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a b s t r a c t

Crisp and fuzzy-logic rules are used for comprehensible representation of data, but rules based on
similarity to prototypes are equally useful and much less known. Similarity-based methods belong to
the most accurate data mining approaches. A large group of such methods is based on instance selection
and optimization, with the Learning Vector Quantization (LVQ) algorithm being a prominent example.
Accuracy of LVQ depends highly on proper initialization of prototypes and the optimization mechanism.
This paper introduces prototype initialization based on context dependent clustering andmodification of
the LVQ cost function that utilizes additional information about class-dependent distribution of training
vectors. This approach is illustrated on several benchmark datasets, finding simple and accurate models
of data in the form of prototype-based rules.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

One of the problems with applications of neural networks in
safety-critical situations is the ‘‘black-box nature’’ of its solutions.
The best explanation of the data structures obviously depends on
theparticular problem, on standards commonly accepted in a given
field. Most research on understanding data structures using neural
networks has focused on extracting propositional logical rules
(Duch, Adamczak, & Gra̧bczewski, 2001; Duch, Setiono, & Zurada,
2004), but such rules, in crisp or fuzzy form, are not always the
bestway to understand the data. Expressive power of crisp or fuzzy
rules (C-rules and F-rules) has serious limitations. The ‘‘majority
voting’’ concept expressed by C-rules or F-rules requires an
exponential number of conditions, but it is easily implemented in
a general, weighted form by the M-of-N threshold rules, provided
by perceptrons. Prototype-based rules use sophisticated measures
of similarity that may capture some intuitive forms of evaluation,
as used for example in medical diagnostics. Human categorization
of natural objects is largely based on memorization of numerous
examples, replaced by prototypes that enable generalization of
these examples (Roth & Bruce, 1995). In real life ‘‘intuitive
understanding’’ reflecting the experience of an expert is usedmore
often than propositional logics and works well in rather simple
situations and in abstract sciences.

While the literature on fuzzy rules is huge, P-rules are much
less popular and there seems to be some prejudice against their
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comprehensibility. P-rules may represent typical or exceptional
cases, covering many examples, or specific cases close to the de-
cision borders, with similarity functions using only those fea-
tures that are important for making discriminations locally around
each prototype. Numerous arguments in favor of P-rules as com-
pared to C-rules and F-rules have been given in Blachnik and Duch
(2008) andDuch andGrudziński (2001). They includemore flexible
decision borders, ability to handle exceptions in an easy way,
stability of sets of rules, connection with basis set expansion reg-
ularization networks (Lowe, 1995; Poggio & Girosi, 1990), vec-
tor quantization and self-organized networks (Kohonen, 1984).
P-rules provide the most general form of knowledge representa-
tion: F-rules are equivalent to P-rules with separable similarity
metrics (Duch & Blachnik, 2004) and C-rules are a special case of
F-rules with Chebychev distance function. P-rules may also rep-
resent M-of-N rules in a natural way using prototype threshold
rules (Blachnik & Duch, 2006). Two general types of P-rules are
possible, with decision borders based either on the nearest pro-
totypes, or on similarity thresholds for a given prototype. For
example, a single prototype threshold rule gives over 97.5% accu-
racy on a well known Wisconsin Breast Cancer (WBC) benchmark
dataset (Gra̧bczewski & Duch, 2002), selecting important features
to distinguish a ‘‘worst-case’’ malignant prototype from the be-
nign cases. This is the simplest and most accurate description of
the WBC data structure found so far.

Despite these arguments prototype-based rules are still much
less popular than other forms of rules. The use of prototype-based
rule systemswith linear functions for control (Tang & Lawry, 2010)
may use linguistic labels but it is simply a basis set expansion
technique that does not lead to comprehensible description of
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data. Similarity-Based Methods offer a rich framework (Duch,
2000; Duch, Adamczak, & Diercksen, 2000) for construction
of such methods. Many methods used for data analysis may
be easily accommodated in this framework, including neural
networks (Duch, Adamczak, & Diercksen, 1999), probabilistic and
fuzzy methods (Duch & Blachnik, 2004), kernel approaches and
many other methods (Pȩkalska & Duin, 2005). Prototype-based
rules also belong to this class of methods, specifically aiming to
represent the knowledge hidden in the data in a comprehensible
way. This is achieved by reduction of the number of prototype
vectors (selection of prototypes), minimization of the number of
features used to create the final model, and the use of simple
similarity metrics.

The Learning Vector Quantization (LVQ) algorithm is usually
presented in the neural network form, but it also belongs to
the Similarity-Based Methods framework. Several LVQ algorithms
became popular after the publication of Kohonen’s book ‘‘Self-
Organization and Associative Memory’’ (Kohonen, 1984). They are
simple and usually quite accurate, using the nearest neighbor rule
for classification. The LVQ decisionmodel is therefore based on the
similarity (or dissimilarity, i.e. distance) measure between the test
object and the reference vectors, called the codebook vectors (pi),
or prototypes. The output label of the test object is the same as the
label of the nearest codebook:

k = argmin
i

(D (x, pi))

C(x)← C(pk)
(1)

where D(·, ·) is the distance function. The square of the distance
D(·, ·)2 may also be used as it does not change the relative distance
ordering and is computationally more efficient, x is the test object,
and C(·) is the label or class indicator of a given object. Distance
or similarity measures may be used in the decision rule, replacing
argmin by the argmax.

The learning process of the LVQ network determines the
optimal position of the prototypes. To reach this goal one has first
to:

• define objective function;
• determine appropriate distance measure;
• construct optimization algorithm;
• select optimal number of codebook vectors;
• determine initial position of codebook vectors to avoid sub-

optimal solutions.

Many variants of the LVQ algorithms have been created,
depending on the specific solutions to the points listed above.

LVQ also has many different applications. It may determine
positions of centers of radial basis functions in the radial basis
function (RBF) neural network training (Schwenker, Kestler, &
Palm, 2001). The centers of basis functions optimized by LVQ
reflect real classification boundaries, not just grouping of the
input vectors determined by clusteringmethods. LVQ is connected
in many ways to kernel algorithms. Kernel methods have great
generalization capabilities, but have also some drawbacks. For
large datasets computational complexity is high (proportional to
O(n2) for n samples) ending with a large number of potential
support vectors. Several solutions of this problem exist (Lee &
Huang, 2007), reducing the number of support vectorswhile trying
to preserve original decision borders. Although reformulation of
the objective function for SVM training is possible, a simpler
solution is based on clustering or LVQ algorithm for the selection
of good candidates for support vectors (Blachnik & Duch, 2008).

The LVQ approach can be used as a model for training neuro-
fuzzy models. It is not hard to show (Kuncheva, 1996) that the
LVQ neural network is equivalent to the Takagi–Sugeno fuzzy rule-
based system with aggregation operator defined as max(·). LVQ
networks have also been applied to preprocessing of images. A
common representation of image properties is based on histogram
features, derived from sampling patches of images and binning of
intensity, color, texture, edge-orientation and other features. The
most commonly used method to determine relevant samples is
based on clustering, but LVQ optimization of the codebook vectors
results in much higher discrimination of images based on their
histograms (Blachnik & Laaksonen, 2008). The diverse range of
applications mentioned above demonstrate the universality of the
LVQ approach.

The concept of prototype-based rules has been proposed in
Duch and Grudziński (2001). After selection of a small set of
reference vectors pi the nearest neighbor rule is used to associate
them with class labels or any other output information:

if p = argmin
p′∈P

D(x, p′) then y = C(p). (2)

In more general form a fuzzy rule is associated with each proto-
type, and an aggregation operator is used to determine final de-
cision. Distance functions are replaced by similarity estimation
(for example activation of Gaussian nodes that compute distances
S(x, p) = exp


−D(x, p)2


) estimating similarity between the vec-

tor x and the prototype p in a fuzzy sense. Members of each pair –
prototype and its corresponding class label – are related to each
other by a single fuzzy rule:

(1) if x p1 then y1 C(p1)

(2) if x p1 then y2 C(p2)

· · ·

(v) if x pv then yv C(pv)

where denotes the ‘‘is similar to’’ operation simply computed
as S (x, p). The aggregation operator may implement a max func-
tion leading to the nearest prototype model or softmax function,
summing the activity of all nodes associated with a given class
and dividing it over total activity, but there are many other choices
(Kuncheva, 2004).

The main objective of such an approach goes beyond mere
classification or approximation (y(x; p) = C(p) may be used for
local approximation). Finding the nearest prototype is useful in
many ways (Duch et al., 2000), providing information for case-
based reasoning (Rissland, 2006). For example, in law, medical or
machine diagnostics retrieving the most similar case may provide
much more information than just simple diagnosis or prediction
of expected outcomes. Comprehensibility of the P-rule systems
depends on a significant reduction of the number of reference
cases by the LVQ algorithm. Sophisticated similaritymeasuresmay
capture intuitive evaluation of experts that could behard to explain
in the form of propositional rules.

The accuracy of weak classifiers is improved strongly using
boosting techniques (Schapire & Singer, 1999) that introduce
weights for training instances. This is a relatively unexplored
aspect of the LVQ algorithms. Appropriate weights may guide
the optimization of codebook positions, reducing the influence
of outliers by increasing the importance of instances close to the
border. The next section is dedicated to the problem of codebook
vector initialization, including the use of context dependent
clustering. In Section 3 somemodifications of the LVQ cost function
are introduced, Section 4 is devoted to the problem of instance
weighting, and in Section 5 a weighted LVQ network is compared
with the standard LVQ approach on a few datasets. The final
Section 6 contains a brief discussion.

2. Initialization of LVQ codebook vectors

All neural network models require initialization of network
parameters. The LVQ approach requires specification of initial
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codebook positions in the feature space. To solve this problem
many different solutions have been proposed. Random selection
of the codebooks from the set of training instances is inefficient,
leading to a large variance and low accuracy of models after
training. Several methods used to reduce the number of reference
vectors in the kNN algorithm may be employed for codebook
initialization. Selection algorithms that work in top–down fashion
include:

• Edited Nearest Neighbor (ENN) (Wilson, 1972) algorithm that
removes from the training set instances that are incorrectly
classified by kNN for k ≥ 3;
• DROP3 (Wilson & Martinez, 2000) removes instance x from the

training set if it does not change the classification of instances
for which x is one of the k nearest neighbors;
• Iterative Case Filtering (ICF) (Brighton & Mellish, 2002) starts

from DROP3 and creates hyperspheres with instances from a
single-class.

Other instance selection algorithms include:

• Bottom–up Condensed Nearest Neighbor rule (CNN) (Hart, 1968)
startswith one vector per class, and adds training instances that
are wrongly classified by the current reference set.
• Graph-based Gabriel Editing (GE) algorithm (Bhattacharya,

Mukherjee, & Toussaint, 2005) uses a Gabriel graph to remove
from the training dataset all instances from the same class as
all their neighbors, leaving only those instances that define
decision borders between different classes.
• Probability-density estimating algorithms, such as the Edited

Normalized RBF (NRBF) (Jankowski & Grochowski, 2004) re-
moves instances x inconsistentwith probability density estima-
tion around point x.

For an in-depth review of these algorithms see (Grochowski
& Jankowski, 2004; Jankowski & Grochowski, 2004; Wilson
& Martinez, 2000). Codebook initialization methods based on
clustering have lower computational complexity in comparison
to the instance selection methods, however they are usually less
accurate. To improve accuracy context dependent clustering is
used instead of classical clustering algorithms. Such algorithms
are guided by instance weights that exert local influence on the
clustering process in the desired area. In classification problems
the focus should be on precise description of the class border
areas, combined with general prototype-based rules that cover
large clusters of pure class data.

Context dependent clustering uses context information to guide
the clustering process. In the simplest case context is described
by an external variable that estimates the importance of each
vector describedby an instanceweight. Conditional Fuzzy C-Means
(CFCM) (Pedrycz, 2005) is an extension of the FCM clustering
algorithm, with additional variable y, defined for every vector x,
that helps to cluster related data. For every vector xi the strength
of its relation with the external variable yi is defined by a function
fi = µA(y) ∈ [0, 1], where µA(y) is interpreted as a membership
function for some fuzzy set A, or simply as a weight that creates a
clustering condition in context A.

FCM and CFCM are based on minimization of a cost function
defined as:

Jm(U,V) =

v−
k=1

n−
i=1

(uki)
m
‖xi − pk‖

2
A (3)

where v is the number of clusters centered at pk (such centers will
be used as reference vectors or the LVQ classifier), n is the number
of vectors, m > 1 determines clustering fuzziness, and U = (uki)
is a v × n dimensional membership matrix with elements uki ∈
[0, 1] defining the membership degree of vector xi in cluster pk.
The matrix U has to fulfill three conditions:

1◦ each vector xi is a member of the k-th cluster to a degree
between 0 and 1:

uki ∈ [0, 1]; k = 1, . . . , v; i = 1, . . . , n (4)

2◦ sumof themembership values of i-th vector xi in all the clusters
is equal to fi

v−
k=1

uki = fi; i = 1, . . . , n (5)

3◦ clusters are not empty, and a single cluster does not cover the
whole space:

n−
i=1

uki ∈ (0, n); k = 1, . . . , v. (6)

Centers of the clusters are calculated as:

pk =

n−
i=1

(uki)
mxi

 n−
i=1

(uki)
m
; k = 1, . . . , v. (7)

The partitionmatrix is then calculated using cluster centers, and
the cost function (3) is minimized iteratively:

uki = fi

 C−
k=1


‖xi − pk‖

‖xi − pk‖

2/(m−1)

;

i = 1, . . . , n; k = 1, . . . , v. (8)

3. Introducing context in the LVQ algorithm

The cost function of the basic LVQ1 algorithm is defined
as:

E(P)

=
1
2

v−
k=1

n−
i=1

1 (xi ∈ Rk) 1 (C(xi) = C(pk)) ‖xi − pk‖
2

−
1
2

v−
k=1

n−
i=1

1 (xi ∈ Rk) 1 (C(xi) ≠ C(pk)) ‖xi − pk‖
2 (9)

where 1(L) is the switching function, it returns 1 when condition
L is true, and 0 otherwise. C(x) returns class label of vector x, and
Rk is the Voronoi area defined for prototype pk. This relation can
also be interpreted as xi ∈ Rk if pk = argmin

l=1,...,v
(D (xi, pl)). This cost

function is minimized in respect to the position of all prototypes
P. Determining the derivatives of that cost function leads to
two formulas representing the iterative updates of prototypes
positions:

pk = pk + α(j)1 (C(xi) = C(pk)) (xi − pk)

pk = pk − α(j)1 (C(xi) ≠ C(pk)) (xi − pk)
(10)

where α(j) ∈ [0, 1] is a monotonically decreasing step size func-
tion and j is the iteration number.

In the original LVQ algorithm only local information is taken
into account, therefore it is very sensitive to the presence of
outliers. The influence of outliers can be reduced by defining
instance weights in a similar way as in the context dependent
clustering. The f (xi) factors should incorporate information about
overall distribution of vectors fromdifferent classes, giving outliers
and vectors that are far from decision border less influence on the
value of the cost function. These factors are taken into account
through reformulation of the objective function:
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E(P)

=
1
2

v−
k=1

n−
i=1

1 (xi ∈ Rk) 1 (C(xi) = C(pk)) f (xi)‖xi − pk‖
2

−
1
2

v−
k=1

n−
i=1

1 (xi ∈ Rk)

× 1 (C(xi) ≠ C(pk)) f (xi)‖xi − pk‖
2. (11)

The cost function can be minimized by modifying the formula (10)
for the adjustment of prototypes:

pk = pk + α(j)f (xi)1 (C(xi) = C(pk)) (xi − pk)

pk = pk − α(j)f (xi)1 (C(xi) ≠ C(pk)) (xi − pk)
(12)

where the context factor f (xi) describes the class-dependent
distribution of vectors around xi. The f (xi) value can also be
understood as an instance weight describing the importance of
that instance during the training process.

The sketch of the weighted LVQ algorithm (WLVQ) is presented
in Algorithm 1. Because the weights are calculated only at the
beginning, computational complexity of the new algorithm is the
sum of the complexity of the weight calculation part, and the basic
LVQ algorithm O(n · v · z), where z is the number of iterations,
usually not exceeding the number of samples.

Algorithm 1WLVQ algorithm
Require: T, P, α, z
w← determine_instance_weights(T)
n← instances_of(T);
v← instances_of(P);
for k = 1 . . . z do

for i = 1 . . . n do
for j = 1 . . . v do

dj ← D

Ti, Pj


end for
i← arg min

j=1,...,v


dj


if C(Ti) == C(Pi) then

Pi = Pi + α ·wi · (Ti − Pi)
else

Pi = Pi − α ·wi · (Ti − Pi)
end if

end for
α = α/(1+ α)

end for
return P

4. Determining the instance weights

Defining appropriate instance weights should help to find the
minimum number of LVQ prototypes providing a simple but
accurate model of the data. Support vector machines work well
because they focus on the border area, providing hyperplanes with
widemargins and defining sharp decision borders. Support vectors
in the kernel space act as prototypes pi, with kernel values K(x, pi)
serving as a weighted distance from these prototypes. Therefore
weights of the training instances should stress the importance of
the border areas. There are many different solutions that can be
used for that purpose, and in practice any classifier can be used
to identify the instance weights. Here we shall investigate the
use of two weighting algorithms, one based on the inter–intra
class similarity function, and another on using the Edited Nearest
Neighbor Rule (ENN) instance selection algorithm.
4.1. Inter–intra class similarity based context

To encourage a selection of prototypes that lie close to the
decision border, instance weights are defined with the help of
a coefficient wk describing the distribution of vector positions
around xk within the same, and relatively to other classes. This is
defined by the ratio of awithin-class scatter to out-of-class scatter:

wi = w(xi) =
(n− nc)

nc

∑
j,C(xi)=C(xj)

xi − xj
2

∑
j,C(xi)≠C(xj)

xi − xj
2 . (13)

Here C(xi) denotes the class label of the vector xi, with nc
vectors in this class. The normalized wi coefficients (are in the
range [0 · · · 1])reach values that are close to 0 for vectors
inside large homogenous clusters, and close to 1 if the vector xi is
near the vectors of the opposite classes and far from other vectors
from the same class (for example, if it is an outlier). To avoid such
situations weights should be centered around µ ∈ [0.6, 1], with
Gaussian distribution defining the context factor:

fi = f (xi) = exp

−γ (w(xi)− µ)2


. (14)

The value of γ ∈ [0.4, 0.8] is recommended, determined empiri-
cally for a wide range of datasets. The µ parameter controls where
the prototypes will be placed; for small µ they are closer to the
center of the cluster and for largerµ closer to the decision borders.
The range in which they are sought is determined by the γ param-
eter. Because this algorithm requires calculation of the distances
between all instances the computational complexity is quadratic
in the number of samplesO


n2


. This function is used to determine

the clustering context for the CFCM clustering in theweighted LVQ
algorithm (WLVQ).

4.2. ENN based context

The Edited Nearest Neighbour (ENN) rule is based on the
leave one out test. In the original algorithm all vectors that are
incorrectly classified by the kNN classifier (k ≥ 3) are marked for
deletion. We have used here a modified version of this approach
adopted to determine instanceweights. Thismodified version does
not remove any instances, but instead the prediction confidence is
used as an instance weight. The diagram of the program is shown
in Algorithm 2, where T denotes the training set, and con(·) is
the confidence of the predicted class, equal to the fraction of k
neighbors that belong to themajority class C(xi). As in the previous
methods weights wi should be centered around µ with a Gaussian
distribution.

Algorithm 2Modified ENN algorithm
Require: T, k

n← instances_of(T);
wi ← 0;
for i = 1 . . . n do

C(xi) = kNN ({T \ xi}, xi);
wi = con (C(xi)) ;

end for
for i = 1 . . . n do

fi = exp

−γ (wi − µ)2


end for
return f

The ENN algorithm can be used for simultaneous codebook ini-
tialization and instance weighting for LVQ training. Unfortunately
weights determined by this algorithm are usually sensitive to out-
liers. Similar to the weighting procedure described in the previous
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Fig. 1. Data flow diagram.
section this algorithm also requires calculation of the distances be-
tween all instances, so the computational complexity is of the order
O


n2


.

5. Illustrative calculation

In order to investigate properties of the algorithms described in
previous sections, several tests have been done on seven bench-
mark datasets taken from the UCI repository (Asuncion & New-
man, 2007) (Sonar, Wisconsin Breast Cancer (WBC), Spambase,
Diabetes (Pima Indian), Heart disease (Cleveland), Ionosphere
and Appendicitis). Three datasets are discussed in detail: Sonar,
WBC, Spambase, and the best results for the remaining four
are shown in Table 2. Table 3 also shows a comparison with other
popular machine learning algorithms like the C4.5 decision tree,
and SVM with linear and Gaussian kernel. Some basic characteris-
tics of these datasets are provided in Table 1.

All experiments have been carried out in an identical manner
using the 10-fold cross-validation procedure, with all algorithms
embedded in the crossvalidation folds to achieve an unbiased
estimation of generalization error. The diagram presenting data
flow in computational experiments is presented in Fig. 1. In
these experiments accuracy of the nearest-prototype classifier
with prototypes obtained from the classical LVQ algorithm
have been compared with those based on prototypes optimized
using the WLVQ algorithm. In both cases prototypes/codebooks
were initialized using the CFCM clustering algorithm. The cross
validation process has been repeated two times, consequently
the accuracy and standard deviation has been calculated from 20
different results. In the case of theWLVQ algorithm, optimal values
of γ and µ were selected using a greedy search algorithm, for the
Inte-Intra class similarity method from values of γ = [0.3, 0.6,
0.9] and values of µ = [0.4, 0.6, 0.8, 1], and for the ENN method
from values of γ = [0.4, 0.6, 0.8] and 4 values of µ = [0, 0.1,
0.2, 0.3]. The number of nearest neighbors in the ENN algorithm
was set to k = 10.

Results are presented in Figs. 2–4. Each graph shows the average
accuracy and variance as a function of the number of selected
prototypes per class. In all plots a solid thin line represents
accuracy of the reference LVQ algorithm and the bold dotted lines
represent mean accuracy obtained with the WLVQ algorithm for
weights determined by both types of algorithms.

For the Sonar dataset the significant difference between
weighted and non-weighted algorithms vanishes for the higher
number of prototypes per class (#codebooks ≥ 9). For both
weighting functions the increase of the accuracy is over 10% for the
small number of prototypes. This solution gives the most valuable
P-rule, and thus it is important tomaximize its accuracy. Using only
1 prototype per class adds about 13% accuracy, but is still worse on
about 7% compared with the results of the one nearest neighbor
classifier 2.

For the WBC dataset both weighting functions behave almost
identically. One prototype per class is optimal, with ENN weights
Fig. 2. Results for the Sonar data.

Fig. 3. Results for theWBC Breast Cancer data.

allowing for a small (statistically insignificant) improvement in
accuracy. Adding more prototypes does not justify increased
complexity of the model. Average accuracy of weighted versions
has always been higher then that of the pure LVQ algorithm, but
these differences are rather small.

Themost significant difference has been obtained for the largest
of these datasets, the Spam data. For this dataset both weighted
versions of the LVQ algorithm work better than the standard
LVQ, and for three prototypes per class the gain is statistically
significant, over 4%. Although full 1-NN is still better by about
3%, which is significant, a great reduction in complexity has been
achieved on a rather difficult data. A comparison of all results
reported here is presented in Table 2.
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Table 1
Summary of datasets used in experiments.

Title #Features #Samples #Samples per class Source

Sonar 60 208 111/97 Asuncion and Newman (2007)
WBC 9 683 444/239 Asuncion and Newman (2007)
Spambase 57 4601 1813/2788 Asuncion and Newman (2007)
Pima Indian diabetes 8 758 500/268 Asuncion and Newman (2007)
Cleveland 13 297 160/137 Asuncion and Newman (2007)
Ionosphere 33 351 225/126 Asuncion and Newman (2007)
Appendicitis 7 106 85/21 ShalomWeiss
Fig. 4. Results for the Spam data.

6. Conclusions

Simple description of data structures is usually attempted
using classical or fuzzy logic rules (Duch et al., 2004). Rules
are comprehensible if their number is small and conditions are
simple. Prototype-based rules provide an alternative description
of data that may be simpler and more intuitive than propositional
rules. One of the methods to generate good P-rules is based on
the LVQ algorithm. A single prototype with a threshold decision
rule may work well for data that has an approximately Gaussian
distribution of samples (for example, on the Wisconsin Breast
Cancer benchmark dataset Gra̧bczewski & Duch, 2002), requiring
a prototype that represents either a typical or an extreme case
in each class. In such a situation linear discrimination methods
will also work quite well. However, in more complex cases, when
nonlinear kernelmethods show their advantages,more prototypes
concentrated around border areas are needed. Kernel methods
tend to use many support vectors along the decision border as a
reference, implicitly providing new kernel-space features zi(x) =
K(x, pi) that ‘‘flatten’’ decision borders (Maszczyk & Duch, 2010).
Hyperplanes in this space provide good discrimination of the data,
but interpretation of results becomes difficult because the data
model becomes rather complex.

In this paper improvements of the LVQ algorithm based on
instance weighting have been proposed. The goal is to decrease
model complexity without loss of accuracy. Context dependent
clustering has been applied for initialization of LVQ prototypes,
with two weighting algorithms used for training: one based on
the inter–intra class similarity, and another based on the Edited
Nearest Neighbor rule instance selection algorithm. Results show
that this combinationmay create simple solutionswith a relatively
small number of prototypes located near the border. In the case
of Sonar data with inter–intra weighting only two prototypes per
class are sufficient, while forWBC and Spamdata ENN gives amore
comprehensive description.
Table 2
Comparison of mean accuracy and the number of prototype vectors for 6 nearest
neighbor based algorithms.

Dataset Model Accuracy #Refs.

Sonar

1NN 87± 6.8 208
ENN+ 1NN 81.2± 6.5 174
CNN+ 1NN 85.8± 8.5 63
WLVQ (inter–intra) 81.7± 3.9 2
WLVQ (ENN) 81.7± 5.1 2
LVQ 82.2± 5.0 20

WBC

1NN 95.9± 1.8 683
ENN+ 1NN 96.9± 1.9 661
CNN+ 1NN 94.7± 2.1 67
WLVQ (inter–intra) 97.2± 1.2 2
WLVQ (ENN) 97.4± 1.3 4
LVQ 96.0± 2 10

Spam

1NN 89± 1.3 4600
ENN+ 1NN 90.3± 1.9 4165
CNN+ 1NN 88.4± 1.5 1055
WLVQ (inter–intra) 87.6± 1.6 12
WLVQ (ENN) 88.0± 1.2 6
LVQ 86.9± 2.0 8

Pima Indian

1NN 66.3± 4.9 268
ENN+ 1NN 76.2.2± 5.2 4165
CNN+ 1NN 66.3± 5.0 334
WLVQ (inter–intra) 77.7± 4.2 2
WLVQ (ENN) 77.4± 4.3 4
LVQ 75.0± 2.7 2

Cleveland

1NN 75.1± 10.6 297
ENN+ 1NN 81.2± 7.7 4165
CNN+ 1NN 75.1± 10.6 104
WLVQ (inter–intra) 83.2.6± 4.3 2
WLVQ (ENN) 83.2± 4.3 2
LVQ 82.8± 3.7 4

Ionosphere

1NN 86.6± 4.9 351
ENN+ 1NN 84.9± 3.8 4165
CNN+ 1NN 86.6± 4.9 67
WLVQ (inter–intra) 89.2± 2.0 4
WLVQ (ENN) 89.2± 2.3 4
LVQ 87.2± 3.1 4

Appendicitis

1NN 75.5± 10.2 106
ENN+ 1NN 88.7± 7.35 4165
CNN+ 1NN 75.5± 10.2 31
WLVQ (inter–intra) 88.7± 8.4 2
WLVQ (ENN) 88.7± 8.4 2
LVQ 87.8± 7.8 2

Table 3
Comparison of mean accuracy for 3 algorithms not based on nearest neighbor rule.

Dataset C.45 SVM-rbf SVM-linear

Sonar 71.2± 7.1 90.39± 5.1 77.8± 8.4
WBC 94.6± 3.6 97.21± 1.1 96.9 ± 2.1
Spam 92.9 ± 1.2 93.6± 0.9 92.9 ± 0.6
Diabetes 73.8± 5.7 77.9 ± 2.4 76.8 ± 4.0
Cleveland 77.8± 8.8 84.15± 3.4 83.8 ± 6.3
Ionosphere 91.5± 3.3 95.45± 2.0 89.5 ± 4.0
Appendicitis 86.1± 11.9 87.7 ± 4.2 88.6 ± 5.9

For high dimensional data, selection of instances should
be complemented with selection of features used by the LVQ
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similarity metrics, and this is done in an elegant way using
adaptive relevance estimation (Schneider, Hammer, & Biehl, 2009).
Weighted LVQ may also be used with SVM kernel approaches to
reduce the number of support vectors. PCA is commonly used for
reduction of dimensionality, but a linear combination of futures
may not provide as much information as distance-based features.
The key to the success of the kernel methods lies in the creation of
feature space based on distances to prototypes. Additional features
greatly enhance the information available in the feature space,
allowing for the construction of simpler models based on linear
discrimination and other techniques (Maszczyk & Duch, 2010). It
has been suggested that kernelmethodsmay be useful inmodeling
human category learning in cognitive science (Jäkel, Schölkopf,
& Wichmann, 2009), but prototype-based rules seem to provide
a more plausible explanation preserving essential advantages of
kernel methods.
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