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Abstract. Similarity-based methods belong to the most accurate data mining ap-
proaches. A large group of such methods is based on instance selection and opti-
mization, with Learning Vector Quantization (LVQ) algorithm being a prominent
example. Accuracy of LVQ highly depends on proper initialization of prototypes
and the optimization mechanism. Prototype initialization based on context de-
pendent clustering is introduced, and modification of the LVQ cost function that
utilizes additional information about class-dependent distribution of training vec-
tors. The new method is illustrated on 6 benchmark datasets, finding simple and
accurate models of data in form of prototype-based rules.

1 Introduction

Lazy learning has many advantages [1] and can be extended in many ways [2, 3]. Near-
est neighbor algorithms belong to the simplest models of the similarity-based learning
(SBL) framework. They need very little training (parameter selection), are frequently
quite accurate, may use any type of attributes, and may be applied directly to similarity
matrices in cases when vector-based representation of information is not possible. They
may use specialized kernels [4] for similarity evaluation, including kernels for time se-
ries, biological sequences, spectral kernels, graphs and other complex structures, mutual
information and other measures of dependency etc. [5, 6]. Although these kernels are
commonly used in Support Vector Machines (SVMs) to create extended feature space in
which linear discrimination is performed they may also be used in any SBL algorithm.
This is still a relatively unexplored area in machine learning.

Unfortunately similarity-based algorithms, such as the k-nearest neighbor (kNN)
method, also have some drawbacks. First, although there is little learning prediction
may be time-consuming, because it requires distance calculations between the test ti
and all training set instances D = [d1,d2, . . . ,dn]. Several algorithms for exact and
approximate fast computation of distance exist. For example, BallTree or KDTree [7]
algorithms reduce complexity of distance calculations by using tree-structured search
methods (see recent paper [8] for review of approximate ϵ-NN algorithms). Another
approach that can reduce prediction time, improve prediction accuracy and comprehen-
sibility of the kNN algorithm is based on selection and optimization of the training set
reference vectors D.
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Selection removes those instances from the training data that do not bring sig-
nificant gains in the prediction process. Some examples fo algorithms that belong to
this group include top-down algorithms: Edited Nearest Neighbor (ENN) [9] removes
from the training set instances that are incorrectly classified by kNN for k ≥ 3; DROP3
[10] removes instance x from the training set if it does not change classification of in-
stances for which x is one of the k nearest neighbors; Iterative Case Filtering (ICF)
[11] starts from DROP3 and creates hyperspheres with instances from a single-class.
Bottom-up algorithms: CNN (Condensed Nearest Neighbor rule) starts with one vec-
tor per class and adds training instances that are wrongly classified by the current ref-
erence set. Graph-based methods: Gabriel Editing (GE) [12] uses Gabriel graph to
remove from the training dataset all instances from the same class as all their neigh-
bors, leaving only those instances that define decision borders between different classes.
Probability-density estimating algorithms: Edited NRBF [13] uses normalized RBF to
remove instances x inconsistent with probability density estimation around point x.

Optimization methods may start from the selected vectors but shift reference in-
stances to optimal positions. Typical examples that belong to optimization group are
numerous clustering algorithms, including the LVQ algorithm [14, 15], which is used
in this paper.

Empirical comparison of these methods [13, 16] shows that the best results are usu-
ally achieved by combination of selection and optimization algorithms. Such conclu-
sion follows from the sensitivity of LVQ to initialization of codebook vector positions
(“codebook" is used in vector quantization as a synonym of reference vector [14]).
Selection algorithms usually provide a very good initialization for LVQ optimization
algorithm. Although the accuracy is high selection algorithms frequently overestimate
the number of codebook required to achieve maximum accuracy. Minimization of the
number of codebook vectors increases comprehensibility of the model, allowing to de-
fine prototype-based rules (P-rules) based on evaluation of similarity to a small number
of prototypes [17]. In [18] context-dependent clustering algorithm has been applied to
find appropriate initial position of codebooks vectors. The context of the clustering al-
gorithm was defined to ensure that clusters centroids are placed close to the decision
borders. Focus on regions close to the decision border allows for improvement of clas-
sification accuracy and reduction of the number of codebook vectors at the same time.

In this paper further improvements of the LVQ optimization procedure along these
lines are considered. This is achieved by using training vector weights determined by
the clustering context. In the next section a short update on the context-dependent clus-
tering is given, followed by a definition of context and reformulation of LVQ algorithm.
Empirical tests on 6 benchmark datasets are presented in section 3, and results are com-
pared to the original LVQ algorithm.

2 Context dependent clustering

Context dependent clustering uses context information to guide clustering process. In
the simplest case context is described by an external variable that estimates importance
of each vector. Conditional Fuzzy C-Means (CFCM) [19] is an extension of the FCM
clustering algorithm, with additional variable y, defined for every vector x, that helps



to cluster related data. For every vector xi the strength of its relation with the external
variable yi is defined by a function fi = µA(y) ∈ [0, 1], where µA(y) is interpreted as a
membership function for some fuzzy set A, or simply as a weight that creates clustering
condition in context A.

FCM and CFCM are based on minimization of a cost function defined as:

Jm(U,V) =

Nc∑
k=1

n∑
i=1

(uki)
m ∥xi − vk∥2A (1)

where Nc is the number of clusters centered at vk (such centers will be used as reference
vectors or the LVQ classifier), n is the number of vectors, m > 1 determines clustering
fuzziness, and U = (uki) is a Nc × n dimensional membership matrix with elements
uki ∈ [0, 1] defining the membership degree of vector xi in cluster vk. The matrix U
has to fulfill three conditions:

1o each vector xi belongs to the k-th cluster to a degree between 0 to 1:

uki ∈ [0, 1]; k = 1..Nc; i = 1..n (2)

2o sum of the membership values of i-th vector xi in all clusters is equal to fi

Nc∑
k=1

uki = fi; i = 1..n (3)

3o clusters are not empty, and a single cluster does not cover whole space:

n∑
i=1

uki ∈ (0, n); k = 1..Nc (4)

Centers of the clusters are calculated as:

vk =
n∑

i=1

(uki)
mxi

/
n∑

i=1

(uki)
m; k = 1..Nc (5)

The partition matrix is then calculated using cluster centers, and the cost function
(1) is minimized iteratively:

uki = fi

/
C∑

k=1

(
∥xi − vk∥
∥xi − vk∥

)2/(m−1)

; i = 1..n; k = 1..Nc (6)

3 Determining the context

Defining appropriate context should help to find minimum number of LVQ prototypes
that provide accurate model of the data. This is an alternative to various editing methods.
Support vector machines work quite well because they focus only at the border area,



and thus may provide also useful prototypes for LVQ [20]. To encourage selection of
prototypes that lie close to decision border context for CFCM clustering is defined with
the help of a coefficient wk describing distribution of vector positions around xk within
the same and relatively to other classes. This is defined by the ratio of a within-class
scatter to out-of-class scatter:

wi = w(xi) =
(n− nc)

d · nc

∑
j,c(xi)=c(xj)

∥xi − xj∥2∑
j,c(xi) ̸=c(xj)

∥xi − xj∥2
(7)

Here c(xi) denotes class label ci of the vector xi, with nc vectors in this class, and
d is the number of features. For normalized attributes wi coefficients have values that
are close to 0 for vectors inside large homogenous clusters, and close to 1 if the vector
xi is near the vectors of the opposite classes and far from other vectors from the same
class (for example, if it is an outlier). To avoid such situations these weights should be
centered around µ ∈ [0.6, 1] with a Gaussian membership function, defining the context
factor:

fi = f(xi) = exp
(
−γ (w(xi)− µ)

2
)

(8)

with γ ∈ [0.4, 0.8], determined empirically for a wide range of datasets. The µ param-
eter controls where the prototypes will be placed; for small µ they are closer to the
center of the cluster and for larger µ closer to the decision borders. The range in which
they are sought is determined by the γ parameter. This function is used to determine the
clustering context for CFCM clustering in the weighted LVQ algorithm (WLVQ).

4 Introducing context in LVQ algorithm

Classical LVQ1 algorithm is based on the cost function defined as:

E(P) =
1

2

Nc∑
k=1

n∑
i=1

1 (xi ∈ Rk)1 (c(xi) = c(pk)) ||xi − pk||2

−1

2

Nc∑
k=1

n∑
i=1

1 (xi ∈ Rk)1 (c(xi) ̸= c(pk)) ||xi − pk||2
(9)

where 1(L) identity function returns 1 when condition L is true, and 0 otherwise, c(x)
returns class label of vector x, and Rk is the Voronoi area defined for prototype pk. This
relation can also be interpreted as xi ∈ Rk if pk = arg min

l=1...Nc

(D (xi,pl)). This cost

function is minimized in respect to position of all prototypes P using the two update
formulas that iteratively change the position of k-th prototype pk according to:

pk = pk + α(j)1 (c(xi) = c(pk)) (xi − pk)

pk = pk − α(j)1 (c(xi) ̸= c(pk)) (xi − pk)
(10)

where α(j) ∈ [0, 1] is monotonically decreasing step size function and j is the iteration
number.



In the original LVQ algorithm only local information is taken into account. Ap-
plying the context dependent clustering to LVQ training the f(xi) factor is introduced
to incorporate some information about overall distribution of vectors from different
classes, such that outliers or vectors that appear far from the decision border should
have less influence on the value of the cost function. It requires reformulating the cost
function, which takes the form:

E(P) =
1

2

Nc∑
k=1

n∑
i=1

1 (xi ∈ Rk)1 (c(xi) = c(pk)) f(xi) ||xi − pk||2

−1

2

Nc∑
k=1

n∑
i=1

1 (xi ∈ Rk)1 (c(xi) ̸= c(pk)) f(xi) ||xi − pk||2
(11)

This cost function can be minimized modifying formula (10) such that it takes form:

pk = pk + α(j)f(xi)1 (c(xi) = c(pk)) (xi − pk)

pk = pk − α(j)f(xi)1 (c(xi) ̸= c(pk)) (xi − pk)
(12)

where the context factor f(xi) describes class-dependent distribution of vectors around
xi. The f(xi) value can also be understood as an instance weight describing the impor-
tance of that instance during the training process.

5 Experimental results

Experiments have been performed on 6 benchmark datasets with real valued attributes
obtained from the UCI repository [21]. They include Cleveland Heart Disease, Iono-
sphere, Pima Indian Diabetes, Sonar, Spambase, and Wisconsin Breast Cancer (WBC).

Title #Features #Samples #Samples per class Source
Heart 13 297 160 absence / 137 presence [21]

Ionosphere 34 351 224 / 126 [21]
Diabetes 8 768 500 / 268 [21]

Sonar 60 208 111 metal / 97 rock [21]
Spambase 57 4601 1813 / 2788 [21]

WBC 9 699 458 / 241 [21]
Table 1. Summary of datasets used in experiments

5.1 Experiment description

Diagram presenting data flow in computational experiments is presented in Fig (1). In
these experiments accuracy of the nearest-prototype classifier with prototypes obtained
from classical LVQ algorithm have been compared with those based on prototypes opti-
mized using the WLVQ algorithm. In both cases prototypes/codebooks were initialized



using CFCM clustering algorithm. All processing steps have been embedded in the
10 fold cross-validation procedure. In case of WLVQ algorithm optimal values γ and µ
were selected using greedy search algorithm from the 4 values of γ = [0.2, 0.4, 0.6, 0.8]
and 4 values of µ = [0.4, 0.6, 0.8, 1].

Fig. 1. Data flow diagram

5.2 Results

Results are presented in Fig. 2. Each graph shows the average accuracy and variance
as a function of the number of selected prototypes per class. In all plots solid thin line
represents accuracy of the reference LVQ algorithm and the bold dotted line represent
mean accuracy obtained with WLVQ algorithm.

Results obtained for the ionosphere dataset do not show significant improvement
in accuracy, but WLVQ has somewhat reduced variance. For pima diabetes and heart
disease datasets average results for the WLVQ algorithm are a bit better then obtained
for LVQ, but high variance makes these differences insignificant. The difference can be
seen in sonar and spambase datasets, where especially in the second dataset improve-
ment is significant.

It is worth noting that for heart disease, pima diabetes and breast cancer LVQ finds
one prototype per class that is optimal and adding more prototypes is not justified. This
leads to a conclusion that linear methods should work well on these datasets, because
they are equivalent to prototype classifier with just two prototypes, one per class. This
is indeed the case, in all these cases linear solutions do not significantly differ from the
best results that have been obtained for these datasets, and the same is true for the LVQ
prototypes that may serve as logical rules based on similarity. Such good results may
be at least partially attributed to the CFCM codebooks initialization.

For sonar 3 prototypes are needed, increasing accuracy by 10%. In this case linear
methods are significantly worse than methods based on similarity. In case of ionosphere
and the spam data linear methods completely fail and accuracy is significantly improved
by adding more prototypes.
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(c) WBC Breast Cancer
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(e) Sonar
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(f) Spambase Database

Fig. 2. Comparison of results obtained for LVQ classifier trained with and without instance
weighting (both LVQs use CFCM codebooks initialization). Accuracy and standard deviation
is presented as a function of the number of codebook vectors per class. Variance of LVQ is shown
shfifted to the left of the variance of WLVQ.



6 Conclusions

In this paper context dependent clustering has been applied to the LVQ method. We have
already shown [22] that the context-dependent clustering may be successfully used to
initialize and train neural networks based on localized functions with clearly defined
centers, such as the radial basis function networks with Gaussian functions [23, 24].
In this case all prototypes generated for network initialization have always been in the
vicinity of decision borders. This led to a reduction of the number of prototypes and
creation of low-complexity networks. Also application of conditional clustering to rep-
resent knowledge contained in the SVM model in a comprehensible way as prototype-
based rules (P-rules) led to prototypes that served as support vectors and were placed
near the decision border [20]. The SVM hyperplane was used to fit appropriate weights
to selected prototypes. Definition of context (Eq. 8) used here is quite simple, and also
focused on area around the decision border. Although this definition may be improved
in many ways we have now been able to demonstrate that such approach is beneficial for
convergence of the LVQ algorithm, leading to improvement of accuracy with reduced
variance.

Similarity-based methods provide a powerful framework for knowledge discovery
and data mining [2, 3]. They allow to build accurate prediction models in cases where
decision borders are strongly non-linear, and to discover knowledge structures in form
of similarity to prototypes, or P-rules. These rules are rarely used, although they agree
with human intuition based on memory of similar cases seen earlier [25]. Explanatory
power of such models may result from optimization of similarity measures optimized
for each prototype and finding minimal set of such prototypes that allow for good gen-
eralization. P-rule systems make decisions in several ways, but most often the single
nearest prototype rule is used. For some datasets a single prototype per class is suffi-
cient, allowing for formulation of a simple classification rule: if the new case x is more
similar to prototype v1 rather than to v2 it should be assigned to the same class as v1.
Such rules may also be converted to fuzzy rules [26].

Selection and optimization of prototypes is an important part of methods that belong
to the similarity-based framework. Without such selection the nearest neighbor methods
are too slow for real-time applications, they may easily overfit the data, will be hard
to use for very large datasets, and lead to data models that are hard to understand. An
alternative to good initialization of a few LVQ prototypes is based on editing techniques.
Using many prototypes that are pruned at a later stage may be more costly, but direct
comparison of such methods with our approach remains to be done. It is clear that
training on appropriately pruned data will be especially useful for very large datasets,
giving hope to find solutions that are compact, accurate and easy to understand.

Performance of all similarity-based methods, or more generally all methods that
calculate distances, including clustering algorithms, is strongly affected by noise that
cannot be avoided in high-dimensional problems. To avoid it feature selection or fea-
ture aggregation methods should be used as the preliminary step. Simultaneous feature
selection, weighting and prototype optimization is of particular importance, although
it is still a great challenge. We hope that progress in this direction may be done along
similar lines as used in this paper.
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