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ABSTRACT
The stochastic MV-PURE estimator is a robust to mismatches
in model knowledge linear estimator for highly noisy and ill-
conditioned cases. To date, its properties were analyzed
in the theoretical settings of perfect model knowledge and
thus could not explain clearly the reason behind its superior
performance compared to the Wiener filter observed in sim-
ulations in practical cases of imperfect model knowledge. In
this paper we derive closed form expressions of the mean-
square-error (MSE) of both Wiener filter and the stochastic
MV-PURE estimator for the case of perturbed singular values
of a model matrix in the linear model considered. These
expressions provide in particular conditions under which the
stochastic MV-PURE estimator achieves smaller MSE not
only than Wiener filter, but also than its full-rank version, the
minimum-variance distortionless (MVDR) estimator in such
settings. We provide numerical simulations confirming the
main theoretical results presented.

Index Terms— Stochastic MV-PURE estimator, parame-
ter estimation, reduced-rank estimation, uncertainty modeling

1. INTRODUCTION

The stochastic MV-PURE estimator [1], based on the pre-
viously introduced deterministic minimum-variance pseudo-
unbiased reduced-rank estimator (MV-PURE) [2, 3], is a
reduced-rank linear estimator designed for the stochastic
linear model y = Hx +

√
εn. Its reduced-rank approach

serves to combat ill-conditioning of the model by introduc-
ing small amount of bias for huge savings in variance [1–4]
(see also [5–7] for an in-depth discussion of the benefits of
reduced-rank approach in estimation and filtering). Moreover,
in the stochastic case, where the mean vector and the covari-
ance matrix of the input random vector x to be estimated
are assumed available, the stochastic MV-PURE estimator
exhibited in simulations in [1] a significantly improved ro-
bustness to mismatches in model knowledge compared to the
theoretically optimal [in the mean-square-error (MSE) sense]
minimum-mean-square-error (MMSE) estimator (Wiener fil-
ter) [8, 9]. However, while the improved performance of
the stochastic MV-PURE estimator over the widely used
minimum-variance distortionless (MVDR) estimator [10, 11]
in highly noisy and ill-conditioned situations has been es-
tablished in [4], the improved performace of the stochastic
MV-PURE estimator over the MMSE estimator has been
only demonstrated via numerical simulations in [1]. What
is known, however, is that the MVDR estimator which is
recognized in [1] as the full-rank (a special case of) stochas-
tic MV-PURE estimator, provides improved performance

over the MMSE estimator in many cases of imperfect model
knowledge [10, 11]. This fact encouraged us to begin work
on comparing the performance of the stochastic MV-PURE,
MVDR, and MMSE estimators with explicit modeling of un-
certainty in the stochastic linear model considered, and this
paper describes first results in this direction.

In this paper we consider the case of white additive
noise n and white input vector x, which occurs in many
scenarios in signal processing case. We take uncertainty in
the knowledge of a model matrix H into account by per-
turbing its singular values, and then observing its effect on
the performance of the stochastic MV-PURE, MVDR, and
MMSE estimators.

Namely, in the settings described above, we derive in
Section 3 explicit expressions of the MSE for the stochastic
MV-PURE, MVDR, and MMSE estimators. Based on them,
we provide the main result of this paper: we define a func-
tion measuring the gap in performance between the MMSE
and stochastic MV-PURE estimators, and find analytically its
argument of the minimum (arg min) in the most important
case from the practical applications standpoint, where the
perturbed singular values are not far removed from the sin-
gular values of H. Additionally, we prove that the larger the
power of the additive noise, the lower the optimal rank of the
stochastic MV-PURE estimator. This result extends theoret-
ical results of [4] to the case of imperfect model knowledge,
and in particular, confirms that in highly noisy settings the
(full-rank) MVDR estimator is inherently inadequate.

We close with a numerical example in Section 4 show-
ing the strength of the main result of this paper, where in
particular we observe that the stochastic MV-PURE estima-
tor achieves lower MSE than the theoretically MSE-optimal
MMSE estimator in our settings in vicinity of the analytically
found arg min point.

2. PRELIMINARIES

Consider the stochastic linear model of the form:

y = Hx +
√
εn, (1)

where y, x,n are random vectors representing observed sig-
nal, signal to be estimated, and additive noise, respectively,
and H ∈ Rn×m is a known matrix of rank m, and ε > 0
is a known constant representing noise power. We assume
that x and n have zero mean, are uncorrelated: Rxn = 0, and
white: Rx = Im and Rn = In. From the previous assump-
tions, Ry = HHt+ εIn is positive definite and Ryx = H. We
denote the singular value decomposition (SVD) of H by

SV D(H) = UΣV t, (2)
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with singular values σi, i = 1, 2, . . . ,m organized in nonin-
creasing order, and by Vr = (v1, . . . , vr) ∈ Rm×r we denote
the first r columns of V.

We consider the problem of linear estimation of x given y,
with MSE as the performance criterion. Thus, we seek to
find a fixed matrix W ∈ Rm×n, called here an estimator,
for which the estimate of x of the form x̂ = Wy is optimal
with respect to a measure related to the mean-square-error
of x̂ given by:

J(W ) = tr[WRyW
t]− 2tr[WRyx] + tr[Rx]. (3)

In this paper we study the performance of the following
three estimators: the minimum-mean-square-error (MMSE)
estimator (Wiener filter) [8, 9], the minimum-variance distor-
tionless (MVDR) estimator [8,10,11], and the stochastic MV-
PURE estimator [1].

The MMSE estimator is defined as an estimator achieving
lowest MSE (3) among linear estimators, minimizing directly
the MSE:

minimize J(W ). (4)

Under our assumptions, this estimator can be expressed as:

WMMSE = RxyR
−1
y = Ht(HHt + εIn)−1 =

V Σt(ΣΣt + εIn)−1U t, (5)

with:

J(WMMSE) = m−
m∑
i=1

σ2
i

σ2
i + ε

. (6)

The MVDR estimator introduces the distortionless con-
straint to the MSE optimization problem as follows:{

minimize J(W )

subject to WH = Im,
(7)

which under our assumptions produces as the solution

WMVDR = (HtH)−1Ht = H† = V Σ†U t, (8)

where H† is the Moore-Penrose pseudoinverse of H [12] and
Σ† is a diagonal matrix with diagonal entries σ−11 , . . . , σ−1m .
We have:

J(WMVDR) = ε

m∑
i=1

1

σ2
i

. (9)

Finally, the stochastic MV-PURE estimator is defined as
an optimal reduced-rank generalization of the MVDR estima-
tor, and is a solution to the following problem for a given rank
constraint r ≤ m:

minimize J(Wr)

subject to Wr ∈
⋂
ι∈I

Pιr, (10)

where

Pιr = arg min
Wr∈Xm×n

r

‖WrH − Im ‖2ι , ι ∈ I, (11)

where Xm×nr := {Wr ∈ Rm×n : rk(Wr) ≤ r ≤ m} where
rk(X) stands for the rank of X ∈ Rm×n and where I is the

index set of all unitarily invariant norms.1 As shown in [1],
under our assumpions of white input vector x and noise n, the
stochastic MV-PURE estimator is of specially simple form:

W r
MV−PURE = V

(
Ir 0
0 0

)
V tWMVDR = VrV

t
rH
†,

(12)
with:

J(W r
MV−PURE) = m− r + ε

r∑
i=1

1

σ2
i

. (13)

In the theoretical case of model (1), the MMSE estima-
tor (5) is by definition MSE-optimal. However, this need not
be the case if we introduce an uncertainty in the knowledge
of model (1) as discussed below.

3. RESULTS FOR PERTURBED SINGULAR VALUES
OF THE MODEL MATRIX

We introduce uncertainty into our considerations by replacing
model (1) with

y = (H + ∆H)x +
√
εn, (14)

where
SV D(H + ∆H) = UΓV t, (15)

i.e., we replace the singular values σi, i = 1, 2, . . . ,m of H
[cf. (2)] with perturbed singular values γi, i = 1, 2, . . . ,m.

We add superscript ’(14)’ to denote the quantities such as
covariance matrices and MSE which are related to model (14).
In particular, R(14)

y is the covariance matrix of y in (14), and
J(14)(W ) is the MSE of estimator W in model (14).

We have:

R
(14)
y = (H + ∆H)(H + ∆H)t + εIn, (16)

and
R

(14)
yx = H + ∆H, (17)

and the MSE is expressed in terms of model (14) as

J(14)(W ) = tr[WR
(14)
y W t]− 2tr[WR

(14)
yx ] +m. (18)

Using expressions (2), (5) and (15), it can be readily ver-
ified that the mean-square-error (18) of the MMSE estima-
tor (5) for the perturbed model (14) can be expressed as:

J(14)(WMMSE) =

m∑
i=1

σ2
i (γ2i + ε)

(σ2
i + ε)2

− 2

m∑
i=1

γiσi
σ2
i + ε

+m.

(19)
Similarly, using (2), (8), and (15) we obtain that the mean-

square-error (18) of the MVDR estimator (8) for the perturbed
model (14) is of the form:

J(14)(WMVDR) = ε

m∑
i=1

1

σ2
i

+

m∑
i=1

(
γi
σi
− 1

)2

, (20)

1Matrix norm ι is unitarily invariant if it satisfies ‖ UXV ‖ι=‖ X ‖ι
for all orthogonal U ∈ Rm×m, V ∈ Rn×n and all X ∈ Rm×n [13, p.
203]. The Frobenius, spectral, and trace (nuclear) norms are examples of
unitarily invariant norms.

3



and from (2), (12), and (15) we obtain analogously for the
stochastic MV-PURE estimator (12) that:

J(14)(W r
MV−PURE) = m− r+ ε

r∑
i=1

1

σ2
i

+

r∑
i=1

(
γi
σi
− 1

)2

.

(21)
Naturally, expressions (19), (20) and (21) reduce to (6),

(9) and (13), respectively, for ∆H = 0 (and hence γi = σi),
as they should.

Although the above expressions for the MSE in the per-
turbed model (14) of the estimators under consideration look
complicated at first, they are in fact standard quadratic func-
tions of singular values γi, i = 1, 2, . . . ,m of the perturbed
matrix H + ∆H , parametrized by singular values σi, i =
1, 2, . . . ,m of H , and the noise power ε.

We are now in a position to compare directly the perfor-
mance of the MMSE and stochastic MV-PURE estimators
for the perturbed model (14). To this end, consider the fol-
lowing function fr : Rm+ → R of γ = (γ1, . . . , γm) with
γ1 ≥ · · · ≥ γm > 0, for r ∈ (1, 2, . . . ,m):

fr(γ) := J(14)(W r
MV−PURE)−J(14)(WMMSE) = A−B−r,

(22)
where

A =

[
ε

r∑
i=1

1

σ2
i

+

r∑
i=1

(
γi
σi
− 1

)2
]
−[

r∑
i=1

σ2
i (γ2i + ε)

(σ2
i + ε)2

− 2

r∑
i=1

γiσi
σ2
i + ε

]
, (23)

and

B =

m∑
i=r+1

σ2
i (γ2i + ε)

(σ2
i + ε)2

− 2

m∑
i=r+1

γiσi
σ2
i + ε

. (24)

For r = m, we have B = 0 and the quadratic function fr =
fm is strictly convex, since it has a convex domain, and its
Hessian: a diagonal matrix with diagonal entries (which are
positive for all σi > 0 and ε > 0) of the following form:

H(fr)i,i = 2

(
1

σ2
i

− σ2
i

(σ2
i + ε)2

)
, i = 1, . . . ,m, (25)

is positive definite on the domain, which conditions ensure
strict convexity of fr [14]. Calculating derivatives show that
the global minimum is achieved at

γmin
i =

εσi(σ
2
i + ε)

(σ2
i + ε)2 − σ4

i

, i = 1, . . . ,m. (26)

By taking the limits ε → 0 and ε → ∞ in (26), it is
seen that γmin

i ∈ (σi/2, σi), and the derivative of (26) with
respect to ε reveals that the value of γi grows monotonically
from σi/2 to σi with increasing noise level ε. Moreover, the
optimal solution is feasible, as it can be verified by calculating
the derivative of (26) with respect to σi, that if σi > σi+1,
then also γmin

i > γmin
i+1 for a given noise level ε.

When r < m, fr is no longer convex, as it can be ob-
served that its Hessian ceases to be positive semidefinite on
the domain of fr, since the term 2σ−2i vanishes in (25) for
i = r + 1, . . . ,m in such a case. However, for r < m we

can exploit the fact that A (23) and B (24) can be optimized
independently as follows.

Term A is a function only of γ1, . . . , γr, and is a strictly
convex function of γ1, . . . , γr even for r < m since its Hes-
sian is the r × r principal submatrix of (25), with the global
minimum being achieved at the point (γmin

1 , . . . , γmin
r ),

where γmin
i are given by (26) for i = 1, . . . , r. Analogously,

calculating Hessian of −B reveals that it is a strictly con-
cave function of γr+1, . . . , γm with the global maximum at
γmax
j = σj + εσ−1j , j = r + 1, . . . ,m.2 We note further that

for all j = r + 1, . . . ,m we have γmax
j > σj .

From the practical perspective, we are primarily interested
in the case where distances |σi − γi| do not exceed some rea-
sonable threshold. The above discussion shed light on such
settings, as it is seen that the global minimum of term A (23)
lies in the segment [σi/2, σi] for i = 1, . . . , r, and the min-
imum of −B [with B given in (24)] is always found at the
boundary of the feasible set, due to its strict concavity and
the global maximum of −B at γmax

j = σj + εσ−1j , j =
r + 1, . . . ,m. Thus, as an example, the following optimiza-
tion problem, for a given r ∈ (1, 2, . . . ,m) and 0 < c < σm:{

find arg min fr

subject to c ≤ γi ≤ σi + εσ−1i , i = 1, . . . ,m,
(27)

produces as the solution{
γmin
i = εσi(σ

2
i + ε)

/(
(σ2
i + ε)2 − σ4

i

)
i = 1, . . . , r,

γmin
i = c i = r + 1, . . . ,m,

(28)
such that γmin

1 ≥ γmin
2 ≥ · · · ≥ γmin

m > 0 with γmin
i ∈

(σi/2, σi) for i = 1, . . . , r. We will demonstrate this result
in a numerical example in Section 4, where we will obtain
in particular that fr(γmin) < 0. This fact is of major impor-
tance as it shows that the reduced-rank stochastic MV-PURE
estimator is capable of achieving lower MSE under explicit
modeling of uncertainty in model (14) than the (MSE-optimal
under perfect model knowledge) MMSE estimator.3

An in-depth discussion of conditions under which one has
fr(γ

min) < 0 for a given rank constraint r is beyond the
scope of this paper, and is the subject of an ongoing research.
Clearly, one may simply insert expressions (28) into (22) to
find it out (possibly aided with a symbolic solver), but a more
general and elegant solution is possible.

The above problem is clearly related to the problem of
finding rank constraint r under which the MSE of the stochas-
tic MV-PURE estimator is minimized. We present below a
Proposition showing a simple but insightful condition which
shed light onto this problem.

Proposition 1 Let us choose natural r0, r1 such that 1 ≤
r0 < r1 ≤ m. If the power of additive noise ε is such that

√
ε > σr0+1 (29)

then

J(14)(W r0
MV−PURE) < J(14)(W r1

MV−PURE). (30)

2Note that depending on the value of ε, this optimum point may be in-
feasible, as σj > σj+1 does not necessarily imply γmin

j > γmin
j+1, j =

r + 1, . . . ,m− 1. However, this does not affect the discussion below.
3In our case perfect model knowledge corresponds to γi = σi for i =

1, . . . ,m.
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Proof: From (20) and (21) we note that to prove the
Proposition it suffices to show that

ε

r1∑
i=r0+1

1

σ2
i

+

r1∑
i=r0+1

(
γi
σi
− 1

)2

> r1 − r0. (31)

Assume now that
√
ε > σr0+1, which implies that

√
ε > σi

for all i = r0 + 1, . . . ,m due to singular values organized in
nonincreasing order. By this assumption, we have that

ε

r1∑
i=r0+1

1

σ2
i

> r1 − r0, (32)

which completes the proof. �
We note that in the above Proposition condition (29)

guarantees that (30) holds uniformly for all feasible γi, i =
1, . . . ,m. Indeed, the second term on the left hand side of (31)
shows that the larger the discrepancy between γi and σi, the
larger the gain in performance in (30) under condition (29).

Moreover, the above result mirrors the results of [4] de-
rived in theoretical settings of perfect model knowledge. It is
encouraging therefore that results similar to those of [4] hold
under explicit modeling of uncertainty in the model knowl-
edge.

4. NUMERICAL EXAMPLE

We close with a numerical example illustrating the relation
between the MSE of the MMSE (19) and the stochastic MV-
PURE (21) estimators for the perturbed model (14). For clar-
ity, we limit ourselves to a very small example, where n =
4,m = 2 and the rank constraint r = 1, which can be thus
easily pictured on a 2-dimensional figure. The matrix H has
Gaussian entries of zero mean and unit variance, with sin-
gular values σ1 = 1.8777, σ2 = 0.9498. The noise level is
such that

√
ε = σ2 + 0.05 (thus, in view of Proposition 1, we

must have J(14)(W 1
MV−PURE) < J(14)(W 2

MV−PURE) =

J(14)(WMVDR) for all γ1 ≥ γ2 > 0), and we set c = 0.01
for (28). We draw below function fr (22) for r = 1 in
vicinity of its minimum fr(γ

min), where γmin is given by
(28). In our case the argument of the minimum is γmin

1 =
1.0554, γmin

2 = c = 0.01 [cf. (28)], and this minimum is
marked by the big red dot on the figure. The value at the
minimum is fr(1.0554, 0.01) = −0.2521.

We would like also to note that the above numerical ex-
ample is perhaps simplest possible, as the only non-trivial
rank constraint is r = 1, which essentially means that the
stochastic MV-PURE estimator (12) is a matrix of scaled
columns (rows). Nevertheless, even in such simple settings
we could present the benefits of the reduced-rank approach
of the stochastic MV-PURE estimator in estimation under
model uncertainty.
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