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Abstract. An analysis of the Separability of Split Value criterion in some partic-
ular applications has led to conclusions about possible improvements of the crite-
rion. Here, the new formulation of the SSV criterion is presented and examined.
The results obtained for 21 different benchmark datasets are presented and dis-
cussed in comparison with the most popular decision tree node splitting criteria
like information gain and Gini index. Because the new SSV definition introduces
a parameter, some empirical analysis of the new parameter is presented. The new
criterion turned out to be very successful in decision tree induction processes.

Keywords: Decision trees, split criteria, separability.

1 Introduction

Since the advent of the first decision tree (DT) learning algorithms, several decades
ago, the researchers have come up with a number of criteria (called split criteria or
split quality measures or selection measures) for top-down DT construction [1, 10, 8].
Some comparisons of such criteria [9, 2] have been published. Although they still do
not exhaustively explore the subject, many researchers claim that the criteria measuring
split quality do not significantly differ from each other. It is an over-interpretation of the
results, as it will be visible below (although it is not the main subject of this article). The
fact is, that there is no approach outperforming all the others in all possible applications,
but for many datasets, the results obtained with different methods are significantly dif-
ferent. Therefore, there is still room for improvement of existing criteria and defining
new ones, if only they introduce some new quality. Provided many different algorithms
one can analyze them and select the most adequate ones for modeling particular data.

The Separability of Split Value (SSV) criterion [4, 5] was defined as an alternative
to the most popular criteria like the measure of information gain or Gini index. Here,
a modified version of the SSV is presented and examined. To keep the comparison
fair, it was implemented within Intemi [6, 7] – a system that has been designed and
implemented recently as a perfect framework for such tasks.

The following section shortly presents SSV and other criteria used in the most pop-
ular DT algorithms. Then, section 3 defines the new version of the SSV. Thorough
comparative analysis of the new criterion is contained within section 4.
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2 Split criteria

Although, the trees built in the analysis presented below, are binary, the split quality
measures used, are more general and can estimate multipart splits. In general a split
s can be defined as a collection s1, . . . , sns

that unambiguously determines a parti-
tion {Dsi : i = 1, . . . , ns} for each data set D in given domain D. Binary univariate
splits are defined differently for ordered and unordered features of D. For an ordered
feature F , it is determined by a split threshold t and splits data into two subsets of ele-
ments x satisfying F (x) < t and F (x) ≥ t respectively. For unordered feature F , each
binary split is determined by a set of possible values V of F and splits data into two
subsets of elements x satisfying F (x) ∈ V and F (x) 6∈ V respectively.

The most popular approach to measure split quality is the use of the purity gain (or
in other words: impurity reduction) criterion:

∆I(s,D) def= I(D)−
ns∑
i=1

piI(Dsi). (1)

It can be used with different impurity measures I , for example, the one based on clas-
sification accuracy:

IA(D)
def=

maxC∈C |DC |
|D|

, (2)

where C is the set of classes of objects fromD,DC = D∩C and |·| is the set cardinality
operator.

The most popular impurity measures are the Gini index of CART [1]:

IG(D) def= 1−
∑
C∈C

P (C|D)2, (3)

and the one based on entropy, used in ID3, its many descendants and also in CART:

IE(D) def= −
∑
C∈C

P (C|D) log2 P (C|D). (4)

Here, P (C|D) is shorthand for P (x ∈ C|x ∈ D).
The purity gain criterion with entropy measure is called the information gain (IG)

criterion. To overcome its bias towards multivalued features (when building multisplit
trees), C4.5 [10] introduced the information gain ratio (IGR) which is the IG divided
by the entropy of the split:

IGR(s,D)
def=

∆IE(s,D)∑
i pi log2 pi

, (5)

where pi =
|Dsi
|

|D| .
The SSV criterion is not based on the purity gain rule, but on a simple idea that

splitting pairs of vectors belonging to different classes is advantageous, while splitting
pairs of vectors of the same class should be avoided if possible. It has got two forms:

SSV(s,D)
def= 2 · SSV1(s,D)− SSV2(s,D), (6)
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SSVlex(s,D) def=
(

SSV1(s,D),−SSV3(s,D)
)
, (7)

where:

SSV1(s,D)
def=

ns∑
i=1

ns∑
j=i+1

∑
C∈C
|Dsi,C | · |Dsj \Dsj ,C |, (8)

SSV2(s,D) def=
∑
C∈C

(DC − max
i=1,...,ns

|Dsi,C |), (9)

SSV3(s,D)
def=

ns∑
i=1

ns∑
j=i+1

∑
C∈C
|Dsi,C | · |Dsj ,C |. (10)

The SSVlex version provides pairs of values, which are compared in lexicographic or-
der, so the second value is important only in the case of equal first elements.

Many other criteria have also been proposed. A review can be found in [8].

3 Weighting separability gains

A toy example data set presented in figure 1 reveals the weakness of the original SSV
definitions that inspired the modification described here. The example can be solved
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Fig. 1. Example 2D data

by quite simple DTs: one of them splits the scope of the feature F#1 in three points,
another one splits F#2 in one point and F#1 in two points. The solutions are trivial to
find with a quick look at the scatter plot, so DT learning algorithms should not miss
them either. Recursive partitioning with IG or Gini index finds the solution, but with
SSV of the form of (6) or (7), it does not. The topmost split in the resulting DT is
defined by the condition F#1 < 0.65, because it generates the split (3,6) vs (5,2),



4 Krzysztof Grąbczewski

i.e. keeps 3 circles and 6 triangles below the threshold and 5 circles and 2 triangles
above it. This gives SSV1 = 36, SSV2 = 5, SSV3 = 27, while in the case of a split
(4,0) vs (4,8) we have SSV1 = 32, SSV2 = 6, SSV3 = 16. Therefore, both definitions
of SSV favor the former split (more pairs are separated).

Since manipulating the penalty term of (6) to repair such cases may easily spoil
the functionality in other cases, the idea followed here is to weight the pairs of sepa-
rated objects when counting the separability index. The heuristic is based on the idea
that separating pairs of objects is more advantageous, when the objects belong to the
majority classes within their sides of the split, and less valuable if the objects are still
misclassified after the split. Therefore, we introduce a parameter weight α as a factor
to diminish the contribution of the minority objects in separated pairs, and obtain the
following definition:

SSVα(s,D) def=
ns∑
i=1

ns∑
j=i+1

∑
A∈C
B∈C
A6=B

Wα(Dsi , A) · |Dsi,A| ·Wα(Dsj , B) · |Dsj ,B |, (11)

where

Wα(D,C) =

{
1 if C is the majority class within D,
α otherwise.

(12)

Such definition introduces three levels of contribution of the separated pairs (1, α and
α2), dependent on whether the objects represent the majorities or not. If more than one
class is represented in a sample with maximum count, one of them is arbitrarily selected
as the majority class (in practice, the one with the smallest index).

4 The analysis

To examine the advantages of the new definition of SSV, we compare the results ob-
tained with different versions of the criterion and four other split criteria described in
section 2. To provide an equal chance comparison, all the other components of the de-
cision tree induction algorithm are the same in the case of all criteria and the algorithms
are run for the same training and test data. 10-fold cross-validation (CV) tests were
repeated 10 times with different randomization, but each algorithm received the same
sets in all 100 training and testing runs. Moreover, because pruning was made with the
cost complexity algorithm [1] based on inner (i.e. performed within the training data)
10-fold cross-validation, the inner data splits were also exactly the same for all the al-
gorithms being compared. The tests were performed for 21 different datasets from the
UCI repository [3], summarized in table 1. The selection of datasets was done before
the tests (no test results were discarded so as to obtain satisfactory but unfair conclu-
sions). Some datasets were not selected because they would need some preprocessing
(for example to delete classes with very few examples) and that would spoil the clarity
of the tests. The mushroom data was rejected, because of a priori knowledge, that all
the DT algorithms would be 100% accurate with zero variance.
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Symbol Dataset classes instances features ordered f.
APP appendicitis 2 106 7 7
AUS Australian credit 2 690 14 6
BRE breast cancer (Wisconsin) 2 699 9 9
FLA flag 8 194 28 10
GLA glass 6 214 9 9
HEA heart 2 303 13 13
IMA image 7 2310 19 19
ION ionosphere (trn+tst) 2 351 34 34
IRI iris 3 150 4 4
KVK kr-vs-kp 2 3196 36 0
LBR Ljubjlana breast cancer 2 286 9 1
LET letter recognition 26 20000 16 16
PIM Pima indians diabetes 2 768 8 8
SON sonar 2 208 60 60
SOY soybean large 19 307 35 0
SPL splice 3 3190 60 0
THY thyroid (trn+tst) 3 7200 21 6
VOT vote 2 435 16 0
VOW vowel 6 871 3 3
WAV waveform 3 5000 21 21
WIN wine 3 178 13 13

Table 1. Datasets used for the tests.

4.1 Comparison of the split criteria

The mean accuracy and the standard deviation within the population of 100 test results
(10 times 10-fold CV) for each dataset are presented in table 2. The results with the
highest mean for given dataset are underlined. Bold face and italics mark the results
that are not statistically significantly different than the one with the highest mean: bold
face represents t test significance decision and italics—the Wilcoxon test judgment. The
confidence level of 0.01 was applied in both kinds of tests.

Table 3 reports the counts of obtaining the best mean result for a dataset and the
counts of obtaining insignificant difference of the mean values with the best result. It
can be seen from both tables that the new definition of SSV is very successful. The
highest mean is obtained for 5 datasets, but to be fair, we should count 8 wins, because
if we had not included the two older versions of SSV in the comparison, their wins
(three cases) would move to the account of SSVα. 8 wins is the maximum obtained
also by IG criterion. More sensible information (than the number of the highest means
obtained) is contained in the counts of obtaining insignificant differences from the best
results (the last two rows of table 3). These numbers also put IG and SSVα at the top.

Another interesting point (a bit aside the main topic of the article, but worth to
be mentioned) is that for 7 of the 21 datasets there is a single definite winner i.e. all
other methods obtained significantly worse results (with 0.01 significance level). IG
outperformed all the others in 5 cases (IMA, KVK, LET, SPL and WIN). The new
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Data Accuracy IG IGR Gini SSV SSVlex SSVα=0.5

APP 81,69±9,23 83,13±9,46 82,05±10,52 82,12±9,41 86,79±9,10 86,70±9,55 86,65±9,92
AUS 85,29±4,29 85,06±4,42 85,22±4,25 84,75±4,11 85,07±4,39 85,22±4,43 84,90±4,21
BRE 93,81±2,31 94,03±2,61 94,76±2,63 94,10±2,85 95,26±2,52 95,25±2,58 94,96±2,34
FLA 62,53±9,73 63,28±9,21 63,27±9,81 61,84±8,29 64,45±9,34 64,55±9,18 64,28±9,30
GLA 70,19±8,61 69,08±9,77 72,27±9,16 70,51±8,33 68,92±8,35 68,68±8,26 71,27±8,53
HEA 73,14±7,86 79,71±7,87 78,73±7,00 79,69±7,69 78,86±6,87 78,76±6,68 77,51±6,44

IMA 95,42±1,38 96,86±1,21 96,29±1,17 96,30±1,28 95,90±1,07 96,00±1,14 95,94±1,17

ION 89,34±5,17 89,45±4,83 88,63±4,60 88,77±4,54 87,43±4,94 87,46±5,17 88,57±5,00
IRI 92,40±5,61 93,47±5,36 93,40±5,40 93,47±5,44 93,80±5,30 93,80±5,30 94,00±5,15
KVK 98,73±0,79 99,61±0,34 98,83±0,58 99,52±0,36 98,82±0,66 98,83±0,65 98,94±0,58

LBR 69,67±4,54 70,96±5,42 69,63±3,91 71,17±5,24 71,53±5,16 71,29±5,26 74,12±6,06
LET 84,58±0,84 88,34±0,76 87,47±0,78 87,61±0,85 86,00±0,68 85,98±0,75 86,58±0,71

PIM 73,49±4,61 74,18±4,60 73,89±4,58 74,12±4,54 73,93±4,35 73,88±4,51 73,74±4,36
SON 71,18±7,86 73,88±8,70 72,96±8,96 71,24±8,12 75,53±9,34 75,49±9,08 75,73±9,52
SOY 79,11±5,67 58,75±6,98 58,54±7,94 62,43±7,26 76,32±6,58 76,19±6,52 79,92±6,82
SPL 90,60±1,47 94,71±1,26 93,82±1,36 94,48±1,31 93,91±1,43 93,84±1,48 94,44±1,32

THY 99,53±0,23 99,58±0,22 99,37±0,28 99,61±0,23 99,47±0,27 99,45±0,28 99,54±0,24

VOT 91,02±8,61 93,95±7,13 91,25±9,30 92,48±8,89 94,99±4,48 94,91±4,55 96,20±2,60
VOW 86,88±3,28 86,42±3,05 84,78±3,35 86,91±2,95 85,88±3,20 86,03±3,43 86,35±3,18
WAV 76,71±1,89 77,82±2,10 77,95±1,72 77,24±1,90 77,80±2,00 77,77±1,98 77,90±1,83
WIN 89,44±6,58 94,25±5,63 92,56±5,92 89,09±6,28 90,89±6,74 90,89±6,74 91,01±6,88

Table 2. Means and standard deviations of 10 repetitions of 10-fold CV.

Accuracy IG IGR Gini SSV SSVlex SSVα=0.5

Best 1 8 2 2 2 1 5
t test within 0.01 7 15 9 8 9 9 14
Wilcoxon within 0.01 7 15 8 8 9 9 13

Table 3. The best and insignificantly different (with 0,01 confidence level) result counts.

SSVα won significantly over all the others in 2 cases (LBR and VOT), though the case
of the APP dataset may be counted as the third such case, because also here, SSVα
significantly defeats all the non-SSV methods. Moreover, if we do not count SSV and
SSVlex, then there are another 4 datasets (BRE, SON, SOY, THY) with two winners
that significantly outperform all the others. Despite the fact, that there are two datasets
(AUS and PIM), for which no significant differences could be observed between any
two tested methods, it is definitely justified to claim that for many datasets, different
indices result in significantly different average accuracies. This conclusion confirms the
need for accurate meta-learning algorithms, capable of finding the most advantageous
DT induction method for given data.

Table 4 presents the summary of win-draw-loss counts between each two algo-
rithms, according to the two statistical tests. The last rows (printed in bold face) show
the relative performance of the proposed SSV modification. They prove the value of
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Accuracy IG IGR Gini SSV SSVlex SSVα=0.5

Accuracy 1-10-10 3-11-7 1-12-8 3-7-11 4-6-11 0-9-12
IG 10-10-1 8-11-2 7-13-1 7-11-3 7-11-3 6-10-5
IGR 7-11-3 2-11-8 2-13-6 4-10-7 3-12-6 2-11-8
Gini 8-12-1 1-13-7 6-13-2 6-8-7 6-8-7 4-8-9
SSV 11-7-3 3-11-7 7-10-4 7-8-6 0-20-1 1-12-8
SSVlex 11-6-4 3-11-7 6-12-3 7-8-6 1-20-0 0-13-8
SSVα=0.5 12-9-0 5-10-6 8-11-2 9-8-4 8-12-1 8-13-0

Accuracy IG IGR Gini SSV SSVlex SSVα=0.5

Accuracy 1-10-10 3-10-8 1-11-9 4-6-11 4-7-10 1-8-12
IG 10-10-1 9-10-2 7-13-1 7-11-3 7-11-3 6-10-5
IGR 8-10-3 2-10-9 3-12-6 3-10-8 2-12-7 2-11-8
Gini 9-11-1 1-13-7 6-12-3 7-7-7 6-8-7 5-7-9
SSV 11-6-4 3-11-7 8-10-3 7-7-7 0-20-1 1-12-8
SSVlex 10-7-4 3-11-7 7-12-2 7-8-6 1-20-0 1-12-8
SSVα=0.5 12-8-1 5-10-6 8-11-2 9-7-5 8-12-1 8-12-1

Table 4. Pairwise win-draw-loss counts by t test (top) and Wilcoxon test (bottom).

the new method, as it has the best record of results relative to the most naive criterion
based on accuracy, and shows more wins than losses in relation to IGR and Gini indices
than the original SSV definitions. The only defeat is registered in relation to the IG
index, but the score is 5-10-6, so it is probable, that another selection of datasets could
easily invert the result. The table confirms that the proposed modification significantly
improves the SSV criterion, as for many datasets the test results are significantly better
and only in the case of one dataset (HEA)—significantly worse.

An interesting observation is that the IGR index does not perform well in the test. It
does not mean, however, that the IGR index is useless. A guess is, that the poor results of
the IGR is a consequence of using a binary tree construction algorithm, so the correction
which reduces the bias towards multisplits, is not usable in this case (hampers more than
helps). Probably, a similar test exploiting another tree search technique, would be much
more advantageous for the IGR.

4.2 Analysis of the α parameter

The analysis described above was done for the new algorithm with α = 0.5 chosen
as the middle point between no attention payed to separated objects when they do not
belong to the majority class in their data part, and full attention on them (treating them
as equally important as the pairs separated and properly classified thanks to the split).
To check, whether the intuition of α = 0.5 is accurate, let’s have a look at the results of
a similar analysis as the one performed above, but comparing the results obtained with
α values of 0, 0.1, 0.2, . . . , 0.9, 1.

Table 5 presents full results table for the 21 datasets and for the 11 values of α. It is
not surprising that many of the results differences are not statistically significant. The
summary of obtaining the results insignificantly different from the best one, is presented
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0 0.1 0.2 0.3 0.4 0.5
APP 86,64±10,00 86,64±10,12 86,64±10,12 86,55±9,94 86,45±9,85 86,65±9,92
AUS 85,14±4,33 85,14±4,26 84,83±4,05 84,90±4,03 84,87±3,90 84,90±4,21
BRE 94,92±2,38 94,92±2,32 94,94±2,17 94,96±2,22 94,96±2,41 94,96±2,34
FLA 60,42±9,93 61,97±9,79 62,74±9,84 63,52±9,86 63,84±9,26 64,28±9,30
GLA 70,67±8,74 70,93±8,90 71,77±9,74 71,97±8,30 72,15±8,18 71,27±8,53
HEA 76,85±6,61 77,21±6,76 76,72±6,83 77,21±6,84 77,51±6,66 77,51±6,44

IMA 95,80±1,33 95,77±1,12 95,99±1,13 96,32±1,17 96,24±1,00 95,94±1,17

ION 88,40±4,55 88,17±5,32 88,17±5,21 88,42±4,94 88,51±4,80 88,57±5,00
IRI 93,87±5,42 93,93±5,11 93,93±5,11 93,93±5,11 93,93±5,11 94,00±5,15
KVK 98,75±0,72 98,71±0,60 98,82±0,59 98,92±0,59 98,90±0,62 98,94±0,58
LBR 74,16±6,01 74,27±5,99 73,95±5,93 74,12±6,06 74,12±6,06 74,12±6,06
LET 85,66±0,78 86,42±0,81 86,41±0,89 86,21±0,87 86,20±0,80 86,58±0,71
PIM 74,58±4,53 74,10±4,53 74,01±4,73 73,83±4,52 73,78±4,46 73,74±4,36

SON 75,99±8,99 75,65±9,16 75,74±9,11 75,79±9,10 75,85±9,26 75,73±9,52
SOY 79,14±5,72 80,05±6,68 80,97±6,59 81,10±6,40 80,87±6,67 79,92±6,82
SPL 93,86±1,49 94,36±1,34 94,34±1,32 94,37±1,37 94,42±1,40 94,44±1,32
THY 99,59±0,24 99,58±0,24 99,58±0,24 99,57±0,25 99,55±0,25 99,54±0,24

VOT 92,55±7,30 95,81±2,72 95,81±2,72 96,02±2,65 96,09±2,71 96,20±2,60
VOW 86,45±3,18 86,79±3,25 86,64±3,26 86,56±3,27 86,39±3,37 86,35±3,18
WAV 76,96±2,06 77,15±1,91 77,19±1,95 77,56±2,02 77,78±1,91 77,90±1,83
WIN 91,45±6,44 91,11±6,49 91,69±6,95 91,01±7,11 90,90±6,87 91,01±6,88

0.6 0.7 0.8 0.9 1
APP 86,93±9,65 86,93±9,65 87,03±9,53 86,93±9,55 86,52±9,47
AUS 84,87±4,22 84,99±4,15 85,07±4,35 85,09±4,32 85,06±4,40
BRE 94,96±2,33 94,78±2,45 94,82±2,57 95,15±2,42 95,24±2,54
FLA 64,64±9,20 64,65±9,26 64,39±10,05 64,35±9,49 64,03±9,00
GLA 71,45±8,15 71,59±7,79 70,79±7,97 69,24±8,23 69,24±8,23

HEA 78,30±6,27 78,82±6,49 78,86±6,64 78,79±6,41 78,40±6,88
IMA 95,66±1,26 95,80±1,26 95,81±1,25 95,90±1,18 96,01±1,12
ION 88,37±4,96 88,45±4,82 88,60±4,98 87,97±5,18 87,38±5,14

IRI 94,00±5,15 93,93±5,11 93,93±5,11 93,80±5,30 93,80±5,30
KVK 98,96±0,58 98,95±0,62 98,91±0,64 98,89±0,64 98,85±0,64

LBR 74,16±5,99 74,37±5,98 74,58±6,14 74,58±6,23 71,40±5,33

LET 86,54±0,74 86,47±0,74 86,49±0,74 86,55±0,80 85,88±0,73

PIM 73,39±4,90 73,41±4,39 73,42±4,56 74,02±4,69 73,92±4,51
SON 76,07±9,34 76,60±9,66 75,63±9,79 76,52±9,56 75,35±8,95
SOY 78,02±6,15 76,92±5,97 76,37±5,81 75,87±6,09 76,19±6,72

SPL 94,46±1,34 94,31±1,37 94,30±1,40 94,24±1,42 93,84±1,50

THY 99,54±0,23 99,54±0,23 99,49±0,24 99,48±0,25 99,45±0,29

VOT 96,25±2,53 96,20±2,54 95,91±3,46 95,59±3,74 94,78±4,66

VOW 86,46±3,21 85,98±3,40 86,10±3,68 85,82±3,45 85,35±3,42

WAV 77,77±1,75 77,81±1,84 77,75±1,87 77,74±1,96 77,83±1,96
WIN 90,73±6,51 90,56±6,83 90,44±6,62 90,84±6,76 90,89±6,74

Table 5. Results for different values of α.
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in table 6. It shows that the values of α close to 0 or 1 are worse than the values closer
to the middle of the scope. The best result, according to the t test, seems to be 0.3,
but the differences in the area between 0.3 and 0.8 are so small that no winner can be
announced with large probability.

The pairwise win-draw-loss counts in table 7 do not show any leader. All the values
within the interval [0.3, 0.8] look attractive, and obtain similar scores (with similar
counts of wins and losses). The competition between the values of 0.3 and 0.4 shows
no significant difference, and both values get attractive scores in relation to the others,
so one could see them as the most promising ones.

A summary of win-draw-loss counts of the competitions between the selected values
of α and other indices measuring split quality are presented in table 8. Again, the whole
range from 0.3 to 0.8 demonstrates interesting results. The most promising result is the
one obtained with α = 0.4—it has reached a draw with the IG index (another draw
can be noticed for α = 0.7). It is very important to keep in mind, that the selection of
α = 0.4, made afterwards (after the analysis of the whole set of results) would not be
fair with respect to other criteria. Also, the conclusions about superiority of one value
of α over another, on the basis of the results presented in tables 7 and 8, would not be
reasonable: another selection of datasets could result in another winner values, so no
particular value of α can be pointed as definitely the best.

What we can claim reliably, is that the intuitions about the value of α are confirmed
by the experiments: it should be neither close to 0 nor close to 1 and the value of 0.5 is
a good choice.

5 Conclusions

This article shows a simple but very successful modification to the SSV criterion intro-
ducing weighted separation gains. The comparative analysis, presented here, confirms
that:

– the new definition of SSV criterion is a significant improvement to the original
version,

– the intuitions of α = 0.5 are quite accurate,
– together with IG index, the SSVα is one of the most successful in the competition

between different indices,
– there exist significant differences between performances of different DT split cri-

teria, so to provide as accurate DTs as possible we should always check several
alternative indices.

There is still a need for further analysis of DT algorithm components, including
split quality measures. More indices should be tested to gain meta-knowledge about
when to use different indices. Such tests will be performed in the closest future. Similar
analysis of other kinds of components like validation methods, data transformations etc.
will certainly bring very successful meta-learning algorithms, gathering useful meta-
knowledge which will eventually lead to efficient complex algorithms constructing as
successful DTs as possible.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Best 2 2 1 2 1 2 4 2 3 1 1
t test within 0.01 13 15 16 18 17 17 17 16 16 16 11
Wilcoxon within 0.01 13 14 14 17 17 16 17 16 16 13 11

Table 6. Best and insignificantly worse than the best (within 0,01 confidence level).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 1-17-3 0-17-4 1-13-7 2-13-6 2-14-5 2-13-6 2-13-6 3-12-6 2-13-6 5-12-4
0.1 3-17-1 0-20-1 0-18-3 0-17-4 0-18-3 1-17-3 2-15-4 3-14-4 3-14-4 6-13-2
0.2 4-17-0 1-20-0 0-19-2 0-20-1 0-19-2 1-16-4 2-16-3 2-17-2 3-16-2 6-13-2
0.3 7-13-1 3-18-0 2-19-0 0-21-0 1-19-1 2-18-1 3-16-2 3-16-2 5-14-2 8-13-0
0.4 6-13-2 4-17-0 1-20-0 0-21-0 1-19-1 2-18-1 2-17-2 2-17-2 4-16-1 9-12-0
0.5 5-14-2 3-18-0 2-19-0 1-19-1 1-19-1 2-19-0 1-19-1 1-19-1 1-20-0 8-13-0
0.6 6-13-2 3-17-1 4-16-1 1-18-2 1-18-2 0-19-2 3-18-0 1-20-0 2-19-0 8-12-1
0.7 6-13-2 4-15-2 3-16-2 2-16-3 2-17-2 1-19-1 0-18-3 1-20-0 2-19-0 9-12-0
0.8 6-12-3 4-14-3 2-17-2 2-16-3 2-17-2 1-19-1 0-20-1 0-20-1 1-19-1 6-15-0
0.9 6-13-2 4-14-3 2-16-3 2-14-5 1-16-4 0-20-1 0-19-2 0-19-2 1-19-1 4-17-0
1 4-12-5 2-13-6 2-13-6 0-13-8 0-12-9 0-13-8 1-12-8 0-12-9 0-15-6 0-17-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 1-16-4 1-15-5 1-13-7 2-13-6 2-14-5 2-13-6 2-13-6 3-12-6 3-12-6 4-12-5
0.1 4-16-1 0-20-1 0-18-3 0-16-5 0-17-4 2-15-4 3-13-5 3-14-4 3-14-4 6-13-2
0.2 5-15-1 1-20-0 0-17-4 1-17-3 1-16-4 3-13-5 3-14-4 2-17-2 4-15-2 7-12-2
0.3 7-13-1 3-18-0 4-17-0 0-21-0 2-18-1 2-17-2 3-16-2 3-16-2 5-14-2 8-13-0
0.4 6-13-2 5-16-0 3-17-1 0-21-0 2-18-1 2-18-1 2-17-2 2-17-2 5-15-1 8-13-0
0.5 5-14-2 4-17-0 4-16-1 1-18-2 1-18-2 2-19-0 1-19-1 1-19-1 2-18-1 10-11-0
0.6 6-13-2 4-15-2 5-13-3 2-17-2 1-18-2 0-19-2 3-18-0 1-20-0 4-17-0 9-11-1
0.7 6-13-2 5-13-3 4-14-3 2-16-3 2-17-2 1-19-1 0-18-3 1-20-0 2-18-1 8-13-0
0.8 6-12-3 4-14-3 2-17-2 2-16-3 2-17-2 1-19-1 0-20-1 0-20-1 2-18-1 7-13-1
0.9 6-12-3 4-14-3 2-15-4 2-14-5 1-15-5 1-18-2 0-17-4 1-18-2 1-18-2 4-17-0
1 5-12-4 2-13-6 2-12-7 0-13-8 0-13-8 0-11-10 1-11-9 0-13-8 1-13-7 0-17-4

Table 7. Pairwise win-draw-loss counts by t test and Wilcoxon test for different values of α.

Accuracy IG IGR Gini SSV SSVlex
0 12-8-1 4-8-9 6-10-5 6-10-5 3-13-5 3-13-5
0.1 9-11-1 5-8-8 8-9-4 7-10-4 6-12-3 6-12-3
0.2 12-8-1 5-8-8 8-10-3 7-11-3 7-12-2 6-13-2
0.3 12-8-1 6-8-7 8-12-1 7-11-3 7-13-1 5-15-1
0.4 11-10-0 6-9-6 8-12-1 9-8-4 7-14-0 6-15-0
0.5 12-9-0 5-10-6 8-11-2 9-8-4 8-12-1 8-13-0
0.6 11-10-0 5-9-7 8-10-3 8-9-4 8-13-0 8-12-1
0.7 11-8-2 5-11-5 8-10-3 7-9-5 7-14-0 7-14-0
0.8 10-9-2 5-10-6 8-10-3 7-9-5 7-14-0 6-15-0
0.9 11-7-3 4-10-7 8-9-4 7-8-6 3-18-0 3-18-0
1 11-6-4 3-10-8 5-13-3 6-9-6 1-18-2 0-19-2

Table 8. Win-draw-loss counts: α vs other split criteria.
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