
Universal Learning Machines

Włodzisław Duch and Tomasz Maszczyk

Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
Google: W Duch

tmaszczyk@is.umk.pl

Abstract. All existing learning methods have particular bias that makes them
suitable for specific kind of problems. Universal Learning Machine (ULM) should
find the simplest data model for arbitrary data distributions. Several ways to cre-
ate ULMs are outlined, and an algorithm based on creation of new global and lo-
cal features combined with meta-learning is introduced. This algorithm is able to
find simple solutions that sophisticated algorithms ignore, learn complex Boolean
functions, complicated probability distributions, as well as the problems requiring
multiresolution decision borders.

1 Introduction

Despite great progress in development of numerous new algorithms computational
intelligence (CI) systems are still far behind natural biological systems in solving com-
plex problems that face organisms, learning to optimize chances of survival, recog-
nizing important structures in perceptual information, developing communication and
coordination with other organisms. CI algorithms are quite sophisticated, but the key to
general intelligence may lie in specific information filters that make learning possible,
and chunking mechanisms that combine their results into higher-level mental represen-
tations. Filters discover phonemes, syllables, words in the auditory stream (with even
more complex hierarchy in the visual stream), while chunking links sequences of lower
level patterns into higher-level patterns, discovering associations and motifs.

On a more technical level this means that more attention should be paid to genera-
tion of features, exploiting various ways to use input information. Systematic selection
and construction of new features should be followed by simple learning models that are
quite accurate once an appropriate representation of the problem is found. For highly
non-linear decision borders local features based on kernels localized at data samples
that are close to decision borders are useful. There is some similarity to the kernel-
based learning [1] that implicitly projects data into high-dimensional spaces, but here
mixing different kernels and using different types of features gives much more flexi-
bility. Cortical minicolumns extract a large number of interesting features from signals.
This inspiration led to almost Random Projection Machine (aRPM) [2] algorithm where
random projections generate new candidate features, and only those that contain clus-
ters of pure data samples (in the k-separability sense [3]) are selected. The algorithm is
fast and works quite well for complex Boole’an functions where almost all other algo-
rithms fail. However, for some data distributions direct use of linear projections is not
the best idea. For example, visual object recognition should distinguish complex shapes

C.S. Leung, M. Lee, and J.H. Chan (Eds.): ICONIP 2009, Part II, LNCS 5864, pp. 206–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Universal Learning Machines 207

defined in two- or three-dimensional space. Sophisticated approaches may miss simple
and comprehensible solutions.

In this paper Universal Learning Machines (ULM) are introduced, based on sys-
tematic generation and selection of features of growing complexity, that help to learn
simple data models in all kinds of situations. This is the next step towards meta-learning
systems [4,5], that shifts emphasis on construction of the feature space, rather than con-
struction of sophisticated learning models. In the following section short description
of meta-learning idea is given, followed by systematic description of feature construc-
tors and some details about current implementation of the ULM approach. Illustrative
results are in section 4 and a brief discussion concludes this paper.

2 Meta-Learning and Feature Construction

According to the ”no free lunch” theorem [6] no single system may reach the best
results for all possible distributions of data. Decision trees and rule-based systems are
the best for data that have simple logical structure, require sharp decision borders [7,8]
but fail already on problems where linear discrimination provides accurate solution.
SVM in kernelized form works well when complex topology is required but may miss
simple solutions that rule-based systems find, fails when sharp decision borders are
needed and fails on complex Boolean problems [9]. Each system has a particular bias
that makes it suitable for particular class of problems. Discovering this bias and finding
an appropriate model is not easy, and is usually done by tedious experimentations with
combinations of pre-processing, filtering and selection, clusterization, classification or
regression and post-processing techniques, combined with meta-learning procedures
based on stacking, boosting, committees and other techniques. A number of efforts
directed at automatic search for good data models are worth noting.

First approach is to search for general characteristics of data and compare it to the
characteristics of reference data for which ranking of results of different system has
been established [10]. However, a small change in data distribution may have a strong
influence on the type of decision borders needed. The second approach tries to put
various data transformations into a framework that systematically increases their com-
plexity and do a meta-search in the space of all such models. The framework for
similarity-based methods is quite suitable here, covering most classification methods,
including feedforward neural networks and some kernel methods [4,5]. The granularity
of the transformations use to automatically build good models is finer when hetero-
geneous systems are admitted, using optimized distance (kernel) functions of different
types and optimized neural transfer functions in constructive network methods [11,12].
Other systems may be added to the pool of models, including heterogeneous decision
trees and their forests [13]. This approach may be converted into general theory of
transformation based learning, building models based on composition of transforma-
tions [14], and combining them by using committees of locally-competent models [15].

With proper control of search and complexity of generated models [16,17] such
transformation-based approach offers an interesting approach that may overcome the
limits of the ”no free-lunch” theorem. However, success of such meta-search for best
composition of transformations relies on the availability of transformations that extract

208 W. Duch and T. Maszczyk

useful features and handle various specific problems, such as image analysis, multime-
dia streams, signal decomposition, text analysis, biosequences and many other prob-
lems. A Universal Learning Machine (ULM) is based on a very general algorithm:

– Construct new features (generate transformations).
– Test if they help to learn (generate results and select).

Learning may of course be done with one of the sophisticated schemes, but here the
focus will be on construction of features. They may be ranked by some simple filter
criterion [18], or be used to incrementally expand feature space using simple learning
models. Analysis of all feature constructors for specific applications is beyond the scope
of this paper, but it is fruitful to analyze methods that may be applied to construct new
features from typical data.

3 Feature Construction

A set of raw initial features is provided as a part of problem description; out of these
some may be directly useful and should be selected and tested. More features may be
created by various transformations and pattern filters to extract useful information. A
hierarchy of features with different complexity should be established, depending on the
type of decision regions they provide and the complexity of search processes needed to
discover them.

Binary features are the simplest and are a special case of projection on a line. Pro-
jections may be either unrestricted (all data are used for the projection), giving global
features, or restricted, providing local features. Raw binary features {bi} should be re-
garded as global, resulting from unrestricted projections on a line. They are created
from other features by dividing nominal features into two subsets, or creating subin-
tervals of real features {xi} using decision trees or Quality of Projected Clusters [19]
criteria.

Local binary features may be obtained by imposing various restrictions on projec-
tions. For binary features this will lead to complexes b1∧b2...∧bk that help to distinguish
interesting regions in feature space. For real-valued features restrictions based on inter-
vals create hyperboxes

∏
i[r

−
i , r+

i]. Restricted binary features are created by decision
trees, for example if there is top level path z = (x1 < t1) ∧ (x2 ≥ t2), then z is a bi-
nary (logical) feature made from projection on x2 restricted by x1 < t1 (or vice versa).
Such features are especially useful for problems with inherent logical structure [7,8].
Logical features may be smoothed and changed into real, strongly non-linear feature
using sigmoidal functions z = σ(t1 − x1)σ(x2 − t2). Other ways to restrict subspace
used for projection may be considered, for example taking only vectors that are not far
from x1 line and binarizing the projection z = σ(x1− t1)σ(d−||x||−1), where ||x||−1

norm excludes feature x1. More general version of binary features may use different
restrictions for each values b = 0 and b = 1. Similar considerations may be done for
nominal features.

The real-valued raw features are sometimes directly relevant to the learning task.
Enhancement of local contrast is very important in natural perception. Features trans-
formed by a steep sigmoidal function σ(βxi − ti) are frequently more useful, closer to

Universal Learning Machines 209

binary. Slopes βxi and thresholds ti may be individually optimized using mutual infor-
mation or other relevance measures independently for each feature. Single features may
also show interesting patterns of p(X |C) distributions, for example k relatively large
groups of values, each corresponding to the same type of objects. Such k-separable
solutions are very useful for learning complex Boolean functions. For example, n-bit
parity functions are n + 1-separable if a sum of all feature values is used as a new fea-
ture. A single cluster of pure cases is worth using as a new feature. Such features are
generated by applying localized window-type functions to original features [19], for
example zi = σ(xi − ai) − σ(xi − bi), a > b.

Thus original real features may be pre-processed in several ways to increase their
usefulness. The same is true for restricted, or partially localized real features. Instead
of accepting raw features additional conditions restricting the subspace from which
projections are made are added, zij = xi for |xj | < tj . Linearization of 2-dimensional
distributions is possible using step-functions. If the minimal value of xi is xmin and
zij = xiΘ(tj − xj) + (xmin − 1)Θ(xj − tj) all projections for xj ≥ tj are moved
to zij = xmin − 1. Consider for example fuzzy XOR relations between (xi, xj); such
transformation will convert it to a 4-separable problem that is easily solved by most
machine learning systems.

More complex line patterns and higher-dimensional patterns may be considered.
First, linear combinations of features provide frequently better features than raw fea-
tures. The simplest and computationally cheapest way to generate them is to start
from calculation of the class centers mi, and use normalized projection directions
wij = (mi − mj)/||mi − mj ||. If conditional probabilities p(x|C) have approxi-
mately Gaussian distributions z(x; w) = w · x captures all information and other fea-
tures will be spurious. This is indeed the case in a number of benchmark data, making
them trivial. Drawing p(C|z) shows areas of significant overlaps and allows for separa-
tion of border vectors that fall near the threshold p(Ci|z) = p(Cj |z). Using only those
vectors more projection directions may be generated; first class-dependent clusteriza-
tion of these vectors is done and then search for pairs of cluster centers from different
classes that are close to each other.

In recent years kernel-based learning methods dominate in pattern recognition [1].
Kernels are used to measure similarity to reference vectors providing new features zi =
K(x(i), x). Gaussian kernels are most popular, creating features that provide localized
receptive fields, measuring how far vector x is from the reference support vector x(i).
Suppose that distribution p(x) = p(x1, x2) has been created as a sum of two partially
overlapping Gaussian distributions; than transforming this distribution to (z1, z2), with
kernels at the centers of clusters z = z1 + z2 variable will be almost constant along
p(x) =const, making the non-linear decision border almost flat after transformation.
Quadratic optimization procedures in SVM may be replaced by any large-margin linear
discrimination techniques, the extraction of useful information by kernels is primary
reason for success.

Explicit generation of features based on different similarity measures [20] removes
one SVM bottleneck, allowing for optimization of resolution in different areas of the
feature space: strong non-linearities are provided where they are needed (small range
of localized kernels), and using smooth functions (large range) when this is sufficient.

210 W. Duch and T. Maszczyk

This technique may be called adaptive regularization, in contrast to simple regular-
ization based on minimization of the norm of the weight vector ||w|| used in SVM or
neural networks [1]. Although simple regularization enforces smooth decision borders
decreasing model complexity it is not able to find the simplest solutions and may easily
miss the fact that a single binary feature contains all information. Generation of kernel
features should therefore proceed from most general, providing almost hyperplanar de-
cision borders, with centers placed far from decision borders (identified looking at the
z = w · x distribution for w = (m1 − m2)/||m1 − m2|| direction), to more specific,
highly non-linear, with non-zero contributions only close to decision border. More so-
phisticated features may also be useful: based on Mahalonobis distance calculated for
clusters of vectors located near decision borders (an inexpensive method for rotation
of density functions with d parameters has been introduced in [11]), or with flat local
fronts using cosine distance.

Summarizing, the (incomplete) list of feature constructors includes:

– B1: Binary – unrestricted projections; provides 4 regions p(C|b), C = 1, 2; b =
0, 1, for MAP classifiers, complexity O(1)Nb.

– B2: Binary – restricted by other binary features; complexes b = b1∧b2...∧bk; also 4
regions p(C|b), full complexity O(2kNb), but only O(Nb) with greedy algorithms.

– B3: Binary – restricted by distance; b = 0∧r1 ∈ [r−1 , r+
1]...∧rk ∈ [r−k , r+

k]; search
is done separately for each b value.

– N1: Nominal – like binary, with two or more subsets.
– R1: Line – original feature xi, unrestricted projection xi(x); thresholds or intervals

may change it into B1; contrast enhancements σ(xi), search for 1D patterns.
– R2: Line – like R1 but restricted by other features, xi = xi(x) only for |xj | < tj .
– R3: Line – like R2 but restricted by distance, , xi = xi(x) only for

∑
j �=i x2

j < t.
– R4: Line – linear combination z = w · x optimized by unrestricted, projection

pursuit (PCA, ICA, QPC ...); otherwise treated like R1.
– P: Prototype-based localized features q(x) = exp(−||x − r||), weighted distance

functions or specialized kernels.
– M: Motifs, based on correlations between elements (sequences, Hebbian correla-

tions).
– T: Non-linear transformations: radial, separable, universal, rational, and other types

of transfer functions [11] f(x) = Φ(x; w) for feature construction.

Prototype-based local features are created using support vectors near the decision bor-
der. First, projections lines zi = wi · x are generated using class means, and those
vectors that are projected in the interval zi ∈ [θi − r, θi + r] selected, where r =
0.05|max zi − minzi|, and the threshold p(C|zi = θi) = p(C′|zi). More line pro-
jections may be generated by grouping vectors into several clusters in each class and
using restricted line projections for their means. Distances between selected vectors are
evaluated (Euclidean distances are used) and only those with the fraction [0.5+ ε, 1− ε]
of neighbors from the same class (with ε = 0.1) in the σ radius are left. They are close
to the decision borders, but selecting those with largest σ and clusterizing them to form
features qi(x) = exp(−|x−pi|/σ) will provide relatively smooth local features. Those
vectors that are close to the border but have very small qi(x) are used again to create

Universal Learning Machines 211

features with smaller σ, localized more strongly, until most vectors are covered by local
features. In this way multi-resolution kernel projection is realized with few support vec-
tors. Complexity of this process is dominated by distance calculation, but this is done
only on a small subset of all vectors, all other steps are linear in the number of vectors.

Second-order features may be build by learning machines using features that have
been constructed and selected for learning. Ranking of local features should be done
with care as they may not be globally important, but will be needed for local represen-
tation of information only. ULM may be presented as a constructive network, with new
nodes representing transformations and procedures to extract useful features, and addi-
tional layers analyzing the image of data in the feature space created in this way. Here
feature generators and classifiers are separated. ULM starts from original features, test-
ing consecutively binary, nominal and real features, then testing the results of adding
restricted features, and constructing new features using projections and prototypes. This
process may be viewed as a search in the space of various feature spaces, analogous to
the search in the space of similarity-based models [4,5].

4 Illustrative Results

The ULM approach is illustrated using a few benchmark datasets (taken from the UCI
repository [21]) that create various problems to the state-of-the-art classification sys-
tems. Three quite different systems have been used in comparison: SVM with linear
and Gaussian kernels (with proper choice of P-features giving identical results), Naive
Bayes (NB) classifier, and Separability-Split Value (SSV) decision tree [22], all imple-
mented in the Ghostminer software [23]. 10-fold stratified crossvalidation tests have
been done in all cases.

Reference results obtained with original features are in Table 1. In parenthesis the
number of generated features is noted. Line projections R1 were generated in two ways,
from calculation of the class centers or cluster centers. For Hypothyroid, Wisconsin
and Australian class centers worked better, for the remaining of datasets cluster centers
were used. The simplest binary features B1 extracted from decision trees are presented
in Table 2.

The Australian credit problem (15 features, 690 samples) has been used in the Statlog
project [24] that compared 22 classifiers. The best result 86.9±, has been obtained with
Cal5 tree (6 leaves on average), a rather fortuitous result as this tree has never been
among top three for the remaining 21 datasets used in the Statlog study, the variance
in crossvalidation test is about 4%, and the results have not been properly averaged
over many runs. SVM with Gaussian kernel, optimized C=0.01 and σ = 0.01, using
460 support vectors, reaches 86.2±4.1%. Starting from ranking of single features it is
easy to notice that A9 (our guess is that it codes “has bank account”) is by far the most
important feature (ex. Pearson correlation coefficient is 0.72, while the next best feature
has 0.46). Using A9 binary feature SVM results with linear kernel is 85.5±3.5% with
182 SVs used and SSV tree and NB classifier give the same accuracy. For SVM and SSV
this is only slightly higher than the reference value, but for NB it is a significant (over
5%) improvement. SSV and NB solutions are equivalent to the maximum a posteriori
(MAP) rule: IF A9=T then class +, A9=F then class −.

212 W. Duch and T. Maszczyk

Adding more features from the original set degrades this result, also adding line
projections decreases accuracy, but adding to the binary feature one prototype-based
feature near the decision border improved all results in statistically significant way to
86.8%, with only 3 leaves for SSV. While adding other features did not improved the
result of SVM and NB, for SSV combination of the A9 with one R1-feature and one
P-feature gave even better result, 87.0±2.50 with just 4 leaves. For this dataset ULM
finds not only the simplest solution, but also using additional P-feature finds the most
accurate solution known so far.

The Ljubliana cancer data contains 286 cases, of which 201 are no-recurrence-events
(base rate 70.3%) and 85 are recurrence-events (29.7%). There are 9 attributes, with 2-
13 different values each. SVM with Gaussian kernel gives 73.8±4.3%, linear SVM
71.0±4.7%, MLP network reaches similar accuracy to Gaussian SVM. The most im-
portant feature is Degree-malignant∈ {1, 2, 3}, that for the value 3 has more than half
recurrence events. Restricting this nominal feature (equivalent to selection of one path
from two-level decision tree) using the number of involved nodes (ranging from 1 to
9) creates a binary feature: B1 = Degree-malignant = 3 ∧ involved nodes> 1. The
accuracy of the MAP rule based on this single feature, as well as the 3 classifiers in
our study is 76.3±6.5%. Such simple and comprehensible solutions are easily missed
if complex models (that in this case are less accurate) are used.

Appendicitis is another small dataset [7], containing only 106 cases, 88 cases with
acute appendicitis and 18 cases with other problems, with 8 features (results of medical
tests). Adding a single binary restricted feature B2 derived from SSV decision tree (see
Table 2) increased the accuracy of all methods by 4-5%, to 91.5%, at the same time
reducing complexity of classifiers. Other types of features did not improve this result.

The Cleveland heart disease dataset contains 303 cases, 164 corresponding to healthy
(54.1%) and the rest to heart problems of various severity, described by 6 continuous
and 4 nominal features. Adding new features did not lead to NB improvement in any
significant way, but SVM benefited slightly from adding 3 line projections (achieving
83.5±3.6, with 98 SVs), and using 3 prototype-based features (84.2±6.1).

The Pima Indian diabetes dataset has only 8 attributes, 768 instances, 500 (65.1%)
healthy and 268 (34.9%) diabetes cases. This dataset was used in the Statlog project
[24], with the best 10-fold crossvalidation accuracy around 77.7% obtained by logistic
discriminant analysis. Small improvement (1.3%) is gained in NB by adding binarized
real feature (Table 2), and also by adding 3 line projections. Slight SVM improvement is
noticed only with 3 line projections and 4 prototype-based features, giving 78.5±3.6%.

The Wisconsin cancer dataset contains 699 cases, with 458 benign (65.5%) and 241
(34.5%) malignant cases, described by 9 attributes with integer value in the range 1-10.
Binarization of F2 feature improves the result in insignificantly way, but using a single
line projection improves SSV results by 2.2% and NB results by 1.2%, while SVM is
improved slightly only after 4 P-features are added, reaching 97.2±1.9% with 45 SVs.

The Hypothyroid dataset has 3772 cases for training and 3428 cases for testing, but
to use consistent methodology the data has been merged and 10-fold stratified crossval-
idation used. There are 22 attributes (15 binary, 6 continuous), and 3 classes: primary
hypothyroid, compensated hypothyroid and normal (no hypothyroid), with unbalanced
class distribution in the merged data, 166, 368 and 6666 vectors in the normal class.

Universal Learning Machines 213

Results of SVM and especially NB are quite poor (Table 1), however adding one bi-
nary restricted feature greatly improves them, from 94.1 to 99.5±0.4% with 80 SVs for
SVM, and from 41.3 to 98.1±0.8% for NB. Adding more features does not improve
these results further.

Table 1. Reference results with original features; ULM significantly improved results are de-
scribed in the text

Dataset Classifier
SVM (#SV) SSV (#Leafs) NB

Australian 84.9±5.6 (203) 84.9±3.9 (4) 80.3±3.8
Ljubliana cancer 72.0±5.1 (168) 74.7±5.0 (3) 72.2±7.4

Appendicitis 87.8±8.7 (31) 88.0±7.4 (4) 86.7±6.6
Heart 82.1±6.7 (101) 76.8±9.6 (6) 84.2±6.1

Diabetes 77.0±4.9 (361) 73.6±3.4 (4) 75.3±4.7
Wisconsin 96.6±1.6 (46) 95.2±1.5 (8) 96.0±1.5

Hypothyroid 94.1±0.6 (918) 99.7±0.5 (12) 41.3±8.3

Table 2. B1 features extracted from the decision tree

Dataset B1 features
Australian F8 < 0.5 F8 >= 0.5 & F9 >= 0.5

Ljubliana cancer Degree-malignant = 3 Degree-malignant = 3 ∧ involved nodes> 1

Appendicitis F7 >= 7520.5 F7 < 7520.5 & F4 < 12

Heart F13 < 4.5 & F12 < 0.5 F13 >= 4.5 & F3 >= 3.5

Diabetes F2 < 123.5 F2 >= 143.5

Wisconsin F2 < 2.5 F2 >= 4.5

Hypothyroid F17 < 0.00605 F17 >= 0.00605 & F21 < 0.06472

In case of the Wisconsin breast cancer data linear combination of features is clearly
better than using individual features separately in decision trees or in Naive Bayes; in
case of the hypothyroid data it is quite the opposite.

5 Discussion

Universal Learning Machines should be based on meta-learning schemes: searching
for the best models in the space of selected data transformations. Meta-learning in the
framework of similarity-based models [4,5] has been previously used with considerable
success. Here a search in the space of various feature transformations is explored. Of
course one may combine the two meta-learning approaches and in addition expand
the space of all admissible transformations. General framework for such meta-learning
schemes has recently been proposed in [16,17]. However, even the simplest scheme to
construct-select features is worth exploring, generating new features that, followed by

214 W. Duch and T. Maszczyk

forward selection or even a simple filter method to rank all features, may dramatically
simplify and improve results.

While a lot of efforts have been devoted to feature selection procedures [25] much
less effort has been spent on feature construction [26]. Yet functioning of biological neu-
ral networks gives numerous examples of transformations realized by neural columns
that extract non-linear features from incoming signals, reducing noise in data and learn-
ing to estimate similarity of responses. Neural columns learn to react not only to inten-
sity, but also to specific structures in the incoming stimuli, solving complex perceptual
problems. As a step towards universal learning machines various ways of extracting
information from input data have been systematically described, from binary features
and their enhancements, through combinations of features derived from simple decision
trees, combinations of features estimated from clusters, localized clusters after projec-
tions, to kernel-based features at different level of granularity, allowing for adaptive
regularization. This of course does not exhaust all possibilities for construction of in-
formative features. Various projection pursuit networks that reduce dimensionality, in-
cluding PCA, ICA and other techniques [27], create interesting combination of original
raw features according to such criteria as maximum variance or independence.

Feature constructors described here go beyond linear combinations. Systematic ex-
plorations of features of growing complexity allows for discovery of simple models
that more sophisticated learning systems will miss. Some benchmark problems have
been found rather trivial, and have been solved with a single binary feature, one con-
strained nominal feature, or one new feature constructed as a projection on a line con-
necting means of two classes. Kernel-based features offer an attractive alternative to
current kernel-based SVM approaches, offering multiresolution and adaptive regular-
ization possibilities. Analysis of images, multimedia streams or biosequences will re-
quire even more sophisticated ways of constructing features based on simpler features.
Although larger datasets should be analyzed it is quite clear that constructing new fea-
tures in this way opens new possibilities to create simple, comprehensible and accurate
data models.

References

1. Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge (2001)

2. Duch, W., Maszczyk, T.: Almost random projection machine. In: Alippi, C., et al. (eds.)
ICANN 2009, Part I. LNCS, vol. 5768, pp. 789–798. Springer, Heidelberg (2009)

3. Duch, W.: k-separability. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN
2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)

4. Duch, W., Grudziński, K.: Meta-learning: searching in the model space. In: Proceedings
of the International Conference on Neural Information Processing, Shanghai, pp. 235–240
(2001)

5. Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization.
In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, pp. 13–22. Springer-
Physica Verlag, New York (2002)

6. Duda, R.O., Hart, P.E., Stork, D.: Patter Classification. J. Wiley & Sons, New York (2001)
7. Duch, W., Adamczak, R., Gra̧bczewski, K.: A new methodology of extraction, optimization

and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12,
277–306 (2001)

Universal Learning Machines 215

8. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of
data. Proceedings of the IEEE 92, 771–805 (2004)

9. Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Con-
structive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic,
D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)

10. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data
Mining. In: Cognitive Technologies. Springer, Heidelberg (2009)

11. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing Surveys 2,
163–213 (1999)

12. Duch, W., Jankowski, N.: Taxonomy of neural transfer functions. In: International Joint Con-
ference on Neural Networks, Como, Italy, vol. III, pp. 477–484. IEEE Press, Los Alamitos
(2000)

13. Duch, W.: Gra̧bczewski, K.: Heterogeneous adaptive systems. In: IEEE World Congress on
Computational Intelligence, pp. 524–529. IEEE Press, Honolulu (2002)

14. Duch, W.: Towards comprehensive foundations of computational intelligence. In: Duch,
W., Mandziuk, J. (eds.) Challenges for Computational Intelligence, vol. 63, pp. 261–316.
Springer, Heidelberg (2007)

15. Duch, W., Itert, L.: Committees of undemocratic competent models. In: Rutkowski, L.,
Kacprzyk, J. (eds.) Proc. of Int. Conf. on Artificial Neural Networks (ICANN), Istanbul,
pp. 33–36 (2003)

16. Grabczewski, K., Jankowski, N.: Versatile and efficient meta-learning architecture: Knowl-
edge representation and management in computational intelligence. In: IEEE Symposium on
Computational Intelligence in Data Mining, pp. 51–58. IEEE Press, Los Alamitos (2007)

17. Grabczewski, K., Jankowski, N.: Meta-learning with machine generators and complexity
controlled exploration. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 545–555. Springer, Heidelberg (2008)

18. Duch, W.: Filter methods. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature
extraction, foundations and applications, pp. 89–118. Springer-Physica Verlag, New York
(2006)

19. Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks Based on Qual-
ity of Projected Clusters. In: Kůrková, V., Neruda, R., Koutnı́k, J. (eds.) ICANN 2008, Part
II. LNCS, vol. 5164, pp. 754–762. Springer, Heidelberg (2008)

20. Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pattern completion
using neural similarity based methods. Applied Mathematics and Computer Science 10, 101–
120 (2000)

21. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
22. Gra̧bczewski, K., Duch, W.: The separability of split value criterion. In: Proceedings of the

5th Conf. on Neural Networks and Soft Computing, Zakopane, Poland, Polish Neural Net-
work Society, pp. 201–208 (2000)

23. Duch, W., Jankowski, N., Gra̧bczewski, K., Naud, A., Adamczak, R.: Ghostminer data min-
ing software. Technical report, Department of Informatics, Nicolaus Copernicus University
(2000-2008), http://www.fqspl.com.pl/ghostminer/

24. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classi-
fication. Elis Horwood, London (1994)

25. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature extraction, foundations and applica-
tions. Springer-Physica Verlag, Heidelberg (2006)

26. Liu, H., Motoda, H.: Feature extraction, construction and selection: a data mining per-
spective. In: Liu, H., Motoda, H. (eds.) SECS, vol. 453. Kluwer Academic, Boston (1998)
(Includes bibliographical references and index)

27. Pȩkalska, E., Duin, R.: The dissimilarity representation for pattern recognition: foundations
and applications. World Scientific, Singapore (2005)

http://www.fqspl.com.pl/ghostminer/

	Universal Learning Machines
	Introduction
	Meta-Learning and Feature Construction
	Feature Construction
	Illustrative Results
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

