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Abstract Learning from data with complex non-local relations and multimodal
class distribution for widely used classification algorithms is still very hard. Even if
accurate solution is found the resulting model may be too complex for a given data
and will not generalize well. New types of learning algorithms are needed to ex-
tend capabilities of standard machine learning systems. Projection pursuit methods
can avoid “curse of dimensionality” by discovering interesting structures in low-
dimensional subspace. This paper introduces constructive neural architectures based
on projection pursuit techniques that are able to discover simplest models of data
with inherent highly complex logical structures.

Key words: Constructive neural networks, projection pursuit, non-separable prob-
lems, Boolean functions

1 Introduction

Most of the popular statistical and machine learning methods that rely solely on the
assumption of local similarity between instances (equivalent to a smoothness prior)
suffer from the curse of dimensionality[2]. When high-dimensional functions are
not sufficiently smooth learning becomes very hard, unless extremly large number
of training samples is provided. That leads to a dramatic cost increase of compu-
tations and creates complex models which are hard to interpret. Many data mining
problems in bioinformatics, text analysis and other areas, have inherent complex
logic. Searching for the simplest possible model capable of representing that kind
of data is still a great challenge that has not been fully addressed.

For example, the n-bit parity problem has a very simple solution (one periodic
function with a single parameter [3]), but popular kernel methods and algorithms
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that depend only on similarity relations, or only on discrimination, have strong
difficulties in learning this function. Linear methods fail completely, because this
problem is highly non-separable. Gaussian-based kernels in SVMs use all training
vectors as support vectors, because in case of parity function all points have closest
neighbors from the opposite class. The nearest neighbor algorithms (with the nu-
mebr of neighbors smaller than 2n) and the RBF networks have the same problem.
For multilayer perceptrons convergence is almost impossible and requires many ini-
tiations to find accurate solution.

Special feedforward neural network architectures have been proposed to handle
parity problems [16, 30, 31, 28, 21] but they are designed only for this special case
and cannot be used for other Boolean functions, even very similar to parity. Learn-
ing systems are frequently tested on benchamrk datasets that are almost lienarly
separable and relatively simple to handle, but without a strong prior knowledge it
is very hard to find satisfactory solution for really complex problems. One can esti-
mate how complex a given data is using the k-separability index introduced in [3].
Consider a dataset X = {x1, . . . ,xn} ⊂Rd , where each vector xi belongs to one of
the two classes.

Definition 1. Dataset X is called k-separable if a direction w exist such that all
vectors projected on this direction yi = wT xi are clustered in k separated intervals,
each containing instances from a single class only.

For example, datasets with two classes that can be separated by a single hyper-
plane have k = 2 and are thus 2-separable. XOR problem belongs to the 3-separable
category, as projections have at least three clusters that contain even, odd and even
instances (or odd, even and odd instances). n-bit parity problems are n+1-separable,
because linear projection of binary strings exists that forms at least n+ 1 separated
alternating clusters of vectors for odd and even cases. Please note that this is equiv-
alent to a linear model with n parallel hyperplanes, or a nearest-prototype model
in one dimension (along the line) with n + 1 prototypes. This may be implemented
as a Learning Vector Quantization (LVQ) model [19] with strong regularization. In
both cases n linear parameters define direction w, and n parameters define thresh-
olds placed on the y line (in case of prototypes there are placed between thresholds,
except for those on extreme left and extreme right, placed on the other side of the
threshold in the same distance as the last prototype), so the whole model has 2n
parameters.

It is obvious that complexity of data classification is proportional to the k-
separability index, although for some datasets additional non-linear transformations
are needed to avoid overlaps of projected clusters. For high values of k learning
becomes very difficult and most classifiers, based on the Multi-Layer Perceptron
(MLPs), Radial Basis Function (RBF) network, or Support Vector Machine (SVM)
data models, as well as almost all other systems, are not able to discover simple
data models. Linear projections are the simplest transformations with an easy in-
terpretation. For many complicated situations proper linear mapping can discover
interesting structures. Local and non-local distributions of data points can be clus-
tered and discriminated by hyperplanes. Often a simple linear mapping exists that
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leaves only trivial non-linearities that may be separated using neurons that imple-
ment a window-like transfer function:

M̃(x;w,a,b) =
{

1 if wx ∈ [a,b]
0 if wx /∈ [a,b] (1)

This function is suitable for learning all 3-separable data (including XOR). The
number of such Boolean functions for 3 or more bits is much greater than of the
linearly separable functions [3]. For data which is more than k = 3 separable this
will not give an optimal solution, but it will still be simpler than the solution con-
structed using hyperplanes. There are many advantages of using window-type func-
tions in neural networks, especially in difficult, highly non-separable classification
problems [7]. One of the most interesting learning algorithms in the field of learn-
ing Boolean functions is the constructive neural network with Sequential Window
Learning (SWL), an algorithm described by Muselli [26]. This network also uses
window-like transfer function, and in comparison with other constructive methods
[26] outperforms similar methods with threshold neurons, leading to models with
lower complexity, higher speed and better generalization [12]. SWL works only for
binary data and therefore some pre-processing is needed to use it for different kind
of problems.

In the next section constructive network is presented that uses window-like trans-
fer functions to distinguish clusters created by linear projections. A lot of methods
that search for optimal and most informative linear transformations have been devel-
oped. Projection pursuit is a branch of statistical methods that search for interesting
data transformations by maximizing some “index of interest” [18, 10]. Constructive
network described in section 3 use projection pursuit methodology for construction
of an accurate neural architecture for solving complex problems.

2 Constructive 3-separability model (c3sep)

With growing k-separability index problems quickly become intractable for general
classification algorithms. Although some problems with high k may also be solved
using complex models it is rather obvious that simplest linear solutions, or solutions
involving smooth minimal-complexity non-linear mappings combined with inter-
val non-linearities, should show better generalization and such solutions should be
easier to comprehend. In feedforward multilayer neural networks hidden layers rep-
resents some data transformation which should lead to linear separation of samples
in the output layer. For highly-nonseparable data this transformation in very hard to
find.

In case of backpropagation procedure, when all network weights are adjusted in
each iteration, convergence to the optimal solution is almost impossible. The final
MLP model gives no information about the structure of the problem, representing
data structures in completly distributed way. Using constructive methods, a single
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node can be trained separately, providing a partial solution. As a result each net-
work node represents a chunk of knowledge about the whole problem, focusing on
different subsets of data and facilitating interpretation of the data structure.

Window-type transfer functions

In the brain neurons are organized in cortical column microcircuits [22] that resonate
with certain frequencies whenever they receive specific signals. Threshold neurons
split input space in two disjoint regions, with hyperplane defined by the w direction.
For highly non-separable data searching for linear separation is useless, while find-
ing interesting clusters for projected data, corresponding to an active microcuircuit,
is more liekely. Therefore network nodes should implement a window-like trans-
fer functions (Eq. 1) that solve 3-separable problems by combination of projection
and clustering, separating some (preferably large) number of instances from a sin-
gle class in the [a,b] interval. This simple transformation may handle not only local
neigborhoods, as Gaussian functions in SVM kernels or RBF networks do, but also
non-local distributions of data that typically appear in the Boolean problems. For ex-
ample, in the n-bit parity problem projection on the [1,1..1] direction creates several
large clusters with vectors that contain fixed number of 1 bits.

Optimization methods based on gradient descent used in the error backpropaga-
tion algorithm require continuous and smooth functions, therefore soft windowed-
type functions should be used in the training phase. Good candidate functions in-
clude a combination of two sigmoidal functions:

M(x;w,a,b,β ) = σ (β (wx−a))−σ (β (wx−b)) (2)

For a > b an equivalent product form, called bicentral function [5], is:

M(x;w,a,b,β ) = σ (β (wx−a))(1−σ(β (wx−b)) . (3)

Parameter β controls slope of the sigmoid functions and can be adjusted during
training together with weights w and biases a and b. Bicentral function (3) has values
in the range [0,1], while function (2) for b < a may become negative, giving values
in the [−1,+1] range. This property may be useful in constructive networks for
“unlearning” instances, misclassified by previous hidden nodes. Another interesting
window-type function is:

M(x;w,a,b,β ) =
1
2
(
1− tanh(β (wx−a)) tanh(β (wx−b))

)
. (4)
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This function has one interesting feature: for points wx = a or wx = b and for
any value of slope β it is equal to 1/2. By setting large value of β hard-window type
function (1) is obtained

M(x;w,a,b,β )
β→∞−→ M̃(x;w,a′,b′) (5)

where for function (4) boundaries of the [a,b] interval do not change (a = a′ and
b = b′), while for the bicentral function (3) value of β has influence on the interval
boundaries, so for β → ∞ they are different than [a,b]. Another way to achieve
sharp decision boundaries is by introduction of an additional threshold function and
parameter:

M̃(x;w,a′,b′) = sgn(M(x;w,a,b,β )−θ) . (6)

Many other types of transfer functions can be used for practical realization of
3-separable models. For detailed taxonomy of neural transfer functions see [7, 8].

Modified error function

Consider a dataset X ⊂Rd , where each vector x ∈X belongs to one of the two
classes c(x) ∈ {0,1}. To solve this classification problem neural network should
minimize an error measure:

E(X ;Γ ) = Ex||y(x;Γ )− c(x))|| (7)

where y(x;Γ ) is the network output and Γ denotes a set of all parameters that need
to be adjusted during training (weights, biases, etc.). The expectation value is calcu-
lated over all training vectors using the mean square error, or cross entropy, or other
norms suitable for error measures. However, in constructive networks nodes may
be trained separately, one at a time, and a partial solution in form of pure clusters
for some range of [ai,bi] output values created by each M(x;Γi) node are used to
improve the network function. To evaluate a usefulness of a new node M(x;Γi) for
the network y(x;Γ ), where Γ represents all parameters, including Γi, an extra term
is added to the standard error measure:

E(X ;Γ ;a,b,λ ) = Ex||y(x;Γ )− c(x))||+λiEM∈[ai,bi]||M(x;Γi)− c(x))|| (8)

where λi controls the tradeoff between the covering and the quality of solution after
the new M(x;Γi) hidden node is added. For nodes implementing wx projections (or
any other functions with outputs restricted to [ai,bi] interval) largest pure cluster
will give the lowest contribution to the error, lowering the first term while keeping
the second one equal to zero. If such cluster is rather small it may be worthwhile to
create a slightly bigger one, but not quite pure, to lower the first term at the expense
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Fig. 1 Example of the c3sep
network with three hidden
neurons. Only parameters of
the last node are adjusted
during training (dotted line),
the first and the second node
have been frozen, with large
value of β used to obtain
sharp interval boundaries.

of the second. Usually a single λi parameter is taken for all nodes, although each pa-
rameter could be individually optimized to reduce the number of misclassifications.

The current version of the c3sep constructive network assumes binary 0/1 class
labeles, and uses the standard mean square error (MSE) measure with two additional
terms:

E(x;Γ ,λ1,λ2) =
1
2 ∑

x
(y(x;Γ )− c(x))2 +

+λ1 ∑
x

(1− c(x))y(x;Γ )−λ2 ∑
x

c(x)y(x;Γ ) (9)

The term scaled by λ1 represents additional the penalty for “unclean” clusters, in-
creasing the total error for vectors from class 0 that falls into at least one interval
created by hidden nodes. The term scaled by λ2 represents reward for large clusters,
decreasing the value of total error for every vector that belongs to class 1 and was
correctly placed inside created clusters.

The c3sep architecture and training

The output of the c3sep network is given by:

y(x;Γ ) = σ

(
∑

i
M(x;Γi)−θ

)
(10)

where Γi = {wi,ai,bi,βi} ⊂Γ denote subset of parameters of i-th node. All connec-
tions between hidden and output layer are fixed with strength 1, although in the final
step they could be used as a linear layer for additional improvement of the network.
One can use linear node as an output, but in practice sigmoidal function provides
better convergence. The architecture of this network is shown in Fig. 1. Each hidden



Constructive Neural Network Algorithms 7

node tries to separate a large group of vectors that belong to class c = 1. Learn-
ing procedure starts with an empty hidden layer. In every phase of the training one
new window-type unit is added and trained by minimization of the error function
(9). Weights of each node are initialized with small random values before training.
Initial values for biases a and b can be set to

a = (wx)min +
1
3
|(wx)max− (wx)min|

b = (wx)min +
2
3
|(wx)max− (wx)min|

In most cases this should provide a good starting point for optimization with gradient
based methods.

Network construction proceeds in a greedy manner. First node is trained to sep-
arate as large group of class 1 vectors as possible. After convergence is reached the
slope of transfer function is set to a large value to obtain hard-windowed function,
and the weights of this neuron are kept frozen during further learning. Samples from
class 1 correctly handled by the network do not contribute to the error, and can be
removed from the training data to further speed up learning (however, leaving them
may stabilize learning, giving a chance to form more large clusters). After that, the
next node is added and the training repeated on the remaining data, until all vectors
are correctly handled. To avoid overfitting, one may use pruning techniques, as it
is done in the decision trees. The network construction should be stopped when the
number of cases correctly classified by a new node becomes too small, or when the
crossvalidation tests show that adding such node will decrease generality.

Experiments

2.1 Boolean functions

The c3sep network has been tested on several types of problems. Figures 2 and 3
shows results of learning on Boolean problems with systematically increasing com-
plexity. Results are compared with a few neural constructive algorithms designed
to deal with Boolean functions. All these algorithms may be viewed as a realiza-
tion of general sequential constructive method [26] (this method is briefly described
in subsection 3), and differ by strategy of searching for the best hidden nodes. Ir-
regular Partitioning algorithm [23] uses threshold perceptrons optimized with lin-
ear programing. Carve [32] is trained by the convex hull traversing algorithm. Oil
Spot algorithm [24] searches for connected subgraphs and proper edge orientation
in hypercube graph. Sequential Window Learning method [25] uses window trans-
fer functions for which weights are obtained from solution of a system of algebraic
equations. Target Switch algorithm [33] use traditional perceptron learning.
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Fig. 2 presents results of learning of constructive methods applied to the parity
problems from 2 bits to 10 bits, and Fig. 3 shows the results of learning randomly
selected Boolean functions, where labels for each string of bits have been drawn
with equal probability P(C(x) = 1) = 0.5. The same random function was used to
train all algorithms. These figures show the size of networks constructed by a given
algorithm, and the time needed for learning until a given problem has been solved
without mistakes.

The c3sep network avoids small clusters increasing generalization, and uses
stochastic gradient algorithm, that avoids local minima through multistarts, and
thus leads to small errors in some runs. Values of the training error are placed in
corresponding points of Fig. 2 and Fig. 3. The n-dimensional parity problem can
be solved by a two-layer neural network with n threshold neurons or (n + 1)/2
window-like neurons in the hidden layer[3]. Sequential window learning and irreg-
ular partitioning algorithms were able do obtain optimal solution for all dimensions.

Learning of random Boolean functions is much more difficult, and upper bound
for the number of neurons needed for solving of this kind of functions is not known.
This purpose of these tests is to check the ability of each algorithm to discover
simple models of complex logical functions. Algorithms capable of exact learning of
every example by creating separate node for single vectors are rarely useful as they
will overfit the data. Therefore the ability to find simple, but approximate, solutions
is very useful. One should expect that such approximate models should be more
robust than perfect models if the training is carried on slightly different subset of
examples for a given Boolean function.

Fig. 2 Number of hidden
units created, and time con-
sumed during learning of
parity problems. Each result
is averaged over 10 trials.
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Irregular partitioning produces small networks, but the training time is very high,
while on the other hand the fastest methods (Oil Spot) needs many neurons. Sequen-
tial window learning gave solutions with a small number of neurons and rather low
computational cost. The c3sep network was able to create smallest architectures, but
the average times of computations are somewhow longer than needed by most other
algorithms. This network provides near optimal solution, as not all patterns were
correctly classified.

2.2 Real world problems

Tables 1 and 2 present results of a generalization tests for a few benchmark datasets
from the UCI repository [1]. The Iris dataset is perhaps the most widely used sim-
ple problem, with 3 types of Iris flowers described by 4 real valued attributes. The
Glass identification problem has 9 real valued features with patterns divided into
float-processed and non float-processed pieces of glass. United States congressional
voting record database, denoted here as Voting0 dataset, contains 12 features that
record decisions of congressmans who belong to a democratic or republican party.
The Voting1 dataset has been obtained from the Voting0 by removing the most in-
formative feature. Each input can assume 3 values: yea, nay or missing.

Some algorithms used for comparison work only for binary features, therefore
their application requires additional pre-processing of data vectors. Real valued fea-

Fig. 3 Number of hidden
units created and time con-
sumed during learning of
random Boolean functions.
Each result is averaged over
10 trials.
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tures have been transformed to binary features by employing Gray coding [27].
Resulting Iris and Glass dataset in binary representation have 22 and 79 features,
respectively. For the three-valued input of Voting dataset a separate binary feature
has been associated with the presence of each symbolic value, resulting in 48 binary
features for Voting0, and 45 for Voting1 datasets.

Algorithms that can handle real features have been applied to both original data
and binarized data (Tab. 1). Although dimensionality of binary data is higher (and
thus more adaptive parameters are used by standard MLP networks and other algo-
rithms), results of most methods on binary data are significantly worse, particularly
in the case of Iris and Glass where all features in the original data are real valued.

In all these tests c3sep network gave very good accuracy with low variance, better
on statistically equivalent to the best solutions, with a very small number of neurons
created in the hidden layer. The ability to solve complex problems in an approxi-
mate way is evidently helpful also for relatively simple data used here, showing the
universality of constructive c3sep networks.

Table 1 30x3 CV test accuracy.

Iris Glass Voting0 Voting1
Carve 90.18±1.58 74.17±3.28 93.24±1.00 87.45±1.37
Irregular Partitioning 90.98±2.29 72.29±4.39 93.41±1.13 86.96±1.43
Target Switch 65.45±5.05 46.76±0.91 94.64±0.63 88.13±1.47
c3sep 95.40±1.30 70.68±2.97 94.38±0.72 90.42±1.15

binary features
Oil Spot 75.16±2.86 66.05±2.41 90.93±0.90 86.68±1.47
Carve 71.84±3.46 62.08±4.55 91.79±1.22 86.77±1.43
Irregular Partitioning 75.53±3.20 62.38±3.66 92.73±1.19 86.79±2.20
Target Switch 84.93±3.28 71.69±3.42 94.66±0.69 88.36±0.98
c3sep 75.58±6.15 60.92±4.47 94.50±0.89 89.78±1.26

Table 2 Average number of hidden neurons generated during 30x3 CV test.

Iris Glass Voting0 Voting1
Carve 5.72±0.46 7.00±0.50 4.99±0.39 8.34±0.45
Irregular Partitioning 5.49±0.53 4.69±0.26 2.04±0.21 3.48±0.30
Target Switch 22.76±2.17 55.49±2.38 3.69±0.29 9.22±0.85
c3sep 3.00±0.00 1.14±0.26 1.00±0.00 1.02±0.12

binary features
Oil Spot 27.78±1.41 21.54±1.80 22.76±1.39 37.32±2.32
Carve 8.02±0.52 6.79±0.26 5.56±0.32 8.59±0.46
Irregular Partitioning 3.00±0.00 1.00±0.00 0.99±0.06 2.50±0.30
Target Switch 3.07±0.14 1.72±0.25 3.20±0.26 7.46±0.48
c3sep 3.30±0.35 1.03±0.10 1.00±0.00 1.00±0.00
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3 Projection Pursuit Constructive Neural Network

Projection pursuit (PP) is a generic name given to all algorithms that search for
the most “interesting” linear projections of multidimensional data, maximizing (or
minimizing) some objective functions or indices [11, 10]. Many projection pursuit
indices may be defined to characterize different aspects or structures that the data
may contain. Modern statistical dimensionality reduction approaches, such as the
principal component analysis (PCA), Fisher’s discriminant analysis (FDA) or inde-
pendent component analysis (ICA) may be seen as special cases of projection pur-
suit approach. Additional directions may be generated in the space orthogonalized
to the already found directions.

PP indices may be introduced both for unsupervised and for supervised learning.
By working in a low-dimensional space based on linear projections projection pur-
suit methods are able to avoid the “curse of dimensionality” caused by the fact that
high-dimensional space is mostly empty [15]. In this way noisy and non-informative
variables may be ignored. In contrast to most similarity-based methods that opti-
mize metric functions to capture local clusters, projection pursuit may discover also
non-local structures. Not only global, but also local extrema of the PP index are of
interest and may help to discover interesting data structures.

A large class of PP constructive networks may be defined, where each hidden
node is trained by optimization of some projection pursuit index. In essence the
hidden layer defines a transformation of data to low dimensional space based on se-
quence of projections. This transformation is then followed by linear discrimination
in the output layer. PCA, FDA or ICA networks are equivalent to linear discrimi-
nation on pre-processed suitable components. In the next section more interesting
index, in the spirit of k-separability, is defined.

The QPC Projection Index

Consider a dataset X = {x1, . . . ,xn} ⊂Rd , where each vector xi belongs to one of
the k different classes. Let Cx denote the set of all vectors that have the same label as
x. The following index achieves maximum value for projections on the direction w
that groups all vectors from class Cx into a compact cluster separated from vectors
that belong to other classes:

Q(x;w) = A+ ∑
xk∈Cx

G
(
wT (x−xk)

)−A− ∑
xk /∈Cx

G
(
wT (x−xk)

)
(11)

where G(x) is a function with localized support and maximum in x = 0, for exam-
ple a Gaussian function. The first term in Q(x;w) function is large if all vectors
from class Cx are placed close to x after the projection on direction defined by w,
indicating how compact and how large is this cluster of vectors. The second term
depends on distance beetwen x and all patterns that do not belong to class Cx, there-
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fore it represents penalty for placing vector x too close to the vectors from opposite
classes. The Quality of Projected Clusters (QPC) index is defined as an average of
the Q(x;w) for all vectors:

QPC(w) =
1
n ∑

x∈X

Q(x;w) , (12)

providing a leave-one-out estimator that measures quality of clusters projected on
w direction. This index achieves maximum value for projections w that create small
number of pure, compact and well separated clusters. For linearly separable prob-
lems function QPC(w) achieves maximum for projections wx that create two well-
separated pure clusters of vectors. In case of k-separable dataset maximization of
QPC index leads to a projection with k separated clusters. Thus optimization of
QPC should discover k-separable solutions if they exist, otherwise directions

Parameters A+,A− control influence of each term in Eq. (11). If A− is large strong
separation between classes is enforced, while large A+ impacts mostly compactness
and purity of clusters. For example, by setting A+ = p(Cx) and A− = 1− p(Cx)
(where p(Cx) is the a priori class probability), projection index is balanced in re-
spect to the size of classes. If in addition G(x) is normalized, such that G(0) = 1,
then the upper limit of QPC index is 1 and it occurs only when all vectors from
the same class after projection are placed in a single very narrow cluster and the
gap beetwen each cluster is greater than the range of G(x) function. All bell-shaped
functions that achieve maximum value for x = 0 and vanish for x→±∞ are suitable
for G(x), including Gaussian, bicentral functions Eq. (3) and Eq. (2), or an inverse
quartic function:

G(x) =
1

1+(bx)4 (13)

where parameter b controls the width of G(x).
These functions are continuous and thus may be used in gradient-based methods.

Iterative gradient optimization procedures applied to functions with multiple local
minima do no guarantee that an optimal solution will be found, and may converge
slowly. Direct calculation of the QPC index (12) requires O(n2) operations (after
projection distances beetwen all pairs of vectors are computed), as in the nearest
neighbor methods. For large datasets this may be excessive.To overcome this prob-
lem various “editing techniques”, or instance selection algorithms developed for
the nearest neighbor methods may be used [17, 13, 29]. By sorting projected vec-
tors and restricting computations of the sum in Eq. (11) only to vectors xi with
G(w(x−xi)) > ε computational time is easily decreased to O(n logn). Further im-
provements in speed may be achieved if the sum in Eq. (12) is restricted only to a
few centers of projected clusters ti. This may be done after projection w stabilizes,
as at the beginning of the training the number of clusters in the projection is not
known without some prior knowledge about the problem. For k-separable datasets
k centers are sufficient and the cost of computing QPC index drops to O(kn). Gra-
dient descent methods may be replaced by more sophisticated approaches [14, 20]),
although in practice multistart gradient methods have been quite effective in search-
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ing for interesting projections. It is worth to notice that although global extrema of
QPC index give most valuable projections, suboptimal solutions may also provide
useful insight into the structure of data.

First QPC direction

Figure 4 presents projections for 4 very different kinds of datasets: Wine, Monk1,
10-bit Parity and Concentric Rings. All projections were obtained taking quartic
function (13) for G(x), with b = 3, and using simple gradient descent maximization
initialized 10 times, selecting after a few iterations the most promising solution that
is trained until convergence. Values of weights and the value of QPC(w) are shown
in the corresponding figures. Positions of projected vectors on the line are shown
each class below the projection line. Smoothed histograms for these projections may
be normalized and taken as estimations of class conditionals p(x|C), from which
posterior probabilities p(C|x) = p(x|C)p(C)/p(x) are easily calculated.

The first two datasets are taken from the UCI repository [1]. The Wine data con-
sist of 178 vectors, 13 continuous features and 3 classes. It can be classified using
a single linear projection that gives 3 groups of vectors (one for each class). The
weight for “flavanoids” feature dominates and is almost sufficient to separate all
3 classes. Monk 1 is an artificial datasets [1], with 6 symbolic features and two
classes, defined by two simple rules: given object is “a monk” if “the head shape”
(first attribute) = “body shape” (second attribute) or “jacket color” (fifth attribute) =
red. Direction generated by maximization of the QPC index produces large cluster
of vectors in the middle of the projection. First two coefficients are large and equal,
others are essentially zero. This corresponds to the first rule, but the second rule can-
not be captured by the same projection. To separate the remaining cases a second
projection is needed (see below). These logical rules have also been extracted using
a special version of MLP network [5].

The 10 bit parity is an example of a hard Boolean problem, where 1024 samples
are divided into even and odd binary strings. This problem is 11-separable, with a
maximum value of projection index obtained for diagonal direction in the 10 di-
mensional hypercube, therefore all weights have the same value. Although a perfect
solution using a single projection has been found clusters at the extreme left and
right of the projection are quite small, therefore finding another direction that puts
these vectors in larger clusters may be useful. Convergence of MLP or RBF net-
works for such complex data is quite unlikely, but also standard SVM approaches
fail completely if crossvalidation tests are performed.

The final dataset (Concentric Rings) contains 800 samples distributed in 4
classes, each with 200 samples defined by 4 continuous features. Only the first and
the second feature is relevant, vectors belonging to the same class are located inside
one of the 4 concentric rings. The last two noisy features are uniformly distributed
random numbers. For this dataset the best projection that maximizes the QPC index
reduces influence of noisy features, with weights for dimensions 3 and 4 close to
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zero. This shows that the QPC index may be used for feature selection, but also that
linear projections have limited power: a complicated solution requiring many pro-
jections at different angles to delineate the rings is needed. Of course a much simpler
network using localized functions will solve this problem more accurately. The need
for networks with different types of transfer functions [7, 9] has been stressed some
time ago, but still there are no programs capable of finding the simplest data models
in all cases.
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Fig. 4 Examples of four projections found by maximization of the QPC index using gradient
descent for the Wine data (top-left), the Monk1 problem (top-right), the 10-bit Parity (bottom-left)
and the noisy Concentric Rings (bottom-right).

Second QPC direction

For complex problems usually more than one projection is required. Using QPC in-
dex searching for additional interesting projections can be realized in several ways.
Sequence of unique directions may be generated applying repeatedly QPC opti-
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mization in the subspace orthogonal to all directions found earlier. Another possible
approach is to focus on subsets of vectors with poor separation and search for an-
other direction only for overlapping clusters until separation is attained. The third
possibility is to search for the next linear projection with additional penalty term
that will punish solutions similar to those found earlier:

QPC(w;w1) = QPC(w)−λ f (w,w1) (14)

The value of f (w,w1) should be large if the current direction w is close to the
previous direction w1. For example, some power of the scalar product between these
directions may be used: f (w,w1) = (w1

T ·w)2. Parameter λ scales the importance
of enforcing this condition during the optimization process.

Scatterplots of data vectors projected on two directions may be used for visual-
ization. Figure 5 presents such scatterplots for the four datasets used in the previous
section. The second direction w, found by gradient descent optimization of function
(14) with λ = 0.5, is used for the horizontal axis. The final weights of the second
direction, value of the projection index QPC(w), and the inner product of w1 and w
are shown in the corresponding figures.

For the Wine problem first projection was able to separate almost perfectly all
three classes. Second projection (Fig. 5) gives additional insight into the structure
of this data, leading to a better separation of vectors placed near decision boundary.

Two-dimensional projection of Monk1 data shows separate and compact clusters.
The 5th feature (which forms the second rule describing this dataset: if it is 1 then
object is a Monk) has significant value, and all unimportant features have weights
equal almost zero, allowing for simple extraction of correct logical rules.

In case of the 10-bit parity problem each diagonal direction of a hypercube rep-
resenting Boolean function gives a good solution with large cluster in the center.
Two such orthogonal directions have been found, projecting each data vector into
large pure cluster, either in the first or in the second dimension. In particular small,
one or two-vector clusters at the extreme ends of the first projection belong to the
largest clusters in the second direction, ensuring good generalization in this two-
dimensional space using naive Bayes estimation of classification probabilities.

Results for the noisy Concentric Rings dataset show that maximization of the
QPC index has caused vanishing of noisy and uninformative features, and has been
able to discover two-dimensional relations hidden in this data. Although linear pro-
jections in two directions cannot separate this data, such dimensionality reduction is
sufficient for any similarity-based method, for example the nearest neighbor method,
to perfectly solve this problem.

A single projection allows for estimation and drawing class-conditional and pos-
terior probabilities, but may be not sufficient for optimal classification. Projections
on 2 or 3 dimensions allow for visualization of scatterograms, showing data struc-
tures hidden in the high-dimensional distributions, suggesting how to handle the
problem in the simplest way: adding linear output layer (Wine), employing localized
functions, decision trees or covering algorithms, using intervals (parity) or naive
Bayes, or using the nearest neighbor rule (Concentric Rings). If this is not sufficient
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Fig. 5 Scatterplots created by projection on two QCP directions for the Wine and Monk1 data
(top-left/right), 10-bit parity and the noisy Concentric Rings data (bottom-left/right).

more projections should be used as a pre-processing for final classification, trying
different approaches in a meta-learning scheme [6].

Coefficients of the projection vectors may be used directly for feature rank-
ing/selection, because maximization of the QPC index gives negligible weights to
noisy or insignificant features, while important attributes have distinctly larger val-
ues. This method might be used to improve learning for many machine learning
models sensitive to feature weighting, such as all similarity-based methods. Inter-
esting projections may also be used to initialize weights in various neural network
architectures.

Constructive Neural Network Based on the QPC Index

Projection pursuit methods in a natural way may be used for constructive neural
networks learning, where each hidden node coresponds to a linear mapping obtained
by optimization of a projection index. To build a neural network architecture using
QPC index general sequential constructive method may be used [26]. For the two-
class problems this method is described as follows:
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1. start learning with an empty hidden layer;
2. if there are some misclassfied vectors do:
3. add a new node;
4. train the node to obtain a partial classiffier;
5. remove all vectors for which the current node outputs +1;
6. enddo.

A partial classiffier is a node with output +1 for at least one vector from one of
the classes, and −1 for all vectors from the opposite classes. After a finite number
of iterations this procedure leads to a construction of neural network that classifies
all training vectors (unless there are conflicting cases, i.e. identical vectors with
different labels, that should be removed). Weights in the output layer do not take part
in the learning phase and their values can be determined from a simple algebraic
equation, assigning the largest weight to the node created first, and progressively
smaller weights to subsequently created nodes, for example:

u0 =
h

∑
j=1

u j +dh+1 , u j = d j2h− j for j = 1, . . . ,h (15)

where h is the number of hidden neurons, di = {−1,+1} denotes label for which
i-th hidden node gives output +1 and dh+1 = dh.

The sequential constructive method critically depends on construction of good
partial classifier. A method to create it is described below. Consider a node M im-
plementing the following function:

M(x) =
{

1 if |G(w(x− t))−θ | ≥ 0
−1 otherwise (16)

where the weights w are obtained by maximization of the QPC index, θ is a thresh-
old parameter which determins the window width, and t is the center of a cluster of
vectors projected on w, estimated by:

t = arg max
x∈X

Q(w,x) (17)

If the direction w corresponds to the maximum of QPC index then t should be
at the center of a large, clean and well separated cluster. Thus the node (16) splits
input space into two disjoint subspaces, with output +1 for each vector that belongs
to the cluster, and −1 for all other vectors. Large, clean and well-separated clusters
may be achieved by maximization of the function Q(t;w) with respect to weights w
and cluster center t, or by minimization of an error function:

E(x) = Ex||G(w(x− t))−δ (cx,ct)|| (18)

where δ (cx,ct) is equal to 1 when x belongs to the class associated with the cluster
centered at t, and 0 if it does not. This error function has twice as many parameters
to optimize (both the weights and the center are adjusted), but computational cost
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of calculations here is linear in the number of vectors O(n), and since only a few
iterations are needed this part of learning is quite fast.

If all vectors for which the trained node gives output +1 have the same label then
this node is a good partial classifier and sequential constructive method described
above can be used directly for network construction. However, for some datasets lin-
ear projections cannot create pure clusters, as for example in the Concentric Rings
case. Creation of a partial classifier may then be done by searching for additional di-
rections by optimization of Q(t;w) function (11) in respect to weights w and center t
restricted to the subset of vectors that fall into the impure cluster. Resulting direction
and center define the next network node according to Eq. 16. If this node is not pure,
that is it provides +1 output for vectors from more than one class, then more nodes
are required. This leads to the creation of a sequence of neurons {Mi}K

i=1, where the
last neuron MK separates some subset of training vectors without mistakes. Then the
following function:

M̄(x) =
{

+1 if 1
K ∑K

i=1 Mi(x)− 1
2 > 0

−1 otherwise
(19)

is a partial classifier. In neural network function Eq. 19 is realized by group of
neurons Mi placed in the first hidden layer and connected to a threshold node M̄ in
the second hidden layer with weight equal to 1

K and bias 1
2 . This approach has been

implemented and the test results are reported below.

QPCNN tests

Table 3 presents comparison of results of the nearest neighbor (1-NN), naive Bayes
classifier, support vector machine (SVM) with Gaussian kernel, the c3sep network
described in this article, and the constructive network based on the QPC index
(QPCNN). 9 datasets from the UCI repository [1] have been used in 10-fold cross-
validation to test generalization capabilities of these systems. For the SVM classifier
parameters γ and C have always been optimized using an inner 10-fold crossvalida-
tion procedure, and those that produced the lowest error have been used to learn the
model on the whole training data.

Most of these datasets are relatively simple and require networks with only a few
neurons in the hidden layer. Both the c3sep and the QPCNN networks achieve good
accuracy, in most cases comparable with 1-NN, Naive Bayes and SVM algorithms.
General constructive sequence learning in original formulation applied to QPCNN
may lead to overfitting. This effect have ocurred for Glass and Pima-diabetes where
average size of created networks is higher than in the case of c3sep network, while
the average accuracy is lower. To overcome this problem proper stop criterium for
growing the network should be considered, e.g. by tracking test error changes esti-
mated on a validation subset.
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Table 3 Average classification accuracy for 10 fold crossvalidation test. Results are averaged over
10 trials. For SVM average number of support vectors (#SV) and for neural networks average
number of neurons (#N) are reported.

dataset 1-NN N. Bayes SVM C3SEP QPCNN
acc. acc. acc. # SV acc. # N acc. # N

Appendicitis 81.3±1.5 85.3±1.0 86.5±0.3 32.1 85.3±1.0 4.2 83.4±1.0 4.0
Flag 50.1±1.1 41.1±1.1 51.1±1.1 315.2 53.6±1.8 26.7 52.9±2.8 10.7
Glass 68.2±1.7 47.4±1.7 66.7±0.9 295.8 61.1±1.3 14.0 57.7±2.3 26.7
Ionosphere 85.2±1.2 82.2±0.2 90.8±1.1 63.9 85.1±1.5 7.9 81.3±1.5 6.3
Iris 95.9±0.5 94.9±0.2 95.5±0.3 43.4 95.7±1.0 5.0 95.3±1.0 3.0
Pima-diabetes 70.5±0.5 75.2±0.5 70.3±1.0 365.3 76.3±0.4 9.1 65.2±0.4 13.1
Promoters 78.5±1.8 85.8±1.3 73.1±1.5 77.2 74.7±5.6 3.7 78.8±2.4 2.6
Sonar 86.8±1.8 67.8±1.2 84.2±1.1 109.7 77.9±2.4 8.5 80.2±2.4 5.1
Wine 95.1±0.8 98.1±0.3 95.1±0.2 63.3 97.1±0.8 4.0 97.4±0.8 3.0

4 Discussion and conclusions

The big challenge facing computational intelligence is to discover correct bias for a
given data, creating a simple but accurate models [4]. Many datasets, such as those
arising from the natural language processing and problems in bioinformatics, may
have an inherent complex logics that we are unable to decipher. This challange has
not yet been met by the existing systems and may require a taylor-made methods for
a given data that may be created by meta-learning [6, 4]. Neural networks and kernel
classifiers are universal approximators and thus they may learn any problem creating
a highly complex solution. However, this leads to a poor generalization, because the
correct underlying model that represents data cannot be discovered. From Fig. 5 it
is evident that an optimal model should use transformations that discover important
features, followed in the reduced space by a specific approach, depending on the
character of a given data.

Each learning procedure is based on some guiding principles. Minimization of
error rarely leads to the discovery of the simplest data models and thus cannot be the
only basis for optimal learning systems. Linear separability is also not the best goal
for learning. In many cases k-separable solutions are much simpler to achieve, leav-
ing non-separable clusters that are easily handled. They may be treated as strongly
regularized (all prototypes on a single line) nearest prototype models. The QPC in-
dex provides one way to find k-separable projections. It allows to solve problems
that go well beyond capabilities of standard neural networks, such as the classifi-
cation of Boolean functions in high-dimensional cases. It also enables visualization
of data in one or more dimensions, allowing for estimation of reliability of classi-
fication for individual cases. It will also be useful for dimensionality reduction and
feature selection.

The c3sep and QPCNN networks presented in this article are also designed to
deal with complex data using a very simple model. The c3sep approach tries to
find a simplification of the k-separable projection, with each node designed to dis-
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criminate a single large cluster. This is done using the error function with addi-
tional penalty and reward terms, showing many advantages when dealing with com-
plex logical problems. This network is able to discover simple models for difficult
Boolean functions and works also well for real benchmark problems.

Many other variants of the constructive networks based on the guiding principles
that may be implemented using projection pursuit indices are possible. The class
of PP networks is quite broad. One can implement many transformations in the
hidden layer, explicitly creating hidden representations that are used as new inputs
for further network layers, or used for initialization of standard networks. Brains
are capable of deep learning, with many specific transformations that lead from
simple contour detection to final invariant object recognition. Studying lienar and
non-linear projection pursuit networks will be most fruitful in combination with
the meta-learning techniques, searching for the simplest data models in the low-
dimensional spaces after initial PP transformation. This approach should bring us
a bit closer to the powerful methods required for deep learning and for discovering
hidden knowledge in complex data.
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3. Duch, W.: k-separability. Lecture Notes in Computer Science 4131, 188–197 (2006)
4. Duch, W.: Towards comprehensive foundations of computational intelligence. In: W. Duch,

J. Mandziuk (eds.) Challenges for Computational Intelligence, vol. 63, pp. 261–316. Springer
(2007)

5. Duch, W., Adamczak, R., Gra̧bczewski, K.: A new methodology of extraction, optimization
and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12,
277–306 (2001)
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