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Abstract. Semantic networks inspired by semantic information processing by the brain fre-
quently do not improve the results of text classification. This counterintuitive fact is explained
here by the multiple inheritance problem, which corrupts real-world knowledge representation
attempts. After a review of early work on the use of semantic networks in text classification,
our own heuristic solution to the problem is presented. Significance testing is used to con-
trast results obtained with pruned and entire semantic networks applied to medical text
classification problems. The algorithm has been motivated by the process of spreading neu-
ral activation in the brain. The semantic network activation is propagated throughout the
network until no more changes to the text representation are detected. Solving the multiple
inheritance problem for the purpose of text classification is similar to embedding inhibition
in the spreading activation process — a crucial mechanism for a healthy brain.
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1 Introduction

The neurocognitive approach to language has not led to practical algorithms [15] in natural language
processing (NLP). Semantic networks, inspired by the work on human semantic memory, are a
convenient way to store general information about the world. Using graphical notation network
nodes are identified with concepts, and edges with semantic relations, allowing for direct logical
inferences [19]. This seemed to be an obvious improvement over the most popular representation of
texts in form of vectors built by counting the number of distinct words in a “bag-of-words” approach
[12].

Scott and Matwin [21] experimented with bag-of-words, stemmed words, noun phrases, stemmed
noun phrases, key phrases, stemmed key phrases, WordNet synonyms, and WordNet hypernyms. In
WordNet [7], a huge lexical database of the English language, words are grouped together by their
synonymy with basic semantic relations between them. An artificial intelligence scholar would call it
one of the largest non-monotonic logical systems. Unfortunately, Scott and Matwin [21] experiments
did not demonstrate the superiority of using synonyms and hypernyms over a bag-of-words. Only
certain combinations of phrases and words improved results. In case of a general purpose semantic



network using synonyms and hypernyms does not help much. This was unacceptable and non-
intuitive for many researchers. How can adding knowledge to a representation based on a simple
word count degrade text classification performance? Isn’t adding such associations the key to how
brains work?

Let us think of a simple example: “Humans have two legs”, “John is a human”, “John has one
leg”. In this semantic network, ”John” inherits multiple contradictory properties: having one leg
and having two legs. Such a small semantic network exposes an important fact: in real life not all
assertions about the world are true all the time. In such cases, how should the knowledge encoded
in a semantic network be used for inference? While episodic memory may come to rescue [5], it
would lead to significant complication of the algorithm. It took many years to find the answer to
this problem. In essence, a general purpose semantic network must be pruned before it may be used
to enhance a text representation. From the artificial intelligence and NLP perspective, one needs
to solve the multiple inheritance problem before using a non-monotonic knowledge representation
system.

Inspired by many findings relevant to neurolinguistics [1, 24, 6], our goal is to create a neu-
rocognitive language processing approach inspired by the spreading neural activation over a large
semantic brain network [5]. Thus far, we have developed a practical method for pruning semantic
networks in a way that improves the results of text categorization. Our algorithm spreads activation
from one term to the other, inferring facts not present in the text, but preserving only those facts
that improve text classification, avoiding unnecessary inheritance. In this way relevant “pathways of
the brain” [15] are discovered. We will show that text classification with a pruned semantic
network is significantly better than a baseline model, while using entire network does
not lead to improvements.

2 Background and Significance

Text classification is pursued by the statistical machine learning community; the term “multiple
inheritance” comes from the field of artificial intelligence. Textbooks on artificial intelligence men-
tion statistical learning, but the converse is rarely true. The multiple inheritance problem has been
rarely addressed in literature on text classification. Google Scholar cites over 10,100 articles that
mention “text classification” and some version of a semantic network®. Only 127 of them mention
“multiple inheritance”. That is not to say that the term “multiple inheritance” is unknown to
the language processing community. There are over 1,600 articles on “multiple inheritance” and
“semantic networks”®. Most of them, however, discuss semantic similarity and dismiss the multiple
inheritance problem by taking maximal, average or minimal paths between two terms [18]. Semantic
similarity will not be discussed in this paper, the focus will be on text classification using semantic
networks.

Typical work in this field follows the following four steps: choose a semantic network, match
words from text with the elements from the semantic network, expand the text representation
by adding or replacing semantically related elements, and then classify documents using the ex-

3 http://scholar.google.com/scholar?q="(text|document)- (categorization|classification|clustering)"+"umls|wordnet|
cyclopencyc|framenet|sumo"&as_ylo=1990&as_yhi=2012

4 http://scholar.google.com/scholar?q="(text|document)- (categorization|classification|clustering)"+
"multiple-inheritance"+"umls|wordnet|cyc|opencyc|framenet|sumo"&as_ylo=1990&as_yhi=2012

5 http://scholar.google.com/scholar?q="multiple-inheritance"+"umls|wordnet|cyc|opencyc|framenet|sumo"&as_ylo=1990&
as_yhi=2012



Publication Task Semantic Network|Data set Algorithm
Scott and Matwin [20] Categorization| WordNet Reuters Ripper

— — WordNet USENET Ripper

— — WordNet Digital Tradition|Ripper
Hotho et al. [11] Clustering WordNet Reuters K-center
Sedding and Kazakov [23] Clustering WordNet Reuters K-center
Mavroeidis et al. [17] Categorization|WordNet Reuters SVM

— — WordNet Amazon SVM

Yoo and Hu [26] Clustering MeSH PubMed K-center

— — MeSH PubMed Hierarchical
— — MeSH PubMed Suffix Trees
Gabrilovich and Markovitch [9]|Categorization| Wikipedia Reuters SVM

— — Wikipedia OHSUMED SVM

— — Wikipedia 20 Newsgroups [SVM

— — Wikipedia Movies Reviews |SVM
Bloehdorn and Hotho [2] Categorization| WordNet Reuters AdaBoost
— — WordNet OHSUMED AdaBoost
— — MeSH OHSUMED AdaBoost
— — AgroVoc FaoDoc AdaBoost

Table 1. Text classification with semantic networks started in 1998 and continues today. Only the early
work is summarized in this table. Multiple sources were used to create semantic networks, but none of the
papers addressed the multiple inheritance problem.

panded representations (see Table 1). Using this scheme various research groups made important
observations.

Scott and Matwin [20] showed that more general terms give better categorization than the less
general terms. The optimal level of generalization, however, was different for each data set. Hotho
et al. [11] showed the same for clustering. In addition, they concluded that it is better to keep terms
from the lower levels of hierarchy rather than just replace them with terms from higher levels.
Sedding and Kazakov [23] replicated the results of Hotho et al. [11], and then focused on mapping
terms from WordNet. They found that ambiguities present in WordNet might render it useless when
adding hypernyms. They concluded that part of speech tagging is insufficient for disambiguation
of word senses. Taking the most frequent meaning, as Hotho et al. [11] did, is helpful but clearly
not sufficient. Mavroeidis et al. [17] improved mapping text to the WordNet by using the Steiner
tree cost. In addition, they studied the effect of sample size on levels of generalization. First, they
found that adding hypernyms works better for small data, but the depth of generalization does not
show any regularity. Second, they discovered that as the sample size is increased, the behavior of
different depths stabilizes and converges, but at the cost of decreased improvements.

WordNet was not the only source of adding semantics. Yoo and Hu [26] used Medical Subject
Headings (MeSH) for representing the text and improving clustering. Gabrilovich and Markovitch
[9] used Wikipedia as a semantic network: Wikipedia’s articles became concepts and links from
the articles to most similar web pages became associative relations. Bloehdorn and Hotho [2] used
WordNet, MeSH, and the United Nations Food and Agriculture multilingual agriculture thesaurus
(AgroVoc) with marginal text categorization improvements.

Work in the early years of text classification with semantic networks lacked a mechanism vital
to the healthy brain: inhibition. Google Scholar cites around 46,000 publications on inhibition in



brains®. Brain studies show that inhibition is crucial for normal functioning of associative memory
[14], and too low inhibition may lead to epilepsy, schizophrenia and a “formal thought disorder” [16].
Surprisingly, the neurofunctional and neuroanatomical “lack of inhibition” has a long-lost brother
in the field of artificial intelligence: the multiple inheritance problem in non-monotonic reasoning
[3, p. 206]. A machine retrieves all related nodes from a semantic network with the same conviction
as a patient with a formal thought disorder. Inheritance along all edges cannot be allowed because
not every fact about the world is true or relevant in a given context. General solutions like “default
logic”, “circumscription”, or “truth maintenance systems” require inference with negations, rules
for overriding default values, closed-world assumption, or infinite computing power [19]. These
requirements make them unsuitable for the large semantic networks that are currently available for
automated text processing.

Evidently finding the ideal solution to the multiple inheritance problem is going to be quite
difficult. In this paper an algorithm is proposed that removes just enough inference paths to sig-
nificantly improve text classification performance. We contrast our approach with a scenario where
no pruning of semantic network is performed, and problems due to the multiple inheritance cancel
advantages of added semantics, making text classification improvements statistically not significant.

3 Databases and Document Collection

OHSUMED. The OHSUMED document collection, named after the Oregon Health and Science
University School of Medicine, was created to benchmark information retrieval algorithms. It con-
tains 348,566 PubMed papers published between 1987-1991 in 270 medical journals [10]. All papers
have titles but only 233,445 have abstracts of an average length of 167 words. The papers have been
manually indexed with 14,626 distinct Medical Subject Headings (MeSH). There are on average 253
papers per one MeSH. The inter-indexer consistency measured using 760 papers was between 61%-
75% [8]. The challenge is to create an automated system that will do the indexing with competency
comparable to human experts.

Researchers have created many such systems [25, 22, 13]. It is rare that someone would use
all the data to develop and benchmark an algorithm but there is no consensus on how to split
the data. One might say that the “Heart Diseases” (HD) subset is a common one. It has 12,417
training instances (years 1987-1990), 3,630 testing instances (1991 year), and 119 MeSH codes. The
multiple inheritance problem is very complex so for clarity we have reduced the data set down
to just ten MeSH codes. 4 of them, "endocarditis, bacterial”, ”aortic valve stenosis”, ”heart neo-
plasms”, and ”mitral valve stenosis” are used to develop the edge/node pruning algorithm and 5 of
then, "mitral valve insufficiency”, ”atrial fibrillation”, ” aortic valve insufficiency”, ” cardiomyopathy,
hypertrophic”, and "heart arrest” are used for final benchmarking.

The UMLS Metathesaurus. The Unified Medical Language System (UMLS)7 is a set of tools,
websites and databases created and maintained by the National Library of Medicine, a division
of U.S. National Institutes of Health. The UMLS has two main components: implementation re-
sources (software) and knowledge sources (databases). We are interested just in one knowledge
source - Metathesaurus - and one implementation resource - MetaMap. In particular, we used the
2009AB version of the Metathesaurus as a source of medical semantic data and the 2009 version of
MetaMap Transfer (MMTx)® to map PubMed abstracts and titles to UMLS Metathesaurus medical

6 http://scholar.google.com/scholar?q="inhibition"+"brain"+"fmrilerp"&as_ylo=1990&as_yhi=2012
http://www.nlm.nih.gov/research/umls/
8 http://metamap.nlm.nih.gov/



concepts. After parsing the HD data set, MetaMap discovered 21,127 unique concepts out of the
2,181,062 available in the Metathesaurus. Every concept had to be part of one root branch of the
semantic network: “clinical finding”, “body structure”, “substance”, “procedure”, or “pharmaceu-
tical”, otherwise the concept was discarded.

docl |1 0 0O O 1 1 0 OfclassA 0.00 2.00 200 245
d- doc2 |0 1 0 0 1 0 0 1]classA — 2.00 0.00 245 2.00
ISt| |do3 0 0 1 0 0 1 1 0 cheB = 200 245 000 2.00
;’ docd |0 0 0 1 0 0 1 1]classB 245 2.00 2.00 0.00
Xep1 = XuR o
Ld
dcl[1T 0 0 0 0 0 0 0classA 000 141 141 141
. doc2 |0 1 0 0 0 0 O O]classA 141 000 141 141
dist| [do3 0 0 1 0 0 0 0 0 casB =141 141 000 141
docd [0 O 0O 1 0O 0 O 0]classB 141 1.41 1.41 0.00
X1 XtR’\
docl1 |1 0 0 0 1 0 0 O]eclassA 0.00 1.41 2.00 2.00
. doc2 |0 1 0 0 1 0 0 O0]classA — 141 0.00 2.00 2.00
dlst doc3 |0 0 1 0 0 0 1 0fclassB = 200 200 0.00 1.41
docd |0 O O 1 O O 1 O]classB 2.00 2.00 1.41 0.00

Fig. 1. Example of spreading activation matrices using semantic network with and without a solution to
the multiple inheritance problem. The top right matrices show the features space and distances after entire
semantic network has been applied (Figure 2 with all nodes and edges). The bottom right matrices show
the feature space and distances after solving the multiple inheritance problem (Figure 2 without the dotted
nodes and edges). Documents cluster according to the class labels only if the pruned semantic network is
used.

The 2009AB version of the UMLS Metathesaurus is a conglomerate of 101 individual biomedical
semantic networks, also called “source vocabularies”. Each sub-network has its own set of concepts
and relations; when these are combined, it contains 26,762,104 relations. We followed the 21,127
concepts present in the HD data set along the following edge types: “other related” (RO), “related
and possibly synonymous” (RQ), “similar or like relationship’ (RL), “children” (CHD), “parent”
(PAR), “broader” (RB), “narrower” (RN), and “source asserted synonymy” (SY). After 14 steps
of spreading activation, we reached all 2,131,301 semantically related concepts using 11,250,022
distinct connections®. As a solution to the multiple inheritance problem, we proposed an algorithm
that reduces the 11,250,022 connections to a bare minimum that improves automated indexing of
PubMed citations.

4 Problem Identification and Methods of Solution

The Multiple Inheritance Problem. Let’s start with an illustrative text categorization problem.
There are 4 documents, each containing just one of the following medical terms: “aortic valve
insufficiency”, “aortic valve stenosis”, “mitral valve insufficiency”, “mitral valve stenosis”. Let’s say
that the first two documents belong to the class “A” and the other two to the class “B”. The vector

9 CHD = 2,137,767; PAR = 2,137,767; RB = 1,087,501; RL = 34,066; RN = 1,087,501; RO = 5,304,808; RQ = 287,280;
SY = 49,846.



space representation would look like the first matrix on the left in Figure 1. There would be equal
distances between all documents, offering no learning generalization. Let’s assume now that the four
terms come from a semantic network like the one in Figure2. As with every medical dictionary, a
disease can be categorized by a location or by a pathophysiology. That is the case in our “small
world” example: each disease inherits two concepts. Even though the inheritance by location and
by pathophysiology is always true, it is not always relevant to the categorization task at hand. If
unpruned network is used (X;y; = X;R) the distances calculated for enhanced representation do
not lead to good clusters (upper right matrix in Figurel), and will lower the chances of correct
classification.

Aortic valve Valve Mitral valve :
. . . . Valve stenosis
disorders insufficiency disorders _ Conflict
- Class A : - Conflict : - Class B R 4 A

Aortic valve
insufficiency
- Class A

Aortic valve
stenosis
- Class A

Mitral valve
insufficiency
- Class B

Mitral valve
stenosis - Class B

Fig. 2. Semantic network with an imposed document/term classification task. First, relative frequency is
used to assign class to a node (see Figure 1). Second, edges that connect nodes belonging to different classes
are identified. Third, conflicting nodes and edges (marked with dotted lines) are removed. This procedure
prunes the semantic network, solving the multiple inheritance problem in text classification tasks.

On the other hand, if the relative frequency of a medical term in a class is used to denote
its belongingness, we would find that certain edges connect medical terms from opposite classes.
When that happens, documents from opposite classes become more similar and less distinguishable.
In our example, connections to “valve insufficiency” and “valve stenosis” come from opposite classes.
This situation can be repaired by removing at least one edge connecting “valve insufficiency” and
at least one edge connecting “valve stenosis”. Removing both edges will allow for removing also the
nodes “valve insufficiency” and “valve stenosis”. This leads to a reduced semantic network shown
in Figure 2, without the elements marked with dotted lines. Spread activation (X;y1 = X;R’) in
the pruned network leads to a representation of documents from the same class grouped tighter
than documents from opposite classes (lower right matrix Figurel). Is there a way to do this
programmatically on a larger scale?

Edge pruning. The conflict and non-conflict edge types shown in Figure2, can be generalized
for any binary classification problem. Let’s call the positive class “this” and the negative class
“other”. The relative frequency will be used to assign class to a node. If we include spreading
activation, it will give us four types of nodes: an old node belonging to the class “this”, an old
node belonging to the class “other”, a new node belonging to the class “this”, and a new node
belonging to the class “other”. If we exclude feedback loops, we will have eight edge types that
connect the four node types, as shown in Figure3. The learning process in a given context (here
text categorization) should empirically determine which semantic associations should be inhibited.
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Fig. 3. Generalized semantic network with an imposed document/term classification task. Just by using
relative frequencies we identify four types of nodes that receive activation and eight types of edges that
carry the activation. We can empirically check which edge-pruning procedure improves the text classification
task and use it as a heuristic solution to the multiple inheritance problem. Edges are enumerated in the
order of their performances in Table 3.

Therefore in the training phase a check is made to see if any improvement will result from removal
of selected edge types. This will indirectly show whether the distances between vectors representing
documents change in favor of or against the two-class separation. This is not an ideal solution,
where all unnecessary nodes are removed, but it offers sufficient separation. Such pruning method
allows for unattended spreading of concept activations.

What is meant here by “unattended spreading activations”? Let’s say that f is a Heaviside step
function. Our goal of pruning the semantic network is to get a map, X;y1 = f(X;R), that can
be applied to the data iteratively until the document/term matrix stops changing X, 11 = X,, for
n > 0. This means that the pruning process has to be iterative. Let’s say that P’ is a function that
removes one type of edge, then R’ = P*(X;;1, X;, R). If R' # R, then some edges were removed, and
we need to reset the training matrix X; := X to its initial state. We keep applying P*(X; 11, X, R)
and resetting X; until R’ = R for all . Once the pruning procedure P’ is completed, the next
procedure, P7, is done, and so on. Which pruning procedures improve text categorization and the
order in which pruning is applied should be empirically determined.

Text Categorization. After final representation is generated classification is done using the sup-
port vector machines (SVM) with cosine kernel. Cosine kernel SVM is equivalent to a linear SVM
if all vectors are normalized to the unit length. Normalization converts scalar products to cosine
measures. This way SVM becomes insensitive to very short or very long documents. Linear and
cosine kernel SVMs have only one parameter that has to be tuned by the user: “cost” of regular-
ization. This parameter has been optimized checking results for its values from 27! to 2° with 202
increments. All features are binary: the text either mentions the concept or it does not. The best
models were selected using a 16-fold cross-validation, with classification quality measured by the Fj
score, a harmonic mean between precision and recall. Once the best model with the best pruning
procedure was selected, it has been used for the final testing. All spreading activation models were
compared to a model without the feature space enrichment and tested for significance.

Final testing. The statistical significance of the F} score improvement is measured using a paired
t-test [4]. For each classification label we have a total of 17 F} scores for the baseline model and the
same number for the enhanced model, resulting in 17 pairwise comparisons. We used “endocarditis,
bacterial”, “aortic valve stenosis”, “heart neoplasms”, and “mitral valve stenosis” to find the best



REL Type FCV (s¢V)|Edges (Nodes)
RL + RB + SY 0.6286 (-0.1212)| 129,003 (41,072)
RB + SY + PAR|  0.6477 (-0.1021) 225,796 (51,672)
RL + RB 0.6523 (-0.0976)| 116,592 (38,544)
RL 0.7064 (-0.0435)| 35,231 (23,807)
RL + SY 0.7091 (-0.0408)| 41,868 (25,870)
SY + PAR 0.7103 (-0.0395)| 167,126 (43,354)
RB + PAR 0.7356 (-0.0143)| 207,727 (47,888)
RB + SY 0.7488 (-0.0010)| 78,939 (31,266)
RB 0.7498 (-0.0001)| 68,270 (28,294)
Sy 0.7509 (+0.0010)| 24,437 (20,459)
PAR 0.7758 (+0.0252)| 152,559 (40,134)

Table 2. Performance of various UMLS relation types after 60 steps of spreading activation without the
edge-pruning technique. This table shows the SVM macro Fi using 16-fold cross-validation, improvement
when compared to a model with no spreading activation (§), and the number of unique edges and unique
nodes used during the 60 steps of activation. The best-performing relationship is PAR (parent), and it has
been used for network pruning experiments.

pruning procedure. Then we added “mitral valve insufficiency”, “atrial fibrillation”, “aortic valve
insufficiency”, “cardiomyopathy, hypertrophic”, “cardiomyopathy, congestive” and “heart arrest”
to see if the improvement generalized over different labels, a total of ten labels. Thus, the t-test
across all experiments has 170 pairwise comparisons. The Pearson correlation coefficient is used
to see if the data is improved by the same factor across different classes. If the baseline model is
correlated with the enhanced model there is a stable improvement.

Node A —+ |Node B FCV (5¢V)|Edges (Nodes)
Old Other — |Old Other [8] 0.7485 (-0.0014)| 18,786 (18,782
Old This —  |Old Other [7] 0.7487 (-0.0012)| 18,942 (18,844
Old This —  |Old This [6] 0.7535 (+0.0037)| 19,375 (18,926
Old Other — |Old This [5] 0.7593 (+0.0095)| 19,618 (18,879

]
Old Other —|New This [3] |0.7740 (+0.0242)| 117,064 (32,946
Old This —» |New Other [2]|0.7746 (40.0247)| 139,621 (38,039
Old Other —|New Other [1]|0.7757 (+0.0258)| 63,957 (24,436

(
(
(
Old This — [New This [4] |0.7736 (4+0.0237)| 147,857 (39,269
(
(

T Do D=

Table 3. Performance of PAR relationship after 60 steps of spreading activation with eight types of edge
removal procedures. Edge types are defined in Figure 3. This table shows the SVM macro Fi using 16-fold
cross-validation, improvement when compared to a model with no spreading activation (§), and the number
of unique edges and unique nodes used during the 60 steps of activation. The best four edge types were
chosen for permutation experiments.

Concept space visualization. The changes to the semantic network rely on assigning medical
concepts to a class based on the relative frequency measure. We use the class belongingness to
identify edges connecting nodes from different classes. We can visualize the process. Each medical



concept is represented by two relative frequencies!'®: r this and rf?)ther' If the semantic network

is separating two classes well, we should see concepts travel to the top-left corner and the bottom-

right corner (rfi’his > rf?(;ther or rfihis < rfzther)' If, on the other hand, the semantic network does

not separate classes, then most concepts will have similar relative frequencies (rfihis AT other)
and will lie along the x = y line.

Node A Node B FCV (5°V)|Edges (Nodes)
(1) Old Other|New This [2]
(2) Old Other|New Other[1]
(3) Old This |New Other[3]
(4) Old This |New This [4] |0.7857 (+0.0358)| 51,405 (21,684)

Table 4. The best sequence of edge removal calculated using macro F on classes “endocarditis, bacterial”,
“aortic valve stenosis”, “heart neoplasms”, and “mitral valve stenosis”. Four out of eight removal procedures
from Table 3 were permuted and the best sequence was chosen for final testing. Removing all edges that
connect medical concepts that did not appear in any of the training documents worked best (edge types

numbered 1-4 in Figure 3).

Relative frequency snapshots might not be enough to see a divergent or convergent trend, but if
we follow the centers of the relative frequencies and connect them with arrows, the trend becomes
apparent. If the arrows point outward, then the trend confirms separation by spreading activation. If
the arrows are parallel to the x = y line, then there is no separation trend, and spreading activation
causes more harm than good.

5 Results

Spreading activation without the edge-pruning technique. First experiments had to de-
termine which semantic relationships and their combinations yield the best results. Table 2 shows
that only parent relationships (“is-a”) improve classification performance. Other relationships or
combinations tried did not improve the results. This finding is consistent with the work already
published (Table1). The vector feature space increases in size from 21,127 concepts to 40,134 con-
cepts. Surprisingly, it takes almost 60 iteration steps before the feature space stabilized (lower right
graph in Figure4). Sixty multiplications of such huge matrix, even in a sparse format, is computa-
tionally demanding. It would be impractical for the full OHSUMED data set and impossible for the
full PubMed database. If we look carefully at the relative frequency pathways, we notice a peculiar
behavior where two classes initially diverge but then collapse (lower right graph in Figure4). This is
also congruent with others” work, where they would find a step of iteration with the largest separa-
tion, for example step 9, and use that for testing, sometimes without much success [20, 11, 23, 17].
Other authors also reported that each class requires a different number of iterations, so this would
not be a good source of generalization.

Figure4 and Table 5 support evidence that 152,559 parent-child relations are enough to cause
very complex behavior. There is some improvement in performance but not statistically significant
(p-value=0.01259 at best, p-value=0.02618 overall). The improvement is almost random because

10 The power = 3 greatly enhances signal for concepts with rfe;qss ~ 1.



Class name (size) FEV (sCV)| FTEST (§TEST)|p-value
aortic valve insufficiency (239) 0.6026 (-0.0267)| 0.6226 (-0.0697)[0.91325
aortic valve stenosis™ (341) 0.7725 (4+0.0096)| 0.6621 (-0.0281)|0.25232
atrial fibrillation (222) 0.6511 (40.0463)|0.6713 (4+0.0559)|0.05404

) )
) )

( ) )

( ) )
cardiomyopathy, congestive (253) |0.6009 (+0.0171)| 0.6092 (-0.0211)|0.23898
cardiomyopathy, hypertrophic (192)|0.7799 (+0.0507)[0.7640 (40.0140)|0.01259

( ) )

) )
) )
) )
) )

endocarditis, bacterial® (310) 0.8242 (+0.0182)[0.7211 (40.0017)|0.19099
heart arrest (405) 0.6952 (-0.0071)| 0.6966 (-0.0234)|0.68066
heart neoplasms™ (197) 0.7729 (40.0275)|0.6512 (4+0.1032)|0.17259
mitral valve insufficiency (295) 0.6007 (-0.0338)[0.6087 (4+0.0259)|0.86898
mitral valve stenosis® (172) 0.7335 (40.0485)|0.7627 (+0.0448)|0.07377
across all experiments 0.7034 (10.0150)[0.6770 (+0.0103)|0.02618

Table 5. Final results using PAR relations without edge-pruning procedures. PAR relations without pruning
offer poor improvement of the F} score on the cross-validation and the test sets. None of the improvements
offers statistical significance when a paired t-test was used to compare models with and without the se-
mantic enhancement. *Data used for finding the best types of semantic relationships and the best pruning
procedures.

it does not correlate well with the baseline model. The Pearson correlation coefficient between the
baseline model and the enhanced model over all 170 runs of SVM is 0.66; it ranges between 0.29 and
0.81 depending on the class label. In summary, this means that 152,559 relations react differently
to different classes, need more computational time and are not a reliable source of background
knowledge.

Spreading activation with edge-pruning technique. This is uncharted territory. At the start
152,559 parent-child relations are included. Spreading activation and removing one edge type at a
time requires restart of the process each time there is a change to the semantic network. After 60
iterations the algorithm stops. This means that Xy = f(X;R') and rf.,ss must be calculated on
average between 73 and 1,082 times, depending on the edge type from Table 3. After that the four
best-performing edge types are used and the order in which they are being applied to the semantic
network is permuted. The best sequence of pruning (edge type 2, then 1, then 3, and then 4, see
Table4) requires on average 451 X;y1 = f(XR’) and rf.,ss operations, but reduces the initial
152,559 edges to a more modest 51,405, cutting the number of active concepts by half.

Figure4 and Table6 offer evidence that 51,405 parent-child relations create a predictable be-
havior. Spreading activation stabilizes around the 30th iteration. It has slightly better separation
around ten iterations. After that, the relative frequency centers move back (upper right graph in
Figure4), but not nearly as much as in the case of spreading activation without edge pruning. The
improvement is statistically significant in the case of four out of ten labels (best p-value 0.00088),
three of which were not used during the best pruning sequence-seeking process. The improvement
across all 170 subsets is statistically significant (p-value=0.00003). The Pearson correlation coeffi-
cient between the baseline model and the enhanced model over all 170 runs of SVM is 0.72 and
ranges between 0.17 and 0.87, depending on the class label. In summary, the 51,405 parent-child
relations offer good performance improvement, need less computational resources, and are a good
source of background knowledge.



Class name (size) FEV (6CV)| FTEST (§TEST)| p-value
aortic valve insufficiency (239) 0.5924 (-0.0370)| 0.6733 (-0.0190)| 0.99374
aortic valve stenosis™ (341) 0.7787 (4+0.0158)| 0.6853 (-0.0048)| 0.15238
atrial fibrillation (222) 0.6731 (40.0683)|0.7172 (4+0.1019)|0.00088**
cardiomyopathy, congestive (253) |0.6363 (+0.0526)[0.6590 (40.0287)|0.00240™*
cardiomyopathy, hypertrophic (192)|0.7879 (+0.0587)[0.8235 (40.0735)|0.00334"*
endocarditis, bacterial® (310) 0.8149 (+0.0089)|0.7273 (+0.0078)| 0.34398
heart arrest (405) 0.6886 (-0.0136)| 0.6667 (-0.0533) 0.79991
heart neoplasms™ (197) 0.8019 (40.0565)|0.7229 (+0.1749)| 0.01222
mitral valve insufficiency (295) 0.6262 (-0.0083)|0.6452 (4-0.0624)| 0.56264
mitral valve stenosis® (172) 0.7471 (40.0621)|0.8062 (+0.0883)[0.00429"*
across all experiments 0.7147 (+0.0264)[0.7127 (10.0460)| 0.00003

Table 6. Final results using PAR relations with the best edge-pruning procedure. Edge pruning offers good
improvement of the F} score on the cross-validation and the test sets. Four out of ten data sets achieved
statistically significant improvement when a paired t-test was used to compare models with and without
the semantic enhancement. *Data used for finding the best types of semantic relationships and the best
pruning procedure. **Data with statistically significant categorization improvement.

6 Conclusion and Discussion

Language competence at the human level may require detailed neurocognitive models that com-
bine several kinds of memory: recognition, semantic, episodic and short-term working memory, in
addition to the iconic spatial and other types of imagery that goes beyond representation based
on verbal concepts. Such systems, requiring embodied cognition, are not practical at present. It is
therefore worthwhile to identify and solve specific problems that pose a challenge to the current
NLP approaches.

Semantic network stores default and commonsense knowledge. Multiple inheritance problem
can be solved by adding inhibition to network links. The network is pruned to adjust it to the
current knowledge, avoiding confusion and contradictions. The algorithm presented in this paper
identified PAR relations as the only one that lead to significant improvements. Although the number
of medical concepts in our experiments has been limited the role of inhibition of some associations
has been clearly demonstrated. Understanding practical applications of inhibition in the design of
semantic memory shows the way to applications of the same techniques to other types of memories
implemented by other types of networks.

Experiments with classification of medical collections of texts show that adding inhibition indeed
in many cases leads to significant improvements of results. This is merely one way of pruning
semantic networks. Insights from granular information processing imply that a dynamic balancing
of semantic generality and specificity could be a useful approach for subsequent refinements of the
proposed method.
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Fig. 4. Relative frequencies of the UMLS Metathesaurus concepts as they change with spreading activation
steps. The X-axis has relative frequencies corresponding to the class “other” and the Y-axis has relative
frequencies corresponding to the class “heart neoplasms”. First three images show spreading activation on
1, 10 and 60 steps of the 1991 citation year data set. The top images show spreading activation using PAR
relations that were pruned using the best edge-pruning procedure from Table4. The bottom images show
spreading activation using PAR relations that were not pruned in any way. The two images on the right
show the 60-step pathway of the relative frequency centers as they move outward or inward and then settle
down and stabilize around the 30th iteration with the pruning and around the 50th iteration without the
pruning.
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