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Abstract. Attempts to extract logical rules from data often lead to large sets
of classification rules that need to be pruned. Training two classifiers, the C4.5
decision tree and the Non-Nested Generalized Exemplars (NNGE) covering al-
gorithm, on datasets that have been reduced earlier with the EkP instance com-
pressor leads to statistically significantly lower number of derived rules with non-
significant degradation of results. Similar results have been observed with other
popular instance filters used for data pruning. Numerical experiments presented
here illustrate that it is possible to extract more interesting and simpler sets of
rules from filtered datasets. This enables a better understanding of knowledge
structures when data is explored using algorithms that tend to induce a large num-
ber of classification rules.

1 Introduction

Induction of classification rules is one of the main data mining tasks, allowing for sum-
marization of data and understanding their structure. Numerous systems have been de-
signed for that purpose [8]. However, it is usually hard to extract low number of very
informative rules without sacrificing their generalization ability. A few methods per-
form well on most data generating relatively low number of rules, but most rule-based
systems tend to induce quite large number of rules, making the solution obtained diffi-
cult to understand. Reducing the number of classification rules is therefore an important
issue in data mining.

In this paper the effect of instance selection (pruning training data) on the number
of generated rules and their generalization ability is investigated. The EkP method [11,
12] has been used to select reduced reference vectors. Two classifiers capable of rule
induction have been taken for our experiments, but results should generalize to other
types of covering algorithms and decision trees. The first one is the NNGE system,
available in the Weka package [20], which usually generates a large number of cov-
ering hyperrectangles, or logical rules. The second method, called PART [9] is based
on C4.5 decision tree [17], used recursively to generate rules (taken from largest node,
and removing the data covered so far). These classifiers have been trained on original
data and on training partitions reduced by EkP. Additional computational experiments
with other popular instance compressors have also been performed, but only the C4.5
decision tree results are reported here to save space.

Wlodek
Tekst maszynowy
Lecture Notes in Computer Science Vol. 6113, pp. 347-354, 2010.

Wlodek
Tekst maszynowy



2 Pruning Classification Rules with Reference Vector Selection
Methods

Three types of classification rules may be used for data understanding [8]. Propositional
logical rules use hyperboxes to define decision borders between classes, they are gener-
ated using either univariate decision trees or covering methods. Second, threshold logic
rules, equivalent to hyperplanes that may be generated either by multivariate trees or
by linear discriminants, for example linear support vector machines. Third and most
general, rules based on similarity to prototypes may provide complex decision regions,
including hyperboxes and fuzzy decision regions. Prototype-based rules (P-rules) are
comprehensible if similarity functions are sufficiently simple. The study of prototype-
based rules has been much less popular than of the other forms of rules [7, 3, 6].

Below a short description of the instance pruning algorithms which have been em-
ployed in our numerical experiments is provided.

The EkP Prototype Selection System has been used in all experiments conducted
in this paper [11, 12]. Simplex method [16] for minimization of cost function (number
of errors), as implemented by M. Lampton and modified by one of us (K.G.), has been
used, despite its rather high computational cost. The advantage of simplex method is
that it essentially does not require any user intervention to control the minimization
process. The pseudocode for the simplex initialization algorithm used in our experi-
ments is given in Algorithm 1 and the cost function procedure of the EkP system is
given in Algorithm 2.

Algorithm 1 Simplex initialization algorithm for EkP
Require: A vector of training set instances trainInstances[]
Require: A vector p[] of optimization parameters (numProtoPerClass * numClasses * numAttributes dimensional)
Require: A matrix simplex to construct a simplex

numPoints, the number of points to build the simplex on
for i = 0 to numPoints - 1 do

randomize(trainInstances[])
for j = 0 to numClasses * numProtoPerClass - 1 do

for k = 0 to numAttributes - 1 do
simplex[i][k] := p[k + numAttributes * j] := trainInstances[i][k]

end for
end for
simplex[i][numAttributes] := costFunction(p[])

end for

Algorithm 2 The EkP cost function algorithm
Require: A training set trainInstances[], a vector p[] of optimization parameters.

tmpTrain, empty training set.
for i = 0 to numClasses * numProtoPerClass - 1 do

for j = 0 to numAttributes - 1 do
Extract the prototype which is stored in p[] and add it to tmpTrain

end for
end for
Build (train) the classifier on tmpTrain and test it on trainInstances
Remember the optimal p[] value and the lowest value of numClassificationErrors associated with it.
return numClassificationErrors



Other Reference Vector Selection Methods Used. Only a very concise description
of the instance pruning algorithms that have been used in our experiments is given
below. For in-depth review of these algorithms see [15, 10, 19].

– Condensed Nearest Neighbor Rule (CNN) [13] method starts with a reference
set containing one vector per class and adds incrementally to this set each instance
from the training data that is wrongly classified when that reference set is used for
learning and the training instances are used for testing.

– DROP3 [19] removes instance x from the training set if it does not change classi-
fication of instances associated with x. Vectors associated with x are defined as a
set of instances for which instance x is one of the k nearest neighbors.

– Edited Nearest Neighbor (ENN) [18] removes a given instance from the training
set if it’s class does not agree with the majority class of its neighbors.

– Edited NRBF [15] uses Normalized RBF [14] to estimate probability P (Ck|x, T )
of Ck class for a given vector x and the training set T . Each vector inconsistent
with its class density estimation is treated as noise and is removed from the dataset.
Probability that a vector from correct class will be removed is low.

– Iterative Case Filtering (ICF) [4] starts from DROP3 and creates hyperspheres
that contain only single-class instances, removing instances which are located in-
side clusters of vectors from the same class.

– Gabriel Editing (GE) [2] method is based on graph theory. It uses the Gabriel
graph to define neighbors and removes from the training dataset all instances that
belong to the same class as all their neighbors.

3 Numerical Experiments

The EkP prototype selection method is compared here with other instance compressors,
and examine rules obtained from classifiers which have been trained on pruned data. In
the first part experiments with the NNGE and C4.5 systems trained on a large number
of datasets filtered using the EkP method have been described. In the second part EkP
algorithm has been matched against several instance compressors. Finally explicit ex-
ample of the benefit of this approach is demonstrated by presenting greatly simplified
and highly accurate rules for non-trivial dataset.

Pruning C4.5 and NNGE Rules with the EkP Instance Selector. Numerical ex-
periments have been performed on 17 real-world problems taken mainly from the UCI
repository of machine-learning databases [1], described in Table 1. The EkP system
has been used for instance selection and the rules have been extracted with the C4.5 and
NNGE classifiers. All experiments have been performed using SBLWeka, an extension
of Weka system [20], done by one of us (K.G.)

In all experiments 10 simplex points for the EkP system are used and j=1, 2, 3 or 5
prototypes per class selected, denoted EkPs10pj. In the first experiment the influence of
data pruning on classification generalization has been examined (Tables 2 and 3). One
prototype per class is not sufficient, but increasing the number of prototypes to 5 per
class leads to results that are statistically equivalent to training on the whole dataset,
with the NNGE method on all 17 problems, and with the C4.5 system on 16 problems.



Table 1. Datasets used in numerical experiments
# Dataset # Instances # Attributes # Numeric # Nominal # Classes Base Rate [%] Rnd. Choice [%]
1 Appendicitis 106 8 7 1 2 80.2 50.0
2 Breast C.W. 286 10 0 10 2 70.3 50.0
3 Horse Colic 368 23 7 16 2 63.0 50.0
4 Credit rating 690 16 6 10 2 55.5 50.0
5 German credit 1000 21 8 13 2 70.0 50.0
6 Pima I.D. 768 9 8 1 2 65.1 50.0
7 Glass 214 10 9 1 6 35.5 16.7
8 Cleveland heart 303 14 6 8 2 54.4 50.0
9 Hungarian heart 294 14 6 8 2 63.9 50.0

10 Heart Statlog 270 14 13 1 2 55.6 50.0
11 Hepatitis 155 20 2 18 2 79.4 50.0
12 Labor 57 17 8 9 2 64.7 50.0
13 Lymphography 148 19 0 19 4 54.8 25.0
14 Primary Tumor 339 18 0 18 21 24.8 4.8
15 Sonar 208 61 60 1 2 53.4 50.0
16 Voting 435 17 0 17 2 61.4 50.0
17 Zoo 101 18 0 18 7 40.6 14.3
Average 337.8 18.2 8.2 9.9 3.8 58.4 41.8

Table 2. NNGE – Generalization Ability
Data Set NNGE EkPs10p1 EkPs10p2 EkPs10p3 EkPs10p5
Appendicitis 83.7± 11.3 85.6± 9.9 86.0± 9.3 85.7± 9.2 86.5± 10.0
Breast C.W. 67.8± 7.1 70.8± 5.5 72.4± 5.9 72.5± 6.2 71.1± 6.7
Horse Colic 79.0± 6.5 66.4± 7.5 • 76.7± 7.2 79.9± 6.5 81.5± 6.3
Credit rating 82.8± 4.7 72.3± 5.9 • 80.4± 5.0 84.5± 4.1 85.2± 4.1
German credit 69.2± 4.5 69.9± 0.7 70.1± 2.0 70.0± 2.6 70.2± 1.9
Pima I.D. 72.8± 4.6 67.5± 5.0 • 70.3± 4.8 72.2± 4.5 72.6± 5.0
Glass 68.0± 9.3 53.6± 9.3 • 57.9± 9.5 • 61.1± 7.7 62.5± 9.0
Cleveland heart 77.8± 7.7 79.0± 7.1 77.6± 7.6 78.6± 7.7 77.6± 7.0
Hungarian heart 79.6± 6.8 81.6± 6.0 82.5± 6.5 81.7± 7.3 81.0± 7.2
Heart Statlog 77.3± 8.1 74.3± 9.2 79.0± 7.4 77.9± 7.5 77.2± 8.0
Hepatitis 81.9± 8.1 78.5± 6.1 82.7± 8.4 83.1± 8.0 82.9± 7.5
Labor 86.2± 15.2 85.9± 15.8 83.1± 17.4 82.8± 14.8 84.2± 13.8
Lymphography 77.1± 10.1 75.3± 10.7 73.3± 10.3 74.6± 9.5 75.7± 9.2
Primary Tumor 39.1± 7.2 34.7± 6.7 36.6± 6.9 38.4± 7.1 39.1± 6.6
Sonar 71.1± 9.2 63.2± 11.9 67.6± 10.3 68.6± 9.3 69.3± 9.8
Voting 95.1± 3.1 88.8± 4.5 • 93.0± 4.1 94.8± 3.6 94.9± 3.1
Zoo 94.1± 6.4 83.6± 8.5 • 90.0± 8.0 93.1± 6.2 95.4± 6.2
Average 76.6± 12.6 72.4± 13.4 75.2± 13.2 76.4± 13.0 76.9± 13.1
Win/Tie/Lose 0/11/6 0/16/1 0/17/0 0/17/0

◦, • statistically significant improvement or degradation

With these 5 prototypes per class statistically lower number of rules was obtained in 16
cases for NNGE and 17 times in case of C4.5 (see Table 4 and 5).

Comparison of pruning rules with various data compressors. The efficiency of
EkP algorithm has also been compared with several vector selection methods listed in
section 2. Table 6 presents average accuracy of classification estimated using 10-fold
stratified cross-validation tests repeated 10 times. The average number of rules gener-
ated by the C4.5 algorithm is reported in Tab. 7. First column contains results for C4.5
trained on entire training dataset, and each successive column represent results for C4.5
trained on data reduced by one of the vector selection methods. Columns are sorted ac-
cording to the average compression achieved by these methods, as shown in the last row
of Tab. 6. The number of resulting prototypes in EkP method was set for each training
to the value that corresponds to about 10% of the size of the original training set. On



Table 3. C4.5 – Generalization Ability
Data Set C4.5 EkPs10p1 EkPs10p2 EkPs10p3 EkPs10p5
Appendicitis 84.6± 10.3 80.2± 2.6 83.7± 8.7 84.4± 11.4 85.5± 9.7
Breast C.W. 69.4± 7.6 70.3± 1.4 71.0± 5.1 69.1± 6.7 69.5± 7.1
Horse Colic 84.4± 5.9 63.0± 1.1 • 78.7± 8.6 81.5± 5.8 82.2± 5.9
Credit rating 84.4± 4.3 55.4± 1.2 • 73.5± 11.7• 85.5± 4.0 85.5± 3.9
German credit 70.5± 4.2 70.0± 0.0 69.8± 1.1 69.6± 1.9 69.6± 1.9
Pima I.D. 73.4± 4.5 65.1± 0.3 • 69.5± 5.7 71.5± 5.9 73.4± 5.0
Glass 68.7± 10.6 48.9± 9.1 • 56.1± 7.1 • 58.1± 8.8 • 60.1± 9.6 •
Cleveland heart 78.0± 7.1 74.1± 7.6 73.3± 7.1 73.5± 7.3 77.1± 8.1
Hungarian heart 81.1± 6.7 80.6± 7.9 80.8± 7.1 80.0± 6.7 79.3± 7.6
Heart Statlog 77.3± 7.8 55.6± 0.0 • 71.0± 9.5 72.8± 8.3 72.6± 7.8
Hepatitis 79.8± 8.5 79.4± 2.3 79.5± 3.8 81.4± 6.4 82.1± 9.0
Labor 77.7± 15.5 64.7± 3.1 • 79.1± 14.8 77.7± 15.8 79.8± 15.1
Lymphography 76.4± 9.3 68.7± 12. 72.7± 11.0 72.8± 10.9 76.5± 11.4
Primary Tumor 40.9± 6.4 31.1± 6.4 • 36.9± 6.7 36.9± 7.7 38.0± 7.6
Sonar 77.4± 9.4 53.4± 1.6 • 59.6± 12.2• 68.6± 10.3• 69.6± 10.1
Voting 96.0± 3.2 61.4± 0.8 • 94.4± 4.2 95.6± 2.8 95.6± 2.8
Zoo 93.4± 7.3 71.6± 5.7 • 81.7± 6.2 • 87.3± 7.4 • 91.5± 7.7
Average 77.3± 12.0 64.3± 12.8 72.4± 12.8 74.5± 13.1 75.8± 13.1
Win/Tie/Lose 0/7/10 0/13/4 0/14/3 0/16/1

◦, • statistically significant improvement or degradation

Table 4. NNGE – Number of Rules
Data Set NNGE EkPs10p1 EkPs10p2 EkPs10p3 EkPs10p5
Appendicitis 16.0± 2.2 1.9± 0.2• 2.0± 0.1• 2.3± 0.5• 2.9± 1.0 •
Breast C.W. 86.4± 5.1 1.7± 0.4• 2.0± 0.0• 2.1± 0.3• 2.8± 0.9 •
Horse Colic 97.6± 18.8 1.9± 0.3• 2.0± 0.0• 2.0± 0.0• 2.2± 0.4 •
Credit rating 142.4± 14.6 2.0± 0.0• 2.0± 0.0• 2.0± 0.1• 2.0± 0.2 •
German credit 347.4± 26.0 1.1± 0.2• 1.8± 0.4• 2.0± 0.4• 2.8± 0.8 •
Pima I.D. 263.8± 23.2 1.8± 0.4• 2.0± 0.0• 2.1± 0.3• 2.7± 0.8 •
Glass 48.1± 4.8 3.9± 0.7• 6.0± 1.0• 8.1± 1.3• 11.9± 1.5 •
Cleveland heart 71.6± 9.3 2.0± 0.0• 2.9± 0.7• 4.0± 0.9• 6.1± 1.3 •
Hungarian heart 61.9± 7.2 2.0± 0.1• 2.6± 0.7• 3.6± 1.1• 5.9± 1.5 •
Heart Statlog 68.3± 8.7 2.0± 0.0• 2.0± 0.0• 2.0± 0.1• 2.8± 0.8 •
Hepatitis 27.6± 3.8 1.5± 0.5• 2.0± 0.1• 2.1± 0.3• 2.4± 0.6 •
Labor 7.9± 1.4 2.0± 0.1• 2.0± 0.0• 2.1± 0.3• 2.6± 0.7 •
Lymphography 32.0± 5.2 2.1± 0.3• 2.8± 0.7• 3.8± 1.1• 5.9± 1.3 •
Primary Tumor 147.8± 4.7 13.3± 1.7• 24.4± 2.5• 35.8± 3.0• 58.2± 3.9 •
Sonar 45.7± 7.2 2.0± 0.0• 2.0± 0.0• 2.0± 0.1• 2.4± 0.6 •
Voting 29.0± 3.6 2.0± 0.0• 2.0± 0.0• 2.0± 0.1• 2.1± 0.3 •
Zoo 7.0± 0.0 5.0± 0.5• 6.4± 0.5• 6.9± 0.3 7.0± 0.0
Average 88.3± 92.9 2.8± 2.8 3.9± 5.4 5.0± 8.1 7.2± 13.4
Win/Tie/Lose 0/0/17 0/0/17 0/1/16 0/1/16

◦, • statistically significant improvement or degradation

average EkP produced smallest size data among all methods compared here. Table 6
shows that the EkP algorithm, despite such high reduction of the training data size, was
able to achieve good accuracy in comparison to other pruning methods tested here. For
two datasets (Horse Colic and Breast Cancer Wisconsin) paired corrected t-test shows
significant improvement in favor of EkP, each time producing about 6 times less rules
than C4.5 with all training data. Only GE and ENN methods can compete in gener-
alization with EkP, giving no significant difference in comparison with original C4.5.
However these pruning techniques produce training data with average size reduced only
to 85% in case of ENN, and 95% for GE, respectively, while the EkP method creates
much smaller datasets.



Table 5. C4.5 – Number of Rules
Data Set C4.5 EkPs10p1 EkPs10p2 EkPs10p3 EkPs10p5
Appendicitis 3.1± 0.6 1.0± 0.0• 1.7± 0.4• 2.0± 0.2• 2.0± 0.1•
Breast C.W. 18.4± 4.2 1.0± 0.0• 1.5± 0.5• 1.9± 0.5• 2.3± 0.5•
Horse Colic 9.1± 2.7 1.0± 0.0• 1.9± 0.3• 2.0± 0.0• 2.3± 0.5•
Credit rating 31.5± 7.7 1.0± 0.0• 2.0± 0.2• 2.0± 0.0• 2.0± 0.0•
German credit 69.7± 5.8 1.0± 0.0• 1.1± 0.3• 1.1± 0.4• 1.3± 0.6•
Pima I.D. 7.5± 1.5 1.0± 0.0• 1.8± 0.4• 1.9± 0.2• 2.0± 0.1•
Glass 15.2± 1.6 2.6± 0.5• 3.5± 0.6• 4.5± 0.9• 6.6± 1.3•
Cleveland heart 19.6± 2.7 2.0± 0.0• 2.1± 0.3• 2.6± 0.7• 3.9± 0.8•
Hungarian heart 8.2± 2.4 2.0± 0.0• 2.1± 0.3• 2.3± 0.6• 3.3± 1.2•
Heart Statlog 17.6± 2.4 1.0± 0.0• 2.0± 0.0• 2.0± 0.0• 2.2± 0.4•
Hepatitis 8.6± 1.7 1.0± 0.0• 1.1± 0.3• 1.6± 0.5• 2.1± 0.3•
Labor 3.4± 0.8 1.0± 0.0• 2.0± 0.1• 2.0± 0.0• 2.1± 0.3•
Lymphography 11.3± 2.3 2.0± 0.2• 2.1± 0.4• 2.6± 0.6• 3.4± 0.6•
Primary Tumor 41.1± 3.5 6.1± 0.9• 10.4± 1.3• 13.8± 1.9• 20.4± 2.3•
Sonar 7.5± 1.0 1.0± 0.0• 2.0± 0.0• 2.0± 0.0• 2.0± 0.0•
Voting 6.1± 1.1 1.0± 0.0• 2.0± 0.0• 2.0± 0.0• 2.0± 0.0•
Zoo 7.6± 0.5 3.0± 0.0• 4.9± 0.5• 6.0± 0.5• 6.9± 0.4•
Average 16.8± 16.9 1.7± 1.3 2.6± 2.2 3.1± 3.0 3.9± 4.5
Win/Tie/Lose 0/0/17 0/0/17 0/0/17 0/0/17

◦, • statistically significant improvement or degradation

Table 6. Average classification accuracy

Data Set C4.5 EkP ENRBF DROP3 ICF CNN ENN GE
Appendicitis 85.3± 10.4 84.1± 10.3 80.3± 18.5 83.0± 11.3 82.0± 12.1 79.9± 14.1 83.6± 10.9 84.1± 11.1
Breast C.W. 68.6± 8.7 73.6± 7.8 ◦ 58.8± 12.0 • 65.3± 12.1 66.0± 9.3 61.7± 10.0 70.3± 8.1 68.0± 8.2
Horse Colic 79.6± 6.0 84.6± 5.9 ◦ 77.0± 7.8 80.3± 6.5 76.0± 7.4 74.6± 7.2 81.2± 6.3 79.6± 6.0
Credit rating 84.2± 4.0 85.5± 3.7 70.4± 11.8 • 81.0± 6.0 83.2± 4.6 73.8± 5.2 • 85.4± 4.0 84.3± 4.1
German credit 71.1± 4.1 70.7± 4.7 60.1± 6.1 • 66.6± 6.9 66.8± 4.8 • 64.6± 5.1 • 73.5± 4.1 71.1± 4.1
Pima I.D. 73.2± 4.1 73.7± 4.0 70.7± 7.1 71.1± 5.7 69.6± 7.1 71.1± 6.1 74.9± 4.4 73.5± 4.1
Glass 68.6± 10.5 58.4± 10.6 • 59.1± 11.5 • 51.4± 14.1 • 61.7± 10.5 60.6± 12.0 68.2± 9.6 69.0± 9.9
Cleveland heart 78.1± 7.3 77.5± 7.0 72.3± 9.4 76.2± 9.4 74.2± 9.6 70.6± 8.8 • 80.7± 7.4 78.0± 7.2
Hungarian heart 80.6± 7.3 78.6± 7.6 73.4± 10.9 74.0± 11.3 75.0± 9.9 73.6± 9.5 • 78.5± 7.9 80.5± 7.4
Heart Statlog 77.4± 7.7 78.6± 8.3 72.1± 9.3 73.4± 9.1 73.2± 9.2 71.8± 8.6 79.3± 6.6 77.9± 8.0
Hepatitis 81.3± 10.6 80.2± 9.9 64.6± 17.0 • 79.9± 11.1 78.1± 10.8 67.4± 16.0 • 82.1± 9.4 81.5± 10.7
Labor 82.8± 12.6 82.1± 13.6 56.1± 25.4 • 77.8± 18.8 76.9± 19.3 81.0± 17.5 81.5± 13.7 83.5± 12.6
Lymphography 75.8± 11.5 76.9± 11.0 69.3± 13.7 72.0± 12.5 73.0± 12.4 72.5± 11.1 76.6± 11.3 75.8± 11.5
Primary Tumor 40.3± 7.8 32.7± 8.2 • 34.6± 8.4 27.3± 7.9 • 37.4± 8.1 36.4± 8.8 39.6± 8.5 40.3± 7.8
Sonar 74.8± 10.7 71.3± 9.7 59.3± 12.0 • 66.9± 10.6 71.7± 11.3 66.5± 11.1 76.5± 9.5 74.7± 10.9
Voting 95.0± 3.1 95.2± 3.0 91.0± 11.2 95.2± 3.3 94.7± 3.2 90.9± 5.8 • 95.7± 2.7 95.0± 3.1
Zoo 92.8± 8.7 71.1± 14.7 • 70.0± 15.4 • 67.3± 15.7 • 84.0± 14.1 92.2± 8.9 84.9± 13.6 92.8± 8.7
Average 77.0± 12.0 75.0± 13.5 67.0± 12.2 71.1± 14.7 73.1± 12.1 71.1± 12.5 77.2± 11.6 77.0± 12.0
Win/Tie/Lose 2/12/3 0/9/8 0/14/3 0/16/1 0/11/6 0/17/0 0/17/0
Wilcoxon p-value 0.181 0.000 0.000 0.000 0.000 0.136 0.274
Average compression [%] 9.0± 1.0 11.0± 4.9 12.4± 6.2 27.7± 9.5 46.0± 14.8 85.4± 9.8 94.6± 10.7

◦, • statistically significant improvement or degradation

Rules generated for the Mushroom dataset may serve as an interesting example to
see the influence of the EkP selection of reference vectors on C4.5 decision tree rules.
Direct application of the C4.5 algorithm creates quite complex set of rules with odor,
gill-size, ring-number, spore-print-color, stalk-shape, stalk-surface-below-ring, popula-
tion and bruises used in their conditions. So far the best published set of rules that
distinguish poisonous and edible mushrooms was [5]:

1. odor=NOT(almond.OR.anise.OR.none): Poisonous
2. spore-print-color=green: Poisonous
3. Else: Edible



Table 7. Average number of rules created by C4.5.
Data Set C4.5 EkP ENRBF DROP3 ICF CNN ENN GE
Appendicitis 3.2± 0.7 2.0± 0.2 • 1.8± 0.4 • 2.0± 0.0 • 2.3± 0.5 • 1.9± 0.8 • 3.6± 1.1 3.1± 0.6
Breast C.W. 18.7± 4.1 3.1± 0.4 • 4.2± 1.9 • 2.4± 0.8 • 7.2± 2.2 • 15.2± 3.7 11.2± 3.8 • 17.5± 3.9
Horse Colic 20.0± 3.3 3.5± 0.7 • 3.0± 1.0 • 2.4± 0.7 • 5.9± 2.0 • 16.3± 3.1 • 11.3± 1.9 • 20.0± 3.3
Credit rating 30.0± 3.4 5.1± 0.9 • 4.3± 1.1 • 3.9± 1.5 • 11.4± 1.7 • 23.9± 3.1 • 14.7± 2.0 • 30.3± 3.2
German credit 69.1± 6.2 8.5± 2.1 • 11.8± 2.3 • 10.4± 2.2 • 23.9± 3.4 • 54.2± 5.5 • 38.9± 3.4 • 69.1± 6.2
Pima I.D. 7.7± 1.7 4.8± 1.4 • 5.1± 1.5 • 5.7± 1.9 • 3.7± 1.3 • 3.6± 1.6 • 9.5± 2.0 7.4± 1.6
Glass 15.5± 1.8 3.8± 0.7 • 5.2± 0.6 • 6.8± 1.4 • 9.5± 0.9 • 13.8± 2.2 10.5± 0.9 • 15.6± 2.2
Cleveland heart 20.3± 2.8 3.9± 0.6 • 4.1± 1.0 • 4.4± 0.9 • 8.4± 1.6 • 16.1± 2.3 • 12.1± 1.8 • 20.4± 3.0
Hungarian heart 16.1± 2.5 3.8± 1.2 • 3.6± 1.1 • 3.1± 1.1 • 6.1± 1.7 • 13.2± 2.3 • 9.6± 2.2 • 15.9± 2.6
Heart Statlog 18.0± 2.5 4.0± 0.6 • 3.4± 0.9 • 3.6± 1.0 • 8.3± 1.5 • 14.5± 2.2 • 12.3± 1.9 • 18.0± 2.5
Hepatitis 9.4± 1.6 2.2± 0.5 • 2.4± 0.6 • 2.3± 0.6 • 3.1± 1.1 • 8.0± 1.7 4.7± 1.2 • 9.5± 1.6
Labor 3.4± 0.7 2.0± 0.0 • 1.7± 0.6 • 2.0± 0.1 • 2.2± 0.5 • 2.7± 0.7 • 3.0± 0.7 3.4± 0.7
Lymphography 11.3± 2.1 3.0± 0.2 • 3.5± 0.9 • 2.7± 0.7 • 6.0± 1.5 • 8.4± 2.0 • 8.8± 1.9 • 11.3± 2.1
Primary Tumor 46.7± 4.0 6.5± 1.2 • 12.2± 1.7 • 5.8± 1.7 • 22.5± 2.7 • 45.0± 3.9 24.7± 2.8 • 46.7± 4.0
Sonar 7.3± 1.1 2.3± 0.4 • 2.7± 0.7 • 3.2± 0.7 • 4.4± 0.6 • 5.3± 0.9 • 6.4± 0.9 7.3± 1.1
Voting 8.8± 2.6 3.8± 0.7 • 3.2± 1.2 • 2.0± 0.1 • 5.0± 1.5 • 7.6± 1.7 6.1± 1.8 • 8.8± 2.6
Zoo 7.7± 0.5 3.0± 0.0 • 3.9± 0.4 • 3.7± 0.7 • 6.3± 0.7 • 7.6± 0.5 6.4± 0.7 • 7.7± 0.5
Average 18.4± 16.9 3.8± 1.7 4.5± 3.0 3.9± 2.2 8.0± 6.2 15.1± 14.3 11.4± 8.7 18.3± 16.9
Win/Tie/Lose 0/0/17 0/0/17 0/0/17 0/0/17 0/6/11 0/4/13 0/17/0
Wilcoxon p-value 0.000 0.000 0.000 0.000 0.000 0.001 0.296

◦, • statistically significant improvement or degradation

This set of rules has 99.4% accuracy in overall data reclassification, but it is quite robust
and may also be found in crossvalidation tests. Slightly more accurate set of 3 rules was
found combining EkP selection with C4.5 decision tree rules:

1. odor = none AND spore-print-color NOT green: Edible
2. odor NOT almond AND odor NOT anise: Poisonous
3. Default: Edible

These rules summarize the entire Mushroom dataset at the 99.7% accuracy level. For
several other datasets similar excellent results may be demonstrated but are omitted here
due to the lack of space.

4 Conclusions

Selection of training vectors is a powerful method that should be used more often,
especially for very large datasets. The experiments presented in this paper compared
results of training two inductive methods for generation of logical rules, NNGE and
PART, on the full training data and on the data reduced by using several algorithms
or vector selection. In particular recently introduced EkP system proved to be quite
competitive, reducing the original dataset sometimes even by an order of magnitude,
simplifying subsequent training and reducing the number of rules also by an order of
magnitude, without significant reduction of accuracy. Rules generated in this way for
the Mushroom database are surprisingly compact and easy to comprehend, the best
found so far for this dataset.

It is clear that training on appropriately pruned data will be especially useful for
very large datasets, giving hope to find solutions that are compact, accurate and easy to
understand.
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