
Neurocognitive Approach to Creativity
in the Domain of Word-Invention

Maciej Pilichowski1 and Włodzisław Duch2

1 Faculty of Mathematics and Computer Science
2 Department of Informatics, Nicolaus Copernicus University, Toruń, Poland

macias@mat.umk.pl, Google: W. Duch

Abstract. One of the simplest creative act is the invention of a new word that
captures some characteristics of objects or processes, for example industrial or
software products, activity of companies, or the main topic of web pages. Neu-
rocognitive mechanisms responsible for this process are partially understood and
in a simplified form may be implemented in a computational model. An algorithm
based on such inspirations is described and tested, generating many interesting
novel names associated with a set of keywords.

1 Introduction

Creativity understood as “the capacity to create a solution that is both novel and appro-
priate” [1], manifests itself not only in creation of novel theories or inventions, but per-
meates our everyday life, including comprehension and production of text and speech.
The best chance to capture creativity in computational algorithms is to follow neurocog-
nitive inspirations [2,3].

Despite the limitation of the current knowledge of the neural processes that give
rise to the higher cognitive processes in the brain it is possible to propose a testable,
neurocognitive model of creative processes. A review of the psychological perspectives
and neuroscientific experiments on creativity has already been presented in [2,3]. Three
elements are essential for computational model of creativity: first, a neural space for
encoding probabilities of strings of letters and phonemes in a given language, leading
to automatic associations of keywords with semantically and phonetically related words
through spreading of neural activation; second, imagination based on combinations of
phonemes or letters, with probability that depends on the priming effects [4]; and third,
the filtering of interesting results based on density of phonological and semantic associ-
ations. Creative brains are well trained, have greater imagination, combine faster basic
primitives, and pick up interesting combinations of these primitives through emotional
and associative filtering. For novel words filters based on phonological and semantic
plausibility may be proposed. Phonological filters may be realized using autocorre-
lation matrix memories or probabilistic models. Semantic filters should evaluate how
many words have similar meaning to the new word, including similarity to morphemes
that the words may be decomposed to.

The Mambo algorithm described here is one of many possible models based on these
principles. It is tested on the invention of novel, interesting words that are suitable as
names for products, companies, web sites or names of various entities.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 88–96, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Neurocognitive Approach to Creativity in the Domain of Word-Invention 89

2 Algorithmic Considerations

Initially the Mambo system does not have any a priori linguistic knowledge. Google Web
1T 5-gram [5] dictionary is used as the training source. This dictionary is based only on
word frequency, therefore it is necessary to perform at least minimal spell-checking be-
fore using this data for training. The LRAGR [6] and SCOWL [7] dictionaries have been
used to correct the misspelled words. An unexpected and quite surprising problem is the
relative shallowness of such large dictionary provided by Google – over 40% of words
that exist in standard English dictionaries are not yet present in the Google dictionary,
probably due to the large number of rare and outdated words in English [8].

Dictionary presented to the system is used to learn morphological regularities using
probabilistic model. This model is somewhat easier to control than the autocorrelation
matrix memory that may also be used for such learning. Word frequencies are used in
the learning process. However, using raw word frequencies would lead to very frequent
presentation of some common words (mostly articles and conjunctions). For example
“the” occurred 23 billion times, while “of”, the next most common word, occurred 13
billion times only. On the other end of the list such word as “viscoses” has frequency
around 200. To avoid these huge differences logarithmic scale for frequencies is used.

Filtered data (words and their frequencies) are the source of knowledge for the sys-
tem – depending on selected symbol set, data can be presented as letters (“the” → “t”,
“h”, “e”), phonemes (“the” → “ð”, “@”), in a semi-letter form (“the” → “th”, “e”), only
for English, or in a mixed form (a word is processed in several forms at the same time).
In our implementation mixed mode with letters and phonemes causes huge CPU load
because conversion to a phoneme representation is done via a slow external program.
The pure phoneme form, written using the IPA (International Phonetic Alphabet) codes,
is hard to read for most people. The semi-letter form is easily readable and as fast to
process as the letter one, allowing to keep the atomicity of most characteristic phonemes
(“sh”, “ch”, “th”, “ph”, “wh”, “rh”).

Semantics. The system learns the structure of the words but not their meanings. Thus
it does not have such flexible associations as people. For example, “light” may mean
“small weight”, but it may also be associated with “daylight”. The program is unaware
of intended or unintended collocations of symbol strings. Advertising some product it is
helpful to associate “possibilities” with “great” (positive association), rather than “prob-
lems” (negative association). Currently the Mambo system does not include word va-
lence, but such an extension is not difficult, as affective word lists are readily available.
Without it in real applications better results are obtained if a distinct sets of priming
words with only negative associations (“bound”, “less”), or words with only positive
associations (“more”, “energy”), are provided, but not both sets.

Associations. In a typical situation a description of the product will be given, read, and
names for this product will be proposed by a human expert. Reading such description
leads to priming of the network, making it more susceptible to activation for the same
and related words. Priming is one of the effects of implicit memory which increases
the probability of recalling the previously encountered item, not necessarily in the same
form (as defined by Kalat [9]). Priming is achieved by repetition of the presented item
or by presenting items associated with the target [4].

90 M. Pilichowski and W. Duch

It is not easy to implement realistic priming in an automatic way. WordNet database
[10] that collects words with similar meanings into “synsets” may help, but despite
extensive efforts the content of WordNet is still far from perfect, and even for simple
queries questionable associations arise. Therefore WordNet is used only to help the user
to prepare the priming set.

Word determinant (prefix or suffix) is defined as the shortest prefix (suffix) of word
which is not a prefix (suffix) of any other word in the dictionary, with the exception of
derivatives of this word. For example, the prefix determinant of “education” is “edu-
cat” (“educated”, “educational”, and other forms are derivates of “educate”). Possible
backward associations may become a problem: the system can create a word which
is relevant to the priming set, but this word may be related in a much stronger way
to words outside of the priming set. As an example consider the priming item “owl”,
and the system’s association with more frequent “bowl” that may dominate [11] inhibit
correct associations to “owl”. There is no good mechanism that could control such hi-
jacking, the system can only enforce existence of word determinants from the priming
set. This enforcement has diminished the problem but did not eliminate it completely.
Restricting created words to those that contain at least one word determinant will assure
that results will be associated with the desired (priming) word set.

Originality. Words created by the system should be original, therefore copies of pre-
viously learnt words should be avoided. At the filtering level all shortened forms of
already known words are rejected (“borrow” → “borr”) and words with superficial
changes (“borrow” → “borrom”). At first this looks like an obvious decision, but for
real world application it may be too strict – just consider “sorrow”, “barrow”, or “bur-
row”. Originality plays the most important role in applications of Mambo system. Brand
names or company names should distinguish themselves from those already existing
(although similarity has some advantages, for example several “Imtel” or “Indel” com-
panies exist). The same rules are also used in order to avoid numerous variations on a
single created word.

Imitations. Compound words, such as the “bodyguard”, “brainstorm” or “airmail”, are
highly ranked by the Mambo system. While testing the system on concepts related to
aviation quite compelling word “jetmail” has been created, but only because the system
was primed with the word “jet” and there was word “• • •mail” in the dictionary. The
first part gave it a high association rank, the latter contributed to good linguistic quality
of the result. Thus creation of compound words in the Mambo system may lead to
a form of plagiarism – the system is creative only if humans were creative before.
Although this may be corrected in the final stage (searching the Internet to determine
if the word is new), for the purpose of testing all compound words have been removed
from the dictionary to guarantee that words created by the Mambo system result from
its internal algorithm, and not from a simple word takeover.

3 Word Rank Function

Words are ranked by their linguistic (phonological) and semantic quality, depending on
associations that they may invoke. The word rank function Q′(w) is defined as:

Neurocognitive Approach to Creativity in the Domain of Word-Invention 91

Q′(w) =
|ng(T (w))|−1∏

i=0

q(ng(T (w))[i]) (1)

where function q is a dictionary function, for a given ngram returning numerical value
based on previously processed dictionary data (see below), T (w) is a composition of
word w transformations, ng is a function partitioning symbols in w into overlapping
ngrams of length Nng +1, shifted by Sng . Function ng(w) returns a sequence of strings
(ngrams):

ng(w) = 〈w[0 : Nng], w[Sng : Sng + Nng], w[2Sng : 2Sng + Nng], ..., (2)

w[nSng : nSng + Nng]〉

where w[i : j] represents string of symbols at positions i to j in the word w, and
nSng = |w|−Nng −1. In most cases these values are set to Nng = 2 and Sng = 1; for
example, partition of ”world” is then ”wor”, ”orl”, ”rld”. Let a ·b mean concatenation of
sequences a and b, and let Σ be the alphabet. Some examples (for Nng = 2, Sng = 1)
of word strings transformations are:
neutral transformation w → w e.g. world → world
cyclic transformation w → w·w[0 : Nng − 1] e.g. world → worldwo
mirror transformation w → w[|w| − 1]·w[|w| − 2]·...·w[0] e.g. world → dlrow

Let us define also functions h(w) = w[0 : |w| − 2], t(w) = w[|w| − 1] and func-
tion r(i). When r(i) = i positional ngrams are used (ngrams which „remember” their
position within a sequence), and when r(i) = 0 free ngrams are used.

Several transformations may be applied to words simultaneously. A model of such
computation is defined by several user-defined parameters: function r(·), ngram param-
eters Nng, Sng, composition of transformations (T), the alphabet (Σ), and the exponent
W estimating importance of the function Q′(w) for a given model. The total word rank
function is a product over models:

Q(w) =
#models∏

k=1

Q′
k(w)Wk (3)

At least one model is always required; if there are more models specified the first one

is assumed to be the main model, and the remaining ones are auxiliary. Only words
ranked above some threshold will be accepted as “interesting”.

Function q is calculated using information from the dictionary of words and their
frequencies, and optionally from a sub-dictionary containing the priming set Pr, which
also contains words and their counts. Its purpose is to obtain probability-like measure of
ngrams for words found in the training dictionary. For each specific model of creating
words, data are put into distinct pairs of C and D tables. The steps to create these tables
are presented below in the pseudo-C++ code; the calculations in lines marked with †
symbol are dependent on the parameters passed to the system.

92 M. Pilichowski and W. Duch

1. Saving data from Dict to table Dd

for each word w in Dict
for each i-th ngram g in ng(T(w))

† Dd[r(i),h(g),t(g)] += count(w)
2. Saving data from Pr to table Dp

for each word w in Pr
for each i-th ngram g in ng(T(w))

† Dp[r(i),h(g),t(g)] = 1
3. Rescaling values

for each element e in Dd
† e = log10(e)

4. Normalization of Dd, creating table Cd

for b = 0 to depth(Dd)-1, step +1
from y = 0 to rows(Dd)-1, step +1

† Cd[b,y] = sum(Dd[b,y]) / sum(Dd[b])
s = sum(Dd[b,y])
for x = 0 to cols(Dd)-1, step +1

† Dd[b,y,x] /= s
5. Creating table Cp

for b = 0 to depth(Dp)-1, step +1
for y = 0 to rows(Dp)-1, step +1

† Cp[b,y] = sum(Dp[b,y]) > 0 ? 1 : 0
6. Adding table values

† C = Cd + Cp
† D = Dd + Cp

7. Normalization correction of the final tables
for b = 0 to depth(D)-1, step +1
for y = 0 to rows(D)-1, step +1

† C[b,y] /= sum(C[b])
s = sum(D[b,y])
for x = 0 to cols(D)-1, step +1

† D[b,y,x] /= s
8. Weighting the tables

for each element e in C
† e = eW

for each element e in D
† e = eW

The C and D tables serve to construct functions q and q′ that may be interpreted as
the probability of occurrence of a given ngram. For the first ngram h the function q may
be identified as unconditional probability, and for the remaining symbols as conditional
probability. In simplified notation P (ai) = P (a|i), where i is the position of a in word
w over alphabet Σ. For subword v of word w let’s also define:

P (b|ai) = P (bi+|a||ai); h(v) = a, t(v) = b (4)

Neurocognitive Approach to Creativity in the Domain of Word-Invention 93

Probability function P is calculated by a call to the table C and D: P (ai) = C[r(i), a],
and P (b|ai) = D[r(i), a, b]. Function q(G), for a transformed sequence G = ng(w),
is defined as a product:

q(G) = P (h(G[0])0)
|G|−1∏

i=0

P (t(G[i])|h(G[i])i) (5)

For the main model and positional ngrams the sequence G does not have to be treated
as a continuous entity – it can be divided into independent sub-sequences in such a way
that G0·G1· ...·GJ = G. With the helper function that ranks ngrams:

qj (G′, d) = P (h(G′[0])d)
|G′|−1∏

i=0

P (t(G′[i])|h(G′[i])d+i) (6)

where G′ is sub-sequence of G and d is initial depth of search in tables C and D, the
counterpart of q for non-continuous case—function q′—is defined as:

q′(G) =
J∏

i=0

qj(Gi, di); 0 � di � depth(D) − |Gi|, d0 = 0 (7)

Parameter J , defined by the user, controls the depth of search in matrix D for ngrams
that are combined; when J = 0 there is no G division and q′ ≡ q. Computationally
the algorithm for functions q and q′ seems to be straightforward – it is just some multi-
plication of values taken from the tables. However, when creating all words of a given
length L the naive approach will not be acceptable due to the time complexity: for
function q it is O(|Σ|L). To avoid lengthy computations optimized algorithm has been
used, with cut-offs for words that fall below desired rank threshold at an early stage.
Detailed discussion of these technical improvements are beyond the scope of this paper
(Pilichowski, PhD thesis, 2009).

4 Results

The first test aims at finding a better name for Kindle electronic book reader that Ama-
zon is advertising. Manually creating the whole priming set would be too tedious, there-
fore the user has to provide only the core set and the exclusion list (both in form of reg-
ular expressions). The priming set is obtained automatically from the dictionary adding
the words that match regular expressions in the core set and do not match any words
from the exclusion list.

The core priming set in this experiment was (each row is a concept group):
1. acquir, collect, gather
2. air, light$, lighter, lightest, paper, pocket, portable
3. anyplace, anytime, anywhere, cable, detach, global, globe, go$, went, gone, going,

goes, goer, journey, move, moving, network, remote, road$, roads$, travel, wire, world
4. book, data, informati, knowledge, librar, memor, news, word$, words$
5. comfort, easi, easy, gentl, human, natural, personal
6. computer, electronic
7. discover, educat, learn, read$, reads, reading, explor

94 M. Pilichowski and W. Duch

The exclusion list contains: aird, airin, airs, bookie, collectic, collectiv, globali, globed,
papere, papering, pocketf, travelog. The top-ranked results are below, with the number
of domains that use the word, identified using Google at the end of 2008, given in the
last column:

Created word Google word count No. domains
librazone 968 1
inforizine – –
librable 188 –
bookists 216 –
inforld 30 –
newsests 3 –
memorld 78 1
goinews 31 –
infooks 81,200 7
libravel 972 –
rearnews 8 –
informated 18,900,000 8
booktion 49 –
inforion 7,850 61
newravel 7 –
datnews 51,500 20
infonews 1,380,000 20
lighbooks 1 –
journics 763 1

Mambo has created several interesting new words, finding may words that are al-
ready used and have been created by people. The system has also proposed words the
humans so far have used almost by accident – like “inforld”.

Another experiment was carried out to find the name for itself, i.e. the Mambo sys-
tem, as it was preliminarily called. The parameters of all runs were exactly the same as
above. The core priming set is presented in the table below:

1. articula, name
2. create, creating, creativ, generat, conceiv, build, make, construct, cook,

formula, prepar, produc
3. explor, discov, new$, newer$, newest$, newly$, imagin
4. mean$, meanin, associat, idea$, ideas, cognitiv, think, thought, semant,

connect, art$, artist, brain, mind, cogit
5. system$, systems$, program, automat, computer, artifici
6. wit$, wits$, witty$, smart, intell
7. word, letter, languag

with the exclusion of one word: cookie. It is worth noting that this algorithm selected
much fewer words as interesting than resulted from our previous experiments [3]; it has
generated the following words:

Neurocognitive Approach to Creativity in the Domain of Word-Invention 95

Created word Google word count No. domains
semaker 903 9
braingene 45 –
assocink 3 –
thinguage 4,630 –
systemake 4 –
newthink 8,960 46
thinknew 3,300 43
assocnew 58 –
artistnew 1,590 1
semantion 693 6

Mambo system was capable of creating such words as “braingene” or “thinguage”.
Fine-tuning the system (parameters, priming) may provide a lot of new words.

5 Conclusions

Inventing novel names is clearly a creative process that can be simulated using compu-
tational algorithms, and tested against human ingenuity. Many companies offer naming
services, for example: Brands and Tags, Brighter Naming, Names and Brands, Named
at Last, NameSharks. Models of neurocognitive processes involved in the process of
creating and understanding novel words, capturing details at different levels of approx-
imation, are worth developing. In this paper probabilistic approach has been presented.
Despite its simplicity it gives quite interesting results. General neurocognitive princi-
ples of creativity are probably common to various tasks [2,3]. There is no doubt that
algorithms based on neurocognitive inspirations are going to be quite useful in many
interesting applications.

References

1. Sternberg, R.J. (ed.): Handbook of Human Creativity. Cambridge University Press, Cam-
bridge (1998)

2. Duch, W.: Computational Creativity, World Congress on Computational Intelligence, Van-
couver, Canada, pp. 1162–1169. IEEE Press, Los Alamitos (2006)

3. Duch, W., Pilichowski, M.: Experiments with computational creativity. Neural Information
Processing – Letters and Reviews 11(4-6), 123–133 (2007)

4. McNamara, T.P.: Semantic Priming. Perspectives from Memory and Word Recognition. Psy-
chology Press (2005)

5. Brants, T., Franz, A.: Web 1T 5-gram Version 1,
http://www.ldc.upenn.edu/Catalog/

6. The Lexical Systems Group, The Specialist Lexicon, http://lexsrv3.nlm.nih.
gov/LexSysGroup/Projects/lexicon/current/

http://www.ldc.upenn.edu/Catalog/
http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/
http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/

96 M. Pilichowski and W. Duch

7. Atkinson, K.: Spell Checker Oriented Word Lists,
http://wordlist.sourceforge.net/

8. Cole, C: The Borgmann Project: Listing all the Words in English,
http://pl.youtube.com/watch?v=kU_CiErwkFA

9. Kalat, J.W.: Biological psychology, 9th edn. Wadsworth Publishing (2006)
10. Miller, G.A., Fellbaum, C., Tengi, R., Wakefield, P., Langone, H., Haskell, B.R.: A lexical

database for the English language, http://wordnet.princeton.edu/
11. Bowers, J.S., Davis, C.J., Hanley, D.A.: Automatic semantic activation of embedded words:

Is there a “hat” in “that”? Journal of Memory and Language 52, 131–143 (2005)

http://wordlist.sourceforge.net/
http://pl.youtube.com/watch?v=kU_CiErwkFA
http://wordnet.princeton.edu/

	Neurocognitive Approach to Creativity in the Domain of Word-Invention
	Introduction
	Algorithmic Considerations
	Word Rank Function
	Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

