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Abstract

Psycholinguistic theories of semantic memory form the basis of understanding of natural language concepts. These theories are used
here as an inspiration for implementing a computational model of semantic memory in the form of semantic network. Combining this
network with a vector-based object-relation-feature value representation of concepts that includes also weights for confidence and sup-
port, allows for recognition of concepts by referring to their features, enabling a semantic search algorithm. This algorithm has been used
for word games, in particular the 20-question game in which the program tries to guess a concept that a human player thinks about. The
game facilitates lexical knowledge validation and acquisition through the interaction with humans via supervised dialog templates. The
elementary linguistic competencies of the proposed model have been evaluated assessing how well it can represent the meaning of lin-
guistic concepts. To study properties of information retrieval based on this type of semantic representation in contexts derived from
on-going dialogs experiments in limited domains have been performed. Several similarity measures have been used to compare the com-
pleteness of knowledge retrieved automatically and corrected through active dialogs to a “golden standard”. Comparison of semantic
search with human performance has been made in a series of 20-question games. On average results achieved by human players were

better than those obtained by semantic search, but not by a wide margin.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Natural language processing (NLP) techniques that pro-
vide effective algorithms for search of relevant information
in a huge amount of text documents available in machine
readable form are in a growing demand. Search techniques
have for a long time been based mainly on keywords. Sin-
gle keywords or a few keywords (user queries) work well
for small repositories of documents that belong to a single
domain. More advanced NLP methods are required if
search is made in large repositories containing documents
from diverse domains. This is due to the strong ambiguity
of keywords, leading to low precision, that is returning
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many unwanted documents, and to the idiosyncratic use
of words by different authors, leading to low retrieval rates
of relevant information. Effective NLP methods for infor-
mation retrieval must rely on some basic knowledge about
properties of language, and in particular about the seman-
tics of concepts. The knowledge base should approximate
relations between lexical elements as a prerequisite to
achieve high linguistic competence. The use of such knowl-
edge will be an important step forward towards automa-
tion of the process of natural language understanding.
Reading and understanding texts people employ addi-
tional background knowledge stored in different types of
their memory. Thanks to the recognition memory small mis-
takes in the texts are ignored, semantic memory associates
words with their general meaning in a given context, and
episodic memory allows to build model of discourse or
narrative. This leads to a rich conceptual view of texts being
read that is usually beyond capabilities of NLP systems. A
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lot is know now about brain mechanisms responsible for
understanding language (Feldman, 2006; Lamb, 1999;
Pulvermnller, 2003). Action-perception circuits in the brain
are activated by phonological and visual inputs, and distri-
bution of brain activity provides natural basis for represen-
tation of concepts (Duch, Matykiewicz, & Pestian, 2008).
These activations change quickly in time and strongly
depend on priming by the context (McNamara, 2005) and
on previous neural activity, therefore it is not easy to
approximate them by knowledge representation schemes
used in natural language processing.

The first step to improve NLP methods requires focus-
ing on a better understanding basic concepts represented
by words. Understanding here means the ability to give
the word its proper meaning in agreement with the context
it appears in, and to be able to answer questions that
depend on correct interpretation of properties associated
with the concept a given word points to. A related aspect
of understanding the meaning of the word is the ability
to create correct associations relevant in the context of
the linguistic episode, giving responses based on informa-
tion that has not been explicitly given, but may be retrieved
from episodic and semantic memory of the cognitive agent.
These two basic steps are essential to process natural lan-
guage in a similar way as humans do.

In the next section psycholinguistic models of semantic
memory are briefly reviewed, in the third section our
approach to the knowledge representation by semantic
memory is presented, Section 4 describes the semantic
search algorithm, and Section 5 shows one particular appli-
cation of this algorithm to the 20-questions game. Section 6
introduces active dialogs for knowledge acquisition, and
Section 7 compares results of our algorithm to those
achieved by humans playing the same game. The final sec-
tion contains discussion and presentation of plans for
future research.

2. Psycholinguistic models of semantic memory

The idea of semantic memory has been introduced by
Tulving, Bower, and Donaldson (1972). He proposed to dis-
tinguish memory involved in the cognition process that is
used for organization of different types of human experi-
ence. Within long term memory structures he distinguished
two kinds of memories, called the episodic and the semantic
memory. Episodic memory refers to personal experiences,
events from the past that may be recalled. Everyone has
unique episodic memories, allowing us to understand idio-
syncratic references to past events. Although they are
formed from similar types of experiences specific configura-
tions of these experiences are always unique. The second is
related to the human language system, and is roughly com-
mon for all users of a given language, enabling communica-
tion process.

Of course any division of brain processes into separate
components is only approximate. Both types of memory
are simultaneously active. Experiences are stored in epi-

sodic memory that engages not only cortical, but also hip-
pocampal structures. Through consolidation process
relations and properties of objects are turned into abstract
representations, stored in the semantic memory. Semantic
memory works as a mental lexicon (Gleason & Ratner,
1997), a dedicated knowledge base storing basic lexical ele-
ments — concepts, or “units of knowledge”. According to
the idea of the Triangle of Reference (Ogden, Richards,
Malinowski, & Crookshank, 1949) concepts are used for
thinking about the referent. Within the semantic memory
structures words serve as labels for concepts that describe
elements of generalized experience. Words invoke brain
states that encode these elements, enabling communication.
Isolated concepts have little meaning — semantic memory
contains information about relations between them, so
they form conceptual network of elements connected with
each other by different kinds of associations. They enable
to capture the meaning of words extrapolated from rela-
tions to other concepts.

Semantic representation of symbols in the brain has
been a matter of extensive research (Pulvermnller, 2003)
and thanks to various neuroimaging methods a lot is
known about action-perception networks that give an
intrinsic meaning to simple concepts. Analysis of fMRI
scans shows that for different concepts activation within
brain areas devoted to perception, motor manipulation,
spatial representation, emotional and self-related regions
significantly differs. Despite large individual variance of
fMRI signals a prototype brain state of many people
may be predicted sufficiently well to distinguish it from
about a hundred other concepts (Mitchell et al., 2008).
Reading simple stories leads to brain activity that reveals
places, characters, subjects and objects of actions, goals,
representations for visual exploration and motor activity,
simulating in the imagination the events of the story as if
they had been perceived (Speer, Reynolds, Swallow, &
Zacks, 2009). This in a long run gives a chance to create
a natural brain-based basis for representation of concepts
in semantic memory (Duch et al., 2008).

A few psycholinguistic models of semantic memory
exist. They describe how lexical elements are stored and
processed by human brains. Below the main approaches
that can be used as an inspiration for building computa-
tional model are presented.

2.1. Hierarchical model

Hierarchical model (Collins & Quillian, 1969) presented
in Fig. 1. is perhaps the simplest and most natural method
to organize concepts. In this approach the predefined is_a
relation type organizes concepts (representing natural
objects) in the form of a taxonomy tree. Other types of
relations (e.g. can_a, has a) that are useful for building
additional associations between nodes, may also exist,
but in the hierarchical model they have only informative
role. The is_a relation introduces inheritance, with proper-
ties of the concepts from higher levels of the taxonomy
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Fig. 1. Hierarchical model of semantic memory.

(parents) being propagated to their children nodes. Most
ontologies are based on this type of representation.

The hierarchical model enables to find connections
between nodes, and thus provides answers about properties
of concepts described by their features. In the simplest case
the presence/absence of links is interpreted as the yes or no
answer. Studies of response times to simple questions
related to properties of objects (e.g. ”Is a canary a bird?”)
revealed that answering questions about typical properties
that are directly linked is faster then asking questions about
properties that require analysis of links going through the
upper taxonomy relations. This is presumably related to
the transitions between brain states representing different
concepts.

Although ontologies build on hierarchical models have
many applications where taxonomy is sufficient, it is clear
that the memory structures are not static. Thinking about
new relations between two or more concepts that are
placed far from each other in the hierarchical tree creates
shortcuts or direct associations between these concepts in
a way that cannot be accommodated in the hierarchical
model. A more realistic approximation to brain processes
responsible for acquisition of new semantic knowledge is
needed.

2.2. Spreading activation model

The spreading activation model (Collins & Loftus, 1975)
of the semantic memory, depicted in Fig. 2, organizes con-
cepts in the form of a lexical network.

Links between nodes of this network describe various
relations, including semantic similarities between concepts
stored in the network. Concept that is analyzed at a given
moment (current thought) is considered to be active, sym-
bolizing coordinated neural activity of many brain areas. If
the activation is strong enough it will spread further to sev-
eral associated concepts triggering their activity. Usually
the winner-takes-most neural processes inhibit alternative
concepts that could also be activated, leaving only a few

that are involved in a sequential thinking process. Spread-
ing activation creates a subnetwork of active concepts asso-
ciated with the primary concept. In real networks this is a
highly non-linear process. Activation of some nodes may
result from weak associations with a number of concepts
in the analyzed sentence. According to the Hebbian princi-
ples frequently used pathways are activated more easily,
modifying association strength. Spreading activation to
associated concepts depends on the number of hops
through intermediate concepts and on their associations
strengths, providing a certain distance measure between
concepts. Only concepts that are close to the concepts ana-
lyzed receive sufficient activation to have some influence on
the semantic interpretation. Nodes have finite maximum
activations and energy is conserved, therefore nodes with
many links may spread only a weak activation, while a
few strong associations will lead to larger activations.

Fig. 2. Spreading activation model of the semantic memory.
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This model can describe non-taxonomic similarities
between concepts in a better way than hierarchical modeled
is able to do. Better approximation to the functions of
human semantic memory is seen in tests that analyze con-
cept similarities, where semantic distance between concepts
does not increase the time of an answer for false sentences
eg.. “all fruits are vegetables” or “fruits are flowers”.
Empirical studies show that the time of concept activation
is related to the semantic distance, measured by intermedi-
ate associations that the activation must pass through
(Warren, 1977). EEG and fMRI experiments with humans
show that associations between closely related concepts
arise in 30-100 ms (Mitchell et al., 2008). For distant con-
cepts this time significantly grows (>700 ms), as demon-
strated in tests with semantic priming using concepts
pairs (McNamara, 2005).

The spreading activation theory may be criticized on
several points. First, it lacks different types of relations
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between concepts, Second, it does not keep cognitive econ-
omy, each definition of the concept should be complete,
with all important associations defined directly. Third,
early models of spreading activation did not included
inhibitory associations that suppress concepts associated
with a given word, but not suitable in the particular con-
text. Inhibitory associations restrict activation flow to
those nodes that represent concepts relevant to the mean-
ing of the whole sentence. This extension of the model
has been successfully used for disambiguation of medical
concepts in the graph of consistent concepts (GCC)
(Matykiewicz, Pestian, Duch, & Johnson, 2006).
Dynamical aspects of biological memory are thus cap-
tured to some degree in the spreading activation model,
although the processes of forming episodic memories that
contribute to the formation of new semantic representa-
tions is neglected. A more faithful representation of mem-
ory should include also a process of adding and removing
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Fig. 3. Semantic memory implemented by a feed-forward neural network (after McClelland and Rogers, 2003).
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links as a function of new experiences and forgetting links
that have not been activated for a long time.

2.3. Connectionist distributed models

Modern approaches to understanding language pro-
cesses descend from connectionist models introduced in
the parallel distributed processing (PDP) book (Rumelhart
& McClelland, 1986). In this approach semantic memory is
modeled by a neural network, where the meaning of con-
cepts results from the network dynamics that depends on
the connections between neurons involved in distribute rep-
resentations. In such models information is processed by
interactions of many simple elements connected with each
other via inhibitory or excitatory links. Distributed repre-
sentations provided by neural network functions share
many characteristics of human memory: they can deal with
incomplete or distorted information, display content-based
addressing sensitive to context, allow for automatic gener-
alizations, producing similar activation patterns for similar
outputs. This allows for application of various types of
attributes in retrieval of information stored in memory
structures, with features that have strong impact only in
precise contexts, for example keywords bird, does not fly,
cold climate are sufficient to activate the concept penguin,
while keywords bird, does not fly, hot climate the concept
ostrich or emu. In contrast to the connectionist networks
information is not localized in a single network node, but
is contained in coherent patterns of neuronal activations.
This leads to a true sub-symbolic representation of knowl-
edge as single neurons do not represent microfeatures.
However, in some simplified neural models identification
of a subset of network nodes with microfeatures may be
desirable, as it is done in the neural model of human mem-
ory shown in Fig. 3.

This model, developed by McClelland and Rogers
(2003) for description of natural categories from plant
and animal domains, encodes relations of 4 types (ISA,
IS, CAN, HAS) between objects and their properties. A
feed-forward neural network with two hidden layers learns
distributed representations of input objects, using as input
plant and animal names and one of the relations, and as
outputs properties of these objects. Simple sentences, like
“Robin can fly” are parsed to determine inputs, relations
and outputs. The final structure stores the knowledge in
the form object — relation type — feature. In the learning
process layers named representation and hidden develop
internal representations of objects processed by the neural
network. This may be seen in the dendrograms showing
distributions of hidden layer activity after training. Activity
vectors are similar (measured by cosine distance) for each
group: trees, flowers, birds or fish, reflecting similarity of
objects withing the group, and progressively large differ-
ences between plants and animals. Such network shows
spontaneous generalizations of information that, although
not given explicitly may be induced through similar fea-
tures of the presented objects. It may also build new asso-

ciations between categories that have not been given during
the learning process. Thus it shows how episodic knowl-
edge, based on collection of facts in form of simple asser-
tions, is converted into semantic knowledge with specific
structure.

2.4. Approaches to estimation of meaning

Talking about psycho-linguistic semantic memory mod-
els the question how the meaning of concepts is determined
by the human brain should be considered. The simplest
theories try to explain categorization of natural objects.
Thus understanding is simply replaced by assigning a given
concept to a proper category, assuming that the meaning of
these categories has been established. Two main
approaches should be mentioned here.

(A) Theory of semantic features (Smith, Shoben, & Rips,
1974).

This theory is based on defining a concept as a list of its
features. The features can be divided into two sets:

1. defining features — determining the meaning of the
concept,

2. characteristic features — determining the typicality of the
concept.

This model takes into account common and differentiat-
ing features used during retrieval of similar concepts in the
decision process. According to (Smith et al., 1974) conjec-
ture comparison of features is a two stage process. In the
first step quick rating of general and typical features is
done, allowing for fast decisions. If in this phase similarity
of input with the known concepts has not been successfully
established slower, more detailed second stage of analyzing
defining features is performed. For example, a question “Is
canary a bird?” leads to a strong activation based on anal-
ysis of characteristic features, allows or quick verification
of the truth of this sentence. Verification of the sentence
“Is penguin a bird?” is not so direct because features that
are characteristic to most birds are missing, therefore a sec-
ond stage of the defining features comparison should be
performed.

Theory of semantic features accounts well for the typi-
cality effects — judgments for typical members of a given
category are faster then for unusual members, leading to
slower response times (eg. penguin is a bird, vs. canary is
a bird). This is explained by the need for a two stage com-
parison process before the answer is given.

However, empirical studies show some gaps in this the-
ory, called category size effects (Forster, 2004). Analyzing
the sentences such as a “poodle is a dog” and a “squirrel
is an animal” it has been shown that people evaluate
sentences for objects that belong to a narrow (more precise)
category faster, despite the fact that precise categories con-
tain more features than higher, more abstract categories
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(new specific features are added to the inherited notions).
According to the semantic feature theory more compari-
sons should be performed in this case, taking longer time,
contrary to experimental results. Another drawback of
the theory is the lack of cognitive economy. It also does
not take into consideration the types of relations between
objects that may influence the similarity.

(B) Theory of prototypes.

Instead of focusing on features this theory of categoriza-
tion of concepts is focused on the whole objects. Some
objects are more typical than others, eg. chair is a typical
element of the semantic category furnitures, more central
than for example a wastebasket. The prototypes theory
(Rosch, 1973) come from psychological research on natural
categories, and takes a different approach than traditional
thinking in terms of sufficient and necessary conditions.
The concept here is not defined by its features but rather
by its similarity to a prototype for each category, with
unequal category membership status for different objects
(e.g. canary is a better prototype of the bird category than
penguin). Thus the prototype theory assumes existence of
some archetypes representing semantic categories. Objects
are assigned to categories using similarity measures per-
formed on different processing levels.

Some evidence of organizing human cognition in the
form of prototypes has been given in the research on build-
ing artificial conceptual categories (Posner & Keele, 1968).
It is clear the prototypes must result from generalization of
experience, but it has not been shown how exactly they
arise. Similarity functions are usually calculated using a
set of feature values, although brains may simply evaluate
similarity of distributions of neural activities. A single pro-
totype for each category is not feasible. A set of sufficiently
similar examples may be generalized to create prototypes
corresponding to similar distributions of neural activity.
In the (McClelland & Rogers, 2003) model this may corre-
spond for example to average distributions of activity of
hidden layer for general concepts, such as “bird”, that
the network has not been explicitly trained on. Vectors that
describe activity for particular birds will be close to this
prototype, with untypical features removing them further
from the prototype. Still untypical birds are closer to the
prototype for “bird” than for “fish”, and both are far from
“trees” and “flowers”.

These approaches for capturing the meaning of the con-
cepts by the brain are the inspiration for building compu-
tational model for processing lexical data. Neural models
give certainly very interesting results (Miikkulainen, 1993)
but do not scale well. There is still a strong need to create
simplified models that capture important properties of neu-
ral models but are easier to use from computational point
of view. A prerequisite for processing lexical data is the
repository for storing lexical knowledge. In the next section
knowledge representation used for our implementation of
computational model of semantic memory is described,

retaining functionalities postulated by psycholinguistic
theories.

3. Knowledge representation for semantic memory model

Knowledge representation is one of the basic themes in
artificial intelligence. It determines the way how informa-
tion within machine is stored and processed and what kind
of inferences can be performed on it (Davis, Shrobe, &
Szolovits, 1993). From the human point of view natural
language is the most flexible method for expressing knowl-
edge. It is also the most difficult to formalize in artificial
systems. The problem of knowledge representation for nat-
ural language is still unsolved and recent trends to connect
concepts with action—perception in embodied cognitive sys-
tems (Ansorge, Kiefer, Khalid, Grassl, & Knig, 2010)
shows how difficult this task may be.

No computer system is able to use language in the way
humans do, but there are some implementations that help
to improve human — computer interaction. Chatterbots
are programs designed to maintain dialog with people.
Most of them only mimic linguistic competences without
any understanding of the meaning of concepts, therefore
they fail to give meaningful answer even to simple ques-
tions. Question/answer systems, or information retrieval
tasks require more advanced approaches than just tem-
plate-matching or statistical correlations. Despite a lot of
marketing hype behind Wolfram Alpha computational
knowledge engine and other such systems answering ques-
tion is still far from satisfactory.

Flexible method for representation of some aspects of
language is based on triples in the form of object — relation
type — feature. This method has been employed for model-
ing data with first order logic (Guarino & Poli, 1995), and
has been formalized in popular RDF schemes for ontology
implementations (Staab & Studer, 2004). Triples have also
been used for building semantic networks (Sowa, 1991) and
lexical machine readable dictionaries. Below an extended
version of triples will be used for implementation of com-
putational semantic memory model which is in agreement
with psycholinguistic observations presented in previous
Section 2.

In the standard RDF form learning is possible only by
adding or removing triples, making it hard to represent
uncertain knowledge. Triples may be considered as links
between objects, represented by nodes of semantic net-
works, and features of these objects, with relation deter-
mining the type of the link. The simplest way to extend
flexibility of triples and enable learning during knowledge
acquisition process is to add weights estimating strength
of relations. Such weights should encode fuzzy knowledge,
to which degree some features are present (conveniently
expressed in terms of fuzzy sets Zadeh, 1996), as well as
handle uncertainty of knowledge, estimating reliability or
typicality of features.

In Fig. 4 the elementary atom of knowledge in the
vwORF representation used for implementation of
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Fig. 4. Atom of knowledge vwORF used in implementation of our semantic memory model.

Semantic Memory computational model is presented. This
atom of knowledge consists of five elements which can be
divided in two groups:

Triple of knowledge:

O - the object described, represented by its name, usu-
ally a concept name rather than a single word.

R - relation type denotes in what way the object is
related to the feature.

F — feature or a given property of the object.

Weights:

v — confidence, a real number in the range (0,1),
describes how reliable is the knowledge described by this
triple. The value of v grows to 1 when knowledge
expressed by the triple is repeatedly confirmed; for
new triples when there is no confirmations this value
may be set near 0.

w — support, a real number in the range (-1,+1), describ-
ing how typical is this feature for this object. Using this
parameter adjectives such as: “always”, “frequent”,
“seldom”, “never” can be expressed, for example feature
black as the property of the stork has w = —0.5, meaning
that it is seldom true, and feature white should have
w = 0.9, which means that stork is almost always white.

With the use of vwORF knowledge representation the
meaning of elementary natural language sentences can be
expressed. In Fig. 4 an example sentence “bird has wing”
has been expressed using vwORF notation. Confidence of
this triple (v =0.97) is very high, which means that this
knowledge has been confirmed through many observations
(lifetime of the system). The support (w = 0.87) is also high,
expressing the knowledge that birds generally have wings.

Note also the limitations of such representation: there is
no opportunity here to expresses numerical information,
for example that a bird has no more than two wings. How-
ever, this knowledge can be added by another triple, con-
necting “bird” and “pair of wings”. Some knowledge is
expressed more easily by setting constraints rather then
specifying precise values. Confidence and support could
be functions of numerical values, estimating how likely is
a given value (for example hight) for a given object (for
example human). We shall not discuss such extensions
here.

The set of weighted triples allows to express relatively
wide knowledge, including negative knowledge. The set
of triples joined together forms semantic network, denoted
here with the { symbol that represents the whole knowledge
stored within the semantic memory model. This knowledge
may be represented in a graphical form by visualization of
the semantic network. A user friendly interface for naviga-
tion over such data using interactive components has been
implemented by us, allowing to traverse the graph of con-
cepts and features. This method of visualization has been
also used in our other projects': for building WordNet in
a cooperative way (Szymanski, Dusza, & Byczkowski,
2007) and integrating it with Wikipedia®.

Presenting knowledge ( in the form of semantic network
is convenient for people, facilitating easy modification
using visual interface. Unfortunately data stored in this
way cannot be efficiently processed by machines. To enable
fast numerical operations semantic network is replaced by
geometrical representation called “semantic space” and
symbolized by . Turning knowledge ( contained in
semantic network into representation of the semantic space
Y transforms each object node C into n-dimensional fea-
ture space F, where each object is represented by a point,
equivalent to a sparse vector of feature values. Many
vwORF nodes are defined for each object and they are col-
lected together in the vector called Concept Description
Vector (CDV).

Exact mapping used here requires two dimensions for
each feature to store v and w weights. In its simplest form
CDYV vectors could store only binary information about
existing relations; an intermediate solution is to keep a sin-
gle real feature value. The number of all features in ( is
large and the number of features that are applicable to a
given object is rather small, therefore the vectors are quite
sparse. Although some information is lost in such transfor-
mation from { to y it is possible to perform some inferences
on knowledge stored in semantic network, thus expanding
knowledge that is stored in explicit way in the semantic
space. Inferences are based on the processing of the prede-
fined relation types and they add additional features stored
in CDV. Four types of relations that appear between
Semantic Network nodes are processed:

! http://wordventure.eti.pg.gda.pl.
2 http://swn.eti.pg.gda.pl.
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1. is_a — The relation introduces in { a hierarchy of con-
cepts that facilitates cognitive economy by inheritance
of features. If relation of the Oy is_a O, type between
two objects has been identified features from the
CDV(0,) are copied to the CDV(0Oy). A single weight
is stored, obtained by multiplication of the v confidence
value for the is_a relation by the w support value for
each feature copied. For all types of relations features
that already exists in the CDV of the object are not
changed.

. similar — If O, is similar to O; features from CDV(0O;)
should be copied to CDV(0,), adding additional fea-
tures that have not been present in CDV(0,), with the
weight factor obtained by multiplication of confidence
v related to the relation similar, multiplied by the w sup-
port for the O; features. This relation is not symmetric.
However, if v = 1 relation similar becomes same, imple-
menting equivalence of semantic memory objects, there-
fore processing is performed also from O, to O;.

. excludes — Processing of this relation is similar to the one
presented above, except that the w support value of the
feature copied to CDV(0,) is multiplied by —1.

. entail — If F| entails F, feature F, may be added to the
CDYV of the object for which F; is defined, with the w
value of the F, being the same as F, and confidence fac-
tor v associated with the relation.

As an example consider semantic network constructed
for 172 animals (or more formally, objects from the animal
kingdom domain). The 475 features describing them were
selected from relations of these objects that have been
found in three lexical databases: WordNet (Miller,
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Beckitch, Fellbaum, Gross, & Miller, 1993), MediaMIT
ConceptNet (Liu & Singh, 2004), Microsoft MindNet
(Vanderwende, Kacmarcik, Suzuki, & Menezes, 2005).
Usage of three different data sources allows to build lexical
semantic network in the automatic way. To assure the
quality of the knowledge v values have been set using con-
firmation of particular atoms of information in different
sources. Only those relations that appear in more than
one data source have been imported, with confidence factor
v = 0.5 if they are only in two sources, and 0.75 if they are
in all three sources. The confidence value associated with
each relations is further increased or decreased as a result
of the interaction with human user. Knowledge acquired
by aggregating three machine readable dictionaries con-
sisted of 5031 most reliable relations describing 172 ani-
mals with 475 features.

Performing inferences based on these 4 types of relations
enhances CDV representation of objects with new features.
Fig. 5 presents how processing a particular relation type
during { to Y transformation influences the average num-
ber of the features in the CDV vectors.

4. Semantic search algorithm

Semantic network describing relations between lexical
elements can be useful in many applications. We have
successfully applied the knowledge about relations of the
natural language elements, encoded using knowledge repre-
sentation proposed in previous Section 3, for improve-
ment of text classification (Majewski & Szymanski, 2008).
Semantic space allows to perform semantic searches for
objects of interest referring only to their features. This kind
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Fig. 5. Change of the average number of specified CDV features as a function of the processed relation types.



92 J. Szymanski, W. Duch/ Cognitive Systems Research 14 (2012) 84—100

of search is useful when a user cannot recall the name of an
object she/he is looking for (consider the Tip of the Tongue
problem Burke, MacKay, Worthley, & Wade, 1991) or
even does not know its proper name. This situation is quite
common, for example seeing an image of a flower one may
try to identify its name. In such a case typical keyword-
based search may not be effective and could be replaced
by semantic memory guided search, as described below.

Searching for unknown object in the semantic space is
performed by selecting the most distinctive feature that will
divide the whole space in a balanced way. In the semantic
space Y containing M objects O; with N features Fj the
search based on a set of keywords should select the best
feature that gives the maximum amount of information.
Information-based measures are frequently used in deci-
sion trees (Quinlan, 1986) and information selection. In
our case calculation of information associated with each
feature in ¥ is done according to the modified Shannon for-
mula (1).

M
_ Wik Wik
1F) = =3 5 loe (1)

where wy, is the support assigned to the relation between
the object O; and feature Fj. Information (1) depends on
the objects contained in the part of y space considered,
and this subspace is reduced after each new keyword value
is specified. For large semantic space y it is quite likely that
there will be more than one feature having the same highest
information, therefore additional heuristic criteria are
needed for ranking. One heuristics is to select the most pre-
valent feature, according to the term frequency stored in
databases derived from general corpora (Hunston, 2001).
Another heuristics is to use probabilities p(O;) from previ-
ous searches to guess which objects are most frequently
searched for. For statistics based on Ng previous searches
minimum probability for rare objects selected once is
p(0) =1/Ng. Ordering m objects selected out of all M
objects in decreasing sequence of p(O;) probabilities one
obtains a curve that has roughly exponential shape. This
curve can be used to estimate probability of the remaining
M — m objects that have not been selected so far. Calling
this probability p, one may then renormalize estimated
probabilities p(0;) < p(0;)/(1 + p,) and use them in the
modified formula (1):

IW(Fy) = — ZP(Oi)lwikl log p(O;)wa| (2)

The best separating feature selected on the basis of
IW(F}) value is used as a keyword. The user determining
its value can narrow the set of the objects which can be
the result of her/his search. In the implementation pre-
sented below we allow only “yes”, “no”, “don’t know”,
“sometimes” and “frequently” answers, but depending on
the application other answers could be accepted (for exam-
ple, a value in a given range). All answers given by the user
are collected in the vector 4 that is used to calculate

distance to all objects in the semantic space and select the
most probable (closest) objects. Full representation of
object features stored in the V; = CDV(0;) is used to calcu-
late Euclidean distance in a subspace of K known feature
values:

D(4,0,) = \/Zfl(m — 4’ (3)

where K is the length of the answer vector 4, describing
how many features have been tested so far. CDV vectors
do not have full information about relations between ob-
jects and features, some answers may not be correct and
distances may be influenced by different number of features
defined in each CDV vector. Therefore instead of Euclid-
ean distance it is better to use cosine measure, a normalized
dot product of the 4 and V' vectors, which has proved to be
quite reliable in information retrieval problems (Qian,
Sural, Gu, & Pramanik, 2004).

> Vids

\/ ZIVIZ \/ ZIAIZ

In our system knowledge has different confidence factors
(v), and has fuzzy support (w), therefore instead of these
simple measures similarity is computed by:

d(V,A) = (4)

S(V,4) = % zkj(l — dist(V, 4,)) (5)

where the distance between components is defined by:

0 if w(4;) = NULL
—w(d)|/K if o(V)) =0

(V) w(V;) —w(4)| if o(V;) >0

dlSt( V,',A,') =

where v(V;) and w(V;) are confidence and support weights
describing relations with feature F; in CDV, and w(4,) is
the answer given by the user to the question “is the feature
F; true” for the object she/he is searching for. The following
table shows numerical values that corresponds to the ver-
bal answers:

Similarity of the CDV and answer vectors A is calcu-
lated as a sum of differences between user’s answers and
the system knowledge. If the user answers “don’t know”
this feature is omitted during calculation of similarity.
Additionally the confidence factor v allows to strengthen
importance of CDV components which are more reliable
and weaken the influence of the accidental ones.

After k steps (answers) maximum similarity Spax
between the current answer vector A and all CDV vectors
¥ is achieved in a subspace ((4), containing objects that —
with high probability — are looked for:

0(4), = {0i|S(4, V (O:P)) = Smar} (6)
Using the maximum similarity or equivalently a mini-

mum distance criteria to construct ()(4) subspace should
lead to fastest recognition of the searched objects using
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minimum number of questions asked during the search.
However, knowledge stored in CDV vectors is not perfect
and answers given by the user are not always correct, there-
fore such approach would sometimes miss searched
objects. Moreover, it will miss the opportunity to acquire
new knowledge, as discussed further below.

5. The game of questions

Given a limited description of the object people are able
to identify it because their semantic memory, storing many
relations between objects in the real world, is able to for-
mulate good questions and make inferences that complete
partial descriptions. The anticipation and associations cre-
ated by the lexical context are one of the most important
processes that the system capable of understanding natural
language in a similar way to humans should posses. It
requires good models of semantic and episodic memories.

Semantic search process is a good model of the popular
20-question word game, where one person is allowed to ask
20 questions trying to guess the concept the opponent has
in mind. The game is relatively simple for the people,
because they have wide knowledge about the world. It is
quite difficult for computer programs because success does
not depend that much on computational power (as in chess
and other board games) but relies on knowledge about the
world represented as relations between lexical elements.
For that reason it has been proposed as a good challenge
for computational intelligence (Duch, 2007). This game
may also serve as a demonstration of the elementary lin-
guistic competences based on lexical knowledge, allowing
for a real understanding of the meaning of discourse, and
not just to respond mechanically using templates.

In our implementation of the game the computer, using
knowledge encoded in the form of semantic network, tries
to guess the object a human user has in mind. In reply to
the given questions, generated from vwORF knowledge
representation, a human can give answers only in the form
specified in the Table 1. What makes this approach® differ-
ent compared to the ones already available in the Inter-
net*>% is the flexibility of the knowledge representation
used. All knowledge is stored in the semantic network and
converted to the vector-based semantic space to increase
computational efficiency. This makes our approach largely
independent of particular applications. Various applica-
tions may use knowledge contained in the semantic net-
work. For example, automatic generation of riddles for
crosswords is easily achieved by selecting small subsets of
features that allow for a unique identification of objects.
A very large number of such subsets exist even in knowledge
bases of modest size.

3 http://diodor.eti.pg.gda.pl.

4 http://www.20q.net.
5 http://www.braingle.com/games/animal/index.php.
® http://en.akinator.com/.

Ability to use linguistic data in many applications allows
to place our approach in the field of artificial general intel-
ligence (Voss, 2005). Alternative approaches to word
games encode the knowledge in a fixed form, using a matrix
of objects and questions, which makes it easier to process
by computers, but is only a superficial imitation of natural
language abilities, although still better than the famous
ELIZA template-based approach (Weizenbaum, 1966).
Another difference is the way in which questions are gener-
ated during the game. Other approaches used hand-coded
questions, while in semantic search questions are automat-
ically generated using atoms of knowledge in vwORF rep-
resentation. Formulating questions that are grammatically
correct is a challenge in itself because there are many forms
(depending on the relation type) in which question could be
cast.

The third difference between semantic search approach
and other systems is the way knowledge is acquired. This
is the main bottleneck of most knowledge-based systems
(Cullen & Bryman, 1988). Our implementation bootstraps
itself on knowledge from available machine readable dic-
tionaries and other electronic sources, and thus can be
run on a large scale, while other projects mostly exploit
the interaction with the users to learn correct answers. Of
course human—computer interaction is a very useful way
of acquiring knowledge, but it is also very time consuming
and needs “the snowball effect” to bring enough players,
which requires strong marketing. Focusing on automatic
data acquisition interaction with humans is used here only
for validation and correction of the results, as discussed
below in the Section 6.

To make the game of questions more attractive some
modifications to the semantic search algorithm are
introduced.

1. Questions are generated selecting vwORF atoms from
the semantic space according to the formula (1) or (2).
If the same user repeats the game searching for the same
object several times the deterministic system would ask
the same questions, and that could be annoying. This
situation is a good opportunity from the knowledge
acquisition point of view (see Section 6). To prevent
choosing many times the same question stochastic ele-
ments are introduced, selecting features randomly with
probability related to the information calculated accord-
ing to (1) or (2). This method is analogous to the popu-
lar genetic algorithms roulette reproduction approach
(Goldberg, 1989). Such modification makes selecting
features (questions) a bit less effective, but in the tests
it has not shown significant negative influence on the
average number of questions.

2. In the classic version of the semantic search algorithm
subspace O(A) containing most probable objects that
are used to estimate information has maximum similar-
ity or a minimum distance between the current answer
vector and all vectors in O(4) (Eq. (5)). If there is some
significant discrepancy between these answers and
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stored knowledge (due to the errors in answers, semantic
network, or both) the object of interest may be left out-
side of O(A). To prevent this situation larger subspace is
taken, with objects accepted with probability given by
modified Boltzman distribution:

2
1 + exp (k49

c

p(Ad, k) = (7)
where k is the step of the game (number of question
asked so far), Ad = dist(}1(0), ) = 0 is the distance of
the CDV vector representing some object O from the an-
swer vector A minus d,,,;,, and ¢ is a scaling constant, set
to five in all experiments. All objects at minimum dis-
tance are always included (p(0, k) = 1), while objects that
are further then d,,;, are included with decreasing prob-
ability, and may be different then those selected in the
previous step. Selecting objects to the subspace O(A)
with a little less restrictive criteria than d,,;, makes the
game longer, but it can only be observed for popular ob-
jects that can be found asking a few questions. For long-
er games k in the Eq. (7) grows, and only objects at a
minimal distance have a chance to be selected. If all an-
swers are correct and match knowledge in the semantic
space d,,.;; = 0, but the subspace O(A4) may still contain
many objects and more questions will be generated.

. Algorithm stop condition: three cases when that algo-

rithm may stop are considered:

e The algorithm stops when there is only one object left
in the subspace O(A4). It is the most desired situation,
but it is relatively seldom because the CDV vectors
are sparse — the knowledge relating features with
objects is usually far from complete. Also expanding
the subspace O(A) using Eq. 7 brings into consider-
ation less probable objects.

e The algorithm stops after asking the maximum
number of questions allowed. Assuming only binary
answers to the questions, and minimal differences
between objects (objects differ only by one feature),
20 steps (questions) should distinguish 2%°=
1,048,579 objects. These assumptions are of course
not true, in practice knowledge in CDV is incomplete,
vectors differ in more than one feature, features are
not binary, and more than 20 features are used to
describe objects. Notwithstanding these issues, 20
questions seems to be a reasonable maximum number
of questions for one game.

e When the number of objects left in the O(A) subspace
is relatively small heuristics may be used to identify
searched object. The implemented heuristic is based
on the observation that if there exists an object which
significantly differs from other objects in the O(A)
subspace, and it stands out during successive ques-
tions that it may be the object of interest. The imple-
mentation of this heuristic is based on fulfilling the
condition described by (8).

d, = Adpins1 — dmin) > std(0(4)) (8)

Fig. 6. Avatar used in the implementation of the game of questions seen in
the Internet Explorer.

where d,,;, is the minimal distance in the O(A) be-
tween CDV and the answer vector, dn,1 1S the sec-
ond minimal distance, std(O(4)) is the standard
deviation of distances in the O(A4) subspace.

Tests of this heuristic show that it considerably
decreases the number of the questions, but in some
cases leads to a wrong guess. The tradeoff between
the number of questions and precision of finding
the object is analogous to that between precision
and retrieval — the two measures behave in opposition
to each other and there is a problem of optimizing
them simultaneously (Buckland & Gey, 1994).

Technical implementation of the game has been done in
form of a server controlling a web page with interactive
user interface in the form of HIT (Humanised InTerface).
Due to the MS ActiveX technology used for the Avatar,
full interaction is possible only under Internet Explorer.
Interface in the form of a humanoid taking head is depicted
in Fig. 6. This implementation serves as the testbed for
integration of technologies making the web applications
more user-friendly (Szymanski, Sarnatowicz, & Duch,
2007). The Haptek’ 3D head has been integrated with the
text to speech engine (TTS) and endowed with the speech
recognition® (due to the unacceptably high consumption
of server’s computational resources available only in the
console version). The problems faced with implementation
of these attractive technologies on a large scale shows that
although the HIT functionalities are implementable they
are still not mature enough to be widespread.

7 http://www.haptek.com.
8 MS SpeechAPI http://www.microsoft.com/speech/speech2007/
default.mspx.
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6. Knowledge acquisition through active dialogs

It cannot be expected that a semantic network { built
automatically from available data sources will be complete,
and each object will be properly related to all features that
describe it. A method for validating and correction the data
acquired automatically is needed. The approach described
here is based on the semantic search algorithm imple-
mented in the form of a word game performed by the
human user, who modifies the lexical knowledge base as
a result of her/his search. The interaction with the program
has been limited so far to the answers (in the form defined
in the Table 1) accepted to the questions generated using
the knowledge stored in the system. Human-computer
interaction during the games is enriched through active dia-
logs based on the templates of interactions, run in a speci-
fied parts of the game. Three such templates are described
below:

1. At the end of the game, if the system correctly guessed

the concept, additional question Is that right? has been
added to verify quality of knowledge stored in the
semantic space. Using the yes/no answer given by the
user to that question precision of the search is defined
as Q= Ns/N, where Ny denotes the number of the
searches that finished with success, and N denotes the
total number of the performed searches.
For the initial semantic network constructed in an auto-
matic way N = 30 test searches have been performed for
an object randomly selected from { set. Selection of
object for searches has been done with probability distri-
bution given by a normalized number of the features in
CDV vectors, so objects that are better described and
more popular are favored. The Q = 0.7 result indicates
that in the limited domain there are some possibilities
to obtain common sense knowledge in the form of rela-
tions between lexical concepts automatically. It also
shows that the method of integrating semantic data
from three machine readable dictionaries requires man-
ual validation and correction.The user’s answers given
to the questions asked by the system allow for correcting
and also obtaining new knowledge stored in the seman-
tic network. The answer vector is used to perform mod-
ifications of the knowledge according to the results of
the search:

2. If to the last question Is that right? a user gives an
answer yes, the entries in the answer vector are used
for enriching the CDV representation of the object the

Table 1
User answers and their numerical encodings.
1 For the answer “yes”
0.5 For the answer “frequently”
-0.5 For the answer “seldom”
-1 For the answer “no”
0 Denotes answer “don’t know”

system guessed correctly. If some features present in
the answer vector already exist in the CDV the w weights
are modified taking the average value of w associated
with particular feature in CDV and in the answer vector.
In addition the system asks an open question: Tell me
something about (found object). The answer may link
existing feature to the object through some type of rela-
tions, but also may add a completely new feature to the
semantic network that has not existed in the knowledge
base. An automatic search for possible links between
new feature and stored objects is performed.

This procedure requires deep linguistic parser to convert
the sentence in natural language given by the user to
knowledge vwORF knowledge representation (Szy-
manski et al., 2007). Parsing sentences given by the users
is the opposite process to the generation of questions
performed by the system during the game.

3. If instead of the confirmation of search results the user
answer is no the system asks additional question: Well,
1 fail to guess your concept. What was it?. The name of
the object the user was thinking about indicates which
CDYV should be corrected according to the information
in the answer vector. If the object has not existed in
the semantic memory before a new object is created with
initial features copied from the answer vector. This
active dialog allows the system to learn new objects.

To validate active dialog approach five test objects with
the largest number of features defined in CDV have been
selected. After their manual verification (using interactive
visualization of the semantic network) their CDVs were
take as the Golden Standard and used to verify capability
for acquiring new knowledge through the active dialogs.
The verification has been performed by removing these
objects from the knowledge base and then learning about
these objects through the interaction with users. The aver-
aged dynamic of this process, performed for five objects in
ten games has been presented in Fig. 7. All games have
been limited to twenty questions.

The process of acquiring knowledge using active dialogs
has been monitored analyzing how complete the CDV of a
new object (NO) became comparing to the Golden Stan-
dard (GS). To analyze the process of acquiring knowledge
four measures are introduced:

1. S;= N(GS)—N[O) is the measure of incompleteness of
the new object, showing how the NO differs from GS in
terms of the number of features. N(GS) is the number of
features defined in the Golden Standard GS = G(O) for
the concept O, and N(O) is the number of features
defined for this concept in CDV(0O). The S, value shows
how many features are still missing compared to the
golden standard.

2. Sgs = SV = §(CDV(GS) — CDV;(0))] is the mea-
sure of similarity based on the co-occurrence of features.
It shows more precisely than S; how close is NO to GS.
The sum is only over features with defined yes/no values.
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Fig. 7. Dynamics of the process of acquiring new features; averaged results for five new objects.

The Sgg value is the number of features from O that are
found in the golden standard GS vectors; the reverse
measure (Syo) is defined below. The ratio S,/Sgs of
the similarity and incompleteness measure shows the
percentage of all features of the golden standard that
has already been defined for the concept O.

3. Dif,, = > ,(|CDV(O) — CDV(GS)|/m is the average
difference for all m feature values that appear in both
O and GS representations. This measure shows how
the feature values differ in O and GS vectors for those
features that are common to the two vectors. It allows
for observing wrong values associated with relations,
while the previous measures allowed only to analyze
existence of the relations.

4. Syo = SV — 5(CDV(0) — CDV(GS))],  analogi-
cally to Sgs, is the measure of similarity of two CDV
vectors based on co-occurring features, with summation
running over features in the GS. The Sy, value is equal
to the number of features that appear in description of
the concept O and are not found in the GS, thus it mea-
sures completeness of the Golden Standard.

The difference between CDV(O) and GS representations
is not only due to the lack of knowledge, but also the mech-
anism to randomize questions, allowing for more knowl-
edge acquisition when the game with the same concept is
repeated several time. Results shown in Fig. 7 prove the use-
fulness of active dialogs for acquiring new knowledge. This

can be seen analyzing the graph NO,, (NO, = Syo + Sgs)
where an average increase of the number of features defined
in CDV is shown. It can also be observed that during subse-
quent games the number of the features acquired to the NO
grows (graph Sgs). For the five test objects the average num-
ber of games required to make the system recognize new
object correctly was only V, =2.67. It means that after
searching approximately three times for the unknown object
the system can identify it correctly. It is also important to
notice that the learning process makes objects stable — after
the first successful search the object was always correctly
recognized in the next games.

S, value is calculated for the average number of features
in all GS which had Dens(GS) = 55.5. The decreasing trend
of S, indicates that the number of features in NO comes
near to the number of features in GS. It can be expected
that after playing more games this value could go below
zero indicating that NO has more features than GS. This
shows that using the active dialogs one can build better
CDV than provided in the Golden Standard which is
imperfect, as shown by the Syo graph. The limitations of
the GS come from the fact that for the semantic space of
475 features it is hard to acquire full description in the
CDYV form, even for limited set of objects. Differences (D5,
values) come mostly from the w weights that are negative,
making 96.2% of all features in CDVs. It implies that GS is
well defined in terms of features that are positively related
to the object.
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Only a few active dialog templates have been shown here
to demonstrate the ability for acquiring common sense
knowledge about language stored in the form of weighted
vwORF triples. More templates may be added which
should lead to improved acquisition of structured knowl-
edge through supervised dialogs in natural language with
humans.

7. Comparison to human performance

Results of the semantic search algorithm applied to the
20-questions game may be directly compared to the same
task performed by people. In the restricted knowledge
domain that our program is working comparison is done
between the average number of questions needed to find
concepts in games between two people, and in games where
one of the players is replaced by the computer program.
Let N, be the number of questions used for guessing an
object in the game. Let N, be the number of unsuccessful
searches, so that for N, games N,/N, measures the preci-
sion of retrieval.

Experiments were done separately with 4 groups of peo-
ple of roughly the same size (20-23), or a total of 86 people.
First they have been asked to play in pairs the game of
questions restricted to the animal domain. In this part of
the experiment 93 games have been completed. 86 of these
games have been finished in no more than 20 questions and
could be used for evaluation. The average number of ques-
tions N, asked by humans to find the object the opponent
is thinking about is presented in Fig. 8, with bars labeling
groups 1-4, summary of results for games played only by
people, and summary of results for games played by people
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with our program. The height of the bar denotes in loga-
rithmic scale the number of performed games. For each
group the minimum and maximum number of questions,
the average value and the standard deviation has been pre-
sented. Shorter and darker bars represent the number of
unsuccessful games, requiring more than 20 questions or
missing the target object. Summary of results shows that
only a small number of games have been unsuccessful.

In the second phase of the experiment people were asked
to perform the game of questions with the computer.
Semantic search algorithm with the guessing heuristic (8)
has been used. The quality of data stored in the semantic
network is estimated by the fraction Q=1— N,/N, of
unsuccessful runs and by the average number of questions
N, required to guess the object, shown in Fig. 8 in the
“algorithm” bars.

Knowledge base used in this experiment had 197 objects
described by 529 features, with the average number of
50.64 features per object. 227 games performed with people
gave the average Q = 0.64, which is a bit worse than the
results obtained during tests on Semantic Network
acquired in an automatic way. This is due to the fact that
human players introduced 46 new objects to the { knowl-
edge base that had to be learned by the system. Of course
197 objects chosen for automatic network construction
does not cover all of the animals domain, but allows for rel-
atively frequent opportunity to learn new objects. If these
46 cases are not included in the number of failed searches
much higher quality Q =0.81 is obtained. Searching for
new objects caused 56% of all errors, and through the use
of active dialogs new knowledge is added and the compe-
tence of the system grows.
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Fig. 8. Comparison of the semantic search algorithm for the 20-question games played in four groups of humans. The bars present: total number of the
games played in each of the group as well average results (denoted with 3), number of searches performed by algorithm and number of unsuccessful

searches.
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The difference between human and semantic search
algorithm performance is not that big, on average people
used nearly 12 questions to make a correct guess while
our algorithm required about 14 questions. The main fac-
tor responsible for this difference is probably due to rela-
tively poor quality of knowledge acquired through the
automatic data acquisition. However, overall approxima-
tion of associative inference mechanisms operating on
semantic memory by such simple knowledge representation
and search algorithm is quite remarkable. Of course the
task itself requires very limited linguistic competences. In
most tasks involving natural language processing people
use a wide range of common sense knowledge. It seems
impossible to obtain such knowledge only from statistical
analysis of unstructured text corpora, or even from struc-
tured resources such as machine readable dictionaries.
What is needed is the active cognition aspect — functional-
ity that allows to verify obtained knowledge in action,
which is reduced here to the interaction of the program
with people in word games. Introducing more human inter-
actions into the process of lexical knowledge acquisition
seems to be a necessary to increase natural language com-
petence of computer systems.

8. Discussion and future research

Cognitive processes rely on different types of memory:
recognition, semantic, episodic, working, and procedural
memories. We have focused here on the semantic memory
as the basis for understanding the meaning of general
concepts. Semantic memory as an element of the human
cognitive processes has been the subject of many psycholin-
guistic theories. They are a rich source of inspirations for
computational models approximating mental processes
used by the brain in language comprehension and produc-
tion. Such computational models, beside the algorithm,
require also a lot of data to operate on. This data should
represent knowledge about language concepts and the
common sense associations between lexical concepts and
their properties. Such lexical data is linked to perception
and action in embodied cognitive systems (Ansorge et al.,
2010) and thus cannot be easily represented without sen-
sory percepts, their categories and more abstract construc-
tions. At present it is very hard to acquire because it can
only be produced and verified by humans, although in
future robotic experiments may also offer interesting inspi-
rations. Only a part of symbolic knowledge involved in the
description of natural objects and categories may to some
degree be captured in semantic networks and create suffi-
ciently rich relations to grant symbols some elementary
meaning. Such representation of knowledge allows for
approximation of natural processes responsible for lan-
guage comprehension.

In this paper a step towards computationally efficient
model of semantic memory has been made. Knowledge
representation in the form of weighted triples vwORF,
has been used for implementation of functionalities

inspired by psycholinguistic theories of human semantic
memory. Semantic network build from the vwORF atoms
of knowledge is a flexible way of storing lexical knowledge.
For computational efficiency vector-based semantic space
is used instead of semantic network. Elementary linguistic
competence has been demonstrated in word games in this
way, with results that have not been shown so far by more
sophisticated linguistic approaches. Word games are a
good ground for comparison of human competencies with
capabilities of computational models. Results achieved by
people and by our semantic search approach based on
vwORF knowledge representation in the 20-question game
show that although real brains are still better than com-
puter programs the difference is not so large.

Linguistic competence of programs depends more on
lexical knowledge, representation scheme and search algo-
rithm than on raw computational power. Research on
expert systems showed the difficulty and the importance
of knowledge acquisition from data, and despite the avail-
ability of huge structured and unstructured lexical
resources acquiring lexical information automatically is
still a great challenge. Using three independent lexical dat-
abases we have shown possibilities for obtaining automat-
ically common sense knowledge in the form of typed
relations between lexical elements. Nevertheless, the data
need to be validated and corrected interacting with people.
Active dialogs introduced here allow for acquisition of
common sense knowledge and verification of this knowl-
edge in action. This is frequently omitted in construction
of large lexical databases, such as WordNet that has been
built manually with a great effort. Without systematic feed-
back from active use of its resources the process of com-
pleting missing knowledge and proper stratification of
Wordnet synsets in different contexts is very slow.

Semantic search process introduced in this paper may be
treated as a general model of decision making based on
active queries, to find particular action (object) appropriate
in specific conditions (feature values). Consider for exam-
ple the process of medical diagnosis where disease is iden-
tified using a series of observations and tests; decision
support system should ask a number of questions to iden-
tify the most distinctive symptoms. The algorithm has
already been tested in medical domain using data from
the “Diagnostic and Statistical Manual of Mental Disor-
ders” (DSM 1V) (DSM, 1994). Queries generated by
semantic search led to correct diagnosis in fewer steps than
the original decision tree recommended by DSM IV. Other
applications include WWW information retrieval (Duch &
Szymanski, 2008). Web search engines return a large set of
pages as a result of keyword-based query, and the subset of
most relevant pages is subsequently identified using the
semantic search algorithm. However, such approach
requires features relevant for concepts contained in all
possible knowledge domains indexed by the search engine.
It implies building a very large scale semantic network
which is still a great challenge. This vwORF representation
of knowledge has also been successfully applied for
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improvement of natural language text
(Majewski & Szymarnski, 2008).

The tests performed here in the limited domain should
be treated as the proof of concept. The project will be
scaled up and used to improve information retrieval from
Wikipedia. Interaction of many volunteer contributors
would be needed to create knowledge for a large scale
semantic network, verified in action during the actual
searches. A good strategy is to start form a limited domain,
such as animals or plants, trying to cover the whole
domain, not just a small subsets and has been done here.
Identifying an arbitrary plan or animal shown in a photo-
graph using a variant of the 20-question game is a challeng-
ing task. Going beyond simple nouns and trying to
understand actions is still farther ahead. In all these tasks
neurocognitive inspirations should be our guide.
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