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Abstract. Almost Random Projection Machine (aRPM) is based on generation
and filtering of useful features by linear projections in the original feature space
and in various kernel spaces. Projections may be either random or guided by some
heuristics, in both cases followed by estimation of relevance of each generated
feature. Final results are in the simplest case obtained using simple voting, but
linear discrimination or any other machine approach may be used in the extended
space of new features. New feature is added as a hidden node in a constructive
network only if it increases the margin of classification, measured by the increase
of the aggregated activity of nodes that agree with the final decision. Calculating
margin more weight is put on vectors that are close to the decision threshold
than on those classified with high confidence. Training is replaced by network
construction, kernels that provide different resolution may be used at the same
time, and difficult problems that require highly complex decision borders may be
solved in a simple way. Relation of this approach to Support Vector Machines
and Liquid State Machines is discussed.

Key words: Neural networks, machine learning, random projections, liquid state
machines, boosting

1 Introduction

Although backpropagation of errors (BP) algorithm [1] has been very useful and is still
widely used it has several well-known drawbacks and is not a good candidate for a
model of neurobiological learning. Alternative models, such as Leabra, use a combina-
tion of Hebbian learning with error-correction, creating sparse, simple representation in
their hidden layers [2], but so far they have not been too useful in practical applications
to approximation or classification problems. The simplest model that has good biolog-
ical foundation treats microcircuits in neural minicolumns as a kind of neural liquid
that resonates in a complex way when a signal comes [3]. Liquid State Machines [4],
and echo state networks [5] are now investigated in the "reservoir computing" field, as-
suming that a large number of randomly connected neurons form a reservoir providing
memory for different aspects of signals [6]. Readout neurons extract from this reservoir
stable information in real-time reacting to transient internal states formed by microcir-
cuits in this high dimensional system. Projections into high dimensional space increase
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the probability of data separation, as proved by Cover [7]. This is the main reason for
success of the kernel methods in machine learning [8]. It also agrees with the boosting
principle [9], treating each projection as a week classifier.

Following these inspirations we have introduced the almost Random Projection Ma-
chine (aRPM) algorithm [10], a single hidden layer constructive network based on ran-
dom projections that are added only if the new node contains useful information. This
was determined by checking if the projection contains an interval of relatively pure
(single-class) vectors that could be potentially useful. Such localized linear projections
are able to solve highly-non-separable problems [11]. They may be further optimized
using projection pursuit algorithms based on Quality of Projected Clusters (QPC) in-
dices [12], but this would increase computational costs of the method. So far transfor-
mations used to create hidden nodes in aRPM were based on linear projections followed
by non-linear separation of intervals, and filtering based on simple correlation coeffi-
cient.

Hidden neurons should maximize information transmission, a principle used in de-
riving learning rules for spiking networks [13]. One can assume that readout neurons
with rich connections to different brain areas should be able to discover useful fea-
tures correlated with a given tasks if they are already present in the neural reservoir,
and Hebbian correlation-based learning should be sufficient to form strong weights.
In particular, similarity to already learned objects, captured by various kernels, may
be quite useful. Therefore instead of using projections based on input features, kernel-
based features should also be added to the hidden nodes. Adding new types of features
extends the hypothesis space that simple voting or linear discrimination methods are
able to explore. Linear kernels define new features t(x;w) = KL(x,w) = x · w
based on a projection on the w direction, or distance along t(x,w) line. Gaussian ker-
nels g(x,w) = exp(−||x − w||/2σ2) evaluate similarity between two vectors using
weighted radial distance function. Support Vector Machines (SVM) find large margin
linear discriminators in these spaces without explicitely constructing the feature space.
The final discriminant function is constructed as a linear combination of such kernels,
creating in fact a weighted nearest neighbor solution. Each support vector used in a ker-
nel may provide a useful feature, but this type of solution is optimal only for data with
particular distributions, and will not work well for example on parity data [14] or other
problems with complex logical structure [15].

Creating support features directly instead of using kernels based on support vectors
w has some advantages, allowing for judicious design of the feature space, optimization
of parameters of individual features, selection of features, increased comprehensibility
of solutions. Transfer of knowledge between learning of different tasks can be easily
implemented by borrowing good non-linear features from other algorithms (learning
from others), for example using features corresponding to fragments of path derived
from decision trees [16].

In this paper we focus on margin maximization in the aRPM algorithm. New pro-
jections should be added only if they increase correct classification probability of those
examples that are either on the wrong side, or are close to the decision border. In the
next section aRPM algorithm with margin maximization is formally introduced. Section
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three presents empirical tests and comparisons with standard machine learning meth-
ods, and the last section contains discussion and conclusions.

2 Almost random projections with margin maximization

In essence the aRPM algorithm [10] transforms the input features space X into the
support feature spaceH discovering various kinds of useful features. The final analysis
in the H space may be done by any machine learning method. In this paper we shall
use only the majority voting as it is the simplest model, and linear discrimination, but
once a proper information is extracted other classification methods may benefit from
it. The emphasis is thus on generation of new features. If linear discrimination with
wide margin is used (linear SVM is a very good choice here), and support features are
generated using specific kernel z(x;w) = K(x,w), results will be equivalent to the
kernel-based SVM. Creating support feature space in an explicit way does not require
O(n2) operations to calculate the full kernel, which for a large number of vectors n
may be quite costly. Mixing features from different kernels, using a priori knowledge,
or adding interesting features extracted from other models, is quite easy. In this paper
we shall use only features generated by random projection and Gaussian kernels, filtered
by an index that estimates classification margin.

It is convenient to identify each new candidate feature with a class-labeled hidden
node h(x;w) in a constructive network. Projections on random directions t(x;wi) =
x · wi are especially useful if the direction w = x/||vx|| is taken as a point x close
to the decision border. Selecting such points may be done in a rough way by starting
from projections on a line connecting centers of the classes, and finding the overlapping
regions.

Although some projections may not be very useful as a whole, but the distribution
of the training data along t(x;wi) direction may have a range of values that includes
a pure cluster of projected patterns sufficient large to be useful. For example, in case
of parity problems [11, 15] linear projections never separate all vectors labeled as even
and odd, but projections on diagonal [1, 1..1] direction show alternating large even or
odd pure clusters. One can model posterior probability P(C|ti) along the ti = t(x;wi)
direction, separating such clusters using [ta, tb] intervals. This creates binary features
bi(x) = t(x;wi, [ta, tb]) ∈ {0, 1}, based on linear projection in the direction wi,
restricted to a slice of the input space perpendicular to the wi direction.

Good candidate feature should cover some minimal number η of training vectors.
The optimal number may depend on the data, and the domain expert may consider even
a single vector to be a significant exception. Here η has been optimized in CV in the
4-15 range, but simply fixing it to η = max[3, 0.1NCmin] value, where NCmin is
the number of vectors in the smallest class, is usually sufficient. This condition avoids
creation of overspecific features and is applied to all features. After a new feature has
been accepted search for new projection is continued few times (here Nrep is simply
set to 20), and if no new features is accepted the procedure is stopped and other types
of features are generated.

To determine interval [ta, tb] that extracts a cluster from projection t(x;w) sort all
projected values and call them t1 ≤ t2 ≤ ...tn. Now count how many vectors, starting
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from ta = t1, are from the same class C as vector x projected at ta; find the first vector
tk on the ordered list that is from a different class C ′ 6= C. If k − 1 ≥ η the interval
[ta, tb = (tk − tk−1)/2] contains sufficient number of vectors to be included and new
candidate feature is created. Start again from ta = tb and repeat the procedure to check
if more intervals may be created using the same projection.

Even the simplest version of aRPM is thus non-linear, and is capable of solving
highly-nonseparable problems [10], posing a real challenge to traditional neural net-
works and SVMs, for example the parity problem for a large number of bits [14].

The second type of features considered here are based on kernels. While many ker-
nels may be mixed together, here only Gaussian kernels with several values of disper-
sion σ are used for each potential support vector g(x;xi, σ) = exp(−||xi−x||2/2σ2).
Local kernel features have values close to zero except around their support vectors xi.
Therefore their usefulness is limited to the neighborhood O(xi) in which gi(x) > ε. In
this neighborhood we should have at least η vectors, otherwise candidate feature will
be rejected. To create a multi-resolution kernel features based on a few support vectors,
candidate features with large σ are first created, providing smooth decision borders.
Then significantly smaller σ values are used to create features more strongly localized.
In our case 5 values σ =∈ {25; 22; 2−1; 2−4; 2−7} have been used.

The candidate feature is converted into a permanent node only if it increases classifi-
cation margin. In SVM classification margin is simply related to the norm of the weight
vector w in the kernel space. It is optimized in a fixed feature space using quadratic
programming, reducing the number of support vectors and therefore removing some di-
mensions from the feature space. In our case we have incremental algorithm, expanding
feature space until no improvements are made. Expanding the space should move vec-
tors away from decision border. However, only those vectors that are on the wrong side
or rather close to the decision border should be moved in the direction of correctly clas-
sified vectors, while the remaining vectors may even move slightly towards the decision
border. This idea is similar to boosting [9], with each feature treated as a weak classi-
fier, except that these classifiers have high specificity with low recall. We shall use here
a simple confidence measure based on the winner-takes-all principle (WTA), summing
the activation of hidden nodes. Projections with added intervals give binary activations
bi(x), but the values of kernel features g(x;xi, σ) have to be summed, giving a total
activation A(C|x) for each class. Although probability of classification p(C|x) may be
estimated by dividing this value through total activation summed over all classes infor-
mation about confidence will be lost. Plotting A(C|x) versus A(¬C|x) for each vector
leads to scatterograms shown in Fig. 1, giving an idea how far is a given vector from
the decision border.

In the WTA procedure the difference |A(C|x)−A(¬C|x)| estimates distance from
the decision border. Specifying confidence of the model for vector x ∈ C using logistic
function: F (x) = 1/(1 + exp(−(A(C|x)−A(¬C|x)))) gives values around 1 if x is
on the correct side and far from the border, and goes to zero if it is on the wrong side.
Total confidence in the model may then be estimated by summing over all vectors, and
it should reach n for perfect separation. The final effect of adding new feature h(x) to
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the total confidence measure is therefore:

U(H, h) =
∑
x

(F (x;H+ h)− F (x;H))

If U(H, h) > α than the new feature is accepted, contributing to a larger margin. Pa-
rameter α has been fixed at 0.01, lower values will lead to faster expansion of the feature
space. Note that the mislabeled cases that fall far from the decision borders will have
large number of votes for the wrong class and thus will fall into the saturation region
of the confidence functions F (x;H), so they will have little influence on the U(H, h)
change. This is in contrast to the mean square error or other such measures that would
encourage features pushing mislabeled cases strongly towards the decision border.

To make final decision aRPM with margin maximization uses winner-takes-most
mechanism or linear discrimination. We have tested also several other models (Naive
Bayes, decision trees, neural networks and nearest neighbor methods) in the final H
space, and results in all cases are significantly improved comparing them to the original
feature space. The aRPM algorithm is summarized in Algorithm 1. The initial spaceH
is created treating the single features xi in the same way as projections t(vx), without
checking confidence measures. In this way simple original features that may be very
useful, are preserved (note that they are never used in SVMs).

Algorithm 1 aRPM with margin
Require: Fix the values of internal parameters η, α parameters and the set of σ dispersions

(sorted in descending order).

1: Standardize the dataset, n vectors, d features.
2: Set the initial spaceH using input features xi, with i = 1..d features and n vectors.
3: for k = 0 to Nrep do
4: Randomly generate new directionw ∈ [0, 1]d

5: Project all vectors on direction t(x) = w · x
6: Sort t(x) values in ascending order, with associated class labels.
7: Analyze p(t|C) distribution to find all intervals with pure clusters defining binary features

bi(x;C).
8: if the number of vectors covered by the feature bi(x;C) > η and U(H, bi) > α then
9: accept new binary feature bi(x) creating class-labeled hidden network node.

10: goto 3
11: end if
12: end for
13: for j = 1 to nσ do
14: Set the Gaussian dispersion to σ = σj .
15: Create kernel features gi(x) = exp(−||xi − x||2/2σ2).
16: if U(H, gi) > α then
17: accept new kernel feature gi(x) creating class-labeled hidden network nodes.
18: end if
19: end for
20: Sum the activity of hidden node subsets for each class to calculate network outputs.
21: Classify test data mapped into enhanced space.
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aRPM with margin maximization may be presented as a constructive network, with
new nodes representing transformations and procedures to extract useful features, and
additional layers analyzing the image of data in the feature space created in this way.
The algorithm has only a few parameters that in the experiments reported below have
been fixed at values given above in this section. Although in tests all vectors have been
used as potential Gaussian kernel support features, leading to O(n2) complexity, in
practice only a few such features are accepted.

3 Illustrative examples

The usefulness of algorithm described in this paper has been evaluated on six datasets
downloaded from the UCI Machine Learning Repository. A summary of these datasets
is presented in Tab. 1. These datasets are standard examples of benchmark type and
are used here to enable typical comparison of different learning methods. To compare
aRPM with and without margin maximization with other popular classification methods
10-fold crossvalidation tests have been repeated 10 times and average results collected
in Table 2, with accuracies and standard deviations for each dataset. Results of Naive
Bayes, kNN (with optimized k and the Euclidean distance), SSV decision tree [17],
SVM with optimized linear and Gaussian kernels are given for comparison.

Title #Features #Samples #Samples per class Source
Appendicitis 7 106 85 / 21 [18]

Diabetes 8 768 500 / 268 [18]
Glass 9 214 70 / 76 / 17 / 13 / 9 / 29 [18]
Heart 13 297 160 absence / 137 presence [18]
Liver 6 345 145 / 200 [18]
Wine 13 178 59 / 71 / 48 [18]

Parity8 8 256 128 even, 128 odd artificial
Parity10 10 1024 512 even, 512 odd artificial

Table 1. Summary of datasets

The aRPM-no column gives results of our algorithm without margin optimization
[10], and the next two columns with margin, using WTA output and linear discrimina-
tion output (calculated here with linear SVM). In all cases adding margin optimization
has improved results and linear discrimination in the enhanced space achieves the best
results, or at least statistically equivalent. In most cases results are better than linear
and Gaussian kernel SVM. The only highly non-separable problem here is the 8 and 10
bit parity that is perfectly handled thanks to the projected binary features even with the
WTA output.

Only a few kernel features have been selected in most cases, showing that local-
ized projections are able to provide quite good model of the data. This does not mean
that a simpler model would not be created if kernel features will be analyzed before
projections. An interesting solution that has not been checked yet is to create first low
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resolution features, with projections and intervals that cover large number of vectors
(large η), followed by large kernels, and than remove vectors that are correctly handled
and progressively reduce η to account for the remaining errors. The final model may be
then analyzed in terms of general rules and exceptions.

Dataset Method
NB kNN SSV SVM(L) SVM(G) aRPM-no aRPM (WTA) aRPM(LDA)

Append. 83.1 ± 10.2 87.0 ± 10.6 87.9 ± 7.4 85.1 ± 6.0 85.9 ± 6.4 82.6 ± 9.3 87.7 ± 8.1 88.0 ± 6.7
Diabetes 68.1 ± 2.3 75.2 ± 4.1 73.7 ± 3.8 76.4 ±4.7 75.7 ± 5.9 67.7 ± 4.2 61.2 ± 5.7 76.7 ± 4.4

Glass 68.6 ± 9.0 69.7 ± 7.4 69.7 ± 9.4 40.2 ±9.6 63.2 ± 7.7 65.0 ± 9.9 60.3 ± 8.5 68.9 ± 8.3
Heart 76.5 ± 8.6 82.8 ± 6.7 74.7 ± 8.7 83.2 ±6.2 83.5 ± 5.3 78.3 ± 4.2 80.1 ± 7.5 83.1 ± 4.7
Liver 58.6 ± 3.8 62.6 ± 8.5 68.9 ± 9.7 68.4 ±5.9 69.0 ± 8.4 61.1 ± 5.1 67.5 ± 5.5 72.7 ± 7.9
Wine 98.3 ± 2.6 94.9 ± 4.1 89.4 ± 8.8 96.0 ± 5.9 97.8 ± 3.9 68.6 ± 7.8 94.3 ± 5.8 97.7 ± 4.0

Parity8 28.9 ± 4.6 100 ± 0 49.2 ± 1.0 34.1 ±11.7 15.6 ± 22.7 99.2 ± 1.6 100 ± 0 34.7 ± 3.8
Parity10 38.1 ± 3.3 100 ± 0 49.8 ± 0.3 44.1 ±5.0 45.6 ± 4.3 99.5 ± 0.9 100 ± 0 40.3 ± 2.7

Table 2. 10 x 10 crossvalidation accuracy and variance.

The effect of margin optimization is clearly seen in scatterograms, Fig. 1 and 2.
Most vectors that were not classified with high confidence are removed now away from
the decision border (which is at the diagonal), activating many units, except for those
that cannot be classified correctly. Some vectors that were far from decision border have
moved a bit closer to it.

4 Conclusions

Almost Random Projection Machine algorithm [10] has been improved in two ways,
by adding selection of network nodes to ensure wide margins, and by adding kernel
features. Relations to kernel SVM, Liquid State Machines, reservoir computing, and
boosting on the machine learning side, and biological plausibility on the other side,
make aRPM a very interesting subject of study. In contrast to typical neural networks
that learn by parameter adaptation there is no learning involved, just generation and
selection of features. Shifting the focus to generation of new features followed by
the winner-takes-all algorithm (or linear perceptron), makes it a candidate for a fast-
learning neural algorithm that is simpler and learns faster than MLP or RBF networks.
Features discovered solving other tasks may be transfered to new tasks facilitating faster
learning. Kernel features may be related to neural filters that evaluate similarity to previ-
ous complex stimuli. Although kernels have been recommended in cognitive science for
analysis of categorization experiments and behavioral data [19] the view expressed in
this paper offers a simpler and more comprehensible explanation. Feature selection and
construction, finding interesting views on the data is the basis of natural categorization
and learning processes.

Results on benchmark problems show improvements of aRPM(LDA) over all other
classifiers over the most cases, and results of aRPM(WTA) on the parity problem (and
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Fig. 1. Output of aRPM algorithm for the Heart data, without and with margin optimization.
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Fig. 2. Output of aRPM algorithm for the Wine data, without (left column) and with (right col-
umn) margin optimization. Each row present different class (one class vs rest).
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other Boolean functions, not showed here) show that this approach will be particularly
useful in solving difficult problems with inherent complex logic. Calculations on much
larger datasets from the NIPS 2003 competition [20] are in progress. These datasets
have been selected because they are very difficult to analyze correctly by standard
MLPs, Support Vector Machines or other machine learning algorithms.

Scatterogram of WTA output shows the effect of margin optimization, and allows
for estimation of confidence in classification of a given data. Further improvements to
the aRPM algorithm will include admission of impure clusters instead of binary fea-
tures, with modeling actual P(C|t(x)) distribution along projection directions, use of
other kernel features, judicious selection of candidate vectors to define support features
and optimization of the algorithm.
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