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Neurodynamical systems are characterized by a large number of signal streams, measuring activity
of individual neurons, local field potentials, aggregated electrical (EEG) or magnetic potentials (MEG),
oxygen use (fMRI) or activity of simulated neurons. Various basis set decomposition techniques are used
to analyze such signals, trying to discover components that carry meaningful information, but these
techniques tell us little about the global activity of the whole system. A novel technique called Fuzzy
Symbolic Dynamics (FSD) is introduced to help in understanding of the multidimensional dynamical
system’s behavior. It is based on a fuzzy partitioning of the signal space that defines a non-linear mapping
of the system’s trajectory to the low-dimensional space of membership function activations. This allows
for visualization of the trajectory showing various aspects of observed signals that may be difficult to
discover looking at individual components, or to notice otherwise. FSD mapping can be applied to raw
signals, transformed signals (for example, ICA components), or to signals defined in the time-frequency
domain. To illustrate the method two FSD visualizations are presented: a model system with artificial
radial oscillatory sources, and the output layer (50 neurons) of Respiratory Rhythm Generator (RRG)
composed of 300 spiking neurons.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Neuroimaging data and simulated neurodynamical systems
are characterized by multiple streams of non-stationary data,
and thus may be represented only in high-dimensional signal
spaces. For example, functional magnetic resonance imaging
(fMRI) provides thousands of streams corresponding to the
changing activity of voxels, with sampling rate of a few hertz, and
electroencephalographic (EEG) recordings hundreds of streams
with sampling frequency of hundreds of hertz. High data volumes
that quickly change in time make such signals very hard to
understand. Popular signal processing techniques remove artifacts
by various filtering techniques, involving waveform analysis,
morphological analysis, decomposition of data streams into
meaningful components using Fourier or Wavelet Transforms,
Principal and Independent Component Analysis (PCA, ICA), etc.
(Rangayyan, 2001; Sanei & Chambers, 2008). Interesting events
are then searched for using processed signal components, with
time-frequency-intensity maps calculated for each component.

Such techniques are very useful, but do not show global prop-
erties of processes in the high-dimensional signal spaces. Simu-
lation of complex dynamics is usually described in terms of at-
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tractors, but precise characterization of their basins and possi-
ble transitions between them is rarely attempted. A mapping that
separates interesting segments of the trajectory could help to
categorize such events. Global analysis is needed to character-
ize different types of system’s behavior, see how attractors trap
dynamics, notice partial synchronization and desynchronization
events, or filter the high frequency noise. For many applications
(including brain—-computer interfaces) a snapshot of the whole tra-
jectory helping to understand its main characteristics, would be
very useful. This is the goal of our paper, presenting a global ap-
proach to the high-dimensional signal analysis (to focus attention
we shall talk about neurodynamics, although any dynamical sys-
tem can be analyzed in this way).

Two inspirations have been important in the development
of our approach. First, an observation that different brain areas
probably “understand” and collaborate with each other by filtering
the main properties of their large-scale activity, reacting to specific
activations that may be roughly characterized in a symbolic way.
The second inspiration comes from the successes of the symbolic
dynamics (Hao & Zheng, 1998) in understanding and simplifying
the description of dynamical systems. Symbolic dynamics may be
used as an approximation to brain processes if hard partitioning
of the activity of various brain regions is done and labeled by
a finite set of symbols. However, such a discretization may for
most applications be either too rough or require too many symbols
to be useful. The Fuzzy Symbolic Dynamics (FSD) introduced in
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this paper is based on a few membership functions rather than
a large set of symbols. To see the trajectory {x(t)} of the whole
system, localized membership functions, or “probes” that are
activated by the trajectories that pass near their center, are placed
in the signal space. Using k such membership functions y;(x(t)),
strategically placed in important points of the signal space, a non-
linear reduction of dimensionality suitable for visualization of
trajectories is achieved. Inevitably a lot of details will be lost but
with a proper choice of parameters the information that correlates
with observed behavior or an experimental task may be preserved,
while irrelevant information will be suppressed.

A long-term goal of this research is to find the brain-mind
transformation that maps the trajectory representing measured
neural activity to the psychological space with dimensions
that represent perceptions, intentions and other inner events
that are part of our mental life. Many important properties
of neurodynamics should be reflected in such relatively low-
dimensional psychological spaces (Duch & Diercksen, 1995). The
next section introduces the Fuzzy Symbolic Dynamics approach
and defines the FSD mapping that captures some interesting
properties of system’s trajectories. To illustrate how to set up
mapping parameters and how to interpret resulting images a very
simple model of EEG sources is analyzed in Section 3, with radial
and plain wave sources placed in a few points on a mesh, and
sensors that record the amplitude of incoming waves in nodes
of this mesh. As an example of real application in Section 4
visualization of trajectories of the neural Respiratory Rhythm
Generator model (RRG) are analyzed. The final section contains a
brief discussion with a list of many open questions.

The purpose of the visualization is to gain insight into general
behavior of neurodynamical systems. For example, changing
parameters of neurons will change the landscape of attractors that
may potentially be reached. Although automatic quantization of
some properties along the lines of recurrence plots, may be quite
useful, this is beyond the topic of the present paper.

2. Fuzzy Symbolic Dynamics

Assume that some unknown sources create a multidimensional
signal that is changing in time, for example an EEG signal measured
by n electrodes:

x(t) = {x(0)}

Vectors x(t) represent the state of the dynamical system at time
t, forming a trajectory in the signal space. Observing the system
for a longer time should reveal the landscape created by this
trajectory, areas of the signal space where the state of the system is
found with the highest probability, and other areas where it never
wonders. Recurrence maps (Marwan, Romano, Thiel, & Kurths,
2007) and other techniques may be used to view some aspects of
such trajectories, but do not capture many important properties
that it reflects.

In the symbolic dynamics (Hao & Zheng, 1998) the signal space
is partitioned into regions that are labeled with different symbols,
emitted every time the trajectory is found in one of these regions.
The sequence of symbols gives a coarse-grained description of dy-
namics that can be analyzed using statistical tools. Dale and Spivey
(2005) and Spivey (2007) argue that symbolic dynamics gives
an appropriate framework for cognitive representations, although
discretization of continuous dynamical states loses the fluid nature
of cognition. Symbols obviously reduce the complexity of dynami-
cal description because the partitioning of highly-dimensional sig-
nal spaces into regions with sharply defined boundaries is highly
artificial. However, the symbolic approach may help to simplify the
dynamics and make it more understandable. In fact the common
practice of showing the differences that contrast two experimental

i=1,...,nt=0,1,2,.... (1)

conditions using averaged fMRI activations is an extremely simpli-
fied version of symbolic labeling that loses all dynamical informa-
tion.

The notion of the symbolic dynamics is generalized in a natural
way to a Fuzzy Symbolic Dynamics (FSD). Instead of discrete
partitioning of the signal space leading to a set of symbols,
interesting regions are determined analyzing probability density
p(x) of finding the trajectory x(t) at some point x, averaging
the results over time with an appropriate smoothing kernel,
p(x) = Y ;K(x; x(t;) (Duda & Hart, 1973). Local maxima of this
probability define quasi-stable states around which trajectories
tend to cluster. Such maxima may serve as centers py of
prototypes associated with fuzzy membership functions yy(x; i)
that measure the degree to which the x(t) state belongs to
the prototype u,. Membership functions may be defined using
knowledge-based clustering (Pedrycz, 2005), or as prototype-
based rules with context-based clustering techniques (Blachnik,
Duch, & Wieczorek, 2006). Context is defined by questions that
are of interest, for example discrimination between different
experimental conditions, or searching for invariants in one
of these condition. Such methods will improve upon naive
clusterization by automatically finding optimal parameters of
membership functions that should reveal differences between
various conditions.

For visualization Gaussian membership functions are quite
useful:

Yie(; s Zi) = exp (— (x — )" T (x— ) - (2)

Diagonal dispersions X} are frequently sufficient, suppressing
irrelevant signals, but in general covariance matrices (used in
Mahalanobis distance) may extract more meaningful combinations
of signals that correlate with experimental conditions, or with
features of mapped signals that correspond to qualities of mental
experience that are subjectively felt. Such a brain-mind mapping
will be closer to the idea of cognitive representations than the
symbolic dynamics that Dale and Spivey (2005) and Spivey (2007)
advocate. They also stress “the continuity of mind”, based on
distributed patterns of neural activation. Such patterns may be
approximated by fuzzy dynamics in a much better way than the
purely symbolic description, generated by thresholding strongly
activated prototypes. For example, sensorimotor actions cannot
certainly be well approximated by symbolic labels.

Selecting only two or three prototypes is sufficient to visualize
trajectories x(t) in a two-dimensional space y;(t),y;(t). For
visualization each pair of functions should have sufficiently large
dispersions o; and oj to cover the space between them, for example
oj = 0j = ||;L,< - /Lj” /2. Visualizations in three dimensions
require plotting transformed points for three clusters, one for each
dimension. Dispersions should then be set to the largest among
the 3 pairs. Pairwise plots can be used to observe the trajectory
from different points of view. Normalization of vectors in the signal
space is assumed. To distinguish several experimental conditions
optimization of parameters of membership functions should
be done using context-based clustering techniques, creating
clear differences in corresponding maps. Adding more localized
functions in some area where dynamics is complex will show fine
structure of the trajectory.

An alternative to fuzzy membership functions is to define
reference points R; in the signal space, and measure the distance
between the trajectory and these points ||x(t) — R;||, using some
metric function. Non-linear metric functions should have some
advantage in analysis of neurodynamics, as the influence of
the trajectory on prototypes decreases sharply to zero with the
distance, reflecting non-linear properties of neurons. We shall not
consider here the problem of adaptation of membership function
parameters, concentrating instead on the interpretation of global
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Fig. 1. Trajectories for one radial wave with the source at point (%, % (left side), and two radial waves with the sources at (}1, %) and (%, % (right side).
mappings. It is quite obvious that adaptation of these parameters  R? (¢, py) = d(r?) cos (wit — kir®), (6)
will have crucial influence on the legibility of the mappings used h
for the visualization, and that trajectories that span the whole where
signal space may be localized if instead of a simple probe functions > 2
more complex density mixtures are used. Investigation of these ~ r® = \/ (Xi - xé’)) + (y~ - yé’)) (7)

issues is left for future research, here only a few examples showing
the usefulness of the global trajectory analysis are reported.
Dynamical systems with point attractors are obviously the easiest
to analyze using FSD, membership functions may then be placed
near the centers of these attractors estimated from the last part of
the trajectory. We have analyzed neurodynamics of large layers in
the Emergent simulator (O'Reilly & Munakata, 2000) in this way,
showing many details of the dynamics of such systems (Dobosz
& Duch, in preparation). Below two more difficult problems are
presented.

3. Plane and radial waves on a grid

To see how various techniques may help to understand the
structure of complex signals simple artificial models should be
analyzed first. Sensors are placed on a quadratic grid with n x n
points, where plane and radial waves generated by several sources
are traveling, creating additive patterns and activating these
sensors. Similar assumptions are made about electric potentials
reflecting neuronal activity in the brain (for example, in the low
resolution electromagnetic tomography, LORETA!).

The grid has equally spaced points p; = (xi, yj) inside the
square:

n—2
“n-1
The activation of the sensor due to a plane wave FO(t, x) traveling

through the square in the grid point p; at the timet =0, 1,2, ...
is given by the equation:

FO (¢, py) = cos (wzt —k '5:‘1) , (4)
where wy is the frequency of the wave (defining time intervals), the
wave vector k; defines the direction of the wave movement and

its length is equal to the inverse of the wave length and 13,-]» is the
vector pointing to the grid point p;;. Thus, for horizontal plane wave

(E = [IkII[1, O]T) formula (4) becomes:

x,»,yje{O, 1} i,j=1,...,n (3)

F (t, py) = cos (wt — kx;) . (5)

Radial wave reaching the sensor at grid point p; leads to an
activation:

T See http://www.unizh.ch/keyinst/loreta.

is the distance between point p; and the wave source (X, ¥o), and
d(r®) is the damping function, for example decreasing in a linear
way from the sources.

The final activation A (t, p;) of the sensor in point p; at time
t =0,1,2,...isobtained by summing and normalizing all wave
amplitudes in every grid point:

Ny Nr
AL, py) = (Z#D(t,py) +ZR<‘><t,p,-j)> / N+ N, (8)
=1 =1

The n x n matrix A(t) contains values of all sensors’ activations
at the time t. Elements of A(t) are defined in the n?>-dimensional
signal space and are normalized in the [—1, +1] interval. Noise
may be included by adding independent random numbers to each
element.

Fuzzy membership functions (2) may serve as probes (detectors
of activity) in this space. Placing their centers in two opposite

vertices of the hypercube § = [—1, 1]”2:

wi=[-1,...,=1"  py=1[1,...,1 9)

the membership functions take all n? sensor activations A(t) as
their argument:

(10)

A - Mk
G (A(t); k., ox) = exp <_M> 7

2
20y,

where oy, defines the dispersion.

A lot of experiments have been conducted using the 16 x 16
grid with 256 points (the maximum number of electrodes used
in real EEG experiments), and various number of stationary and
non-stationary sources, frequencies and directions. For this grid
01 = 02 = |1 — p2ll /10 gives relatively wide range of sensor
activations. In Fig. 1 examples of trajectories for one and two radial
waves are presented, using w = 0.1, which is sufficient for smooth
trajectory changes, and the wave vector length ||k|| = 2. The
specific position of sources and combinations of planar and radial
waves may be identified with correct placement of centers and
dispersions of the membership functions.

Static sources are not that much interesting. To see how a
simple dynamics is mapped to FSD trajectories consider 3 radial
sources, first placed at (1/2, 1) position and active from [0, 350]
ms, second at (0, 1/3) active from [200, 650], and third at (2/3,
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1 radial source in (1/2, 1)
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Fig. 2. Five different states of the grid model representing five different events of a simple dynamic simulation in which first source (top left) is active from [0, 350] ms,
second (middle left) active from [200, 650] and third (bottom) active from [500, 800] ms. Two other events correspond to first + second source active (top right), and

second + third source active (middle right).

1/4) active from [500, 800] ms. Thus there are 5 events: first
source is active, first + second, second only, second + third, and
third only. All of these events are shown in Fig. 2. Results of the
FSD visualization are presented in Fig. 3 (bottom right). Although
different attractors of this dynamics may be distinguished the
sequence of events is not quite clear, and in the more complex case
will be hard to unravel.

An interesting non-linear way to map trajectories into a
low-dimensional space is to use kernel PCA (Scholkopf, Smola,
& Miiller, 1998) that provides complex membership functions

around probability density peaks, and thus helps to discriminate
different events. Fig. 3 (top right) presents the kernel PCA plot of
two components in which the first direction is close to the standard
PCA (top left in Fig. 3), but the fourth direction nicely separates
different segments of the trajectory. Components of PCA, kPCA and
ICA were chosen in such a way that they best separate different
attractors of the system trajectory. Choosing right components
in such methods is a common problem in signal analysis and
is usually done by careful inspection of components. The best
components for visualization purposes were chosen by comparing
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Fig. 3. Comparison of PCA, kernel PCA, ICA and FSD visualizations of a simple dynamic simulation. Components of PCA, kPCA and ICA were chosen in such a way that they
best separate different attractors of the system trajectory. Attractors with different colors correspond to 5 different events of the simulation (shown in Fig. 2). Timescale is

given by the bar on the right.

FSD plot
0.5
700
0.48 600
500
0.46
400
0.44 300
200
0.42
100
0.4 0

0.75 0.8 0.85

wlength=32; woverlap=30

0.035
700
0.03 600
0.025 500
0.02 400
300
0.015
200
0.01 (j 100
0'0050 0.01 0.02 003 0.04 0.05 0

Fig. 4. FSD plot (left, the same as in Fig. 3), and an estimation of the standard deviation of original trajectory smoothed using Parzen windows (right).

plots for pairs of a few main components in each method; in PCA
and kPCA components were in order of decreasing component
variance; in ICA ordering was done by canonical correlation
analysis. A satisfactory representation of the signal would be one in
which different attractors are placed in different parts of the two-
dimensional space, but also the sequence of events is preserved. In
the kernel PCA visualization the sequence is right, but still the last
two attractors (corresponding to the last two events) overlap.
Additional smoothing may be applied in various ways, for
example by moving from the original signals to their short-
time window Fourier transforms, followed by wavelet bump
modeling (Vialatte et al., 2007). This will be especially important
for analysis of real EEG data. Perhaps the simplest way to
convert attractors from the FSD representation to more point-like
sequences of different events is to consider standard deviation
of the fuzzified signals in a time window that is long enough

to cover full oscillation. Smoothing of these estimations is done
using the Parzen window approach with rectangular kernel. The
dimensionality is not changed but unique characteristics of each
event are extracted, as shown in Fig. 4.

FSD is not an attempt to interpret only EEG data but a
general approach to the visualization of trajectories of any high-
dimensional systems. Attempts to find clusters in the trajectories
using Kohonen networks have been presented by Andras and
Wennekers (2007), and such attempts may also be viewed as a step
towards the Fuzzy Symbolic Dynamics. The activity of Kohonen
network’s nodes shows patterns of activity changing in time, not
the whole trajectories, as in our approach.

4. Visualization of the activity of respiratory rhythm generator

FSD approach has also been used to study behavior of the
neural Respiratory Rhythm Generator model (RRG). The RRG
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Fig. 5. The time series plot representing a membrane potential of a single neuron (left) and an average membrane potential of 50 neurons vs. iteration number (right).
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Fig. 6. The FSD map of the trajectory of 50 neurons (left), and zoomed area of the trajectory for the time series with one burst around the main attractor.
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Fig. 7. Neural activity plots for 2 neurons from RRG that have the most (left) and the least (right) different vectors of neural activities.

is a parametric neural network model constructed from three
populations of spiking neurons: beaters (200 in the model),
bursters (50 units) and followers (50 units). The last population
provides an output of the model that is used for synaptic excitation
of motoneurons and in consequence controls upper and lower lung
muscles. Our implementation of RRG is based on the spiking neural
network model proposed by Butera, Rinzel, and Smith (1999).
Below visualization of the followers (output layer neurons) is
examined. The membrane potential of a single neuron and the
average membrane potential of all 50 output neurons is shown
in Fig. 5. The first trajectory for time series corresponding to a
single burst is presented in Fig. 6 (left). The number of samples
along these trajectory was equal to 49090, each vector containing

membrane potentials of all 50 follower cells (normalized in every
dimension). Clusterization was done with the k-means algorithm,
for two clusters where Gaussian probe functions have been placed.
Trajectories have been drawn with a thick pen to account for a jitter
that blurs them when longer time sequences are taken.

Fig. 6 (right) shows trajectory for the same time series as
Fig. 6 (left), zooming on one of the attractors to show details of
oscillations around it. This attractor corresponds to oscillations
visible in the highest part of the time series plot (Fig. 5). Generating
more bursts slowly fills the whole area with trajectories giving
almost uniform probability of finding the system there. This shows
restricted chaotic behavior of the system at the peak of activity.
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Fig. 9. Trajectory plots (bottom) done with thick pen for 19600 vectors containing membrane potentials of 50 follower cells from RRG, and time series plots (top)
representing average membrane potential vs. iteration number. Graphs on the left correspond to a normal rhythm case, and on the right to an irregular one, both presented

using the same membership functions.

A common visualization technique in the analysis of neural
dynamics is to show plots of activations for selected pairs of
neurons. In Fig. 7 two different pairs are shown. Unfortunately
with 50 neurons there are 1225 possible pairs and most of them
show quite different plots. Thus the pairwise visualization of single
neuron activity does not provide much useful information. The
global dynamics is much more stable.

In the FSD approach three cluster centers are defined using the
k-means algorithm (k = 3). Pairwise diagrams show trajectories
for all three cluster pairs (Fig. 8). Distances between cluster centers
are printed above the graphs. The second pair is more sensitive to
variability that appears during building of the discharge activity,
showing quite a bit of variance in this process.

The RRG model may generate various rhythms that correspond
to different breathing patterns. Trajectory examples in Fig. 9
compare two distinct cases, one for normal, regular burst
generation, and one for irregular case with different burst
strengths (i.e. different peak heights). The trajectories have been
drawn using 19 600 vectors, each containing values of membrane
potentials of 50 follower cells, covering about 20 spikes. Two
clusters have been found using the k-means algorithm, and the
same parameters of membership functions used in both cases.
Irregular case seems to reach the same amplitude but as a whole
behaves quite differently, reaching much smaller values in the first
dimension, due to the lack of synchronization between different
output neurons.
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Fig. 10. Comparison of two similar normal rhythm cases. Time series plots (top) look very similar while trajectory plots (bottom) show noticeable differences (19 600

points).

When two similar time series plots are compared small
differences between them may not be noticeable. The FSD method
is sensitive to small changes in the global dynamical state and
consequently it allows for a quite accurate comparison. Fig. 10
compares two normal rhythms that differ only slightly. Time series
plots looks very similar but the global trajectories in the FSD graphs
show significant differences.

In all examples presented in this section dispersions of
Gaussians were set to the half of the distance between centers
(le1 — 2|l /2). The complexity of the FSD map generation
depends on a procedure that is used to find parameters of
membership functions (centers and dispersions), generation of the
map requires only O(n) operations for a n-point trajectory.

The last example of the FSD mapping presents the visualization
of a large semantic layer in the model of dyslexia implemented
in the Emergent simulator (see O'Reilly & Munakata, 2000, chap.
10). This model has full bidirectional connectivity between
orthography (6 x 8 units), phonology (14 x 14), and semantic
layers (10 x 14), with recurrent self-connections within each of
these layers, and additional hidden layers of neurons between each
of these 3 layers. The model has been trained on 40 words, half of
them concrete and half abstract. Semantics has been captured by
using 67 features for concrete words (with average of 18 active
features per word) and 31 for the abstract ones (about 5 active
features on average), with half of the semantic layer devoted to
abstract and half to concrete features. The correlation dendrogram
between all 40 words is presented in (O’Reilly & Munakata,
2000, chap. 10, fig. 10.7). The model was slightly modified by
introducing the accommodation mechanism into neuronal units

that allows the system to evolve unhampered. Also some synaptic
Gaussian noise (with zero mean and 0.02 variance) was present to
provide an extra energy for the system.

In Fig. 11 trajectories and attractor basins of 4 pairs of
correlated words are displayed, with concrete words in the first
two pairs (flag, coat, hind, deer) and abstract words (wage,
coat, loss, gain) as the last two pairs. The system has quite
complex dynamics but the FSD visualization shows how the system
is evolving over time. Trajectories progressively pass between
different basins of attraction which are represented by dense
spots of trajectory points. Some attractors may be difficult to
reach which is indicated by chaotic trajectories that lead to them.
Both plots present evolution of the model with the same set of
parameters. Substantial differences between certain trajectories
of corresponding words are a consequence of noise randomness
and significant influence of the accommodation mechanism on
the model behavior. For visualization purpose three Gaussian
membership functions were used with centers randomly drawn
from the uniform distribution over [0,1] and dispersions set to
value 2.0. For each word evolution of the system last precisely 500
cycles (roughly 1 cycle correspond to 5-10 ms of simulated real
time).

5. Discussion

The symbolic dynamics has found many applications (Dale &
Spivey, 2005; Hao & Zheng, 1998), while its fuzzy version, to the
best of our knowledge, has never been developed. The Fuzzy Sym-
bolic Dynamics is based on the fuzzy partitioning of the state space
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Fig. 11. Comparison of two different trials of the dyslexia model with the
same set of parameters. Substantial differences between certain trajectories of
corresponding words are a consequence of noise randomness and significant
influence of the accommodation mechanism on the model behavior.

and thus is a generalization of the discrete classical symbolic dy-
namics (Cvitanovi¢, Artuso, Mainieri, Tanner, & Vattay, 2008) that
may be obtained from the fuzzy version by thresholding the ac-
tivations of membership functions. Instead of transition matrices
estimating probability of transitions between the symbols more
precise information about the global trajectories is retained. Recur-
rence plots are another way to understand some aspects of global
trajectories of high-dimensional dynamical systems by visualiza-
tion (Marwan et al., 2007). The FSD should thus find as many ap-
plications as the classical symbolic dynamics and recurrence plots.
In particular cognitive science has reached the point where moving
from finite automata models of behavior to continuous dynamical
models of cognition becomes essential (Spivey, 2007).

In this paper we have focused only on FSD visualizations, show-
ing that interesting events and irregular states may sometimes be
easier to discover using global plots rather than looking at specific
components of signals. Many aspects of dynamics may be analyzed
using this technique:

1. In which part of the signal space the state of the system spends
most of its time?

2. How many attractors can be identified?

3. What are the properties of attractor basins (size, depths, time
spend)?

4. What are the probabilities of transition between them?

. How fast transitions occur?

6. What type of oscillations occur around attractors?

9)]

FSD visualizations lose many details that are contained in
the original trajectories, but allow to focus on specific areas
near interesting events and analyze them more precisely using
membership functions that are adapted to local probability
density distributions. The trick is to retain interesting information,
suppressing the chaotic, random part. The choice of membership
functions in FSD gives sufficient flexibility to achieve this. Many
quantitative measures allowing to compare different dynamical
systems may be introduced on FSD mappings, for example:

e the number of attractors;

e percentage of time spent by the system in a given attractor
basin;

e character of oscillations around attractors, including some
measures of chaos;

e distances between attractors, measured by the time of transi-
tions;

e probabilities of system transitions between attractors.

Such measures allow for interesting characterization of dynam-
ical systems. Application of the FSD to recurrent networks shows
transitions between attractor states. To see properties of attractors
noise ¢ of increasing variance may be introduced to explore their
basins, and local variance of the trajectories var x(t, €) investigated
as its function. Properties of point attractors in simulated systems
arerelatively easy to analyze by plotting the relation between noise
level and the variance of the trajectory near the attractor. For quasi-
periodic attractors the variance in the direction perpendicular to
the trajectory may be estimated. In some experimental situations
the level of noise in the system may also be partially controlled.

Applications to real EEG signals will require careful optimiza-
tion of membership functions, with conditional clustering to re-
move irrelevant information by finding most informative center
locations and weights for different signals. One approach that we
are exploring here is based on smoothing the EEG signals through
bump modeling (Vialatte et al., 2007), finding combinations of sig-
nals that are important for discrimination of mental events - this
is done through optimization of the projection pursuit based on
Quality of Projected Clusters (Grochowski & Duch, 2008) - and ap-
plying the FSD to visual multidimensional signals after all transfor-
mations. Direct FSD visualization of the whole EEG signal does not
show any interesting properties because of the high complexity of
EEG data and many irrelevant components, therefore without ini-
tial preprocessing the FSD approach (as well as any other visualiza-
tion techniques) will not extract useful structures from the signal.

The visualization of highly-dimensional trajectories obviously
depends on what aspects of the system behavior is of interest.
Methods of parameter adaptation that include context (Blachnik
etal., 2006; Pedrycz, 2005) will soon be applied to the visualization
of real experimental data. For strongly non-stationary signals the
whole landscape containing basins of attractors may slowly rotate,
preserving relations between main attractors. For example, change
in the level of neuromodulation may influence the landscape by
increasing the overall activations in some regions of signal space.
Parametrization of probes that should then change in time to
counter this effect would be important. The great challenge is to
find quantitative measures of the FSD representations that would
be useful in brain-computer interfaces, and to find meaningful
combinations of signals correlated with mental events and inner
experiences.
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