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Abstract. Support Feature Machines (SFM) define useful features derived from
similarity to support vectors (kernel transformations), global projections (linear
or perceptron-style) and localized projections. Explicit construction of extended
feature spaces enables control over selection of features, complexity control and
allows final analysis by any classification method. Additionally projections of
high-dimensional data may be used to estimate and display confidence of predic-
tions. This approach has been applied to the DNA microarray data.
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1 Introduction

Data mining packages such as Weka [1], Rapid Miner [2], or KNIME [3] offer enor-
mous number of modules for pre-processing, optimization, training, classification, clus-
tering, visualization and post-processing. For example, combining all modules available
in Rapid Miner 3.4 over 5 billion data models may be created. Comparison of all these
models on a single dataset would be impossible and will anyway manifest results of
“oversearching”, with some models producing good results on a given dataset by pure
chance [4]: contrary to the common opinion generalization of learning systems (includ-
ing decision trees and neural networks) trained using global optimization methods (such
as evolutionary algorithms) is frequently worse than results obtained from the greedy,
best-first methods (such as the gradient methods). Meta-learning, or creating on demand
optimal adaptive system suitable for a given problem is an answer to this crises of abun-
dance [5, 6]. Different approaches to meta-learning have been proposed [7], based either
on recommendations of particular learning methods depending on some data character-
istics (landmarking approach), combining many data models together [8], or defining
frameworks that allow for systematic creation of data models of growing complexity.
In particular, a framework based on evaluation of similarity [5], that includes many
variants of the nearest neighbor methods, neural networks and kernel methods [9], has
proved to be very powerful in practical applications. Within such framework methods
that have a proper bias for particular problem may be found.

Each data model Mi is defined in some hypotheses space H that includes all func-
tions that this model may learn. Combination of diverse classifiers p(C|x,Mi) that
predict probabilities or provide binary indicators for each class C, may improve results.
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Mixture of experts [8], and in particular the boosted mixtures of experts [10], assign
large weights to classifiers (called experts) that improve performance around localized
areas of the input space where most models fail. Committees of competent models [11,
12] have weights wi(x)p(C|x,Mi) that explicitly depend on the input vectors x, de-
creasing the influence of classifiers that have not been competent, or had low confidence
in their predictions in some regions of the input space. Stacking classifiers is another
technique that trains to predict errors that the current set of classifiers makes [13].

Committees and mixture of experts are based on component models optimized for
the whole training data. All these methods decrease comprehensibility of solutions and
are not the most efficient way of summarizing the data. Recently we became interested
in ensembles of simple models at finer granulation, defining classifiers based on single
feature and provide data models that are competent only for relatively small subsets
of all samples. The most common Gaussian kernel Support Vector Machine (SVM)
[9] selects a subset of training vectors xi close to the decision border (called "support
vectors") and calculates k(x,xi) = exp(−β

∑
|xi − x|2), with fixed dispersion β.

The final discriminant function is constructed as a linear combination of such kernels,
creating in fact a weighted nearest neighbor solution. Other similarity estimation based
on specific kernels (similarity functions) may help to increase flexibility of decision
borders, decreasing the number of kernels need for accurate classification.

Each support vector used in a kernel may provide a useful feature, but this type of
solution is optimal only for data with particular distributions, and will not work well
for example on parity data [14] or other problems with complex logical structure [15].
For some highly-non-separable problems localized linear projections may easily solve
the problem [16]. Adding new types of features extends the hypothesis space. Useful
features may be created by random linear projections [17], or principal components
derived from data, or projection pursuit algorithms based on Quality of Projected Clus-
ters (QPC) indices [18]. Non-linear combinations of input features provided by neural
network nodes may also be used.

Creation of appropriate feature space facilitates finding optimal solutions, and thus
is worthwhile exploring not only at the level of combination of classifiers, but in the
first place to learn from other models what interesting features they have discovered.
They may come in form of prototypes, linear combinations, or fragments of branches
in decision trees, forming useful “knowledge granules” in data, as it is done in our Uni-
versal Learning Machines [19]. The final model – linear discrimination, Naive Bayes,
nearest neighbor or a decision tree – is secondary, if appropriate space has been set up.

In the next section SFM algorithm as used here is introduced, and in section 3 tested
on several microarray data. Brief discussion of further research directions concludes this
paper.

2 Support Feature Machine Algorithm

Support Vector Machines [20, 9] used as classifiers are based on linear discrimination,
with maximization of classification margin that ensures good generalization and allows
for control of complexity. Problems that require non-linear decision borders may be
linearized by projecting the data into high-dimensional feature space. According to the
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Cover theorem [21] such mapping increases the probability of making the data sep-
arable, "flattening" decision borders. Kernel methods implicitly provide new features
zi(x) = k(x,xi) constructed around support vectors xi, selected from the training
close to the decision borders. The number of these features is equal to the number of
training vectors n. The ability to solve classification problem using only the kernel ma-
trix Kij = k(xi,xj) has some advantages, as instead of the original input space xi one
works in the space of kernel features zi(x) ,called further “the kernel space”.

The number of input features N may be smaller or greater than n. If N ≪ n the
number of the kernel features is usually unnecessarily large – think of the simple case of
two Gaussian distributions that are optimally solved by forming a projection connecting
their means, instead of a large number of support vectors with Gaussian kernels close to
the decision border. Adding such linear projections to the list of features, and perform-
ing feature selection may in such situation remove most kernel features as irrelevant.
In the reverse situation, when n ≪ N (as is the case for the microarray data), instead
of a projection into high-dimensional space SVM reduces the number of features to no
more than n. Also in this case other types of features may be useful. In particular origi-
nal input features may be kept in the enhanced feature space (SVM does not use them),
or various projections may be added. This should guarantee that simplest solutions to
easy problems are not overlooked (SVM will miss them, even if a single binary feature
is sufficient).

Support Feature Machines used here generalize SVM approach by explicitly build-
ing enhanced space that includes kernel features zi(x) = k(x,xi) together with any
other features that may provide useful information. This approach has several advan-
tages comparing to standard SVM:

1. With explicit representation of features interpretation of discriminant function is as
simple as in any linear discrimination method.

2. Kernel-based SVM is equivalent to linear SVM in the explicitly constructed kernel
space, therefore enhancing this space should lead to improvement of results.

3. Kernels with various parameters may be used, including various degrees of local-
ization, and the resulting discriminant may select global features, combining them
with local features that handle exceptions (SVM algorithms are usually formulated
using single kernel, with a few exceptions [22]).

4. Complexity of SVM is O(n2) due to the need of generating kernel matrix; SFM
may select smaller number of kernel features at O(n) cost from those vectors that
project on overlapping regions in linear projections.

5. Many feature selection methods may be used to estimate usefulness of new features
that define support feature space.

6. Many algorithms may be used in the support feature space to generate the final
solution.

Although one can use various methods to solve classification problem in the space
created by support features, linear SVM approach is used here for several reasons. First,
there are many excellent and well-tested SVM implementations available. Second, lin-
ear SVM includes regularization term, ensuring large margin solution. For microarray
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data other linear techniques designed for small sample problems may be more appropri-
ate [23] and will be tried in future. We shall consider other machine learning algorithms
in future SFM versions.

In this paper only basic version of this approach is implemented (see Algorithm
1) using linear discrimination to obtain final decision function. SFM algorithm starts
from standardization of the whole data, followed by feature selection, based here on the
Relief algorithm [24], leaving only features with positive weights. Such reduced, but
still high dimensional data, is used to generate two types of new features.

First type of features is made by projections on m = Nc(Nc − 1)/2 directions
obtained by connecting pairs of centers wij = ci − cj , where ci is the mean of all
vectors that belong to the Ci, i = 1...Nc class. In high dimensional space such features
ri(x) = wi · x help a lot, as can be seen in Fig. 1, where smoothed histograms of data
projected on such directions are shown. Fisher discriminant analysis may provide even
better directions here, but this is the least expensive solution, always worth adding to
the pool of new features.

The second type are features based on similarity to the training vectors, or kernel
features. While many types of kernels may be mixed together, including the same types
of kernels with different parameters, in the initial implementation only Gaussian kernels
with fixed dispersion β are taken for each training vector ti(x) = exp(−β

∑
|xi−x|2).

Various ways of selecting suitable training vectors may be considered, but for small
sample data all of them may be taken into account. QPC algorithm [18] has been used
on this feature space, generating additional orthogonal directions that are useful for
visualization and as new features. The number of QPC features has been arbitrarily
set to 5, although optimizing this parameter in crossvalidation should give better final
result.

Algorithm 1 Algorithm
Require: Fix the Gaussian dispersion β and the number of QPC features NQ.

1: Standardize dataset.
2: Normalize the length of each vector to 1.
3: Perform Relief feature ranking, select only those with positive weights RWi > 0.
4: Calculate class centers ci, i = 1...Nc, create m directions wij = ci − vcj , i > j.
5: Project all vectors on these directions rij(x) = wij · x (features rij).
6: Create kernel features ti(x) = exp(−β

∑
|xi − x|2).

7: Create NQ QPC directions wi in the kernel space, adding QPC features si(x) = wi · x.
8: Build linear model on the new feature space.
9: Classify test data mapped into the new feature space.

In essence SFM algorithm requires construction of new features, followed by a sim-
ple linear model (linear SVM has been used here) or any other learning model. More
attention is paid to generation of features than to the sophisticated optimization al-
gorithms or new classification methods. Although several parameters may be used to
control the process of feature creation and selection they are either fixed or set in an
automatic way. Solutions are given in form of linear discriminant function and thus are
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easy to understand. New features created in this way are based on those transformations
of inputs that have been found interesting for some task, and thus have meaningful in-
terpretation (see Fig. 1, 2. The importance of generating new features has already been
stressed in our earlier papers, but they have been based either on random projections
[17], extracted from several types of algorithms such as decision trees or the nearest-
neighbor methods [19], or provided by classification algorithms [25]. Systematic cre-
ation of support feature spaces as described in this paper seems to be an unexplored
approach with great potential.

3 Illustrative examples

The usefulness of SFM approach has been tested on several DNA microarray datasets
and compared with SVM and SSV[26] results. These high-dimensional datasets have
been used in the Discovery Challenge at the 7-th International Conference on Rough
Sets and Current Trends in Computing (RSCTC 2010), Warsaw, Poland (28-30 June,
2010). A summary of these datasets is presented in Tab. 1.

Title #Features #Samples Class distribution
Data 1 54675 123 88–35
Data 2 22283 105 40–58–7
Data 3 22277 95 23–5–27–20–20
Data 4 54675 113 11–31–51–10–10
Data 5 54613 89 16–10–43–20
Data 6 59004 92 11–7–14–53–7

Table 1. Summary of used datasets.

Because the number of samples in some classes is very small, in the k-fold cross-
validation tests performed for evaluation of SFM performance, k is equal at least to the
number of vectors in the smallest class (from 5-10), and at most 10. Average results
are collected in Table 2, with accuracy, balanced accuracy (accuracy for each class) and
standard deviation given for each dataset. Additionally values of parameters determined
in internal crossvalidation are given. Number of features after the relief selection is still
very large and it is clear that more conservative selection could be used; these features
are used only to generate a small number of r, t and s-type of features. Number of
new features NF includes 5 QPC and Nc(Nc − 1)/2 directions connecting centers, so
together with the kernel feature the support feature space has at most 129 dimensions.

Optimal dispersion of kernel features is in most cases quite large, up to 28, creating
very smooth, partially almost linear decision border in the kernel space. These results
show by no means the limits of SFM algorithm, as fixed parameters have been used in
all tests, more features could be generated using random projections, alternative ker-
nels, more QPC directions, and other linear discrimination algorithms or other machine
learning algorithms should be tested to generate final decision functions. Unfortunately
exploration of all these possibilities is quite time consuming and software to perform
all necessary comparisons in an automatic way is under development.

The microarray data in particular require small sample methods with appropriate
smoothing. This is not the best domain to evaluate learning algorithms, as drawing
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Table 2. Accuracies (ACC) and balanced accuracies (BACC) for each used dataset. Also for
SFM optimal parameter β is noted, number of features after relief selection (FAS), number of
new features (NF), and number of folds used in crossvalidation tests.

Dataset Info SVM SSV SFM
FAS NF CV ACC BACC ACC BACC ACC BACC β

Data 1 51259 117 10 93.5±6.3 90.5±9.7 74.0±13.0 71.0±17.0 91.5±9.3 89.9±11.5 23

Data 2 14880 98 7 60.9±10.5 54.2±18.3 56.2±8.4 35.4±6.3 67.8±15.5 67.1±14.3 28

Data 3 15628 91 5 75.8±7.9 65.9±6.1 74.7±4.4 66.6±4.3 96.0±5.4 89.3±8.9 23

Data 4 7529 116 10 38.1±9.9 28.9±8.9 38.8±12.2 19.8±8.1 54.1±15.8 41.5±13.1 2−4

Data 5 31472 91 10 60.4±18.4 55.1±21.7 59.4±12.3 49.0±21.3 68.6±7.9 64.9±9.6 23

Data 6 47307 88 7 61.9±8.5 46.4±13.4 57.5±2.6 24.1±8.2 79.4±17.2 53.1±15.5 20

conclusions from balanced accuracy on data with a few such samples per class in a
space of such huge dimension without any domain knowledge is impossible. However,
this is quite challenging data and therefore a comparison of SFM with SVM results is
interesting.

4 Discussion and new directions

Support Feature Machine algorithm introduced in this paper is focused on generation
of new features, rather than improvement of optimization and classification algorithms.
It may be regarded as an example of mixture of experts, where each expert is a simple
model based on projection on some specific direction (random, or connecting clusters),
localization of projected clusters (QPC), optimized directions (for example by Fisher
discriminant analysis), or kernel methods based on similarity to reference vectors. Ob-
viously there is a lot of room for improvement. For some data kernel-based features
are most important, for other projections and restricted projections discover more in-
teresting aspects. Recently more sophisticated ways of creating new features have also
been introduced [19, 25], deriving new features from various data models. For exam-
ple, combination of several features with appropriate thresholds obtained from decision
trees, create interesting semi-local features.

Instead of simple linear combination competent committee may be introduced. Cal-
culating probability p(Ci|x;M) of assigning x vector to class Ci by the final model
M , given probabilities for each feature P (Ci|x;Mj) (as shown in Fig. 1), coefficients
of linear combination are determined from the least-mean square solution of:

p(Ci|x;M) =
m∑
j=1

∑
m

WijF (xj)P (Ci|xj) (1)

where the incompetence factors F (xj) are estimated from histograms P (Ci|xj). These
factors simply modify probabilities F (x;Mj)P (Ci|xj) that are used to set up models
in the enhanced feature space. This approach requires only minimal change in the whole
algorithm. After renormalization p(Ci|x;M)/

∑
j P (Cj |x;M) gives final probability
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Fig. 1. Histograms for 5 classes (Dataset 3), two QPC projections on lines connecting centers of
these classes.
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Fig. 2. Scatterogram showing distribution of training and test vectors in QPC directions derived
from kernel features, taken from one of the 10-fold crossvalidation folds.

of classification. In contrast to AdaBoost and similar procedures [13] explicit informa-
tion about regions of incompetence, or quality of classifier based on single new feature
in different feature space areas, is used. Many other variants of basic SFM algorithm
reported here are possible. It is worth noting that kernel-based SVM is equivalent to
the use of kernel features combined with linear SVM. Mixing different kernels and
different types of features creates much better enhanced features space then a single-
kernel solution. For example, complex data may require decision borders of different
complexity, and it is rather straightforward to introduce multiresolution in the presented
algorithm, for example using different dispersion β for every ti, while in the standard
SVM approach this is difficult to achieve.
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