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Support Feature Machines:
Support Vectors are not enough.

Tomasz Maszczyk and Wiodzistaw Duch

Abstract— Support Vector Machines (SVMs) with various preference, but various algorithms are still needed to discover
kernels have play_ed dominant role in machlne learning for yseful “knowledge granules” in data. For example, local
many years, finding numerous applications. Although they  faatres used by the nearest-neighbor methods may be very

have many attractive features interpretation of their solutions . .
is quite difficult, the use of a single kernel type may not useful, and they are provided by localized kernels. At the

be appropriate in all areas of the input space, convergence Same time various projections may also be very useful.
problems for some kernels are not uncommon, the standard  This approach is also a step towards meta-learning, general

quadratic programming solution has O(m?) time and O(m®)  framework for creating optimal adaptive systems on demand
space complexity for m training patterns. Kernel methods for a given problem [8], [9]. The type of solution offered

work because they implicitly provide new, useful features. . . . o
Such features, derived from various kernels and other vector by a given data model obtained by SVM with a specific

transformations, may be used directly in any machine learning kernel may not be appropriate for the particular data. Each
algorithm, facilitating multiresolution, heterogeneous models data model defines a hypotheses space, that is a set of

of data. Therefore Support Feature Machines (SFM) based functions that this model may easily learn. Linear methods
on linear models in the extended feature spaces, enabling \yqrk hest when decision border is flat, but they are obviously

control over selection of support features, give at least as - . o -
good results as any kernel-based SVMs, removing all problems not suitable for spherical distributions of data, requiring

related to interpretation, scaling and convergence. This is O(n®) parameters to approximately cover each spherical
demonstrated for a number of benchmark datasets analyzed distribution inn dimensions, while an expansion in radial

Wit.h linear discrimination, SVM, decision trees and nearest fynctions requires only)(n) parameters. For some problems
neighbor methods. (for example, high-dimensional parity and similar functions),
neither linear nor radial decision borders are sufficient [10].
An optimal solution may only be found if a model based on

The most popular type of SVM algorithm with localizedquasi-periodic non-linear transformations is defined [7].
(usually Gaussian) kernels [1] suffers from the curse of di- Support Feature Machines introduced here are specific
mensionality [2]. This is due to the fact that such algorithmgeneralization of SVMs. In the second section standard
rely on assumption of uniform resolution and local similarityapproach to the SVM is described and linked to evaluation
between data samples. To obtain accurate solution oftenof similarity to support vectors in the space enhanced by
large number of training examples used as support vectorsAgz) = k(Z,Z;) kernel features. Linear models defined in
required. This leads to high cost of computations and conthke enhanced space are equivalent to kernel-based SVMs.
plex models that do not generalize well. Much effort has beein particular, one can use linear SVM to find discriminant
devoted to improvements of the scaling [3], [4], reducindgn the enhanced space, preserving the wide margins. For
the number of support vectors, introducing relevance vectospecial problems other techniques may be more appropriate
[5], and improving (learning) multiple kernel design [6]. All [11]. With explicit representation of features interpretation of
these developments are impressive, but there is still room fdiscriminant function is straightforward. Kernels with various
simpler, more direct and comprehensible approaches. parameters may be used, including degree of localization,

Kernel methods work because they implicitly provide newand the resulting discriminant may select global features
useful features;,; (¥) = k(&, Z;) constructed around supportcombined with local features that handle exceptions. New
vectorsz;, a subset of input vectors relevant to the trainindeatures based on non-local projection and partially localized
objective. Prediction is supported by new features, and thepeojections are introduced and added to the pool of all
features do not need to be local or connected to singfeatures. Original input features may also be added to the
reference vectors. Therefore this approach is called hesapport features, although they are rarely of comparable im-
"Support Feature Machine”, rather than vector machine. It igortance. This guarantees that the simplest solutions to easy
related to the idea of "learning from the successes of othergdfroblems are not overlooked. Support Features Machines
implemented in our Universal Learning Machines [7], wherare simply linear discriminant functions defined in such
data models created by different algorithms are analyzed émhanced spaces. In section 4 SFMs are tested in a number of
discover the most useful transformations (prototypes, linebenchmark calculations, and usefulness of additional features
combinations, branches in decision trees), that are then addedpproaches as diverse as decision trees and nearest neigh-
to the pool of expanded features. In the final feature spab®r methods is demonstrated. In all cases improvements over
almost all machine learning algorithms perform at the sambe single-kernel SVM results are obtained. Brief discussion
level. The choice of the algorithm becomes then a matter of further research directions concludes this paper.

I. INTRODUCTION
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II. KERNELS AND SUPPORTVECTORMACHINES with constraints:
A. Sandard SYM formulation

Since the seminal paper of Boser, Guyon and Vapnik
in 1992 [12] Support Vector Machines quickly became
the most popular method of classification and regressiomhe discriminant function takes the form:
finding numerous other applications [1], [13], [14]. In case m
of binary classification problems SVM algorithm minimizes g(x) =sgn (Z QY - T+ b) (10)
average errors (or risk) over the set of data pdirs y;). i=1
Depending on the choice of kernels and optimization of thejr
parameters SVM can produce flexible nonlinear data modqj
that, thanks to the optimization of classification margiffigio
good generalization. This means that the minimum distan
between the training vecto§ and the hyperplane should
be maximized:

a; >0 1=1,....m Zaiyi:0 9)
i=1

ow it is easy to replace dot produgt- Z; by a kernel
nction k(Z, ') = ¢(Z) - ¢(&') where ¢(Z) represents an
implicit transformation (because only the kernel funcsion
¥ used) of the original vectors to a new space. Usually
the Cover theorem [15] is invoked to justify mapping to
higher-dimensional spaces. However, for ap) vector
maxmin || — & : W-Z+b=0,i=1,...,m (1) the part orthogonal to the space spanneddpy;) does
w,b not contribute top(Z) - ¢(&') products, so it is sufficient
The @ and b can be rescaled in such a way that the pointo expressp(Z) andw as a combination ob(z;) vectors.
closest to the hyperplan& - ¥ + b = 0, lies on one of the The dimensionality: of the input vectors is frequently lower
parallel hyperplanes defining the marging+b = +1. This  than the number of training patterns < m, and then
leads to the requirement that (&) represents mapping into higher-dimensional space.
In the microarray data and some other problems the reverse
situation is true: dimensionality is much higher than the

The width of the margin is equal t8/||w||. The problem number of patterns for training.

Vi, yilW - +b] > 1 (2

can be restated as maximization of margins: The discriminant function in the() space is:
L o m
. N 3
min 7() = 5] ) 9(Z) :sgn(Z aiyik(Z, :a-)+b> (11)
with constraints that guarantee correct classification: =l
- . If the kernel function is linear thep() space is simply
i|lw - T +0] >1 =1,..., 4 L I Lo
vl T +0] > ’ m “) the original space and the contributions to the discriminan
Constraint optimization problems are solved by definindunction are based on the cosine distances to the reference
Lagrangian: vectors Z; from the y; class. Thus the original features
m Z[j], 7 = 1..n are replaced by new featureg ) = k(Z, ;)

L(W,b,a) = %”wH? - Zai(yi [Z;-wW+b)—1) (5) that evglyate how close (or hovx_/ simiilar) the vector is.fr.om
i=1 the training vectors. Incorporating signs in the coeffitien

whereq; > 0 are Lagrange multipliers. Its minimization overVector 4; = a;y; discriminant functions is:

b andw leads to two conditions:
Sy =0, W= oyl (6)
i=1 1=1

The vectorw that defines the hyperplane is expressed as
combination of the training vectors, each componeify]

is a combination ofj feature values for all vectors;[j].
According to the Karush-Kuhn-Thucker conditions:

9() = sgn(Z iyizi(T)) + b> = sgn(/f- 2(Z)) + b)

=1 (12)
With the proper choice of non-zew coefficients this func-
tns is a distance measure from support vectors that are at
the margins. In non-separable case instead of using cosine
distance measures it is better to use localized similarity
measures, for example by scaling the distance with Gaussian
a;(yil®@ - w+b)—-1)=0, i=1,....,m (7) functions; this leads to one of the most useful kernels:

Fora; # 0 vectors must lie on one of the margin hyperplanes kG (Z,7) = exp(—0||x — 2'||?) (13)
y;[@; - W+ b] = 1; these vectors “support” the hyperplane
« that defines the solution of the optimization problem.
Although the minimization may be performed in the primal Many specialized kernels for structured problems, trees,
form [4] the quadratic optimization problem is frequentlysequences and other types of data may be devised, measuring
redefined in a bit simpler dual form: various aspects of similarity, important for a given task.
m m Kernel-based methods use similarity in a special way in com-
max w(a) = Zo‘i 21 Z Y Y T T (8) bination with linear discrimination, but similarity mates
@ i—1 2 =1 may also be used in many other ways [16], [17].
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I1l. SUPPORTFEATURE MACHINES large pure cluster of projected patterns. For example, in
case of parity problems [10], [21] projections always have
strong overlaps of class-conditional probability disatibns,
but projections on[1,1..1] direction show pure localized
fixing the value of discriminang(z) —constant is equivalent clusters with fixed number of 1's. Clusters containing tiragn
. : . atterns from clas§’ may be separated from other patterns
to taking a weighted sum of Gaussians centered at sorﬁe : . . o . . .
. .projected onz; dimension, defining window-like functions
support vectors that are near the border (for large dispersi;, ., . . .
. ; . .~ h(Z) = H(%(Z); C). For example, bicentral functions [22]
all vectors may contribute, but will not influence decision

L .~~~ equal to a difference of two logistic functions, provide & so
borders). Because contours of discriminant function in thterapezoidal windowsH (z(7); C') = o(z — a) — o + b)

kernel space are approximately constant wienoves along Below only a simple[a, 4] intervals have been used. This
) , .

the non-linear decision border in the input space, they lie . o . i
on the hyperplane in the kernel space. Therefore in thcereates binary features;() € {0, 1}, based on linear pro

space of kernel features linear discriminant methods m getion restricted to a slice of the input space perpendicul

. : . . o the z; dimension. We have also used here directions from

be applied directly, without the SVM machinery. This will . . o .
; . : .the Quality of Projected Clusters (QPC) projection pursuit
be demonstrated in computational experiments by comparntiChex [23] that allows for tuning these directions to in@ea
the results of SVM with Gaussian kernel solved by quadratic, 9

rogramming with direct linear solutions in the kernel<xhs Cluster sizes.
Ifoeagjre spacge The third type are features based on kernels. While many
) . .. kernels may be mixed together, including the same kernels
In some cases the use of kernel features is an overkill, as,, . S .
) . : L with different parameters, in the initial implementationlyo
separation may be achieved using original features that ate = . : : . X
. ussian kernels with a fixed dispersignare taken for
not present in the kernel space. Suppose that data for eaecaﬁch training vector (potential SUpport Vectdr)(#) —
class have Gaussian distributions (which is frequently thé g P P -

— Z o 72 ini
case), then the best separation direction is simply equhkto eXp.( .6 2. |7; — &[7). Training vectors that_ are far f_rom
) - o . S decision borders may of course be removed in many different
difference of sample meang = m; —m,. Adding projection

on this direction as a new featuréz) — 1 - # will allow ways, but again in this initial implementation of the SFM

X o ) X . approach this has not been considered.
linear discrimination to find simple solution. Note, howeve Generation of features is linear in the number of trainin
that minimization ofr (&) (Eq. 3) to achieve large margin 9

is not going to find simple binary solution, the preferencg.attems.m’ but for large m it should be reduced using
is rather to find more complex solutions with many smal imple filters [24]. Recently we have developed a new library

coefficientsw;. There are other linear discriminant methodﬁOr feature ranking, selection and redundancy removal [25]

that may be used instead [18], but we shall not pursue thlgat.'s well suited for this purpose. Her_e on_ly the simplest
problem further here version based on mutual information filter is used. Local
o . «.. kernel features have values close to zero except around thei

The SFM approach is based on generation of new “su

i . : .~ Support vectors. Therefore their usefulness should bedimi
port features” (SFs) using various kernels, random linegr ) o : = :
N . - 0 the neighborhood(Z;) in which G;(Z) > ¢) (this has
projections, and restricted projections, followed by t@eat

selection and linear discrimination. We shall also consid been set tor = 0.001). Similarly for restricted projections

. . . : he neighborhood is restricted to vectors that fall into the
other machine learning algorithms in the space enhanced . ; .
> . o Imerval [a, b] with single-class patterns. Strongly localized
support features. In this paper only restricted versiorhis t

approach is implemented (see Algorithm 1) using three t é%atures used in the Naive Bayes algorithm will lead to a
bp P 9 9 yp Mmajority voting rule, therefore this algorithm has not been

of features described below.
Features of the first type are made using projection&/on used here.
yp g proj To accept a new featurg of the z, h, k type after it has

randomly generated directions in the origimatimensional o )
: L . . been generated three conditions should be met:
input space. These directions may be improved in a sys-

tematic way, for example by adding directions connecting 1) neighborhoods should not be too small, local features
the means of class-dependent clusters, but this option has Should cover at leasf vectors;
not been explored. A sufficient number of random directions 2) in local neighborhoodM I(f(Z),C) > «, mutual
increases dimensionality and, according to the Cover émor information of featuref (Z) should not be too small;
[15], allows for easier separation of the data. There isgelar 3) maximum probabilitymaxc p(C|f(Z)) > 0 selects
literature on random projections and some successes in ran- those featureg () that discriminate between classes.
dom initialization of input layers with linear discrimirian Number of vectors in the neighborhogdhas been arbi-
for the output layer [19]. trarily set ton = 10, although in some applications with
The second type of features is based on restricted rawery few training vectors lower values could be considered.
dom projections, as used in our almost Random Projectidgnrestricted projections cover all data and cannot have
Machine (aRPM) approach [20]. Projections on a random(C|z(Z)) = 1 for all vectors, so only mutual information
direction z;(Z) = w; - £ may not be very useful as a whole,is used to select them. Parametersand § are set to
but in somez; range of values there may be a sufficienteave sufficient number of useful features based on kernels

For each vector we have not onlyn input features but
also m kernel features:;(¥) = k(#,%;) defined for each

— o

training vector. Taking the Gaussian kerrigl(Z,2’) and
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supported by vectors near the decision border, or redfrictstressed in our earlier papers [7], [20], [26], but addinghké
projections that also fall close to the border. These paransie features in SFM proved to be essential for improving upon
have been fixed to leave @Bvectors for each dataset. Theirkernel-based SVMs. In essence SFM requires construction
influence on the selection of support vectors for kernelsl (arand selection of new features, followed by simple linear
thus selection of localized features) is shown in Fig.1-3nodels of learning. Although several parameters may be
where two overlapping Gaussian distributions are used. @6ed to control the process they are either fixed or set in an
course in this case none of these localized kernels will beutomatic way. SFM solutions are highly accurate and easy
finally left in the discriminant function, as the projection to understand. Neurobiological justification of such ajpfo

the line connecting sample means is the single feature thatpresented in the final discussion.

is sufficient. Smalle ~ 0.005 and é around 0.5 will leave
only vectors around decision borders.

Parametep may be controlled by the user to determine the * *
degree of smoothness. It may also be automatically set in tw I
ways. First, instead of regulating the smoothness of datisi
borders by the density of kernels with fixed neighborhooc
size the distance to the nearest vectors from other class
may be used to set it. Second, several fixed values iy
be used, with feature ranking taking care of accepting loce
features at the required resolution. In calculations regbr
below fixed value of3 = 275 has been used.

The final vectorX is thus composed from a number of
X = [1,..2n21,..h1, ..k1...] features. In SFM linear solution
is sought in this space, but in this extended feature spar
other learning models may find even better solution.

Algorithm 1 Support Feature Machine
Require: Fix the values o, 3, § andn parameters.

1: for i =0to N do

2:  Randomly generate new directiafy € [0,1]"

3:  Project allZ on this directionz; = w; - ¥ (featuresz)

4:  Analyzep(z;|C) distributions to determine if there are
pure clusters,

5:  if the number of vectors in clustéf;(z;; C) exceeds

7 then
6: accept new binary featurk; ; |
7 end if |
8: end for
9: Create kernel features (z),: = 1..m 1

10: Rank all original and additional featurgsusing Mutual
Information.

11: Remove features for which/I(k;, C) < .

12: Remove features for whichaxc p(C|f(Z)) < 6. I

13: Build linear model on the enhanced feature space. ‘ ‘ ‘ ot

14: Classify test data mapped into enhanced space.

New support fe_atures C_reated in this way are based % 1. Influence of thex parameter on selection of kernels for support
those transformations of inputs that have been found ifeatures defined by vectors shown in the middle (here 0). From top
teresting for some task, and thus have some meaning afvn: « = 0.005,0.05,0.1.
interpretation. Support features are not learned, buttele
from random projections, or constructed with the help of
localized kernel functions, and added if they show inténgst
correlations with some aspect of the problem being solved. The usefulness of new support feature has been tested
On a more technical level this means that more attention @ several benchmark datasets, selected to cover different
paid to generation of features rather than to the sophistica types of problems and to compare solutions with SVMs
optimization algorithms or new classification methods. Theased on Gaussian kernels (on these datasets results with
importance of generating new features has already bepnlynomial, Minkovsky and sigmoidal kernels have not been

IV. | LLUSTRATIVE EXAMPLES
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Fig. 2.
features defined by vectors shown in the middle (here- 0). From top
down: § = 0.5,0.6, and0.7.

Influence of they parameter on selection of kernels for support

B AT
+¢1¢*fi* .+

Fig. 3. Wrong selection of parameters leaves too few or too manyek
features.

Short description of the datasets used:

1)

2)

3)

4)

better), as well as other classifiers. Seven datasets have be
downloaded from the UCI Machine Learning Repository 5)
[27]. These datasets are standard examples of benchmark
type and are used here to enable comparison of different
learning methods. Missing feature values (if any) have been 6)
replaced by the mean values for a given class. A leukemia
microarray gene expression data from [28] is an example
of high-dimensional small sample problem. Leukemia has
7129 dimensions and it would be quite easy to get perfect
results with such a large space, therefore only 100 best7)
features from a simple Fischer Discriminant Analysis (FDA)
ranking index have been used [24]. In addition 8-bit parity
dataset have been selected because it is very difficult to
analyze correctly by standard Support Vector Machines or
other machine learning algorithms. A summary of all dataset

used is presented in Tab. I.

8)
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Appendicitis includes only 106 vectors, 8 attributes,
two classes (85 acute and 21 other cases).

Australian has 690 cases of credit card applications,
all 15 attribute names and values are changed to protect
confidentiality of the data.

Cleveland Heart disease dataset with 303 samples,
each described by 13 attributes, 150 cases labeled as
“absence”, and 120 as “presence” of heart disease.
Diabetes dataset (also known as “Pima Indian dia-
betes”) contains 768 cases, with 500 negative, and
268 positive test results for diabetes. Each sample is
described by 8 attributes. All patients were females at
least 21 years old of Pima Indian heritage.

Hepatitis has 155 samples (32 from class 'die’ and
123 from class ’live”) characterized by 19 attributes,
with many missing values.

lonosphere has 351 data records, with 224 patterns
in Class 1 and 126 in Class 2 (different types of
radar signals reflected from ionosphere). First feature
is binary, second is allways zero, the remaining 32 are
continuous.

Leukemia microarray gene expressions for two types
of leukemia (ALL and AML), with a total of 47 ALL
and 25 AML samples measured with 7129 probes.
Evaluations of this data is based here on pre-selected
100 best features, done by simple feature ranking using
FDA index.

Parity8 8-bit parity dataset, with 8 binary features and



256 vectors.

TABLE Il
SVM vs SFMIN THE KERNEL SPACE ONLY

9) Sonar dataset contains signals obtained from a variety

of different aspect angles, spanning 90 degrees for the Dataset SVML SVMG SFM(K)
cylinder (111 cases) and 180 degrees for the rock (97 A/lgpetndll_cms 8875-&5[140-33 gg-&g-i 88621'82115160
. . ustrallan . . . . . .
cases). Each of 208 patterns is a set of 60 attributes. Diabetes | 76.0545 T 762561 77 653 1
Heart 825t6.4 | 82.855.1 | 81.2k5.2
TABLE | Hepatitis | 82.749.8 | 82.748.4 | 82.746.6
SUMMARY OF DATASETS USED FOR TESTS lonosphere | 89.5+3.8 94.6+4.4 94.6+4.5
Leukemia | 98.6f4.5 | 84.6£12.1 | 87.5£8.1
Title #Feature$#Sample§|  #Samples per class Sonar 75.5+6.9 86.6+5.8 88.0+6.4
Appendicitis 8 106 85C, 21 Co Parity8 33.4+5.9 12.14+5.9 114+-4.3
Australian 15 690 307 positive| 383 negative
Diabetes 8 768 | 500 negative 268 positive
Heart 13 303 160 absencel37 presence
k')"n%psaggze éi égi 23224%11 igg g2 is reflected also in the SFM(K) results. For Leukemia simple
2 . .
Leukemia | 100 72 27 ALL 25 AML linear model works better as the number of patterns is very
Parity8 8 256 128 even | 128 odd small. For parity all local neighborhoods contain only west
Sonar 60 208 | 111 metal | 97 rock from the wrong class so only if dispersions of Gaussian
kernels are very large good solution is found (our automatic
optimizer did not go that far). This examples shows two
TABLE Il things: first, sometimes kernel features are less useful tha

STANDARD CLASSIFIERS USED IN THIS PAPER

the original features (and as we shall see below, projected
features), and second, the differences between SVMG and

Classifier Short name i . .. .
K-Nearest Neighbors KNN SFM(K) are well W|th!n variance, so expllqt representatio
Separability Split Value Tree [29] SSV in the kernel space gives equivalent solution.
Support Vector Machines with Linear Kernel]  SVML In fact best results have never been achieved in the kernel
Support Vector Machines with Gaussian Kerrlel SVMG

space only for any data and with any classifier we have
tried (Tab. IV). This casts some doubt on the optimality of

To compare SFM with four popular classification methodsingle kernel-based approaches. Also adding originaltsipu
(see Table 11) 10-fold crossvalidation test results havenbe X have never been useful, therefore we shall not preser thes
collected in Tables IlI-VI, with accuracies and standardesults here. Taking the SFM(K) results as the reference in
deviations given for each dataset. For the kNN classifier theab. 1V influence of features space extensions on accuracy
number of nearest neighbors has been automatically selectes been collected. Adding various types of support feature
from the 1 — 20 range using crossvalidation estimation. Thdeads to significant improvements, but for different data
SVM parameters{ ando for Gaussian kernels) have beendifferent types of feature seem to be important. In case®f th
fully optimized on the original data in an automatic wayAppendicitis the restricted projections lead to a significa
using crossvalidation estimations. Support features dhd émprovement on 3% with some reduction in variance. H
parameters have always been optimized within crossvafieatures also increase accuracy of Heart on 3.6% and on
dation on the training partition only to be sure that ndlepatitis on 1.2%. The most dramatic change is on the Parity
information about the whole data has been used at any stagata, where restricted projections allow to solve the @bl
All calculations for standard classification methods haserb almost perfectly (the reason why some errors are left is due
performed using the Ghostminer package developed in ot@r the fact that only clusters with at least 10 vectors are
group [30]. included as H features, this should be decreased to at most

To check the influence of different types of support fea8). For Australian Credit and Leukemia the improvement was
tures all combinations have been investigated. Let's tall t relatively small (about 2%), and thus statistically notngig
original features X, the kernel features K, the unrestdcteicant, therefore these datasets have been omitted in Table
linear projections Z, and the restricted (clustered) mtipas V. Results for lonosphere improve when kernel features are
H. Then the following 15 feature spaces based on comb®dded and Sonar shows 3.9% improvement for all types of
nations of different type of features may be investigatedeatures combined.
X, K, Z, H, K+Z, K+H, Z+H, K+Z+H, X+K, X+Z, X+H, Similar analysis may be performed for other methods in
X+K+Z, X+K+H, X+Z+H, X+K+Z+H. Unfortunately for various spaces. The nearest neighbor algorithm (Table V)
all the classifiers used here this will make a very bighows significant improvements, for example 8% on the
table. Therefore only partial presentation of results isedo ionosphere in K+H space. Finally the SSV decision tree
below. First in Tab. Il results of optimized SVM with linear (Table VI) in the K+H+Z space has improved a lot on
(SVML) and Gaussian kernels (SVMG) are compared witldlata with continuous features, from 88 to 93.7% on the
SFM with added kernel features only. ionosphere.

For ionosphere and sonar there is a big advantage in usingSummarizing, for Pima Indian Diabetes the best reported
the kernel space instead of the original features spacehd tresult was 77.7% (variance not given) obtained with the
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TABLE IV

quite obvious. Linear separation cannot be easily achieved
SFMIN VARIOUS SPACES SEE TEXT FOR DESCRIPTION

because this is &-separable problem that should be sep-

Dataset K H K+H Z+H | K¥H+Z arated inton + 1 intervals for n bits [10], [21]. This is
Appendicitis| 86.8£11 | 89.81-7.9]89.8+7.9|89.81-7.9/89.8+:7.9 a very interesting example showing that SFM solves quite

Diabetes | 77.6E3.1 | 76.7£4.3| 79.744.3| 79.2E4 5| 77.9£3.3 TN ;

oot 8120 B4 BE 11 80606 8 B3-a06.61 760067 easily difficult problgms in _almost perfect way even when
Hepatitis | 82.706.6 | 83.955.3] 83.0L5.3| 83.015.3| 83.955.3 most standarq class_mers fails. AIthou_gh kl_\lN may also work
lonosphere| 94.6£4.5 | 93.1£6.8| 94.654.5| 93.0£3.4| 94.6£4.5 perfectly well it requires: > 2n for n-bit parity to overcome

Sonar | 83.6+12.6]66.8+9.2 82.345.4] 73.14+11 | 87.5+7.6 the influence of the nearest neighbors, and will fail or less

Parity8 | 11£4.3 |99.2£1.6|97.652.0] 99.252.5| 96.5£3.4

regular Boolean functions.

V. DISCUSSION AND CONCLUSIONS

TABLE V
KNN IN VARIOUS SPACES Support Feature Machine algorithm introduced in this
paper if focused on generation of new features rather than
Dataset X H K+H Z+H | K+H+Z improvement in optimization and classification algorithms

Appendicitis| 86.7:6.6] 79.9E12 | 81.1:5.8| 80.2:10.4| 83.8£9.5 : Co : L
Diabetes (755571 767043 736038 76 8546 [ 715035 A fruitful question is: what is the limit of accuracy for a

Heart |82.2-7.3| 85.555.8 | 82.018.8| 84.557.2 | 82.818.2 given dataset that can be achieved in a given feature space?
IHepatEis 83.3+7.6)82.6+-10.1) 83.0+-11 | 82.7£6.7 | 83.4£8.0 Progress in the recent years in classification and approxi-
O?Sr‘]’arere gg:&jzg gg&?g gg:%g:i gg:ﬁg:g gi&g:g mation methods allows us to be close to this limit in most

Parity8 | 10050 | 99.251.6 | 100E0 | 98.452.8 | 10040 cases, but, as the results obtained in this paper suggest, th
is still ample room for improvement in generation of new
features. For some data kernel-based features are importan
) ) for other projections and restricted projections discovere
Logdisc method [31]. SFM in K+H space has reachechteresting aspects. Expanded feature space seems totbenefi
79.7+4.3%. On the other hand Raymer et al. [32] obtainedot only linear discriminators, but also nearest neightmat a
64-73% using hybrid Bayes classifier/evolutionary algunit gecision tree methods much more than improvements of their
optimizing feature_ subsets and.kNN weights. For C'_eve|a”§lgorithms. Recently more sophisticated ways of creating
Heart data SFM in H space gives 8481%, a relatively ey features have also been introduced [7], [26], deriving
modest 2% improvement over SVM. kNN reaches slightlYnem from various data models.
higher 85.5-5.8% in the H space. SFM requires generation of new features, a process that

SFM has also achieved best results for the two problems computationally efficient, followed by the selection of
with continuous features. On Sonar combination of all feapotentially relevant ones and used by any linear discrimi-
tures leads to the SFM accuracy 8#46%, showing the npation technique. Many variants of basic SFM algorithm are
power of support features. Best MLP neural network result&ossime and the implementation reported here, although ve
reported by Gorman and Sejnowski [33] are 84577%. gyccessful, providing several results significantly betian
lonosphere also yielded good improvements in K+H featurgihers found in the literature, certainly is far from optima
space for all methods, with SFM results 9445%. For The goal was to fix all internal parameters at reasonable
comparison, Raymer et al. [32] report 87-92.3%. values, as it is done in SVM, where also a number of

Australian Credit problem is also very popular [27], but itharameters related to the solver are fixed. Better was to
is usually approached in a wrong way. A single binary featurgenerate and select features will lead to more information
gives 85.5% and it is easy to overlook creating more compleXtracted from data, and easier classification. For example
models [34]. Here only SSV decision tree find slightly moreynly pinary H features based on pure clusters have been
accurate solution, but the improvement of 2.3% in Z+H spacgynsidered, although soft windows may generate more in-
may not be worth additional complexity. teresting views on the data. More sophisticated thresholds

High-dimensional parity problem is very difficult for mostfor relevance of new features, weights proportional to the
classification methods. Many papers have been published §ize of the clusters in restricted projections, or dynamic
special neural models for parity functions, and the reason jesolution based on distances for kernel features may be
introduced. Mixing different kernels and using differeypés

TABLE VI of features gives much more flexibility. Moreover, it is
SSVIN VARIOUS SPACES rather stra?ghtforward to introdgce multiresolu_tion i_neth
SFM algorithm, for example using different dispersign
5 Datads_e_tt_ - Zt s 2[95 83*2?94 87251"75 8*1*]1‘;27 for every H;. Kernel-based learning [1] implicitly projects
ppendicitis| 83. . . . . . . . . . . . . . S
Diabetes (73004776 30421 72 803 6 758032 | 76 004 7 data into h|gh—d|.rr'1en.5|onal spaces, creating thgre flasuinc. i
Heart | 76.256.4| 84.255.0| 81.37.6] 82.255.6 | 83.815.6 borders end facilitating separability. The learning psscés
Hepatitis | 75.6+-8.5] 85.3-8.3] 85.3+8.3| 80.7£11.2) 80.7£11 greatly simplified by changing the goal of learning to easier
lonosphere| 88.0£3.5| 93.8£3.4| 87.456.2| 93.2F4.3 | 93.7£4.0 ; o ; . ;
Sorar— 5 1TE 81 64.308.0 64308017315 61 74.057 3 target and handling the remaining nonlinearities Wlth_ well
Parity8 |49.251.0| 98.5£2.7| 97.652.8 95.35.2 | 98.8E1.8 defined structure [35]. Adding support features facilgate

also knowledge discovery. Instead of hiding information in

3858



kernels and sophisticated optimization techniques featur[15]
based on kernels and projection techniques make this éxplic
Intermediate representations are very important. Finéing [16]
teresting views on the data, or constructing interestifigrin
mation filters, is very important because combination of th
transformation-based systems should bring us signifigan
closer to practical applications that automatically ceethe
best data models for any data. HS}
It is also interesting to comment on neurobiological plausi
bility of the SFM approach. In [36] authors argue that kernel
methods are relevant for category learning in biologicdfOl
systems. In standard formulations of SVMs it is not quitg,;
obvious. However, the SFM algorithm may be presented
in a network form, with the first hidden layer based og ]
combination of kernels, projections, and localized proje
tions. This corresponds to various functions of microdicu [23]
that are present in cortical minicolumns. In effect thiseiay
approximates liquid state machine [37], while the outpuby
layer is a simple perceptron that reads off this information
With great diversity of microcircuits a lot of information
is generated, and relevant chunks are used as features[%sy]/
simple Hebbian learning of weights in the output layer. In
such model plasticity of the basic feature detectors réuogiv [26]
the incoming signals may be quite low, yet fast correlation-
based learning is still possible.

17]
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