated time units). This difference in response time

between the channelopathic and the control networks is

dependent on the task. Indeed, on one hand, in the Neutral

and Overlap conditions, the mean response time of the

control network (57.5 and 86.7) is higher than that of the

channelopathic network (52.4 and 73.7). On the other hand,

the effect is reversed in the Gap condition, where the

control network’s response (33.5) is faster than the chan-

nelopathic network’s response (37.2).

Additionally, the standard deviation of the response in

the control network is much lower in the Gap task condi-

tion (r in control: 4.23 (Gap), r in channelopathy: 20.64

(Gap)), and a little higher in other conditions. There are

more high-response time outliers in the response to the Gap

condition in the channelopathic network.

To confidently determine whether the distributions

underlying the reaction time of groups differ between one

another, we attempt a two-way fixed-effects ANOVA. It

allows us to reject the null hypothesis that the control and

channelopathic networks timings datasets in each of the

three task conditions are samples of the same population

(p-values \0:001)

To further characterise these results, we fit a log-normal

distribution to the data clustered by task condition �
parameter set using MLE and report the results in Figs. 8, 9

and 10. Log-normal is a plausible distribution of clinical

timing response, as left-bound experimental data is often

found to be log-normally distributed Limpert et al. (2001),

and in particular in reaction in times studies (Baayen and

Milin 2010).

Each Figure 8, 9 and 10 corresponds to one task con-

dition, and is organised by network type column-wise. For

each task condition, each of the channelopathic and control

networks parameter sets has been MLE-fitted to a log-

normal distribution, and the parametric moments of reac-

tion timing data are reported.

For parameter set a and condition b, the symbols l̂a;b
and r̂a;b denote the estimated location and scale parame-

ters, which correspond to the mean and standard deviation

of the logarithm of the timing values. Symbols la;b and ra;b
refer to the arithmetic mean and standard deviation of the

estimated log-normal distribution. Fitted trimmed his-

tograms and quantile-quantile plots are shown in the bot-
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tom of each cell to illustrate the goodness of fit. The range

of the dataset and the Gini coefficient are also reported to

quantify statistical dispersion.

The theoretical probability density functions superposed

to the density histograms in the Figs. 9 and 10 show a

suboptimal fit, more pronounced for the channelopathic

parameter set. For both network parameter sets, the log-

normal distribution provides a good fit to the Neutral

condition, but much less to the Overlap and Gap condi-

tions. This is consistent with the heavy tails of the simu-

lated data, which do not match their MLE-fitted log-normal

hypotheses, as revealed by the quantile-quantile plots. The

log-normal models are poor in that they do not always

preserve the ordering of the datasets by variance.

It is notable that the Neutral condition does not exhibit

this long tail on the right, and in both networks, the range

of the data for that condition remains the lowest of all

conditions.

In both networks, the Overlap task leads the longest

mean reaction time, and the Gap task, to the shortest. The

ordering of task conditions by performance (mean reaction

time) does not vary between parameter sets. The Overlap

condition is the slowest in both cases, followed by the

Neutral condition, and ending with the Gap condition.

In the Overlap and Neutral task conditions, chan-

nelopathy facilitates attention shift, as it takes a longer

mean time to shift attention for the control network than for

the network modelling channelopathy, while in the Gap

task condition, channelopathy hinders attention shift.

Sample standard deviation of the timing response in the

control network is clearly lowest in the Neutral task,

slightly higher in the Gap condition, and much higher for

the Overlap. The Overlap condition has a higher standard

deviation than the other, less demanding disengagement

conditions.

The variance of the response delay to each task in

channelopathic network is ordered differently from that of

the control network. The Neutral condition also has the

lowest variance, but the Overlap condition now takes the

second place, and the Gap condition has the largest stan-

dard deviation.

The channelopathic network shows slightly less vari-

ance overall than the control network. The Neutral task

follows that pattern, as channelopathy leads to slightly less

variance than the control network. In the Overlap task, the

control group timings are also a little more volatile.

Finally, contrary to the Neutral and Overlap tasks, the

standard deviations of the Gap task are very different

Fig. 8 MLE-fitted log-normal

distributions and parametric

moments of reaction timing data

for the Neutral condition
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between network parameter sets, and are inverted: chan-

nelopathy leads to more variance.

Figures 8, 9 and 10 summarise the statistical properties

of the response time of each network under each task

condition. l̂net;C and r̂net;C are the location an scale

parameters of the log-normal distribution fitted to the

response time data of network net on task C, with the 95 %

confidence interval indicated below. lnet;C and rnet;C are the

sample mean and sample standard deviation. The his-

tograms and quantile-quantile plots illustrate the fit of the

log-normal distribution to the data.

Figures 8 to 10 illustrate that the ranges and dispersions

of the groups differ. Timing output is more dispersed in

attention switch tasks. The Neutral condition shows the

lowest dispersion with both networks: the control � Neu-

tral and channelopathy � Neutral groups have the lowest

Gini coefficients among all groups. The output of these

simulations are not as heavy right-tailed as others and their

ranges are also the smallest. Without consideration of

network type, the most dispersion between conditions is

reached with the Overlap condition. However, contrary to

the Neutral task, there is a large variation of range and/or

dispersion between networks within both the Gap and and

the Overlap conditions, hinting at a deep effect of the

modelled channelopathy on attention shift. The effect is not

the same between the two conditions: while channelopathy

in the Overlap condition does result in an increase in range

span, the dispersion only changes by 9.8 %. In contrast, in

the Gap task condition, both the response span and dis-

persion increase much with channelopathy. The log-normal

distribution is much more a suitable model of the response

time in the Neutral condition than in the Gap and Overlap

tasks. This may reflect more complicated units interaction

mechanics in the Gap and Overlap tasks as compared to the

Neutral task.

Network performance

After presentation of the target input, for which the reac-

tion time of the network is measured, the semantic layer is

expected to output the class of the object presented within

300 time units. A trial is considered valid as soon as the

corresponding identity unit is activated by more than 60 %

of its maximum output rate.14 When this expectation is not

met, the trial is considered erroneous, and excluded from

the response timing statistics.

Fig. 9 MLE-fitted log-normal

distributions and parametric

moments of reaction timing data

for the Gap condition

14 The 60 % threshold is arbitrary, but follows the convention of

O’Reilly and Munakata (2000). Moreover, in the model of EVAC, the

spurious activation of two or more semantic output units by more than

60 % each is made impossible by the use of a strict 1-WTA inhibition

rule over the semantic output layer.
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To complement the timing statistics on successful trials,

the following section presents the performance of the

trained network, calculated for each group (task � net-

work) of N trials. Measures of network performance are r�
for classification error rate and rf for activation failure

rate.15

The results are presented in Table 1, clustered by task

condition and network.

The control network in Neutral condition outputs the

correct class of the target unit within 300 time units in

100 % of cases. This is an expected result, as the control �
Neutral group reflects both the training parameters and

training inputs of the network: the training parameters are

the same as the control parameters, except of course for the

synaptic plasticity, with no influence on the independent

dynamics of individual units. Also, like the target inputs of

the Neutral task inputs, the training inputs are not preceded

by a distractor.

This is unlike all other task � network groups, where

either or both of the network type and task conditions differ

significantly from the training parameters and trial-level

input sequences.

For each network type, the classification error rate

remains consistently equal across all task conditions. For

the control network, that is rf;ct ¼ 0: spurious activation of

an incorrect unit appears sufficiently unlikely not to be

reflected in the datasets. The channelopathic network

classification error rate is rf;ch ¼ 0:1% in all tasks. This

corresponds to exactly Nf;ch ¼ 4 incorrectly classified trials

for each task group. This is a coincidence, and the 4 inputs

that lead to the erroneous trials are not the same across

tasks: the input table is a uniform random selection of

symbol and retinal location that is different for each group

(task condition � network), and the location, rotation and

scaling parameters are continuously valued, making colli-

sions very unlikely. Individual inspection of the inputs that

triggered the classification errors shows that they all differ

in location and identity.

The activation failures of the control network in atten-

tion shift tasks (particularly in Overlap) may be due to

incomplete attention shifts. Contrary to the classification

error rate, the activation failure rate is null in all chan-

nelopathy output datasets, and positive in control datasets.

In the latter, the Gap task has a very low activation failure

rate of rf;ct;G � 0:047%, corresponding to Nf;ct;G ¼ 2 errors

over Nct;G ¼ 4288 trials. This result contrasts with the high

Fig. 10 MLE-fitted log-normal

distributions and parametric

moments of reaction timing data

for the Overlap condition

15 The classification error rate r� is r� ¼ N�=N, where N� is the

number trials where the wrong semantic output unit is activated by

more than 0.6 in less than 301 time units. The activation failure rate rf
is defined by rf ¼ Nf=N where Nf is the number of trials where no

semantic output unit gets activated by more than 0.6 in less than 301

time units.
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activation failure rate of the control network in the Overlap

task condition: rf;ct;O � 9:5%. In that case, most failures to

activate the output unit above 0.6 come from a remarkable

phenomenon: although the network state changes with the

appearance of the target and further with the disappearance

of the distractor, it reaches an equilibrium state in which

enough activity correlated with the distractor is carried

over after its disappearance to lead to a hybrid state where

this spurious activity remains and prevents the complete

transition to the target output. Typically, in that case, the

semantic output units that correspond to the distractor and

to the target both exhibit a low level of activity. Although

we have no evidence that this network state is in any way

similar to transitional states during successful attention

shift in the Overlap condition, we deem it plausible, and

call this type of phenomenon an incomplete attention shift.

Formally defining and identifying it is not easy, because

formalising incomplete attention shifts requires under-

standing the sparse distributed representations learnt by

hidden layers in order to map the transition processes and

be able to determine if a given snapshot of activity is part

of a transition between two given inputs.

The systematic activation of the channelopathic network

in all tasks (rf;ct ¼ 0) indicates that such hypothesised

‘‘activation ties’’ are very unlikely to happen in this model

in presence of channelopathy.

Due to recurrent dynamics, network activity slowly

fades during the inter-stimulus pause of 50 cycles of the

Gap task. The state of the network when the target appears

is thus quite different from the Neutral case, which is only

preceded by 50 cycles without input. Thus, a plausible

explanation of the small activation failure rate of the

control network in the Gap task is that it can also be prone

to incomplete attention shifts.

Discussion

Having reviewed relevant studies on the psychology and

neurology of autism, we determined that simulating the

hypothetic effect on visual attention of channelopathies

possibly linked to autism would be novel and significant.

We built a model of early dorsal and ventral visual

pathways and their interactions for low-level attention, and

implemented it in Emergent, along with learning and

testing programs. The testing programs correspond to three

tasks: two reflex attention shift tasks, and one simple

attentional task that does not involve such attention shift.

After implementing a phenomenological model of L-type

voltage-gated calcium channelopathy, we verified that the

cell model had the expected electrophysiological beha-

viour. We repeatedly ran the trained network on those three

task and using either unit parameters simulating chan-

nelopathy or control unit parameters, collected a total of

about 25,000 measures of response time and performance

of the network. Finally, we used simple statistical tools to

ensure that those response times differ significantly and to

describe their empirical distributions. We quantified the

classification error rate and activation failure rates of the

networks for each group and qualified some note-worthy

dynamics during activation failure in the overlap task of the

network modelling channelopathy.

Model predictions

The EVAC model predicts the existence of a difference in

the mean reaction time between gap and overlap condi-

tions, such as the overlap condition is in average longer

than the gap condition reaction time; this is a well-know

occurrence of experimental psychology called the gap

effect. It has been observed in close real-world equivalents

to the simulated Gap and Overlap tasks conditions. The

study by Saslow (1967) is an often-cited reference.

This result concords with the prediction of the EVAC

model that the mean timing of the control network in the

Gap task condition is significantly lower than in the

Overlap condition. The concordance of the model with

those experimental data about human gap effect is a

comforting verification of its soundness.

EVAC makes several predictions about possible chan-

ges in the dynamics of attention shift in cases of disturbed

accommodation and hysteresis. In hypothetical example,

this may happen when voltage-gated calcium channels

function atypically.

Table 1 Classification error

rates and activation failure rates

by network type (control,

channelopathic) and task

condition (Overlap, Neutral,

Gap)

Task condition Control Channelopathy

Classification

error rate

Activation

failure rate

Classification

error rate

Activation

failure rate

All tasks 0 0.03179 0.001 0

Neutral 0 0 0.001 0

Gap 0 0.0004664 0.001 0

Overlap 0 0.09492 0.001 0
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The Neutral task is used as a reference point relative to

the two other tasks and models attention capture from a

non-attentional state, while the Gap and Overlap tasks

model reflex visual attention shift from recent and,

respectively, concurrent current attentional engagement.

The results are thus directly interpretable as predictions on

the rates of classification error and of activation failure, and

on the distribution of the reaction times in similar experi-

ments involving biological neural networks. This includes

experiments in psychology, if the measures performed can

be commensurably related to the reaction of early visual

streams modelled, and if the model of EVAC is sufficiently

accurate despite its assumptions.

The most prominent prediction is that current atten-

tional engagement hinders attention shift in both chan-

nelopathic and control subjects, as measured by the

difference between the mean Overlap task timing and that

of the Neutral task in both networks. The delaying effect of

current attentional engagement measured in terms of ðlO :
lNÞ ratio—so, relative to the Neutral task—is larger in the

control data (1.507) than in the channelopathic data

(1.407). A relative measurement as ratio to the Neutral task

is expected to be more robust to model simplifications than

an attempt to get absolute timing predictions for direct

comparison with clinical timing data. Indeed, the simulated

experiment here is simplified in comparison to the reaction

time study it intends to mimic. In particular, the reaction

time in the real study would likely be measured using an

indirect mean such as eye saccades, so the results would

encompass the timing of motor activation as well. Even

assuming that sufficient direct information about the

attentional timeline of the neural maps involved is avail-

able, correspondence between the the absolute timings of

the model response and of the human response seems

unlikely, because the model of EVAC is not sufficiently

faithful to the biological details.

In their clinical study of the reflex attention in autism,

Geest et al. (2001) concluded that autism is correlated with

a reduced gap effect. The prediction, drawn from the

simulation of EVAC, that the relative negative effect of

current attentional engagement on attention shift is less

strong in channelopathy is thus concordant with the con-

clusions drawn in (Geest et al. 2001). The concordance of

EVAC with this experiment is conclusive evidence in

favour of the main theory of the model, under the premise

that channelopathy is involved in the cases of the cited

study.

The second prediction of the model is that recent

attentional engagement facilitates attention shift. More

precisely, this second prediction means that attention to a

first stimulus followed by its removal for a short period,

followed by the appearance of a distinct input stimulus,

decreases the time required by the network to activate its

representation of the second input stimulus. The ratios of

the mean Gap timings to the Neutral timings are 0.5828

with the control network, and 0.7102 for the channelo-

pathic network. In terms of the experimental psychology

counterpart of the simulated experiment, this could mean

that attentional capture from a completely blank field of

view would take more time than attention shift in the Gap

condition.

The third prediction of EVAC concerns the spread of the

timing responses in each task. From the sample standard

deviation of the groups in Figs. 8, 9, 10, variance is

expected to be strongly increased by channelopathy in the

Gap attention shift task
sch;G
sct;G

¼ 4:823
� �

, and slightly

decreased in the Neutral and Overlap tasks
sch;N
sct;N

¼ 0:7885
�

and
sch;O
sct;O

¼ 0:9799
�
. These predictions over dispersion are

quite fragile, because the sources of noise included in

EVAC are insufficient to accurately represent the plethora

of sources of that variability are intrinsic to the biological

system modelled.

The next group of predictions of EVAC relates to the

activation and success rates. While those can be legiti-

mately used to make predictions about the same rates in the

biological equivalents of the neural systems modelled, it

may prove harder to link the measured performance of the

model to that of the subject in simple behavioural tasks in

experimental psychology. The reason is that in EVAC,

long-range top-down and sub-cortical inputs are ignored,

but in reality, past the reflex saccadic movements of the

eyes, other mechanisms exist that direct sight. It makes it

unlikely that the inactive or erroneous steady state attained

and maintained in the model in some proportions for a few

groups actually occur behaviourally, in clinical subjects.

For instance, the EVAC model predicts the occurrence of

incomplete attention shifts in control subjects, most likely

in activation failures of the Overlap task. Such error states

would probably not be present in the form of steady

equilibria like in the model. Rather, states like the incorrect

or incomplete attention shifts predicted in the EVAC model

will be disturbed by the constant, adaptive cortical and sub-

cortical inputs to the visual streams. In practical conse-

quence, this means that the experimental psychologist

looking for evidence of the predictions below should

preferably find a way to record the state of the concerned

populations of neurons as the tasks are administered; or,

when in sole possession of timing records, irregularities in

the response time shall be hypothesised to be due to low-

level failure of the network like in the model, so as the

likelihood of those hypotheses may be tested by the usual

means of probabilities and statistics.

The model predicts that a channelopathic visual system

is unlikely to fail to activate on any of the three tasks, but
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has a constant 0.1 % classification error rate. In compar-

ison, the visual streams of control subjects are predicted to

only be highly unlikely to fail to activate on the Neutral

task, but to have a classification error rate very close to 0

on all tasks. However, like for the reaction times, we

expect such absolute activation failure and classification

error rates to be scaled and/or offset, such that the clinical

results only concord with the model results in relative,

ordinal terms. For instance, as rf;ct;N ¼ 0 while rf;ch;N ¼
0:1% (Table 1), the classification error rate of the control

subjects on the Neutral task is predicted to be lower than

that of the channelopathic subjects. Along the same lines,

• the control subjects’ activation failure rate is predicted

to be the lowest in the Neutral task, higher in the Gap

task, and the highest in the Overlap task,

• in all three tasks, the control subjects’ classification

error rates should be lower than the channelopathic

subjects’,

• in both the Overlap and Gap tasks, the channelopathic

subjects’ activation failure rate is predicted to be lower

than the control subjects’.

Limitations

The scale of the modelled pathways and the novelty of the

theories implemented have made it necessary to strike

numerous compromises between model simplicity and

accuracy to the biological phenomena. As a conceptual

model integrating two novel hypotheses—that of autism

calcium channelopathy and that of accommodation-driven

low-level attention shifts—the picture drawn is approxi-

mate in the scales of many of the parameters involved, for

lack of published data. To compensate for this limitation, it

may be worthwhile investigating the integration of Stan-

dard Regularisation Theory in the modelling framework, as

advised by Satoh and Usui (2009).

More than the reduced scale of the model, the lack of

long-range top-down and sub-cortical influences in the

model of EVAC is among the most hampering simplifica-

tions. It puts a hard limit on the timing that is interpretable as

biologically plausible, as only short duration reflexes

involving the early visual areas are accounted for. Prefrontal

and other external influences are not modelled. While this

may be sufficient for the type of reflex attention studied here,

this may limit the interpretability of clinical experimental

results. Modelling the effect of the hypothesised LTC

channelopathy on different aspects of cognition could help

circumventing this limitation, by including different path-

ways and sub-cortical connections. For instance, current

works on the role of the hippocampus on bottom-up visual

processing are particularly relevant (Sato and Yamaguchi

2009; Haab et al. 2011). Sato and Yamaguchi (2009) model

short-term object-place association, which involves holistic

scene processing and may differ in autistic subject by virtue

of the differing attractor dynamics that could characterise

autistic cognition Duch et al. (2013).

Another limitation of the model lies at the method-

ological level. On one hand, the aim is to make some

progress in understanding possible causes of autism, which

is a developmental disorder with proven anomalies in the

structure of the central nervous system. A key feature of

autism lies in the disturbed formation of the microstructure

and connectivity of the brain during growth. On the other

hand, we make use of a statically-built neural network to

study a hypothesised cause of autism by looking at short-

term reaction times, without considerations of possible

developmental anomalies. Indeed, the simulated network is

disturbed at unit level by the means of changes in hys-

teresis and accommodation, but remains the same struc-

turally in control and channelopathic cases. Two reasons

justify that choice. The first reason is that structural

anomalies that would be due to calcium channelopathies as

hypothesised in ASD have not been studied. However,

autism in general tends to be linked to such anomalies, and

it can be supposed that they are found in channelopathic

cases as well. A priori, the evidence of minicolumnar

anomalies expounded in (Casanova et al. 2006) applies to

the visual pathways. However, they are not applicable to

the quite abstract level of detail of the model of EVAC.

This constitutes the second reason why both networks share

the same structure: we could not find studies showing

consistent anomalies at a scale that would affect the prin-

ciples of cortical connectivity upon which the model is

built. That, in itself, reveals a limitation of EVAC: it is too

abstract to account for differences in the structure of units

or of networks between autistic and control subjects.

Contributions

The proposed model combines a network model of emer-

gent reflex attention and a unit model of the effects of

calcium channelopathy on neuronal dynamics. To our

knowledge, it is the first network-level computational

model of the calcium channelopathy theory of autism

outlined in (Adams and Snutch 2007). This approach has

the potential to significantly impact research on chan-

nelopathies in several respects. First, it demonstrates the

utility of neurocomputational models of low-level

hypotheses of autism in understanding potential interaction

with higher levels of cognition, possibly up to the beha-

vioural level—as is the case with reflex attention shift.

Second, EVAC gives avenues of experimental research to

try and explore the behavioural phenotype of
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channelopathic individuals. Emergent processes are not

intuitive, thus simulations can improve the interpretability

of computational models of low-level theories of autism

causation. These improvements are potentially helpful in

the general effort towards understanding, and eventually

curing autism.

The network model of attention in EVAC is also an

improvement over existing models of emergent reflex

attention. There are several possible models of visual

attention, some of which are able to account for bottom-up

attention shift. The emergent model of reflex visual atten-

tion used in EVAC most resembles the two models of

attention presented in (O’Reilly and Munakata 2000), as it

is build upon their principles. However, the model of

EVAC constitutes an improvement in scale and complexity

that allows for some clinical predictions.
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