
 Elsevier Editorial System(tm) for Neurocomputing

 Manuscript Draft

Manuscript Number: NEUCOM-D-07-00573R2

Title: Variable Step Search Training for Feedforward Neural Networks

Article Type: Special issue: ICANN 06

Keywords: neural networks; multi-layer perceptrons; neural training algorithms; search techniques;

optimization methods

Corresponding Author: Prof. Wlodzislaw Duch, Ph.D.

Corresponding Author's Institution: Nicolaus Copernicus University

First Author: Wlodzislaw Duch, Prof

Order of Authors: Wlodzislaw Duch, Prof; Miroslaw Kordos, dr

Manuscript Region of Origin:

Abstract: A new class of search-based training algorithms for feedforward networks is introduced. These

algorithms do not calculate analytical gradients and do not use stochastic or genetic search techniques. The

forward step is performed to calculate error in response to localized weight changes using systematic search

techniques. One of the simplest variants of this type of algorithms, the Variable Step Search (VSS) algorithm,

is studied in details. The VSS search procedure changes one network parameter at a time and thus does

not impose any restrictions on the network structure or the type of transfer functions. Rough approximation

to the gradient direction and the determination of the optimal step along this direction to find the minimum of

error are performed simultaneously. Modifying the value of a single weight changes the signals only in a

small fragment of the network, allowing for efficient calculations of contributions to errors. Several heuristics

are discussed to increase the efficiency of VSS algorithm. Tests on benchmark data show that VSS can

outperform such renown algorithms as the Levenberg-Marquardt or scaled conjugate gradient algorithm.

Elsevier Science 1

 Variable Step Search Algorithm
 for Feedforward Networks

Elsevier use only: Received date here; revised date here; accepted date here

Abstract

A new class of search-based training algorithms for feedforward networks is introduced. These algorithms do not calculate
analytical gradients and they do not use stochastic or genetic search techniques. The forward step is performed to calculate
error in response to localized weight changes using systematic search techniques. One of the simplest variants of this type of
algorithms, the Variable Step Search (VSS) algorithm, is studied in details. The VSS search procedure changes one network
parameter at a time and thus does not impose any restrictions on the network structure or the type of transfer functions. Rough
approximation to the gradient direction and the determination of the optimal step along this direction to find the minimum of
cost function are performed simultaneously. Modifying the value of a single weight changes the signals only in a small
fragment of the network, allowing for efficient calculation of contributions to errors. Several heuristics are discussed to
increase the efficiency of VSS algorithm. Tests on benchmark data show that VSS performs not worse and sometimes even
significantly better than such renown algorithms as the Levenberg-Marquardt or the scaled conjugate gradient.

Keywords: neural networks, Multi-Layer Perceptrons, neural training algorithms, search techniques, optimization

1. Introduction

Multilayer perceptrons (MLP) are usually trained
using either analytical gradient-based algorithms with
error backpropagation or (rarely) global optimization
methods. Some of the most popular methods from the
first group include standard backpropagation (BP)
[1], various versions of RPROP [2]-[4], Quickprop
[5], Levenberg-Marquardt (LM) [6][7] and the scaled
conjugate gradient (SCG) [8] algorithms. The second
group involves genetic algorithms [9]-[11], simulated
annealing [12] and its variants such as Alopex [13],

particle swarm optimization [14], tabu search [15]
and several other algorithms [16],[17].

The training time of local gradient algorithms is
usually significantly shorter than that of global
methods. Sophisticated gradient techniques based on
classical numerical analysis methods have been
developed [18] and implemented in a large number of
software packages. In theory global optimization
methods should be able to find a better solution for
complex problems, but in practice despite a lot of
efforts (especially using the evolutionary computing
algorithms) empirical results showing significant
advantages of global optimization methods were
difficult to obtain. Perhaps the benchmark problems
analyzed were too simple. Applications to more

Neurocomputing

* Manuscript

Neurocomputing2

difficult problems in bioinformatics show some
advantages of genetically optimized neural networks
[9]-[11]. In large parameter spaces the phenomenon
of over-searching [19] may increase the chance that
global optimization methods will find optimal
solutions that for the test data will give worse results
than solutions accessible by gradient methods. Thus
extensive search may paradoxically make the
problem of model selection quite difficult.

In this paper a new class of neural training
algorithms based on local search techniques [20] is
explored. The analysis and the algorithms described
here can be used for feedforward networks of
arbitrary structure, with arbitrary transfer functions
(this is in fact one of the greatest advantages of this
approach because changing transfer functions does
not require development of new formulas or
significant changes of the program). However, to be
concise we shall focus only on the standard 3-layer
MLP networks trained for data classification with
logistic sigmoid transfer function y(u) with the unit
slope (=1):

   1

1 exp()
y u

u


 
 (1) (1)

A “staircase” approximation to logistic functions
will also be mentioned. Search-based optimization
methods include stochastic methods [21],
evolutionary algorithms and local systematic search
techniques. So far algorithms based on systematic
search have been largely ignored, with only a few
papers mentioning their use in logical rule extraction
from neural networks [22][23]. Analytical gradients
are calculated assuming infinitesimal changes, but in
computer implementations of the training algorithms
changes are finite and fast learning requires large
steps, therefore numerical effects may degrade
performance of analytical gradient algorithms.
Localized perturbations, restricted to one or two
weights are sufficient to provide numerical
approximation to gradient direction. Inspection of the
real learning processes (using also visualization
techniques) led us to several interesting conclusions
[21][25], briefly summarized in the following
sections.

Remarks on gradients, search directions and
search procedures are presented in section two.
Lessons learned from experiments with search-based
neural training algorithms were used to implement a
new training method, called the Variable Step Search
(VSS) algorithm. It uses a numerical rather than
analytical approach in order to find optimal directions
and step sizes in an iterative process. Several
heuristics designed to improve performance of this
algorithm are described in section three.
Visualization of the VSS learning processes is
presented in section four. Experimental results on
several datasets, presented in section five in terms of
convergence properties, accuracy and speed of
calculations, are very promising. In many aspects
VSS tends to perform very well, comparing favorably
to the best neural training algorithms, such as the
scaled conjugate gradient (SCG), the Levenberg-
Marquardt and the Rprop algorithms. It is thus clear
that VSS and other algorithms based on systematic
search are worth investigating. The final section
contains conclusions and remarks on the future work.

2. Gradients and search directions

In this section the background and the motivation
for introduction of the VSS algorithm is presented.
Analysis and comparison of analytical and numerical
gradients is made and several remarks on the line
search techniques for MLP training are made.
Properties of the gradient directions calculated by
backpropagation-based algorithms are discussed, and
heuristics for finding optimal direction for the next
search step are introduced.

2.1. Numerical and Analytical Gradient Directions

The analytical gradient-based algorithms use an
error backpropagation mechanism to assess the
gradient component in each hidden weight direction.
Assuming a single output Y, feedforward mapping
M(X;W) of the input vector X to Y, parameterized by
the weight vector W and a standard quadratic error
function [26] the formula for the gradient of the
output weights wk is:

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks 3

 () (;)

(;)
k k

E M
M Y

w w

 
 

 
W X W

X W
 (2)

The derivative of the mapping M(X;W) is expressed
using derivatives of the transfer functions and the
errors made by the network. These errors are
propagated to the input layer to calculate gradients
for the remaining weights.

In the numerical gradient network training
[24][25] a single weight wk is subject to a small
perturbation dw (positive or negative) and changes of
the network error in response to this perturbation are
used as a gradient component in wk direction:

1() ([,..., ,...,]) ()k n

k

E E w w dw w E

w dw

  



W W

(3) (1)

Thus the numerical gradient method roughly
coincides with finite difference method of gradient
approximation [27]. Accuracy of such calculation
depends on the curvature of the error surface. The
numerical gradient direction depends on dw, but this
dependence is usually not too strong for dw in the
range 0.0020.2 with unit sigmoid slope (β=1).
 The main difference between gradients computed
using analytical and numerical formulas is seen for
small gradient values (frequently associated with the
hidden weight components at the beginning of the
training). Small gradients tend to be smaller in the
analytical gradient calculations, while the large
values tend to be larger (see Fig. 1). This tendency is
stronger for larger networks with more complex data.
Numerical gradient calculates the descent directions
taking into account the error values in two points thus
examining a broader range of the error surface than
analytical gradient, so it can “predict” more precisely
the error value in a spot located at some distance
from the current point.
 In the dependence shown in Fig. 1, the analytical
gradient was calculated using Eq. 2, and the
numerical gradient using Eq. 3. The relation between
analytical and numerical gradient components is
more important than the absolute value of the
components because the absolute value is always
multiplied by a certain step size during network
training. Therefore the product of the step size and

the component value is the most important quantity.
The gradient components shown in Fig. 1 are
rescaled so that the lengths of the analytical and
numerical gradient vector are the same.
 Interesting empirical observations on numerical
and analytical gradients have been made during
training on several datasets. A finite step along
numerical gradient direction leads in most cases to
faster decrease of the error than the same step along
analytical gradient direction. The difference is even
stronger if minimization along the direction
determined by backpropagation and numerical
gradient is done.
 Although the numerical gradient is still not the
optimal direction of the learning trajectory, it tends to
be much closer to it than the analytical gradient (see
the next subsection for detailed discussion).

Fig. 1. A comparison of analytically (BP) and numerically (NG,
with dw=0.02) determined gradient components in all the weight
directions for the thyroid dataset at the first training epoch using
logistics sigmoid transfer functions with unit slope (=1). (21
inputs, 4 hidden, 3 outputs, 21-4-3 network).

Backpropagation frequently gets stuck in apparent
local minima or plateaus without reaching low values
of the error [29]. The importance of local minima has
been controversial for a long time [28]. Contrary to
the common belief, local minima may not be a real
problem in neural training; ill-conditioning and
saddle points have much more direct effect that has
important influence on the performance of training
algorithms [30]. Backpropagation training is
frequently stuck only in the apparent local minima,
and in many cases switching to another training

Neurocomputing4

algorithm (for example a numerical gradient) leads to
the further decrease of the error and to the final
convergence. Analytical gradient algorithms get stuck
because gradients on flat surfaces, flat saddle points
calculated in analytical way may become very small
[31][32], while a finite step numerical gradient is
larger and may lead to the lower areas on the error
surface. Sometimes the trajectory may be trapped in a
highly situated ravine on the error surface and then
also the numerical gradient method is unable to
converge. Visualization of the error surface (see sec.
IV) shows frequently such situations, but the local
minima in form of “craters” are never observed. In
summary, there are good reasons to use numerical,
instead of analytical, gradients.

2.2. Gradient Direction and the Optimal Next Step
Direction

Gradient-based training methods make initially
rapid progress, slowing significantly near the end of
the training. Fig. 5 shows an MLP error surface
projected on the first two PCA directions in the
weight space (two directions capture typically over
95% of all variance). The error surface becomes
almost flat in the areas that are located further from
the starting point (initialization with small weights is
assumed), and therefore reached by the learning
trajectory at the final stage of the training. The
analysis of such surfaces and one-dimensional
crossections along single weight directions at the
beginning and near the end of the training shows
(Fig. 2) some interesting properties of MLP error
surfaces. The hidden weights have in general rather
low gradients at the beginning and at the end of the
training, although their values change a lot; the
output weights grow faster and have large gradients
around minima, with large flat highly situated
plateaus far from optimal values. This suggests deep
ravines in the error function landscape.
 In any case gradient direction is not the optimal
step direction. The RPROP algorithm that takes into
account only the sign of a derivative instead of the
gradient performs usually not worse than BP, and
frequently even better [2],[26]. Moreover, there exists
a certain similarity between Rprop and VSS: both use
individual update steps for each weight.

Fig. 2. Typical error surface crossections in the direction of: (1)
hidden weight at the beginning of the training; (2) output weight at
the beginning of the training, (3) output weight at the end of the
training, (4) hidden weight at the end of the training.

2.3. Gradients and Optimal Directions

It is instructive to assess the statistical relation
between the size of the gradient component dE(w) in
the direction of weight w and the distance mw from
the point W to the minimum of the error function in
the direction of weight w (see Fig. 3). The error
surface sections in a particular weight direction may
differ significantly, although the curves shown in Fig.
2 are rather typical for most weights. We use
numerical gradient in this section. The disproportion
between the analytical gradient component and the
optimal step size is even bigger than for numerical
gradient, because in this case it is the product of
relations shown in Fig. 1 and in Fig. 3.

Initially the minima for the output weights are
located near the current point W, but for the hidden
weights they are on average much further (Fig. 3).
The error surface landscape changes as the training
progresses. However, the changes are visible mostly
in the hidden weight directions. Thus, at the end of
the training the relations shown in Fig. 3 will look
very similar for both the hidden and output weights
(as in Fig. 2, lower curves).

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks 5

Fig. 3. Dependence between the numerical gradient component
dE(w) and the distance mw from the actual point to the minimum
error in a given weight direction in the first training epoch (Iris 4-
4-3 network).

Heuristic approximation of the relation between
dE(w) and the m(w) distance in the successive
training epochs may be used to speed up search of the
minimum. An example of such approximation for
logistics sigmoid transfer function is given by the
equation below.

(2)

     1() sign () 1 exp cm w dE w a bt dE   

  1 maxmin () ,min ,5 mdE dE w dE dE (4)

The first factor takes care of the sign of the gradient.
The second factor (where t denotes the epoch
number) expresses the fact that during training the
error surface sections around the actual learning
trajectory in the direction of hidden weights are
asymptotically getting more and more similar to the
sections in the direction of output weights (Fig. 2).
For that reason a=0 for output weights, while for
hidden weights this factor is expressed by an
exponential function, which asymptotically
approaches 1. The third factor (dE1

C) approximates
the dependence of dE(w) on the distance m(w) in a
given epoch for a given layer. Parameters dE1, a and
b are determined fitting the function in Eq. 4 using
the least mean square method on the data points
(network weight values after each epoch) obtained

while training the networks using the datasets
described in section V with the numerical gradient
method. dEmax is the greatest and dEm is the mean of
the error changes while changing the weight values
by dw to determine the descent direction. The power
c(0,1) is a constant usually fixed at c =0.5, a=0 for
the output layer, a[10,20] range for the hidden
layer, and b=[0.10,0.20] range.

Our aim at this point is to illustrate the situation
rather than to find the best approximation, thus the
purpose of Eq. 4 is to demonstrate that using the
statistics from several network trainings such
approximation may be defined, although it may not
be an optimal approximation. Nevertheless, in
computational experiments described below the use
of Eq. 4 to calculate distance to the expected
minimum contributed to an average reduction of the
number of the training epochs required for
convergence by 30-60% with both numerical gradient
and with analytical gradients in standard
backpropagation procedure.

The VSS algorithm, introduced in the next section,
solves the problem of finding the trajectory direction
in a different way, although still based on conclusions
of the reasoning presented here.

2.4. In-Place and Progressive Search

The numerical gradient training [25] was based on
the “in-place search”: all weight changes were
examined relatively to the current set of weights
(point on the error surface), and then a single step
was made searching for a minimum along the
gradient direction. Thus numerical gradient simply
replaced the analytical gradient in the back-
propagation procedure.

The simplest search for the minimum of a function
is based on progressive line search. Minimum is
found separately for one parameter (using any line
search method), and the process is repeated starting
from the new point for the remaining parameters, as
used in algorithms that search along the coordinate
directions [33]. Parameters may be randomly
reordered before each iteration. Although more
sophisticated ways to choose directions may be
introduced, for example using the conjugate gradient
directions [33], it is worth trying the simplest
approach first (i.e. moving along the directions of the
coordinate axes). In fact moving along the individual

Neurocomputing6

parameter directions is also done in the first iteration
of the Powell’s quadratically convergent method
[33], an iteration that usually leads to the largest
reduction of the error. The search method used in the
VSS algorithm is based on repetitive application of
this first iteration.

VSS is a generalization of the simple search
method that adds or subtracts from each parameter a
fixed dw value, accepting only those changes that
lead to the decrease of errors. To avoid local minima
stochastic algorithms, such as simulated annealing
[12], Alopex [13], and several other global
optimisation algorithms, accept (using specific
probability distribution) changes that lead to an
increase of the error. The VSS algorithm does not use
this approach, relaying on the method of exploring
the error surface that allows for effective MLP
training, as long as the next point is within the same
ravine of the error surface (Fig.5). Therefore in the
“variable step search” (VSS) training algorithm the
step size in each direction is determined by the line
search.

Progressive search method updates the weight
vector W immediately after the minimum along wk

direction is found, thus making as many steps (micro-
iterations) in orthogonal directions during one
iteration (training epoch) as the number of weights
Nw. After each micro-iteration the weight vector W is
changed, and thus also the error landscape and the
value of the function E(W) used for the next step.
After the whole epoch the error function will undergo
Nw modifications, which is in contrast to the standard
backpropagation and other analytical approaches,
where changes to all W components are made under
the assumption of using the same E(W).

The basic VSS algorithm is very simple and is
outlined in the following pseudo code:

for i=1 to NumberOfEpochs do
 for j=1 to NumberOfWeights do
 find dwj that minimizes E(i,wj+dwj);
 wj  wj+dwj;
 end
 if E < Emin

 break;
 end
end

Emin is the error value at which the training stops;
selecting the stopping criterion is not specific to VSS
and can be done in the same way as for other MLP
training algorithms. The method of calculating the
error value E is shown in Fig. 4.
 Any line search minimization method can be used
to find the optimal dw, and the mean-square error
(MSE) or any other error measure [26][31] may be
used as optimization criterion. However, to increase
the computational efficiency of VSS algorithm
special methods to compute dw and E(e,w+dw) are
proposed below.

3. Reduction of Computational Cost

There are many general methods that reduce
computational costs of neural training, such as weight
pruning [26], use of support vectors for neural
training [34], statistical sampling for large training
sets, etc. Because these methods can be used with
almost any neural training algorithm they will not be
discussed here. Instead, three methods specific to the
VSS algorithm are considered: signal table for
organizing updates of error calculations, non-
differentiable transfer functions that may be
computed faster than continuous sigmoidal functions
and some heuristics to speed up the line search for a
minimum in a given weight direction.

3.1. Signal Table

Because only one weight is changed at a time the
input signals do not need to be propagated through
the entire network to calculate the error. Propagation
through the fragment of the network in which the
signals may change as a result of the weight update is
sufficient. The remaining signals incoming to all
neurons of hidden and output layers are remembered
for each training vector in an array called the “signal
table”. After a single weight is changed only the
appropriate entries in the signal table are updated.
The MSE error of each output neuron is also
remembered and do not need to be recalculated again
if a weight of another output neuron is changed.

At the beginning of the training the signals are
propagated through the entire network (this is done
only one time), thus filling in the signal table entries.
The use of the signal table significantly shortens

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks 7

training time enabling effective training of larger
networks. Table 1 contains the formulas for the
number of arithmetical operations with and without
the signal table. The formulas are based on the
analysis of the signal flow. For example in the first
formula, No(Nh+1) is the total number of weights in
the output layer, Nh(Ni+1) in the hidden layer and
(No+Nh) is the total number of activation functions in
the network. Thus, calculating the network error after
every single weight change the activation function
would have to be calculated that many times.

The dimension of the signal table is NV(No+Nh),
where NV is the number of vectors in the training set
and Nh and No are the numbers of hidden and output
neurons, respectively. For example, for a network
with 30 neurons and 10,000 training vectors, storing
variables in 8 bytes (double type) the signal table
needs only 2.3 MB of memory, that is two or more
orders of magnitude less than the memory
requirements for the LM algorithm, and also less than
the requirements of SCG algorithm (see details in
section five).

Table 1. The number of operations with and without the signal
table required to calculate numerical gradient direction (for one
training vector). Ni, Nh, No – number of input, hidden and output
neurons.

operation type number of oper-
ations without
signal table

number of
operations with
signal table

calculating
sigmoid value
(neuron outputs)

[No(Nh+1) +
Nh(Ni +1)]
(No+Nh)

No(Nh +1) +
Nh(Ni +1)(1+No)

adding incoming
signals multi-
plied by weight
values (neuron
activations)

[Nh(Ni +1) +
No(Nh +1)]2

2[No(Nh +1)+
Nh(Ni+1)(1+ No)]

3.2. Staircase Transfer Functions

Calculation of the value of sigmoidal transfer
functions is quite time consuming; in our experiments
it took over 8 times longer than a single
multiplication (in Borland Delphi implementation on
the Athlon XP processor). Due to the finite precision
of numerical calculations in computer imple-
mentation the sigmoidal transfer functions are in fact
non-differentiable staircase functions with a very
large number of small steps. Because the VSS

algorithm does not rely on analytical gradient the
transfer functions do not have to be differentiable and
an array with approximated values implementing a
staircase transfer function with lower precision can
be used, reducing the training times by more than half
without compromising accuracy. At least 20 equally
spaced values of sigmoidal function have been used,
approximating the sigmoid with accuracy of 2-3
significant digits.

The signal table can reduce the number of
operations required to calculate the weighted
activation u for a large network by several orders of
magnitude, updating the activations u in the epoch i
for a single weight change wk as:

)(1,,1   ikikii wwxuu

 (5)

The number of operations required to calculate
single neuron output y(u) is reduced on average by
the signal table by less than one order of magnitude.
With signal table the staircase transfer functions
additionally shortens the training time up to several
times. On the other hand without the signal table the
gain due to the staircase approximation of sigmoidal
functions is quite small, because the calculation time
is dominated by multiplications that enter activations
u.

3.3. Line Search Heuristics

The search algorithm should take advantage of
the MLP error surface properties. The steepness of
the error surface in different directions varies by
orders of magnitude, and the ravines in which the
MLP learning trajectories lay are usually curved,
slowly changing their directions [35],[36],[37],[38].
Therefore one can expect that an optimal change of
weight value dw for the same weight in two
successive training cycles will not differ much, while
dw for different weights in the same training cycle
may have values that differ on orders of magnitude.

In each training cycle i the first guess of dw(w,i)
for a given weight w might be the value dw(w,i) of
the weight change in the previous training cycle.
However, detailed empirical analysis of our
implementation of the line search leads to the
conclusion that for most cases convergence is faster
when smaller dw(w,i)  0.35dw(w,i) are used, in

Neurocomputing8

spite of the fact that statistically the ratio
dw(w,i)/dw(w,i) is close to 1.

Fig. 4 shows a diagram for determining the
change dw of a single weight w in one training cycle
i. OE (Old Error) is the MSE error (or another error
measure) before the weight change is applied, and
NE (New Error) is the error after the weight change is
applied. Parameters max_n (maximum number of
iterations), max_w (maximum allowed absolute value
of the weight) and max_d (maximum allowed change
of a weight in one training cycle) are introduced to
prevent excessive growth of the weights. These
parameters are optional and can have very large
values or even be set to infinity. Experimentally
determined optimal values of other parameters used
in Fig. 4 are in the following ranges: c1[0.3,0.4],
c2[2,3], c3[0.1,0.3]. However, the algorithm is
not very sensitive to the values of these parameters,
therefore they were set to their middle values and
never changed in the experiments reported below. It
should also be stressed that the results of VSS
algorithm do not depend on these parameters; they
may only influence the speed of convergence.

Before the training starts the weights are
initialized with random values from the 
interval. In the first training cycle d=d0[0.2,0.3].
Since dw(w,0)=0, for each weight w in the first
training cycle the first guess dw(w,1)=d0 is taken.
Because close to the starting (initialization) point the
ravine leading to a minimum on the error surface is
rather narrow, d0 must be sufficiently small to avoid
overshooting and to keep the trajectory within the
ravine.

Another heuristics has been derived from the
observation that calculation of the minima along each
weight direction to a high precision (e.g. by repeated
parabolic interpolations where the curvature is not
convex) increases the number of the training cycles,
quite opposite to the expectations. Therefore only
rough estimation of the step size dw in each direction
is made. On average determining a single weight
value in one training cycle the error in the line search
algorithm needs to be calculated only about 3 times.
(If the error does not change at the first attempt the
weight value is kept unchanged for this iteration.) It
is possible to increase c1 and c2 parameters so that
the error will be calculated on average only twice, but
this increases the number of training epochs and

therefore does not reduce the total computational cost
of the training.

In Fig. 4 block 3 deals with weights that did not
change in the previous training cycle. This usually
means that more precise weight tuning is needed,
therefore a smaller value d=d1·sign(w) is added to
that weight, preserving the direction but changing its
value in the next training cycle.

START

dw(w,i-1)=0

d=c1*dw(w,i-1)

NE<OE

Y

d=d1*sign(w)

NY

dw(w,i)=d

N

d= -d

NE<OE

dw(w,i)=0

N

N Y

Y

Y

N

n<max_n
|w|<max_w
|d|<max_d

n=n+1

NE<OE

1

2

4

7

3

5

6

10

8

9

n=1

n=1

c3*(VE-OE)
>NE-OEN Y

11

dw(w,i)=d

d=c2*d

d=d/c2

Fig. 4. Sketch of the Variable Step Search algorithm determining a
single weight value in one training cycle.

For that reason d1 is multiplied by sign(w) to
minimize the number of operations. The error value
NE is calculated in blocks 4, 6 and 9. The

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks 9

functionality of block 10 is analogical to the
momentum term used in backpropagation. If
c3·(VEOE)>NEOE then the point is accepted,
although the error in the previous point could have
been a bit lower, since it is likely to bring gain in the
next training cycle. VE is the error recorded one step
before OE, that is NE=error(n), OE=error(n1), and
VE=error(n2).

Many experiments aimed at estimation of the
optimal weight change sequence were performed, but
various sequences did not have significant influence
on the training efficiency. Therefore the weights are
changed either in a random order or one after another
in a systematic way, first all weights from the hidden
layer, and than all weights from the output layer, or
vice versa. If the change of a given weight does not
significantly reduce the error for two iterations the
weight is frozen, and if the weight is quite small it
may be pruned.

The diagram shown in Fig. 4 presents the VSS
algorithm incorporating the best heuristics found so
far. It should be stressed that implementation of these
heuristics is not necessary for the algorithm to work,
but they are useful to increase its efficiency.
Backpropagation-based algorithms also use a number
of heuristics for the same purpose [26],[31].
Although the diagram in Fig. 4 seems to be
complicated because several conditions are checked
to incorporate various heuristics in fact
implementation is quite simple as there is no need to
program complex formulas with matrices and
derivatives, as is the case for backpropagation-based
methods. The VSS algorithm applied to MLP training
proved to be quite stable, on most datasets leading to
convergence in a very few training cycles.

4. VSS Learning Progress

Principal Component Analysis (PCA) can be used
to reduce the weight space dimensionality for
purpose of learning trajectory and the error surface
visualization [24],[35]-[37]. Weight vectors W(t) at
the starting point t=0, and after each training epoch
t=1..tmax, are collected in the weight matrix
W=[W(0), W(1),.. W(tmax)] with n rows and tmax+1
columns. To determine principal components
Singular Value Decomposition (SVD) is performed
on the weight covariance matrix [33]. Each entry in

the weight covariance matrix is calculated as:

  
max

0max

1
() ()

t

ij i i j j
t

c W t W W t W
t 

  

(6)

where iW is the i-th weight mean over all tmax+1

epochs. A subset of the training epochs may be used
to focus on some part of the learning trajectory.

For each point (c1, c2) in the PCA weight space
W(c1, c2) = c1V1 + c2V2 + W0 is defined, where W0

may be selected as one of the points on the learning
trajectory (for example the starting point) and V1 and
V2 are the unit vectors in the first and second
principal component directions. The error surface
plot (Fig. 5) shows the relative error Er(W) =
E(W)/NVNC on the vertical axis, and distances (c1, c2)
in V1 and V2 directions on the horizontal axes. NV is
the number of vectors and NC is the number of classes
in the training set. For all error functions based on the
Minkovsky’s metric ||.|| when the output layer transfer
function is bounded by 0 and 1 the error values are
bounded from above by NVNC. Thus, the relative error
is bounded by 1. The mean square error (MSE) is the
most frequently used error measure, but replacing it
with some other error measure in the VSS algorithm
is quite trivial.

Typically the first principal component captures
about 90% of the variance and the first two
components contain together more than 95% of the
total variance, therefore the plots reflect learning
trajectory properties quite well. Although restoration
of the error surface from only two PCA components
is not ideal, to a significant degree projection of the
learning trajectories tend to adhere to this surface.
The beginning of a trajectory lies often over the error
surface projection and its end under (the error surface
projections are often flatter than original error surface
on which the trajectory lies). The trajectories in n-
dimensional weight space are bent, and their mean
direction corresponds to the direction of the error
surface ravine in the PCA projection. Nevertheless
visualization of the error surfaces and trajectories
helps to understand the learning dynamics of neural
algorithms [37].

Fig. 6a and 6b present the directions of the weight
changes in the first two PCA components during the
VSS training. In each iteration correct direction of the
error function’s ravine which leads the trajectory
towards minimum is quickly found and maintained.

Neurocomputing10

This figure is based on weights that have been
updated in a systematic way, starting from the hidden
weights, and ending with the output weights. The
directions change sharply in the middle of iteration,
when one of the hidden weight values is changed by a
large amount, and then near the end of the epoch,
when output weights are changed. Trajectories
displayed in directions corresponding to higher PCA
components seem to be quite chaotic (Fig. 6b) and do
not carry much information.

Fig. 5. Error surface and the learning trajectory of Iris (4-4-3)
trained with VSS algorithm.

Fig. 6a. Projection of the Iris (4-4-3) learning trajectory trained
with VSS in the first and second PCA direction. The cross shows
the zero point in the weight space, and short bars separate the
training epochs.

Fig. 6b. Projection of the Iris (4-4-3) learning trajectory trained
with VSS in the third and fourth PCA direction. The cross shows
the zero point in the weight space, and little bars separate the
training epochs.

4.1. Network Error

In contrast to the typical training algorithms each
epoch in the VSS algorithm consists of Nw micro
iterations. The number of epochs needed for
convergence is quite small, for simple data it can be
as low as 2 or 3. Fig. 7 shows the accuracy A, MSE
error E and the total weight norm growth W (without
using any methods of weight growth reduction)
during the training of an MLP network with 4-4-3
structure on the Iris data.

Fig. 7. MSE error (E), classification accuracy on the training set
(A) and normalized weight ||W(i)||/||W(5)|| vector length (W)
during the first 5 training cycles for the Iris (4-4-3) network

The error reaches minimum value already after two
epochs, while the accuracy is already at the
maximum. In the subsequent iterations most
contribution to reduction of error comes from
growing quickly weights, in effect making the
sigmoidal functions steeper, although the direction of
the weight vector is changing very little. The error
minima are frequently in infinity (infinite growth of
output layer weights). When the norm ||W||=1 is
imposed on the network parameters, or a

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks 11

regularization term is added to the error function, the
minima are moved from infinity to a point at the
finite distance from the starting point.

The discussion and illustrations of error surface of
network trained with more complex data sets with
different error functions can be found in [24] and
[37]. However, the general conclusions drawn from
the network training in the Iris dataset can be
extended to those cases.

4.2. Weight Values

Fig. 8 and 9 present changes of the hidden layer
weights trained by the VSS and the LM algorithms.
Although training the network with VSS beyond the
4-th epoch does improve classification the training is
continued here to show how the weights change in
this process. In VSS these weights change very
rapidly in the initial phase of the training and quickly
reach their optimal values. In LM (and in other
backpropagation-based algorithms) changes are
slower and continue for larger number of epochs. In
the second-order algorithms (such as LM) the hidden
layer weights grow faster than in the first order ones,
but because the step size in a given weight direction
is approximately proportional to the ratio of the first
to the second derivative, the hidden layer weights
tend still to be underestimated. VSS on the other
hand does not estimate weight changes but directly
changes each particular weight to a value that
approximately corresponds to the error minimum in
this weight direction. The output layer weights
change in a similar manner in both algorithms; faster
than the hidden weights in LM, but slower than the
hidden weights in VSS. Another difference is that
usually both layer weights change in a more
monotonic way in VSS than in LM.

VSS does not decrease the step when the gradient
decreases because this algorithm does not rely on
gradient information, but takes into account the
learning history contained in the trajectory. This is
advantageous because also the final part of the
network training is relatively fast. On the other hand
it may lead to very large final weights. This would
stop the training process in gradient-based methods
because the volume of the parameter space where
gradients are non-zero shrinks to zero. For the VSS

algorithm it is not a big problem because the
gradients are not used, but the error surface becomes
very flat, so the direction of the weight changes is
simply maintained and learning continues. Large
weights change in effect the sigmoid transfer
functions into a step-like function, and the final
prediction into a binary decision.

In some applications softer outputs may be
preferred, giving the user an idea how far is the test
case from the decision border (this is sometimes
taken as an estimation of the probability of
classification). To prevent an excessive weight
growth either the training must be stopped early or a
regularization term [26] should be added to the error
function (for complex data this may be useful), or the
parameters max_w and max_d (defined in section
3.3) must be set to limit maximum values of weights.
VSS decreases the step size as a result of tighter
curvature of the error surface ravine rather than
gradient value. Obviously VSS will stop when there
is no difference between the error values in two
successive training cycles.

-6

-5

-4

-3

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 Fig. 8. Hidden layer weight values for Iris (4-4-3) trained with
VSS (vertical axis: weight values, horizontal axis: epoch number).

Neurocomputing12

-8

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 9. Hidden layer weight values for Iris (4-4-3) trained with LM
(vertical axis: weight values, horizontal axis: epoch number).

As the training approaches the final stage, the
changes of direction are usually slow if no
regularization term is added to the error function. If
the regularization term (proportional to the sum of the
square of the weight values) is added, the error
surface in the areas where the weight vector reaches
optimal length resembles a paraboloid, preventing
further weight growth, but allowing for some small
fluctuations of the weight direction.

5. Experimental Results

In this section VSS performance is compared with
the performance of three well known neural learning
algorithms, Rprop, SCG and LM. These algorithms
were chosen because they are most effective and
widely used for neural network training.

Numerical experiments with the VSS algorithm
have been made on some well-known benchmark
dataset from the UCI learning repository, and the 3-
bit parity data. The UCI datasets and their detailed
description can be found in [39]. The five benchmark
datasets used for our tests have also been used in
many studies [40]. They range from very simple data,
such as Iris (4 continuous features, 3 classes, 150
vectors), to data of moderate size (WBC, Wisconsin
Breast Cancer, with 10 discrete features, 2 classes
and 699 cases), and to datasets that are challenging in
different ways. The Mushrooms dataset contains
descriptions of 8124 samples of edible and inedible
mushrooms with 22 symbolic attributes changed to
125 logical features. The Thyroid data contains three
classes, with diagnosis based on the 15 binary and 6
continuous features, for 3772 training cases

(screening tests for thyroid problems), and 3428
cases given as test data. The training Shuttle dataset
contained 43500 vectors and the test set 14500
vectors, each with 9 attributes, describing events
from 7 categories. State-of-the-art results for these
datasets may be found in [23]. The n-bit parity
problems are in general difficult for MLP networks,
therefore the 3-bit parity problem was also included
in the comparisons.

The binary features in Mushrooms and 3-bit parity
were represented by 0 and 1. Before training all data
was normalized to zero mean and unit standard
deviation for each feature:



xx
x


 (7)

For each training algorithm 20 experiments were
conducted with each dataset. The network was tested
either on a separate test data (Thyroid, Shuttle), or
using the 10-fold crossvalidation (Iris, WBC,
Mushroom). A vector was considered to be classified
correctly if its corresponding output neuron signal
was larger than the other neuron signals, and larger
than 0.5. All training algorithms were run with their
default parameters, the same for each dataset. Table 2
shows a summary of results for which the training
accuracy was used as a stopping criterion (%trn),
which on average corresponded to the given test
accuracy (%test).

VSS calculations have been performed using the
program developed by one of us (MK), written in
Borland Delphi. The Matlab Neural Network
Toolbox (written by H. Demuth and M. Hagen) was
used for Rprop, SCG and LM calculations.

Several values determining algorithm efficiency
are considered here: the number of training cycles (N)
required to achieve the desired accuracy, the
percentage of the algorithm runs that converge to
such solutions (CR), the approximate memory
requirements, and the total computational cost.
Comprehensive comparison of various properties of
different algorithm is a very complex and difficult
problem. The number of training epochs can be easily
compared, but there is no simple way of comparing
other performance parameters. The number of
training epochs or the number of times the error is
calculated can be quite misleading. For example, in
the LM algorithm calculation of the error is only a

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks 13

small fraction of the overall cost of calculations,
while in VSS, using the signal table, calculations of
the partial errors consumes almost all time.

The training times between Matlab implementation
of Rprop, SCG and LM algorithms and our
implementation of the VSS algorithm in Delphi are
not easy to compare; for example, operations on big
arrays, done in LM and other algorithms, are
performed much faster in Matlab, while operations
on scalar variables are faster in Delphi. To make the
comparison more software and platform independent
the algorithm speed s has been expressed as the ratio
of the training time to the time of a single
propagation of the training set through the network,
increasing the number of vectors 100-fold. Only the
3-bit parity dataset was too small for such estimation.
Using VSS for small datasets this ratio for the Iris
data is s≈0.8 and for the WBC data s≈0.4, showing
that VSS was about 5-times faster than the three
algorithms used for comparison. For the Mushroom
data s≈0.7 and for the Thyroid s≈3.7, showing that
the speed of VSS, SCG and Rprop were of the same
order, while LM was about 5 times slower.

Implementations of all algorithms use 8-byte
floating point representation of numbers, therefore
increase of memory requirements by the programs
after the initialization of the network may be
compared. For the Iris, Breast and the 3-bit parity it
was below the accuracy of measurement for all the
algorithms. For the Mushroom data it was 40MB for
Rprop and SCG, 240MB for LM and 0.4MB for
VSS. For the Thyroid it was 1MB for Rprop and
SCG, 30MB for LM and 0.2MB for VSS.

Table. 2. Comparison of the VSS, RPROP, LM and SCG
algorithms. N is the number of training cycles (N) required to
achieve the desired training accuracy % trn, t is defined in Eq. (8),
CR is the percentage of the algorithm runs that converge to such
solutions.

data
set

Iris WBC
Mush
room

Thy-
roid

Shu-
ttle

3bit
parity

net-
work

4-4-3
10-4-

2
125-
4-3

21-4-
3

9-6-7 3-3-2

% trn 97.3 97.0 99.8 98.4 99.2 100

Algo-
rithm

% tst 96.0 96.0 99.7 98.0 99.0 100
N 104 89 15 87 15 131 131(65)
σ 18 66 3.0 42 4.8 65
t 110 50 41 65 18 74

Rprop

CR 100 100 100 85 80 50 0.50
N 54 38 45 186 46 104SCG
σ 20 28 19 91 16 87

t 56 21 48 91 40 51
CR 90 60 100 75 60 80
N 20 15 6.0 43 15 27
σ 12 8.0 3.7 27 7.5 17
t 29 26 17 44 44 32

LM

CR 80 85 90 60 60 75
N 3.5 1.6 2.0 10 6.0 3.1
σ 1.0 0.4 0.5 2.4 2.0 0.6VSS

CR 100 100 100 95 95 95

Relative time and memory values are not reported
in Tab. 2 because they obviously depend on a
particular software implementation of a given
algorithm, but they give an idea of what relative
speeds and memory requirements may be expected. It
is clear that VSS may easily be used to handle much
bigger problems than Mushroom or Thyroid.
Estimation of the computational complexity of VSS
algorithm is shown in Table 1.

Only VSS and LM algorithms were able to find the
optimal solutions with the training accuracy
frequently higher than the required minimum, as
shown in Tab. 2. However, LM frequently did not
converge to the solution and the training had to be
repeated with new random weights. Nevertheless,
solutions with such low error on the training set
usually have higher errors on the test set. Since the
task of neural networks is not to learn the training
data points but the underlying data model in order to
ensure good generalization, this aspect will not be
analyzed further.

The CR parameter in Table 2 gives the percentage
of the algorithm runs that converged to the desired
solution within 250 epochs for LM and VSS and
within 1000 epochs for Rprop and SCG. VSS had
always the highest rate of converged runs and the
lowest variance of the results.

The standard t-test for the statistical significance of
the difference between the numbers of training cycles
was used:

 (8)

For nVSS=nX=20 VSS training will require fewer
training cycles than training with algorithm X with

Neurocomputing14

probability 0.999 if t is greater than 3.55; this was
true in all cases (Table. 2). Although in the
distribution of the number of training cycles the
skewness is usually greater than one, the t values
were significantly greater than 3.5, justifying the use
of the t-test.

The evolution of MSE error and classification
accuracy during the VSS training is shown in Fig.7.

6. Discussion and conclusions

Most of the MLP training algorithms used in
practical applications are based on analytical gradient
techniques and the backpropagation of error
computational scheme. Stochastic search algorithms,
based on simulated annealing or evolutionary
approaches are more costly and do not seem to be
competitive comparing to the multistart gradient-
based methods [18], although there are indications
that on more complex data results may be different
[9]-[11].

A new class of neural training algorithms based on
systematic rather than stochastic search has been
introduced here. Systematic search techniques have
always been popular in artificial intelligence [41], but
are neglected in the neural network research. Not
much is known about the relative merits of these
methods in comparison to widely used stochastic,
evolutionary, swarm, ant and other algorithms. Very
few attempts to use systematic search techniques
have been made so far. Numerical evaluation of
gradients in neural network training has been used in
[24],[25],[42], and in the extraction of logical rules
from data [22],[23] beam search techniques and
updating the pairs of weights has been used. In this
paper one of the simplest variants of systematic
search algorithms has been explored, based on the
single weight update.

Analysis of the learning trajectories using the first
two principal components in the weight space to
visualize MLP error surfaces did not show local
minima in “craters” (see more examples in [24],[37]),
except the one created by regularization term. The
main problem of neural training seems thus not to be
the local minima, but rather finding narrow ravines
on the landscape of the error function that lead to flat

valleys where optimal solutions are found (this is the
reason why many starting points followed by short
training may be more effective than long training),
and getting stuck on the highly situated plateaus.
Algorithms based on analytical gradients sometimes
cannot precisely determine optimal direction for the
next step and may behave as if they were in a local
minimum. For that reason it is worthwhile to develop
an MLP training algorithm that does not use the
gradient information to determine direction and is not
so expensive as stochastic or evolutionary algorithms.
VSS may get stuck only in those cases when an
unfortunate random initialization will lead it away
from a good solution, to a point attractor on a highly
situated ravine.

Analysis of learning trajectories helped formulate
the variable step size training algorithm based on a
sequence of single-weight updates, as it is done in the
first iteration of Powell’s quadratically convergent
minimization algorithm [33]. Numerous improve-
ments of the efficiency of the VSS algorithm have
been proposed, the most important being the signal
table that allows for efficient updates of the neuron
activations. Although the VSS algorithm uses some
heuristic functions and constants (as most analytical
gradient algorithms also do [26],[31]) their values are
kept fixed and need not be adjusted by the user.

The VSS algorithm has many advantages. First, the
method is quite simple to program, even with all
heuristics described in this paper. It does not require
calculation of matrices, derivatives, derivation of
complex formulas and careful organization of
information flow in the backward step. This implies
greater modularity of the software, for example the
ability to change error functions without re-writing
the program, or using cross-entropy error function or
arbitrary powers of error. There are also no
restrictions on the type of neural functions that can be
used – the discontinuous staircase functions may
easily be replaced by discrete approximation to
transfer functions of any shape [43]. This is very
important because some of the functions suitable for
neural training lead to much faster convergence on
difficult problems [44], but their implementation in
the backpropagation networks require rather tedious
changes in many parts of the program. Imple-
mentation of heterogeneous functions in a single

Kordos & Duch – Variable Step Search Training Algorithm for Feedforward Networks 15

neural network using analytical approach is
particularly difficult [45],[46]. Implementing such
functions with the VSS algorithm requires very little
changes to calculate activations and approximate
neural output functions, thus allowing for rapid
development of programs for any type of feedforward
network (including arbitrary radial basis function
networks [26]), making this approach ideal for
experimentation.

It is rather surprising that in empirical tests VSS
algorithm performed so well, in most cases even
better than well established Rprop, SCG and LM
algorithms, converging frequently to good solutions
in very few epochs.

Most algorithms manipulate only the batch size
(the number of vectors presented to the network
before the weights are updated) and change all the
weights at once. Updating the error function many
times in each epoch seems to be a unique feature of
the VSS algorithm. The micro iterations that change
only a single weight at a time allow for more precise
exploration of the error surface. The same is true for
iterative solutions to eigenproblems when updates are
obtained after multiplication of a single row of
diagonalized matrix by approximated eigenvector
instead of the whole matrix-vector product [33].
 VSS is able to find very good solutions and has
very low memory requirements, making it suitable
for large scale applications. This algorithm can be
used as a reference for more sophisticated and
computationally costly methods using stochastic or
evolutionary search techniques. There is also plenty
of room for improvement of different aspects of this
algorithm, for example adding additional directions
in the search process. Other algorithms that belong to
this family, based on more sophisticated search
techniques, should also be developed.

References

[1] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning
Internal Representations by Error Propagation”. In Parallel
Data Processing, Vol.1, Chapter 8, the M.I.T. Press,
Cambridge, 1986, pp. 318-362.

[2] M. Riedmiller and H. Braun, “RPROP – a fast adaptive
learning algorithm”, Technical Report, University Karlsruhe,
1992.

[3] S.E. Fahlman, “Faster Learning Variations of
Backpropagation: an empirical study”, Connectionist Models
Summer School, Morgan Kaufmann, pp. 38-51, 1998.

[4] C. Igel. M. Husken, “Empirical Evaluation of the Improved
Rprop Learning Algorithm”, Neurocomputing, vol. 50, pp.
105-123, 2003.

[5] A.D. Anastasiadis, G.D. Magoulas, M.N. Vrahatis, “New
Globally Convergent Training Scheme Based on the Resilient
Propagation Algorithm”, vol. 64, pp. 253-270, 2005.

[6] D. Marquard, “An Algorithm for Least-squares Estimation of
Nonlinear Parameters”, SIAM J. Appl. Math., vol.11, pp.
431-441, 1963.

[7] N.N.R. Ranga Suri, D. Deodhare, P. Nagabhushan, “Parallel
Levenberg-Marquardt-Based Neural Network Training on
Linux Clusters - A Case Study”, Proc. 3rd Indian Conf. on
Computer Vision, Graphics & Image Processing,
Ahmadabad, India 2002.

[8] M.F. Möller, “A Scaled Conjugate Gradient Algorithm for
Fast Supervised Learning”, Neural Networks, vol. 6, pp. 525-
533, 1993.

[9] M.D. Ritchie, B.C. White, J.S. Parker, L.W. Hahn, J.H.
Moore, “Optimization of neural network architecture using
genetic programming improves detection and modeling of
gene-gene interactions in studies of human diseases”. BMC
Bioinformatics 4: 28, 2003.

[10] R.S. Sexton, R.E. Dorsey, N.A. Sikander, “Simultaneous
optimization of neural network function and architecture
algorithm”. Decision Support Systems, vol. 36(3), pp. 283-
296, 2004.

[11] N. Garcia-Pedrajas, D. Ortiz-Boyer, C. Hervas-Martinez,
“An alternative approach for neural network evolution with a
genetic algorithm: crossover by combinatorial optimization”.
Neural Networks, vol. 19(4), pp. 514-528, 2006.

[12] J. Engel, “Teaching Feed-forward Neural Networks by
Simulated Annealing”, Complex Systems vol. 2, pp. 641-
648, 1988.

[13] K.P. Unnikrishnan, and K.P. Venugopal, “Alopex: A
Correlation-Based Learning Algorithm for Feed-Forward and
Recurrent Neural Networks”, Neural Computations, 6, pp.
469-490, 1994.

[14] V. F. Koosh, “Analog Computation and Learning in VLSI”,
PhD Thesis, Caltech, Pasadena, CA, 2001.

[15] R. Battiti and G. Tecchiolli, “Training Neural Nets with the
Reactive Tabu Search”, IEEE Trans. on Neural Networks,
vol.6, pp. 1185-1200, 1995.

[16] W. Duch, J. Korczak, Optimization and global minimization
methods suitable for neural networks, Technical Report 1/99,
Nicolaus Copernicus University,
http://citeseer.ist.psu.edu/duch98optimization.html

[17] L. Hamm and B. Wade Brorsen, “Global Optimization
Methods”, The 2002 International Conference on Machine
Learning and Applications (ICMLA'02), Monte Carlo Resort,
Las Vegas, Nevada, USA, June 2002.

[18] D. Saad (ed.), “On-Line Learning in Neural Networks”,
Cambridge, UK: Cambridge University Press 1998.

[19] J.R. Quinlan, R.M. Cameron-Jones, “Oversearching and
layered search in empirical learning”. Proc. of 14th Int. Joint
Conference on Artificial Intelligence (IJCAI-95), pp. 1019-
1024, Montreal, Canada, 1995.

[20] E. Aarts , J.K. Lenstra, “Local Search in Combinatorial
Optimization”, John Wiley & Sons, Inc., New York, NY,
1997.

Neurocomputing16

[21] J.C. Spall, “Introduction to Stochastic Search and
Optimization”. J. Wiley, Hoboken, NJ, 2003.

[22] W. Duch, K. Grąbczewski, “Searching for optimal MLP”. 4th
Conference on Neural Networks and Their Applications,
Zakopane, Poland 1999, pp. 65-70.

[23] W. Duch, R. Setiono, J.M. Zurada, “Computational
intelligence methods for understanding of data.” Proc. of the
IEEE vol. 92(5), pp. 771- 805, 2004.

[24] M. Kordos, “Search-based Algorithms for Multilayer
Perceptrons”, PhD Thesis, The Silesian University of
Technology, Gliwice, Poland 2005, available at
http://www.phys.uni.torun.pl/~kordos

[25] W. Duch, M. Kordos, “Multilayer Perceptron Trained with
Numerical Gradient”. Proc. of Int. Conf. on Artificial Neural
Networks (ICANN), Istanbul, June 2003, pp. 106-109.

[26] S. Haykin, “Neural networks: a comprehensive foundations”.
New York: MacMillian Publishing 1994.

[27] K. W. Morton, D. F. Mayers, “Numerical Solution of Partial
Differential Equations. An Introduction”. Cambridge
University Press, 2005.

[28] L.G.C. Hamey, “XOR has no local minima: A case study in
neural network error surface analysis”. Neural Networks, vol.
11(4), pp. 669-681, 1998.

[29] E.D. Sontag, H.J. Sussman, “Backpropagation Can Give Rise
to Spurious Local Minima Even for Networks Without
Hidden Layers”, Complex Systems, vol. 3, pp. 91-106, 1989.

[30] F.M. Coetze, V.L. Stonick, “488 Solutions to the XOR
Problem”, Advances in Neural Information Processing
Systems, vol. 9, pp. 410-416, Cambridge, MA, MIT Press,
1997.

[31] R. Hecht-Nielsen, “Neurocomputing”, Adison-Wesley,
Reading, MA, 1990.

[32] M. Lehr, “Scaled Stochastic Methods for Training Neural
Networks”, PhD Thesis, Stanford University, 1996.

[33] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery, “Numerical Recipes in C”, Press Syndicate of The
University of Cambridge, 1992.

[34] W. Duch, “Support Vector Neural Training”. Lecture Notes
in Computer Science, vol. 3697, 67-72, 2005.

[35] M. Gallagher, “Multi-layer Perceptron Error Surfaces:
Visualization, Structure and Modeling”, PhD Thesis,
University of Queensland, 2000.

[36] M. Gallagher, T. Downs, Visualization of Learning in Multi-
layer Perceptron Networks using PCA. IEEE Transactions on
Systems, Man and Cybernetics-Part B: Cybernetics, vol.
33(1):28-34, 2003.

[37] M. Kordos and W. Duch, “A Survey of Factors Influencing
MLP Error Surface”, Control and Cybernetics, vol. 33(4), pp.
611-631, 2004.

[38] J. Denker et. al., “Large automatic learning, rule extraction
and generalization”, Complex Systems, 1:887-922, 1987

[39] C.J. Mertz, P.M. Murphy, UCI repository of machine
learning databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html

[40] D. Michie, D.J. Spiegelhalter, C. C. Taylor, “Machine
Learning, neural and statistical classification”, Elis Horwood,
London, 1994

[41] S. Russell, P. Norvig, Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd ed, 2002.

[42] W. Duch, M. Kordos, “Search-based Training for Logical
Rule Extraction by Multilayer Perceptron”. Proc. of Int.

Conf. on Artificial Neural Networks (ICANN), Istanbul, June
2003, pp. 86-89.

[43] W. Duch and N. Jankowski, “Survey of neural transfer
functions”, Neural Computing Surveys vol. 2, pp. 163-213,
1999.

[44] W. Duch, “Uncertainty of data, fuzzy membership functions,
and multi-layer perceptrons”. IEEE Transactions on Neural
Networks vol. 16(1), pp. 10-23, 2005.

[45] W. Duch, K. Grąbczewski, “Heterogeneous adaptive
systems”. IEEE World Congress on Computational
Intelligence, Honolulu, HI, pp. 524-529, 2002.

[46] N. Jankowski, W. Duch, “Optimal transfer function neural
networks”. 9th European Symposium on Artificial Neural
Networks (ESANN), Brugge, Belgium. De-facto
publications, pp. 101-106, 2001.

Acknowledgment: W. Duch thanks the Polish Committee for Scientific Research, research grant 2005-2007, for
partial support.

Mirosław Kordos received the M.Sc. in electrical engineering from the Technical University of
Lodz, Poland and the Ph.D. in computer science from the Silesian University of Technology,
Gliwice, Poland in 1994 and 2005, respectively. In 2006-7 he worked as a postdoctoral fellow in
the Department of Biomedical Informatics, Children's Hospital Research Foundation, Cincinnati,
Ohio, USA. He currently holds the position of assistant professor at the Division of Informatics in
Technological Processes at the Silesian University of Technology, Katowice, Poland. His research
interests focus on neural networks and their applications in various domains.

Włodzisław Duch received the M.Sc. in physics, the Ph.D. in quantum chemistry and the D.Sc.
degree from the Nicolaus Copernicus University, Toruń, Poland, in 1977, 1980 and 1986. From
1980 to 1982 he has been a postdoctoral fellow at the University of Southern California, Los
Angeles. From 1985 to 1987 he has been an Alexander von Humboldt Fellow with the Max
Planck Institute of Astrophysics, Munich, Germany. From 1986 to 1997 he has been an Associate
Professor at the Nicolaus Copernicus University, and in 1997 he was granted the title of a full
professor. He is currently a Head of the Department of Informatics, Nicolaus Copernicus

University. He has also been a Visiting Professor in Japan, Canada, Germany, France and the United States, and in
2003-2007 he has been a visting professor at the School of Computer Engineering, Nanyang Technological
University, Singapore. He has written four books, co-authored and edited nine other books and over 350 scientific
papers. He is on the editorial board of over ten scientific journals. His research interests are in computational
intelligence, neurocognitive informatics and cognitive science.

* Biography of the author(s)
Click here to download Biography of the author(s): Neurocomputing-bios.doc

http://ees.elsevier.com/neucom/download.aspx?id=84487&guid=bffdc56e-fb83-4a93-908e-66f3043c5478&scheme=1

* Photo of the author(s)
Click here to download high resolution image

http://ees.elsevier.com/neucom/download.aspx?id=84486&guid=5a1d3c0b-6065-46c5-ab96-c1b50e79a703&scheme=1

Revision notes

Ref.: Ms. No. NEUCOM-D-07-00573

Variable Step Search Algorithm for Feedforward Networks

M. Kordos, W. Duch

The following comments of Reviewer #1 have been addressed:

Fig. 3. Maybe if you join the points according to the training history the reader may capture the
evolution you describe on pg. 4 bottom.

Changed from “at the beginning of the training” to “in the first training epoch” to make
it clear that the figure shows the dependence for only a single epoch and thus the
points cannot be joined.

Pg. 5, first column, line -6: the exponent of dE1 should be c and not \alpha

Corrected.

Pg.5, second column, last line. Perhaps what you mean by unit vectors are the coordinate axes.

Corrected.

Pg. 6, first column, middle. You kill with one sentence decades of research and practice on
Simulated Annealing.

The second sentence has been changed so that the reader does not have an impression that
we criticize Simulated Annealing:

 “To avoid local minima stochastic algorithms, such as simulated annealing Error!
Reference source not found., Alopex Error! Reference source not found., and several
other global optimisation algorithms, accept (using specific probability distribution)
changes that lead to an increase of the error. The VSS algorithm does not use this
approach, relaying on the method of exploring the error surface that allows for
effective MLP training, as long as the next point is within the same ravine of the error
surface (Fig.5).”

Revision Notes

Pg. 7, first column middle. The dimension of the signal table has been already discussed on Pg.
6. Rather, you could use this place to discuss the formulas reported in Table 1.

The paragraph has been restructured, redundant information removed and explained
how the formulas in Table 1 have been calculated. Here is the new version of the
subsection 3.1:

3.1. Signal Table

Because only one weight is changed at a time the input signals do not need to be
propagated through the entire network to calculate the error. Propagation through the
fragment of the network in which the signals may change as a result of the weight
update is sufficient. The remaining signals incoming to all neurons of hidden and output
layers are remembered for each training vector in an array called the “signal table”.
After a single weight is changed only the appropriate entries in the signal table are
updated. The MSE error of each output neuron is also remembered and do not need to
be recalculated again if a weight of another output neuron is changed.

At the beginning of the training the signals are propagated through the entire
network (this is done only one time), thus filling in the signal table entries. The use of the
signal table significantly shortens training time enabling effective training of larger
networks. Table 1 contains the formulas for the number of arithmetical operations with
and without the signal table. The formulas are based on the analysis of the signal flow.
For example in the first formula, No(Nh+1) is the total number of weights in the output
layer, Nh(Ni+1) in the hidden layer and (No+Nh) is the total number of activation
functions in the network. Thus, calculating the network error after every single weight
change the activation function would have to be calculated that many times.

The dimension of the signal table is NV(No+Nh), where NV is the number of vectors in
the training set and Nh and No are the numbers of hidden and output neurons,
respectively. For example, for a network with 30 neurons and 10,000 training vectors,
storing variables in 8 bytes (double type) the signal table needs only 2.3 MB of memory,
that is two or more orders of magnitude less than the memory requirements for the LM
algorithm, and also less than the requirements of SCG algorithm (see details in section
five).

Pg. 7, column 2, after formula (5). The time saving deriving from staircase approximation is
independent from the use or not of signal table

Section 3.2 has been changed and an additional comment has been added making it clear
that such dependence exists:

The number of operations required to calculate single neuron output y(u) is reduced on
average by the signal table by less than one order of magnitude. With signal table the
staircase transfer functions additionally shortens the training time up to several times. On
the other hand without the signal table the gain due to the staircase approximation of
sigmoidal functions is quite small, because the calculation time is dominated by
multiplications that enter activations u.

Pg. 7, column 2, section 3.2. Many authors elaborated around ravines in neural network training.
Maybe you could quote explicitly some of them.

Added quotations [35-38], (three of them were already cited later)

Pg. 8, column 1, middle. You refer to an average single weight value determination in a single
cycle. Does it means that in some cycle you do determine 0 values?

Yes, it does. Added the following sentence:

If the error does not change at the first attempt the weight value is kept unchanged for
this iteration.

9. Pg. 9, column 2, middle. "often flatter then original" -> "often flatter than original"

Corrected.

10. Pg.13, formula (9) and ff. at least on my printer there is some overlap of symbols.

Though we did not observed this effect, the equation object with formula has been replaced
with a high resolution image, what insures that it will be printed correctly on any printer.
The text below has been re-written.

