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Abstract. Support Vector Machines (SVM’s) with various kernels have become
very successful in pattern classification and regression. However, single kernels
do not lead to optimal data models. Replacing the input space by a kernel-based
feature space in which the linear discrimination problem with margin maximiza-
tion is solved is a general method that allows for mixing various kernels and
adding new types of features. We show here how to generate locally optimized
kernels that facilitate multi-resolution and can handle complex data distributions
using simpler models than the standard data formulation may provide.

1 Introduction

For more than a decade now kernel Support Vector Machines (SVM’s) have become
extremely successful approaches to pattern classification and regression problems. Ex-
cellent results have been reported in applying SVM’s in multiple domains thanks to the
ingenious use of various kernels, providing an equivalent of specific similarity measures
in the kernel space [1]. However, the type of solution offered by a given data model ob-
tained by SVM with a specific kernel may not be the most appropriate for particular
data. Each data model defines a hypotheses space, that is a set of functions that this
model may easily learn. Linear methods work best when decision borders are flat, but
they are obviously not suitable for spherical distributions of data. For some problems
(for example, high-dimensional parity and similar functions), neither linear nor radial
decision borders are sufficient [2].

Kernel methods implicitly provide new, useful features zi(x) = k(x,xi) con-
structed around support vectors xi, a subset of input vectors relevant to the training
objective. Prediction is supported by new features, most often distance functions from
selected training vectors, weighted by a Gaussian function, making the decision bor-
ders flat in the kernel space. Multiple kernels may be used to construct new features,
as shown in our Support Feature Machine algorithm [3]. In the second section standard
approach to the SVM is described and linked to evaluation of similarity to support vec-
tors in the space enhanced by zi(x) = k(x,xi) kernel features. Linear models defined
in the enhanced space are equivalent to kernel-based SVMs. In particular, one can use
linear SVM to find discriminant in the enhanced space, preserving the wide margins.
For special problems other linear discriminant techniques may be more appropriate [4].

Although most research in the SVM community has focused on the underlying
learning algorithms the study of kernels has also gained importance recently. Standard
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kernels such as linear, Gaussian, or polynomial do not take full advantage of the nuances
of specific data sets. This has motivated plenty of research into the use of alternative ker-
nels. Various kernels may be used to create enhanced feature space. Here an approach
that combines Gaussian kernels with selection of pure clusters, adopted from our Al-
most Random Projection Machines [5] algorithm, is investigated. In section 4 Locally
Optimized Kernels are tested in a number of benchmark calculations. Brief discussion
of further research directions concludes this paper.

2 Kernels and Support Vector Machines

2.1 Standard SVM formulation

Since the seminal paper of Boser, Guyon and Vapnik in 1992 [6] Support Vector Ma-
chines quickly became the most popular method of classification and regression, find-
ing numerous other applications [7–9]. In case of binary classification problems SVM
algorithm minimizes average errors (or risk) over the set of data pairs 〈xi, yi〉. Depend-
ing on the choice of kernels and optimization of their parameters SVM can produce
flexible nonlinear data models that, thanks to the optimization of classification margin,
offer good generalization. This means that the minimum distance between the training
vectors xi and the hyperplane w should be maximized:

max
w,b

min ‖x− xi‖ : w · x+ b = 0, i = 1, . . . ,m (1)

The w and b can be rescaled in such a way that the point closest to the hyperplane
w ·x+b = 0, lies on one of the parallel hyperplanes defining the margin w ·x+b = ±1.
This leads to the requirement that

∀xi yi[w · xi + b] ≥ 1 (2)

The width of the margin is equal to 2/‖w‖. Therefore maximization of margins is equiv-
alent to minimization:

min
w,b

τ(w) =
1

2
‖w‖2 (3)

with constraints that guarantee correct classification:

yi[w · xi + b] ≥ 1 i = 1, . . . ,m (4)

Constraint optimization problems are solved by defining the Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi(yi[xi ·w + b]− 1) (5)

where αi > 0 are Lagrange multipliers. Its minimization over b and w leads to two
conditions:

m∑
i=1

αiyi = 0, w =

m∑
i=1

αiyixi (6)
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The vector w that defines the hyperplane is expressed as a combination of the training
vectors, each component w[j] is a combination of j feature values for all vectors xi[j].
According to the Karush-Kuhn-Thucker conditions:

αi(yi[xi ·w + b]− 1) = 0, i = 1, . . . ,m (7)

For αi 6= 0 vectors must lie on one of the margin hyperplanes yi[xi · w + b] = 1;
these vectors “support” the hyperplane w that defines the solution of the optimization
problem. Although the minimization may be performed in the primal form [10] the
quadratic optimization problem is frequently redefined in a bit simpler dual form:

max
α

w(α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjxixj (8)

with constraints:

αi ≥ 0 i = 1, . . . ,m

m∑
i=1

αiyi = 0 (9)

The discriminant function takes the form:

g(x) = sgn

(
m∑
i=1

αiyix · xi + b

)
(10)

Now it is easy to replace dot product x ·xi by a kernel function k(x,x′) = φ(x) ·φ(x′)
where φ(x) represents an implicit transformation of the original vectors to a new kernel
space. For any φ(x) vector the part orthogonal to the space spanned by φ(xi) does not
contribute to the φ(x)·φ(x′) products, therefore it is sufficient to express φ(x) and w as
a combination of φ(xi) vectors. The dimensionality d of the input vectors is frequently
lower than the number of training patterns d < m, and then φ(x) represents mapping
into higher m-dimensional space. According to the Cover theorem [11] probability of
linear separation of data points grows with the dimensional of the space in which data
is embedded. However, in case of microarray data and some other problems the reverse
situation is true: dimensionality is much higher than the number of patterns for training.
Still weighted distances used as features for linear discrimination may be quite useful,
providing some improvement in comparison to the nearest neighbor methods.

The discriminant function in the φ() space is:

g(x) = sgn

(
m∑
i=1

αiyik(x,xi) + b

)
(11)

If the kernel function is linear the φ() space is simply the original space and the contri-
butions to the discriminant function are based on the cosine distances to the reference
vectors xi from the yi class. Thus the original features x[j], j = 1..d are replaced
by new features zi(x) = k(x,xi) that evaluate how close (or how similar) the vector
is from the training vectors. Incorporating signs in the coefficient vector Ai = αiyi
discriminant functions is:

g(x) = sgn

(
m∑
i=1

αiyizi(x)) + b

)
= sgn (A · z(x)) + b) (12)
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With the proper choice of non-zero α coefficients this function provides a distance
measure from the decision border, combining distances from the support vectors placed
at the margins. In non-separable case instead of using cosine distance measures it is
better to use localized similarity measures, for example by scaling the distance with
Gaussian functions. This leads to one of the most useful kernels:

kG(x,x
′) = exp(−β‖x− x′‖2) (13)

Such kernels help to smooth decision borders because in the discriminant kernels an-
chored at the support vectors of one class are combined overcoming the influence of
low-density data points from the opposite classes. Kernel-based methods use similarity
in a special way in combination with linear discrimination, but similarity estimations
may also be used in many other ways in pattern recognition problems [12, 1].

2.2 Kernel features spaces

For each vector x we havem kernel features zi(x) = k(x,xi) defined for each training
vector. For example taking the Gaussian kernel kG(x,x′) and fixing the value of dis-
criminant g(x) =constant is equivalent to taking a weighted sum of gaussians centered
at some support vectors that are near the border; for large dispersions all vectors may
contribute, but a single one will have weak influence on the decision border. Because
contours of discriminant function in the kernel space are approximately constant when
x moves along the non-linear decision border in the input space, they lie on the hyper-
plane in the kernel space. Therefore in the space of kernel features linear discriminant
methods may be applied directly, without the SVM machinery. This was demonstrated
in computational experiments by comparing the results of SVM with Gaussian kernel
solved by quadratic programming with direct linear solutions in the kernel-based fea-
ture space[3].

3 Locally Optimized Kernels

The Locally Optimized Kernels (LOK) approach presented in this paper is based on
generation of new features using restricted gaussian kernels followed by the Winner
Takes All (WTA) comparison of output activities (where a simple sum of the nodes as-
signed to class C is used to estimate the winning class), or by the linear discrimination.
One may use many other machine learning algorithms in this new feature space [12, 1],
but here we have space to compare only the basic version of this approach with standard
SVM approaches (see Algorithm 1).

To create LOK feature space for every training vector a candidate kernel feature
is used: gi(x) = exp(−||xi − x||2/2σ2). For every such feature gi analyze p(gi|C)
distributions to find relatively pure clusters in some Iiab = [gia, gib] interval (here we
have used only pure clusters, although in some problems it may be necessary to include
some. This creates binary candidate features Biab(x). Good candidate feature should
cover some minimum number η of training vectors. The optimal number may depend
on the type of data, the domain expert may consider even a single vector to be a signifi-
cant exception worth retaining. Below the η parameter has been optimized using results
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of crossvalidation. This condition avoids creation of overspecific features. In the imple-
mentation tested here LOK uses winner-takes-all mechanism or linear discrimination to
find solutions in the new feature space.

The LOK algorithm is sketched below:

Algorithm 1 Locally Optimized Kernels
Require: Fix the values of internal parameters: η for minimum covering and σ for dispersion.

1: Standardize the dataset, m vectors, d features.
2: Create candidate kernel features gi(x) = exp(−||xi − x||2/2σ2).
3: Sort gi(x) values in descending order, with associated class labels.
4: Analyze p(gi|C) distribution to find all intervals with pure clusters defining binary features
Biab(x;C).

5: if the number of vectors covered by the feature Biab(x;C) > η then
6: accept this binary feature creating class-labeled hidden network node.
7: end if
8: Classify test data mapped into the enhanced space:
9: Sum the activity of hidden node subsets for each class to calculate network outputs (WTA).

10: Build linear model on the enhanced feature space (LDA).

In this version of LOK algorithm there are only two parameters to set: η determines
the minimal size of a cluster (number of vectors per cluster), and σ controls dispersion
of localized gaussian features. Clean clusters are found either in the local neighborhood
of the support vector in the interval [0, b], or if the support vector is surrounded by
vectors from another class they may be quite far, with large values of both a < b. Thus
even outliers may provide useful support features. Clean clusters and binary features
may be quite useful to identify regions with vectors that may be correctly classified
with high confidence. For very large datasets these vectors may be removed, leaving
only areas close to the decision borders. In essence this solves the separable problem at
a cost of high rejection rate. To deal with the remaining vectors one should introduce
features based on clusters that are not pure.

For every candidate support vector point b = gi for which p(gi|C) = p(gi|¬C)
is found and σi = b/2 is taken as dispersion, creating a new Gaussian kernel feature
gi(x; b) = exp(−||xi − x||2/b). A slightly smaller value of b could make the new
feature more pure, but this would introduce at least one additional parameter, therefore
we have not considered this possibility. With sufficient number of support features small
impurities for small gi(x) feature values do not matter. In some cases more support
features may be generated using large σi and analyzing p(gi|C) distribution for values
larger than b, using intervals Iiab = [gia, gib], a > 0 where one of the classes dominates.
These new features are obtained as differences of two gaussian functions gi(x; b) −
gi(x; a). Other types of functions could be used here to model the slopes of probability
density distributions, for example differences of two sigmoidal functions [13]. In the
comparison of results presented in Table 2 LOKLDA and LOKWTA are used with such
additional features, if they were found useful improving the training results.
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To find solution in the new feature space LOKLDA uses linear discrimination with
margin maximization (optimal margin is selected using crossvalidation in a standard
way, as it is done also for SVM calculations). Features discovered by the LOK algorithm
may be implemented as network nodes that represent kernel transformations. Additional
layers of the network are then used to analyze the data in the feature space created in
this way (see Fig. 1). LOK algorithm with Gaussian features may be called properly
LOGK, as other functions may be used as kernels.

G(X)

B(Gi;C)

Fig. 1. Network structure of the LOK algorithm.

4 Illustrative examples

In order to evaluate the effect of optimized kernels on SVM results 4 methods have
been compared: standard SVM with linear kernel (SVML) and with Gaussian kernel
(SVMG), LOK with the Winner Takes All (WTA) estimation (LOKWTA) and LOK
with linear discrimination (LOKLDA), equivalent to the linear SVM in the extended
space. These 4 approaches have been applied to the 27 standard benchmark datasets,
summarized in Table 1, downloaded from the UCI Machine Learning Repository [14].
Vectors with missing feature values (if any) have been removed. Each calculation has
been performed using the 10-fold stratified crossvalidation, and repeated 10 times to
obtain reliable estimates of accuracies and standard deviations. The SVM parameters C
(best value from the [2−5 . . . 25] range) and σ (best value from the [2−10 . . . 23] range)
have been fully optimized for each dataset in an automatic way, using crossvalidation
estimations on the training partition to be sure that no information about the test data
has been used at any stage. Results for each dataset are collected in Table 2, with the
best results marked in bold.

Results using Locally Optimized Kernels are in all cases not significantly worse
than SVM, and in most cases better. As should be expected LOKWTA achieved best
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Table 1. Summary of datasets

Dataset #Vectors #Features #Classes Dataset #Vectors #Features #Classes
arrhythmia 63 279 11 autos 159 25 6

balance-scale 625 4 3 breast-cancer 277 9 2
breast-w 683 9 2 car 1728 6 4

cmc 1473 9 3 credit-a 653 15 2
credit-g 1000 20 2 cylinder-bands 277 39 2

dermatology 358 34 6 diabetes 768 8 2
ecoli 336 7 8 glass 214 9 6

haberman 306 3 2 heart-c 296 13 2
heart-statlog 270 13 2 hepatitis 80 19 2
ionosphere 351 34 2 iris 150 4 3

kr-vs-kp 3196 36 2 liver-disorders 345 6 2
lymph 148 18 4 sonar 208 60 2
vote 232 16 2 vowel 990 13 11

zoo 101 17 7

results only in a few (exactly 4) cases, in case of cmc data outperforming SVM by a
large margin. SVML also achieved best results in 4 cases, in case of arrhythmia (only
63 vectors with 11 classes and 279 features) strongly outperforming other methods, but
in this case variance is quite big and the difference is not statistically significant.

For 11 datasets LOKLDA outperformed all other methods, while SVMG was the
best for 8 datasets, and only in the case of car data the difference becomes significant.
These results show that in most cases local optimization of kernels leads to an improve-
ment over the single kernel SVM algorithms, and may achieve the best results compar-
ing to all state-of-the-art classifiers (Maszczyk, PhD thesis, in prep.). The computational
complexity of the LOKLDA approach is dominated by solution of linear discrimination
problem and thus is comparable to the original linear SVM. For d-dimensional prob-
lems andm vectors estimation of optimal kernel size requiresO(dm logm) operations.
This is the computational complexity of the LOKWTA approach that in many cases has
not been significantly worse than SVM, while the method may be used with very large
datasets, where solving linear discrimination becomes costly.

5 Conclusions

Locally Optimized Kernels (LOK) algorithm introduced in this paper is focused on
generation of new useful kernel features. It is not restricted to gaussian kernels, and
may be treated as one variant of our general Support Feature Machine approach [3] for
generation of features that extract more information from the data than may be derived
using simple kernels. The purpose of this paper is to show that the LOK approach
despite its simplicity generates enhanced feature space that improves construction of
the original SVM kernel space. While a lot of effort has been devoted to improvements
of the SVM learning algorithm much less attention has been paid to methods that extract
information from data, making the linear discrimination simpler and more accurate. In
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Table 2. 10x10CV results

Dataset SVML SVMG LOKWTA LOKLDA
arrhythmia 50.92±17.31 43.36±21.47 42.00±24.19 39.10±12.98

autos 54.48±13.75 74.29±12.58 58.69±11.03 74.36±10.40
balance-scale 84.47±3.17 89.83±2.09 90.71±2.38 96.46±2.62
breast-cancer 73.27±6.10 75.67±5.35 76.58±6.37 75.09±1.99

breast-w 96.60±2.07 96.77±1.84 96.93±1.62 97.21±2.13
car 67.99±2.61 98.90±0.90 84.72±3.44 93.57±1.81
cmc 19.14±2.14 34.09±3.67 48.54±2.52 51.06±4.30

credit-a 86.36±2.86 86.21±2.90 82.67±4.01 84.70±4.91
credit-g 73.95±4.69 74.72±4.03 73.10±2.38 72.70±3.86

cylinder-bands 74.58±5.23 76.89±7.57 74.32±6.41 80.11±7.53
dermatology 94.01±3.54 94.49±3.88 87.97±5.64 94.71±3.02

diabetes 76.88±4.94 76.41±4.22 74.88±3.88 76.95±4.47
ecoli 78.48±5.90 84.17±5.82 82.47±3.66 85.66±5.40
glass 42.61±10.05 62.43±8.70 64.96±7.72 71.08±8.13

haberman 72.54±1.96 72.91±5.93 76.46±4.34 73.53±0.72
heart-c 82.62±6.36 80.67±7.96 81.07±7.56 81.04±5.17

heart-statlog 83.48±7.17 83.40±6.56 81.48±8.73 83.33±7.46
hepatitis 83.25±11.54 84.87±11.98 89.88±10.14 84.05±4.40

ionosphere 87.72±4.63 94.61±3.68 85.18±6.28 95.16±2.72
iris 72.20±7.59 94.86±5.75 94.67±6.89 93.33±5.46

kr-vs-kp 96.03±0.86 99.35±0.42 83.73±2.58 98.25±0.45
liver-disorders 68.46±7.36 70.30±7.90 57.40±5.72 69.72±6.57

lymph 81.26±9.79 83.61±9.82 76.96±13.07 80.52±7.91
sonar 73.71±9.62 86.42±7.65 86.57±7.01 86.52±8.39
vote 96.12±3.85 96.89±3.11 92.57±7.52 93.95±4.18

vowel 23.73±3.13 98.05±1.90 92.49±3.37 97.58±1.52
zoo 91.61±6.67 93.27±7.53 88.47±5.35 94.07±6.97

the case of gaussian kernel features there is no reason why the same dispersion should
be used for all support vectors. Those support vectors that are far from decision border
on the correct side should have large dispersions, and vectors closer to decision borders
should have smaller dispersions. Support vectors on the wrong side should provide
kernel features that exclude local neighborhood. LOK algorithm creates such locally
optimized gaussian kernels. It may also be easily combined with many methods of
feature selection for additional improvement.

A fruitful question is: what is the limit of accuracy for a given dataset that can be
achieved in a given feature space? Progress in the recent years in classification and
approximation methods shows that for simple data results are probably close to this
limit. However, there is still an ample room for improvement in generation of enhanced
features spaces that contain more information. Of course not only kernel-based features
are useful. Several ways of creating new features have recently been introduced [15,
3, 16], overcoming the limitation of algorithms that work in original features spaces,
where discrimination or similarity-based methods operate. The final goal is to create
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meta-learning approaches [17] that construct in automatical way optimal, and in most
cases the simplest, models of data.
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