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Abstract: A new class of search-based training algorithms for feedforward networks is introduced. These 

algorithms do not calculate analytical gradients and do not use stochastic or genetic search techniques. The 

forward step is performed to calculate error in response to localized weight changes using systematic search 

techniques. One of the simplest variants of this type of algorithms, the Variable Step Search (VSS) algorithm, 

is studied in details. The VSS search procedure changes one network parameter at a time and thus does 

not impose any restrictions on the network structure or the type of transfer functions. Rough approximation 

to the gradient direction and the determination of the optimal step along this direction to find the minimum of 

error are performed simultaneously. Modifying the value of a single weight changes the signals only in a

small fragment of the network, allowing for efficient calculations of contributions to errors. Several heuristics 

are discussed to increase the efficiency of VSS algorithm. Tests on benchmark data show that VSS can 

outperform such renown algorithms as the Levenberg-Marquardt or scaled conjugate gradient algorithm.





Elsevier Science 1

              Variable Step Search Algorithm 
                                   for Feedforward Networks

Elsevier use only: Received date here; revised date here; accepted date here

Abstract

A new class of search-based training algorithms for feedforward networks is introduced. These algorithms do not calculate 
analytical gradients and they do not use stochastic or genetic search techniques. The forward step is performed to calculate 
error in response to localized weight changes using systematic search techniques. One of the simplest variants of this type of 
algorithms, the Variable Step Search (VSS) algorithm, is studied in details. The VSS search procedure changes one network 
parameter at a time and thus does not impose any restrictions on the network structure or the type of transfer functions. Rough 
approximation to the gradient direction and the determination of the optimal step along this direction to find the minimum of 
cost function are performed simultaneously. Modifying the value of a single weight changes the signals only in a small 
fragment of the network, allowing for efficient calculation of contributions to errors. Several heuristics are discussed to 
increase the efficiency of VSS algorithm. Tests on benchmark data show that VSS performs not worse and sometimes even 
significantly better than such renown algorithms as the Levenberg-Marquardt or the scaled conjugate gradient.

Keywords:  neural networks, Multi-Layer Perceptrons, neural training algorithms, search techniques, optimization

1. Introduction

Multilayer perceptrons (MLP) are usually trained 
using either analytical gradient-based algorithms with 
error backpropagation or (rarely) global optimization 
methods. Some of the most popular methods from the 
first group include standard backpropagation (BP) 
[1], various versions of RPROP [2]-[4], Quickprop 
[5], Levenberg-Marquardt (LM) [6][7] and the scaled 
conjugate gradient (SCG) [8] algorithms. The second 
group involves genetic algorithms [9]-[11], simulated 
annealing [12] and its variants such as Alopex [13], 

particle swarm optimization [14], tabu search [15]
and several other algorithms [16],[17].

The training time of local gradient algorithms is 
usually significantly shorter than that of global 
methods. Sophisticated gradient techniques based on 
classical numerical analysis methods have been 
developed [18] and implemented in a large number of 
software packages. In theory global optimization 
methods should be able to find a better solution for 
complex problems, but in practice despite a lot of 
efforts (especially using the evolutionary computing 
algorithms) empirical results showing significant 
advantages of global optimization methods were 
difficult to obtain. Perhaps the benchmark problems 
analyzed were too simple. Applications to more 
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difficult problems in bioinformatics show some 
advantages of genetically optimized neural networks 
[9]-[11]. In large parameter spaces the phenomenon 
of over-searching [19] may increase the chance that 
global optimization methods will find optimal 
solutions that for the test data will give worse results 
than solutions accessible by gradient methods. Thus 
extensive search may paradoxically make the 
problem of model selection quite difficult.

In this paper a new class of neural training 
algorithms based on local search techniques [20] is 
explored. The analysis and the algorithms described 
here can be used for feedforward networks of 
arbitrary structure, with arbitrary transfer functions 
(this is in fact one of the greatest advantages of this 
approach because changing transfer functions does 
not require development of new formulas or
significant changes of the program). However, to be 
concise we shall focus only on the standard 3-layer 
MLP networks trained for data classification with 
logistic sigmoid transfer function y(u) with the unit 
slope (=1):  

                  1

1 exp( )
y u

u


 
                     (1) (1)

A “staircase” approximation to logistic functions 
will also be mentioned. Search-based optimization 
methods include stochastic methods [21], 
evolutionary algorithms and local systematic search 
techniques. So far algorithms based on systematic 
search have been largely ignored, with only a few 
papers mentioning their use in logical rule extraction 
from neural networks [22][23]. Analytical gradients 
are calculated assuming infinitesimal changes, but in 
computer implementations of the training algorithms 
changes are finite and fast learning requires large 
steps, therefore numerical effects may degrade 
performance of analytical gradient algorithms. 
Localized perturbations, restricted to one or two 
weights are sufficient to provide numerical 
approximation to gradient direction. Inspection of the 
real learning processes (using also visualization 
techniques) led us to several interesting conclusions 
[21][25], briefly summarized in the following 
sections. 

Remarks on gradients, search directions and 
search procedures are presented in section two. 
Lessons learned from experiments with search-based 
neural training algorithms were used to implement a 
new training method, called the Variable Step Search 
(VSS) algorithm. It uses a numerical rather than 
analytical approach in order to find optimal directions 
and step sizes in an iterative process. Several 
heuristics designed to improve performance of this 
algorithm are described in section three. 
Visualization of the VSS learning processes is 
presented in section four. Experimental results on 
several datasets, presented in section five in terms of 
convergence properties, accuracy and speed of 
calculations, are very promising. In many aspects 
VSS tends to perform very well, comparing favorably 
to the best neural training algorithms, such as the 
scaled conjugate gradient (SCG), the Levenberg-
Marquardt and the Rprop algorithms. It is thus clear 
that VSS and other algorithms based on systematic 
search are worth investigating. The final section 
contains conclusions and remarks on the future work.

2. Gradients and search directions

In this section the background and the motivation 
for introduction of the VSS algorithm is presented. 
Analysis and comparison of analytical and numerical 
gradients is made and several remarks on the line 
search techniques for MLP training are made. 
Properties of the gradient directions calculated by 
backpropagation-based algorithms are discussed, and 
heuristics for finding optimal direction for the next 
search step are introduced. 

2.1. Numerical and Analytical Gradient Directions 

The analytical gradient-based algorithms use an 
error backpropagation mechanism to assess the 
gradient component in each hidden weight direction. 
Assuming a single output Y, feedforward mapping 
M(X;W) of the input vector X to Y, parameterized by 
the weight vector W and a standard quadratic error 
function [26] the formula for the gradient of the 
output weights wk is: 
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The derivative of the mapping M(X;W) is expressed 
using derivatives of the transfer functions and the 
errors made by the network. These errors are 
propagated to the input layer to calculate gradients 
for the remaining weights.

In the numerical gradient network training 
[24][25] a single weight wk is subject to a small 
perturbation dw (positive or negative) and changes of 
the network error in response to this perturbation are 
used as a gradient component in wk direction:
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Thus the numerical gradient method roughly 
coincides with finite difference method of gradient 
approximation [27]. Accuracy of such calculation 
depends on the curvature of the error surface. The 
numerical gradient direction depends on dw, but this 
dependence is usually not too strong for dw in the 
range 0.0020.2 with unit sigmoid slope (β=1). 
    The main difference between gradients computed 
using analytical and numerical formulas is seen for 
small gradient values (frequently associated with the 
hidden weight components at the beginning of the 
training). Small gradients tend to be smaller in the 
analytical gradient calculations, while the large 
values tend to be larger (see Fig. 1). This tendency is 
stronger for larger networks with more complex data. 
Numerical gradient calculates the descent directions 
taking into account the error values in two points thus 
examining a broader range of the error surface than 
analytical gradient, so it can “predict” more precisely 
the error value in a spot located at some distance 
from the current point.
     In the dependence shown in Fig. 1, the analytical 
gradient was calculated using Eq. 2, and the 
numerical gradient using Eq. 3. The relation between 
analytical and numerical gradient components is 
more important than the absolute value of the 
components because the absolute value is always 
multiplied by a certain step size during network 
training. Therefore the product of the step size and 

the component value is the most important quantity. 
The gradient components shown in Fig. 1 are 
rescaled so that the lengths of the analytical and 
numerical gradient vector are the same.
     Interesting empirical observations on numerical 
and analytical gradients have been made during 
training on several datasets. A finite step along 
numerical gradient direction leads in most cases to 
faster decrease of the error than the same step along 
analytical gradient direction. The difference is even 
stronger if minimization along the direction 
determined by backpropagation and numerical 
gradient is done. 
    Although the numerical gradient is still not the 
optimal direction of the learning trajectory, it tends to 
be much closer to it than the analytical gradient (see 
the next subsection for detailed discussion).

Fig.  1. A comparison of analytically (BP) and numerically (NG, 
with dw=0.02) determined gradient components in all the weight 
directions for the thyroid dataset at the first training epoch using 
logistics sigmoid transfer functions with unit slope (=1). (21 
inputs, 4 hidden, 3 outputs, 21-4-3 network).

Backpropagation frequently gets stuck in apparent 
local minima or plateaus without reaching low values 
of the error [29]. The importance of local minima has 
been controversial for a long time [28]. Contrary to 
the common belief, local minima may not be a real 
problem in neural training; ill-conditioning and 
saddle points have much more direct effect that has 
important influence on the performance of training 
algorithms [30]. Backpropagation training is 
frequently stuck only in the apparent local minima, 
and in many cases switching to another training 
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algorithm (for example a numerical gradient) leads to 
the further decrease of the error and to the final 
convergence. Analytical gradient algorithms get stuck 
because gradients on flat surfaces, flat saddle points 
calculated in analytical way may become very small 
[31][32], while a finite step numerical gradient is 
larger and may lead to the lower areas on the error 
surface. Sometimes the trajectory may be trapped in a 
highly situated ravine on the error surface and then 
also the numerical gradient method is unable to 
converge. Visualization of the error surface (see sec. 
IV) shows frequently such situations, but the local 
minima in form of “craters” are never observed. In 
summary, there are good reasons to use numerical, 
instead of analytical, gradients.

2.2. Gradient Direction and the Optimal Next Step 
Direction

Gradient-based training methods make initially 
rapid progress, slowing significantly near the end of 
the training. Fig. 5 shows an MLP error surface
projected on the first two PCA directions in the 
weight space (two directions capture typically over 
95% of all variance). The error surface becomes 
almost flat in the areas that are located further from 
the starting point (initialization with small weights is 
assumed), and therefore reached by the learning 
trajectory at the final stage of the training. The 
analysis of such surfaces and one-dimensional 
crossections along single weight directions at the 
beginning and near the end of the training shows 
(Fig. 2) some interesting properties of MLP error 
surfaces. The hidden weights have in general rather 
low gradients at the beginning and at the end of the 
training, although their values change a lot; the 
output weights grow faster and have large gradients 
around minima, with large flat highly situated 
plateaus far from optimal values. This suggests deep 
ravines in the error function landscape. 
    In any case gradient direction is not the optimal 
step direction. The RPROP algorithm that takes into 
account only the sign of a derivative instead of the 
gradient performs usually not worse than BP, and 
frequently even better [2],[26]. Moreover, there exists 
a certain similarity between Rprop and VSS: both use 
individual update steps for each weight.

Fig.  2. Typical error surface crossections in the direction of: (1) 
hidden weight at the beginning of the training; (2) output weight at 
the beginning of the training, (3) output weight at the end of the 
training, (4) hidden weight at the end of the training.

2.3. Gradients and Optimal Directions

It is instructive to assess the statistical relation 
between the size of the gradient component dE(w) in 
the direction of weight w and the distance mw from 
the point W to the minimum of the error function in 
the direction of weight w (see Fig. 3). The error 
surface sections in a particular weight direction may 
differ significantly, although the curves shown in Fig. 
2 are rather typical for most weights. We use 
numerical gradient in this section. The disproportion
between the analytical gradient component and the 
optimal step size is even bigger than for numerical 
gradient, because in this case it is the product of 
relations shown in Fig. 1 and in Fig. 3.

Initially the minima for the output weights are 
located near the current point W, but for the hidden 
weights they are on average much further (Fig. 3). 
The error surface landscape changes as the training 
progresses. However, the changes are visible mostly 
in the hidden weight directions. Thus, at the end of 
the training the relations shown in Fig. 3 will look 
very similar for both the hidden and output weights 
(as in Fig. 2, lower curves). 
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Fig. 3. Dependence between the numerical gradient component 
dE(w) and the distance mw from the actual point to the minimum 
error in a given weight direction in the first training epoch (Iris 4-
4-3 network).

Heuristic approximation of the relation between 
dE(w) and the m(w) distance in the successive 
training epochs may be used to speed up search of the 
minimum. An example of such approximation for 
logistics sigmoid transfer function is given by the 
equation below. 

(2)

     1( ) sign ( ) 1 exp cm w dE w a bt dE   

  1 maxmin ( ) ,min ,5 mdE dE w dE dE (4)

The first factor takes care of the sign of the gradient. 
The second factor (where t denotes the epoch 
number) expresses the fact that during training the 
error surface sections around the actual learning 
trajectory in the direction of hidden weights are 
asymptotically getting more and more similar to the 
sections in the direction of output weights (Fig. 2). 
For that reason a=0 for output weights, while for 
hidden weights this factor is expressed by an 
exponential function, which asymptotically 
approaches 1. The third factor (dE1

C) approximates 
the dependence of dE(w) on the distance m(w) in a 
given epoch for a given layer. Parameters dE1, a and 
b are determined fitting the function in Eq. 4 using 
the least mean square method on the data points 
(network weight values after each epoch) obtained 

while training the networks using the datasets 
described in section V with the numerical gradient 
method. dEmax is the greatest and dEm is the mean of 
the error changes while changing the weight values 
by dw to determine the descent direction. The power
c(0,1) is a constant usually fixed at c =0.5, a=0 for 
the output layer, a[10,20] range for the hidden 
layer, and b=[0.10,0.20] range. 

Our aim at this point is to illustrate the situation 
rather than to find the best approximation, thus the 
purpose of Eq. 4 is to demonstrate that using the 
statistics from several network trainings such 
approximation may be defined, although it may not 
be an optimal approximation. Nevertheless, in 
computational experiments described below the use 
of Eq. 4 to calculate distance to the expected 
minimum contributed to an average reduction of the 
number of the training epochs required for 
convergence by 30-60% with both numerical gradient 
and with analytical gradients in standard 
backpropagation procedure.

The VSS algorithm, introduced in the next section, 
solves the problem of finding the trajectory direction 
in a different way, although still based on conclusions 
of the reasoning presented here.

2.4. In-Place and Progressive Search

The numerical gradient training [25] was based on 
the “in-place search”: all weight changes were 
examined relatively to the current set of weights 
(point on the error surface), and then a single step 
was made searching for a minimum along the 
gradient direction. Thus numerical gradient simply 
replaced the analytical gradient in the back-
propagation procedure. 

The simplest search for the minimum of a function 
is based on progressive line search. Minimum is 
found separately for one parameter (using any line 
search method), and the process is repeated starting 
from the new point for the remaining parameters, as 
used in algorithms that search along the coordinate 
directions [33]. Parameters may be randomly 
reordered before each iteration. Although more 
sophisticated ways to choose directions may be 
introduced, for example using the conjugate gradient 
directions [33], it is worth trying the simplest 
approach first (i.e. moving along the directions of the 
coordinate axes). In fact moving along the individual 
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parameter directions is also done in the first iteration 
of the Powell’s quadratically convergent method 
[33], an iteration that usually leads to the largest 
reduction of the error. The search method used in the 
VSS algorithm is based on repetitive application of 
this first iteration.

VSS is a generalization of the simple search 
method that adds or subtracts from each parameter a 
fixed dw value, accepting only those changes that 
lead to the decrease of errors. To avoid local minima 
stochastic algorithms, such as simulated annealing 
[12], Alopex [13], and several other global 
optimisation algorithms, accept (using specific 
probability distribution) changes that lead to an 
increase of the error. The VSS algorithm does not use 
this approach, relaying on the method of exploring 
the error surface that allows for effective MLP 
training, as long as the next point is within the same 
ravine of the error surface (Fig.5). Therefore in the 
“variable step search” (VSS) training algorithm the 
step size in each direction is determined by the line 
search. 

Progressive search method updates the weight 
vector W immediately after the minimum along wk

direction is found, thus making as many steps (micro-
iterations) in orthogonal directions during one 
iteration (training epoch) as the number of weights 
Nw. After each micro-iteration the weight vector W is 
changed, and thus also the error landscape and the 
value of the function E(W) used for the next step. 
After the whole epoch the error function will undergo 
Nw modifications, which is in contrast to the standard 
backpropagation and other analytical approaches, 
where changes to all W components are made under 
the assumption of using the same E(W). 

The basic VSS algorithm is very simple and is 
outlined in the following pseudo code:

for i=1 to NumberOfEpochs do
     for j=1 to NumberOfWeights do
          find dwj that minimizes E(i,wj+dwj);
          wj  wj+dwj;
    end    
    if E < Emin

        break;
    end
end
      

Emin is the error value at which the training stops;
selecting the stopping criterion is not specific to VSS 
and can be done in the same way as for other MLP 
training algorithms. The method of calculating the 
error value E is shown in Fig. 4.
    Any line search minimization method can be used 
to find the optimal dw, and the mean-square error 
(MSE) or any other error measure [26][31] may be 
used as optimization criterion. However, to increase 
the computational efficiency of VSS algorithm 
special methods to compute dw and E(e,w+dw) are 
proposed below.

3. Reduction of Computational Cost

There are many general methods that reduce 
computational costs of neural training, such as weight 
pruning [26], use of support vectors for neural 
training [34], statistical sampling for large training 
sets, etc. Because these methods can be used with 
almost any neural training algorithm they will not be 
discussed here. Instead, three methods specific to the 
VSS algorithm are considered: signal table for 
organizing updates of error calculations, non-
differentiable transfer functions that may be 
computed faster than continuous sigmoidal functions 
and some heuristics to speed up the line search for a 
minimum in a given weight direction.

3.1.  Signal Table 

Because only one weight is changed at a time the 
input signals do not need to be propagated through 
the entire network to calculate the error. Propagation 
through the fragment of the network in which the 
signals may change as a result of the weight update is 
sufficient. The remaining signals incoming to all 
neurons of hidden and output layers are remembered
for each training vector in an array called the “signal 
table”. After a single weight is changed only the 
appropriate entries in the signal table are updated. 
The MSE error of each output neuron is also 
remembered and do not need to be recalculated again 
if a weight of another output neuron is changed. 

At the beginning of the training the signals are 
propagated through the entire network (this is done 
only one time), thus filling in the signal table entries. 
The use of the signal table significantly shortens 
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training time enabling effective training of larger 
networks. Table 1 contains the formulas for the 
number of arithmetical operations with and without
the signal table. The formulas are based on the 
analysis of the signal flow. For example in the first 
formula, No(Nh+1) is the total number of weights in 
the output layer, Nh(Ni+1) in the hidden layer and 
(No+Nh) is the total number of activation functions in 
the network. Thus, calculating the network error after 
every single weight change the activation function 
would have to be calculated that many times.

The dimension of the signal table is NV(No+Nh),
where NV is the number of vectors in the training set 
and Nh and No  are the numbers of hidden and output 
neurons, respectively. For example, for a network 
with 30 neurons and 10,000 training vectors, storing 
variables in 8 bytes (double type) the signal table 
needs only 2.3 MB of memory, that is two or more 
orders of magnitude less than the memory 
requirements for the LM algorithm, and also less than 
the requirements of SCG algorithm (see details in 
section five).

Table 1. The number of operations with and without the signal 
table required to calculate numerical gradient direction (for one 
training vector). Ni, Nh, No – number of input, hidden and output 
neurons. 

operation type number of oper-
ations without 
signal table

number of 
operations with 
signal table

calculating 
sigmoid value 
(neuron outputs)

[No(Nh+1) +
Nh(Ni +1)]
(No+Nh)

No(Nh +1) + 
Nh(Ni +1)(1+No)

adding incoming 
signals multi-
plied by weight 
values (neuron
activations)

[Nh(Ni +1) +
No(Nh +1)]2

2[No(Nh +1)+
Nh(Ni+1)(1+ No)]

3.2.  Staircase Transfer Functions

Calculation of the value of sigmoidal transfer 
functions is quite time consuming; in our experiments 
it took over 8 times longer than a single 
multiplication (in Borland Delphi implementation on 
the Athlon XP processor). Due to the finite precision 
of numerical calculations in computer imple-
mentation the sigmoidal transfer functions are in fact 
non-differentiable staircase functions with a very 
large number of small steps. Because the VSS 

algorithm does not rely on analytical gradient the 
transfer functions do not have to be differentiable and 
an array with approximated values implementing a 
staircase transfer function with lower precision can 
be used, reducing the training times by more than half 
without compromising accuracy. At least 20 equally 
spaced values of sigmoidal function have been used, 
approximating the sigmoid with accuracy of 2-3 
significant digits.

The signal table can reduce the number of 
operations required to calculate the weighted 
activation u for a large network by several orders of 
magnitude, updating the activations u in the epoch i
for a single weight change wk as:

             
)( 1,,1   ikikii wwxuu

                (5)

The number of operations required to calculate 
single neuron output y(u) is reduced on average by 
the signal table by less than one order of magnitude. 
With signal table the staircase transfer functions 
additionally shortens the training time up to several 
times. On the other hand without the signal table the 
gain due to the staircase approximation of sigmoidal 
functions is quite small, because the calculation time 
is dominated by multiplications that enter activations 
u. 

3.3.  Line Search Heuristics

The search algorithm should take advantage of 
the MLP error surface properties. The steepness of 
the error surface in different directions varies by 
orders of magnitude, and the ravines in which the 
MLP learning trajectories lay are usually curved, 
slowly changing their directions [35],[36],[37],[38]. 
Therefore one can expect that an optimal change of 
weight value dw for the same weight in two 
successive training cycles will not differ much, while 
dw for different weights in the same training cycle 
may have values that differ on orders of magnitude. 

In each training cycle i the first guess of dw(w,i)
for a given weight w might be the value dw(w,i) of 
the weight change in the previous training cycle. 
However, detailed empirical analysis of our 
implementation of the line search leads to the 
conclusion that for most cases convergence is faster 
when smaller dw(w,i)  0.35dw(w,i) are used, in 
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spite of the fact that statistically the ratio 
dw(w,i)/dw(w,i) is close to 1.

Fig. 4 shows a diagram for determining the 
change dw of a single weight w in one training cycle 
i. OE (Old Error) is the MSE error (or another error 
measure) before the weight change is applied, and 
NE (New Error) is the error after the weight change is 
applied. Parameters max_n (maximum number of 
iterations), max_w (maximum allowed absolute value 
of the weight) and max_d (maximum allowed change 
of a weight in one training cycle) are introduced to 
prevent excessive growth of the weights. These 
parameters are optional and can have very large 
values or even be set to infinity. Experimentally 
determined optimal values of other parameters used 
in Fig. 4 are in the following ranges: c1[0.3,0.4],
c2[2,3], c3[0.1,0.3]. However, the algorithm is 
not very sensitive to the values of these parameters, 
therefore they were set to their middle values and 
never changed in the experiments reported below. It
should also be stressed that the results of VSS 
algorithm do not depend on these parameters; they 
may only influence the speed of convergence.

Before the training starts the weights are 
initialized with random values from the 
interval. In the first training cycle d=d0[0.2,0.3].
Since dw(w,0)=0, for each weight w in the first 
training cycle the first guess dw(w,1)=d0 is taken. 
Because close to the starting (initialization) point the 
ravine leading to a minimum on the error surface is 
rather narrow, d0 must be sufficiently small to avoid 
overshooting and to keep the trajectory within the 
ravine.

Another heuristics has been derived from the 
observation that calculation of the minima along each 
weight direction to a high precision (e.g. by repeated 
parabolic interpolations where the curvature is not 
convex) increases the number of the training cycles, 
quite opposite to the expectations. Therefore only 
rough estimation of the step size dw in each direction 
is made. On average determining a single weight 
value in one training cycle the error in the line search 
algorithm needs to be calculated only about 3 times. 
(If the error does not change at the first attempt the 
weight value is kept unchanged for this iteration.) It 
is possible to increase c1 and c2 parameters so that 
the error will be calculated on average only twice, but 
this increases the number of training epochs and 

therefore does not reduce the total computational cost 
of the training.

In Fig. 4 block 3 deals with weights that did not 
change in the previous training cycle. This usually 
means that more precise weight tuning is needed, 
therefore a smaller value d=d1·sign(w) is added to 
that weight, preserving the direction but changing its 
value in the next training cycle. 

START

dw(w,i-1)=0

d=c1*dw(w,i-1)

NE<OE

Y

d=d1*sign(w)

NY

dw(w,i)=d

N

d= -d

NE<OE

dw(w,i)=0

N

N Y

Y

Y

N

n<max_n
|w|<max_w
|d|<max_d

n=n+1

NE<OE

1

2

4

7

3

5

6

10

8

9

n=1

n=1

c3*(VE-OE)
>NE-OEN Y

11

dw(w,i)=d

d=c2*d

d=d/c2

Fig.  4. Sketch of the Variable Step Search algorithm determining a 
single weight value in one training cycle.

For that reason d1 is multiplied by sign(w) to 
minimize the number of operations. The error value 
NE is calculated in blocks 4, 6 and 9. The 
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functionality of block 10 is analogical to the 
momentum term used in backpropagation. If 
c3·(VEOE)>NEOE then the point is accepted, 
although the error in the previous point could have 
been a bit lower, since it is likely to bring gain in the 
next training cycle. VE is the error recorded one step 
before OE, that is NE=error(n), OE=error(n1), and 
VE=error(n2). 

Many experiments aimed at estimation of the 
optimal weight change sequence were performed, but 
various sequences did not have significant influence 
on the training efficiency. Therefore the weights are 
changed either in a random order or one after another 
in a systematic way, first all weights from the hidden 
layer, and than all weights from the output layer, or 
vice versa. If the change of a given weight does not 
significantly reduce the error for two iterations the 
weight is frozen, and if the weight is quite small it 
may be pruned.

The diagram shown in Fig. 4 presents the VSS 
algorithm incorporating the best heuristics found so 
far. It should be stressed that implementation of these 
heuristics is not necessary for the algorithm to work, 
but they are useful to increase its efficiency. 
Backpropagation-based algorithms also use a number 
of heuristics for the same purpose [26],[31]. 
Although the diagram in Fig. 4 seems to be 
complicated because several conditions are checked 
to incorporate various heuristics in fact 
implementation is quite simple as there is no need to 
program complex formulas with matrices and 
derivatives, as is the case for backpropagation-based 
methods. The VSS algorithm applied to MLP training 
proved to be quite stable, on most datasets leading to 
convergence in a very few training cycles.

4. VSS Learning Progress

Principal Component Analysis (PCA) can be used 
to reduce the weight space dimensionality for 
purpose of learning trajectory and the error surface 
visualization [24],[35]-[37]. Weight vectors W(t) at 
the starting point t=0, and after each training epoch 
t=1..tmax, are collected in the weight matrix 
W=[W(0), W(1),.. W(tmax)] with n rows and tmax+1 
columns. To determine principal components 
Singular Value Decomposition (SVD) is performed 
on the weight covariance matrix [33]. Each entry in 

the weight covariance matrix is calculated as: 

  
max

0max

1
( ) ( )

t

ij i i j j
t

c W t W W t W
t 

  
    

(6)

where iW  is the i-th weight mean over all tmax+1 

epochs. A subset of the training epochs may be used 
to focus on some part of the learning trajectory.

For each point (c1, c2) in the PCA weight space
W(c1, c2) = c1V1 + c2V2 + W0 is defined, where W0

may be selected as one of the points on the learning 
trajectory (for example the starting point) and V1 and 
V2 are the unit vectors in the first and second 
principal component directions. The error surface 
plot (Fig. 5) shows the relative error Er(W) =
E(W)/NVNC on the vertical axis, and distances (c1, c2) 
in V1 and V2 directions on the horizontal axes. NV is 
the number of vectors and NC is the number of classes 
in the training set. For all error functions based on the 
Minkovsky’s metric ||.|| when the output layer transfer 
function is bounded by 0 and 1 the error values are 
bounded from above by NVNC. Thus, the relative error 
is bounded by 1. The mean square error (MSE) is the 
most frequently used error measure, but replacing it 
with some other error measure in the VSS algorithm 
is quite trivial. 

Typically the first principal component captures 
about 90% of the variance and the first two 
components contain together more than 95% of the 
total variance, therefore the plots reflect learning 
trajectory properties quite well. Although restoration 
of the error surface from only two PCA components 
is not ideal, to a significant degree projection of the 
learning trajectories tend to adhere to this surface. 
The beginning of a trajectory lies often over the error 
surface projection and its end under (the error surface 
projections are often flatter than original error surface 
on which the trajectory lies). The trajectories in n-
dimensional weight space are bent, and their mean 
direction corresponds to the direction of the error 
surface ravine in the PCA projection. Nevertheless 
visualization of the error surfaces and trajectories 
helps to understand the learning dynamics of neural 
algorithms [37].

Fig. 6a and 6b present the directions of the weight 
changes in the first two PCA components during the 
VSS training. In each iteration correct direction of the 
error function’s ravine which leads the trajectory 
towards minimum is quickly found and maintained. 
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This figure is based on weights that have been 
updated in a systematic way, starting from the hidden 
weights, and ending with the output weights. The 
directions change sharply in the middle of iteration, 
when one of the hidden weight values is changed by a 
large amount, and then near the end of the epoch, 
when output weights are changed. Trajectories 
displayed in directions corresponding to higher PCA 
components seem to be quite chaotic (Fig. 6b) and do 
not carry much information. 

Fig.  5. Error surface and the learning trajectory of Iris (4-4-3) 
trained with VSS algorithm. 

Fig. 6a. Projection of the Iris (4-4-3) learning trajectory trained 
with VSS in the first and second PCA direction. The cross shows 
the zero point in the weight space, and short bars separate the 
training epochs.

Fig. 6b. Projection of the Iris (4-4-3) learning trajectory trained 
with VSS in the third and fourth PCA direction. The cross shows 
the zero point in the weight space, and little bars separate the 
training epochs.

4.1.  Network Error

In contrast to the typical training algorithms each 
epoch in the VSS algorithm consists of Nw micro 
iterations. The number of epochs needed for 
convergence is quite small, for simple data it can be 
as low as 2 or 3. Fig. 7 shows the accuracy A, MSE 
error E and the total weight norm growth W (without 
using any methods of weight growth reduction) 
during the training of an MLP network with 4-4-3 
structure on the Iris data. 

Fig. 7. MSE error (E), classification accuracy on the training set 
(A) and normalized weight ||W(i)||/||W(5)|| vector length (W) 
during the first 5 training cycles for the Iris (4-4-3) network

The error reaches minimum value already after two 
epochs, while the accuracy is already at the 
maximum. In the subsequent iterations most 
contribution to reduction of error comes from 
growing quickly weights, in effect making the 
sigmoidal functions steeper, although the direction of 
the weight vector is changing very little. The error 
minima are frequently in infinity (infinite growth of 
output layer weights). When the norm ||W||=1 is 
imposed on the network parameters, or a 
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regularization term is added to the error function, the 
minima are moved from infinity to a point at the 
finite distance from the starting point.

The discussion and illustrations of error surface of 
network trained with more complex data sets with 
different error functions can be found in [24] and 
[37]. However, the general conclusions drawn from 
the network training in the Iris dataset can be 
extended to those cases.

4.2. Weight Values

Fig. 8 and 9 present changes of the hidden layer 
weights trained by the VSS and the LM algorithms. 
Although training the network with VSS beyond the 
4-th epoch does improve classification the training is 
continued here to show how the weights change in 
this process. In VSS these weights change very 
rapidly in the initial phase of the training and quickly 
reach their optimal values. In LM (and in other 
backpropagation-based algorithms) changes are 
slower and continue for larger number of epochs. In 
the second-order algorithms (such as LM) the hidden 
layer weights grow faster than in the first order ones, 
but because the step size in a given weight direction 
is approximately proportional to the ratio of the first 
to the second derivative, the hidden layer weights 
tend still to be underestimated. VSS on the other 
hand does not estimate weight changes but directly 
changes each particular weight to a value that 
approximately corresponds to the error minimum in 
this weight direction. The output layer weights 
change in a similar manner in both algorithms; faster 
than the hidden weights in LM, but slower than the 
hidden weights in VSS. Another difference is that 
usually both layer weights change in a more 
monotonic way in VSS than in LM.

VSS does not decrease the step when the gradient 
decreases because this algorithm does not rely on 
gradient information, but takes into account the 
learning history contained in the trajectory. This is 
advantageous because also the final part of the 
network training is relatively fast. On the other hand 
it may lead to very large final weights. This would 
stop the training process in gradient-based methods 
because the volume of the parameter space where 
gradients are non-zero shrinks to zero. For the VSS 

algorithm it is not a big problem because the 
gradients are not used, but the error surface becomes 
very flat, so the direction of the weight changes is 
simply maintained and learning continues. Large 
weights change in effect the sigmoid transfer 
functions into a step-like function, and the final 
prediction into a binary decision.

In some applications softer outputs may be 
preferred, giving the user an idea how far is the test 
case from the decision border (this is sometimes 
taken as an estimation of the probability of 
classification). To prevent an excessive weight 
growth either the training must be stopped early or a 
regularization term [26] should be added to the error 
function (for complex data this may be useful), or the 
parameters max_w and max_d (defined in section 
3.3) must be set to limit maximum values of weights. 
VSS decreases the step size as a result of tighter 
curvature of the error surface ravine rather than 
gradient value. Obviously VSS will stop when there 
is no difference between the error values in two 
successive training cycles.
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 Fig. 8. Hidden layer weight values for Iris (4-4-3) trained with 
VSS (vertical axis: weight values, horizontal axis: epoch number).
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Fig. 9. Hidden layer weight values for Iris (4-4-3) trained with LM  
(vertical axis: weight values, horizontal axis: epoch number).

As the training approaches the final stage, the 
changes of direction are usually slow if no 
regularization term is added to the error function. If 
the regularization term (proportional to the sum of the 
square of the weight values) is added, the error 
surface in the areas where the weight vector reaches 
optimal length resembles a paraboloid, preventing 
further weight growth, but allowing for some small 
fluctuations of the weight direction.

5. Experimental Results

In this section VSS performance is compared with 
the performance of three well known neural learning 
algorithms, Rprop, SCG and LM. These algorithms 
were chosen because they are most effective and 
widely used for neural network training. 

Numerical experiments with the VSS algorithm 
have been made on some well-known benchmark 
dataset from the UCI learning repository, and the 3-
bit parity data. The UCI datasets and their detailed 
description can be found in [39]. The five benchmark 
datasets used for our tests have also been used in 
many studies [40]. They range from very simple data, 
such as Iris (4 continuous features, 3 classes, 150 
vectors), to data of moderate size (WBC, Wisconsin 
Breast Cancer, with 10 discrete features, 2 classes 
and 699 cases), and to datasets that are challenging in 
different ways. The Mushrooms dataset contains 
descriptions of 8124 samples of edible and inedible 
mushrooms with 22 symbolic attributes changed to 
125 logical features. The Thyroid data contains three 
classes, with diagnosis based on the 15 binary and 6 
continuous features, for 3772 training cases 

(screening tests for thyroid problems), and 3428 
cases given as test data. The training Shuttle dataset 
contained 43500 vectors and the test set 14500
vectors, each with 9 attributes, describing events 
from 7 categories. State-of-the-art results for these 
datasets may be found in [23]. The n-bit parity 
problems are in general difficult for MLP networks, 
therefore the 3-bit parity problem was also included 
in the comparisons. 

The binary features in Mushrooms and 3-bit parity 
were represented by 0 and 1. Before training all data 
was normalized to zero mean and unit standard 
deviation for each feature:

                       


xx
x


 (7)

For each training algorithm 20 experiments were 
conducted with each dataset. The network was tested 
either on a separate test data (Thyroid, Shuttle), or 
using the 10-fold crossvalidation (Iris, WBC, 
Mushroom). A vector was considered to be classified 
correctly if its corresponding output neuron signal 
was larger than the other neuron signals, and larger 
than 0.5. All training algorithms were run with their 
default parameters, the same for each dataset. Table 2 
shows a summary of results for which the training 
accuracy was used as a stopping criterion (%trn), 
which on average corresponded to the given test 
accuracy (%test).

VSS calculations have been performed using the 
program developed by one of us (MK), written in 
Borland Delphi. The Matlab Neural Network 
Toolbox (written by H. Demuth and M. Hagen) was 
used for Rprop, SCG and LM calculations. 

Several values determining algorithm efficiency 
are considered here: the number of training cycles (N) 
required to achieve the desired accuracy, the 
percentage of the algorithm runs that converge to 
such solutions (CR), the approximate memory 
requirements, and the total computational cost. 
Comprehensive comparison of various properties of 
different algorithm is a very complex and difficult 
problem. The number of training epochs can be easily 
compared, but there is no simple way of comparing 
other performance parameters. The number of 
training epochs or the number of times the error is 
calculated can be quite misleading. For example, in 
the LM algorithm calculation of the error is only a 
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small fraction of the overall cost of calculations, 
while in VSS, using the signal table, calculations of 
the partial errors consumes almost all time.

The training times between Matlab implementation 
of Rprop, SCG and LM algorithms and our 
implementation of the VSS algorithm in Delphi are 
not easy to compare; for example, operations on big 
arrays, done in LM and other algorithms, are 
performed much faster in Matlab, while operations 
on scalar variables are faster in Delphi. To make the 
comparison more software and platform independent 
the algorithm speed s has been expressed as the ratio 
of the training time to the time of a single 
propagation of the training set through the network, 
increasing the number of vectors 100-fold. Only the 
3-bit parity dataset was too small for such estimation. 
Using VSS for small datasets this ratio for the Iris 
data is s≈0.8 and for the WBC data s≈0.4, showing 
that VSS was about 5-times faster than the three 
algorithms used for comparison. For the Mushroom 
data s≈0.7 and for the Thyroid s≈3.7, showing that 
the speed of VSS, SCG and Rprop were of the same 
order, while LM was about 5 times slower. 

Implementations of all algorithms use 8-byte 
floating point representation of numbers, therefore 
increase of memory requirements by the programs 
after the initialization of the network may be 
compared. For the Iris, Breast and the 3-bit parity it 
was below the accuracy of measurement for all the 
algorithms. For the Mushroom data it was 40MB for 
Rprop and SCG, 240MB for LM and 0.4MB for 
VSS. For the Thyroid it was 1MB for Rprop and 
SCG, 30MB for LM and 0.2MB for VSS. 

Table. 2. Comparison of the VSS, RPROP, LM and SCG 
algorithms. N is the number of training cycles (N) required to 
achieve the desired training accuracy % trn, t is defined in Eq. (8), 
CR is the percentage of the algorithm runs that converge to such 
solutions.

data 
set

Iris WBC
Mush
room

Thy-
roid

Shu-
ttle

3bit 
parity

net-
work

4-4-3
10-4-

2
125-
4-3

21-4-
3

9-6-7 3-3-2

% trn 97.3 97.0 99.8 98.4 99.2 100

Algo-
rithm

% tst 96.0 96.0 99.7 98.0 99.0 100
N 104 89 15 87 15 131 131(65)
σ 18 66 3.0 42 4.8 65
t 110 50 41 65 18 74

Rprop

CR 100 100 100 85 80 50 0.50
N 54 38 45 186 46 104SCG
σ 20 28 19 91 16 87

t 56 21 48 91 40 51
CR 90 60 100 75 60 80
N 20 15 6.0 43 15 27
σ 12 8.0 3.7 27 7.5 17
t 29 26 17 44 44 32

LM

CR 80 85 90 60 60 75
N 3.5 1.6 2.0 10 6.0 3.1
σ 1.0 0.4 0.5 2.4 2.0 0.6VSS

CR 100 100 100 95 95 95

Relative time and memory values are not reported 
in Tab. 2 because they obviously depend on a 
particular software implementation of a given 
algorithm, but they give an idea of what relative 
speeds and memory requirements may be expected. It 
is clear that VSS may easily be used to handle much 
bigger problems than Mushroom or Thyroid. 
Estimation of the computational complexity of VSS 
algorithm is shown in Table 1.

Only VSS and LM algorithms were able to find the 
optimal solutions with the training accuracy 
frequently higher than the required minimum, as 
shown in Tab. 2. However, LM frequently did not 
converge to the solution and the training had to be 
repeated with new random weights. Nevertheless, 
solutions with such low error on the training set 
usually have higher errors on the test set. Since the 
task of neural networks is not to learn the training 
data points but the underlying data model in order to 
ensure good generalization, this aspect will not be 
analyzed further. 

The CR parameter in Table 2 gives the percentage 
of the algorithm runs that converged to the desired 
solution within 250 epochs for LM and VSS and 
within 1000 epochs for Rprop and SCG. VSS had 
always the highest rate of converged runs and the 
lowest variance of the results.

The standard t-test for the statistical significance of 
the difference between the numbers of training cycles 
was used: 

                                          (8) 

For nVSS=nX=20 VSS training will require fewer 
training cycles than training with algorithm X with 
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probability 0.999 if t is greater than 3.55; this was
true in all cases (Table. 2). Although in the 
distribution of the number of training cycles the 
skewness is usually greater than one, the t values 
were significantly greater than 3.5, justifying the use 
of the t-test.

The evolution of MSE error and classification 
accuracy during the VSS training is shown in Fig.7.

6. Discussion and conclusions

Most of the MLP training algorithms used in 
practical applications are based on analytical gradient 
techniques and the backpropagation of error 
computational scheme. Stochastic search algorithms, 
based on simulated annealing or evolutionary 
approaches are more costly and do not seem to be 
competitive comparing to the multistart gradient-
based methods [18], although there are indications 
that on more complex data results may be different 
[9]-[11]. 

A new class of neural training algorithms based on 
systematic rather than stochastic search has been 
introduced here. Systematic search techniques have 
always been popular in artificial intelligence [41], but 
are neglected in the neural network research. Not 
much is known about the relative merits of these 
methods in comparison to widely used stochastic, 
evolutionary, swarm, ant and other algorithms. Very 
few attempts to use systematic search techniques 
have been made so far. Numerical evaluation of 
gradients in neural network training has been used in
[24],[25],[42], and in the extraction of logical rules 
from data [22],[23] beam search techniques and 
updating the pairs of weights has been used. In this 
paper one of the simplest variants of systematic 
search algorithms has been explored, based on the 
single weight update. 

Analysis of the learning trajectories using the first 
two principal components in the weight space to 
visualize MLP error surfaces did not show local 
minima in “craters” (see more examples in [24],[37]), 
except the one created by regularization term. The 
main problem of neural training seems thus not to be 
the local minima, but rather finding narrow ravines 
on the landscape of the error function that lead to flat 

valleys where optimal solutions are found (this is the 
reason why many starting points followed by short 
training may be more effective than long training), 
and getting stuck on the highly situated plateaus. 
Algorithms based on analytical gradients sometimes 
cannot precisely determine optimal direction for the 
next step and may behave as if they were in a local 
minimum. For that reason it is worthwhile to develop
an MLP training algorithm that does not use the 
gradient information to determine direction and is not 
so expensive as stochastic or evolutionary algorithms. 
VSS may get stuck only in those cases when an 
unfortunate random initialization will lead it away 
from a good solution, to a point attractor on a highly 
situated ravine. 

Analysis of learning trajectories helped formulate 
the variable step size training algorithm based on a 
sequence of single-weight updates, as it is done in the 
first iteration of Powell’s quadratically convergent 
minimization algorithm [33]. Numerous improve-
ments of the efficiency of the VSS algorithm have 
been proposed, the most important being the signal 
table that allows for efficient updates of the neuron 
activations. Although the VSS algorithm uses some 
heuristic functions and constants (as most analytical 
gradient algorithms also do [26],[31]) their values are 
kept fixed and need not be adjusted by the user. 

The VSS algorithm has many advantages. First, the 
method is quite simple to program, even with all 
heuristics described in this paper. It does not require 
calculation of matrices, derivatives, derivation of 
complex formulas and careful organization of 
information flow in the backward step. This implies 
greater modularity of the software, for example the 
ability to change error functions without re-writing 
the program, or using cross-entropy error function or 
arbitrary powers of error. There are also no 
restrictions on the type of neural functions that can be 
used – the discontinuous staircase functions may 
easily be replaced by discrete approximation to 
transfer functions of any shape [43]. This is very 
important because some of the functions suitable for 
neural training lead to much faster convergence on 
difficult problems [44], but their implementation in 
the backpropagation networks require rather tedious 
changes in many parts of the program. Imple-
mentation of heterogeneous functions in a single 
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neural network using analytical approach is 
particularly difficult [45],[46]. Implementing such 
functions with the VSS algorithm requires very little 
changes to calculate activations and approximate 
neural output functions, thus allowing for rapid 
development of programs for any type of feedforward 
network (including arbitrary radial basis function 
networks [26]), making this approach ideal for 
experimentation. 

It is rather surprising that in empirical tests VSS 
algorithm performed so well, in most cases even 
better than well established Rprop, SCG and LM 
algorithms, converging frequently to good solutions 
in very few epochs. 

Most algorithms manipulate only the batch size 
(the number of vectors presented to the network 
before the weights are updated) and change all the 
weights at once. Updating the error function many 
times in each epoch seems to be a unique feature of 
the VSS algorithm. The micro iterations that change 
only a single weight at a time allow for more precise 
exploration of the error surface. The same is true for 
iterative solutions to eigenproblems when updates are 
obtained after multiplication of a single row of 
diagonalized matrix by approximated eigenvector 
instead of the whole matrix-vector product [33]. 
     VSS is able to find very good solutions and has 
very low memory requirements, making it suitable 
for large scale applications. This algorithm can be 
used as a reference for more sophisticated and 
computationally costly methods using stochastic or 
evolutionary search techniques. There is also plenty 
of room for improvement of different aspects of this
algorithm, for example adding additional directions 
in the search process. Other algorithms that belong to 
this family, based on more sophisticated search 
techniques, should also be developed.  
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Revision notes

Ref.:  Ms. No. NEUCOM-D-07-00573

Variable Step Search Algorithm for Feedforward Networks

M. Kordos, W. Duch

The following comments of Reviewer #1 have been addressed:

Fig. 3. Maybe if you join the points according to the training history the reader may capture the 
evolution you describe on pg. 4 bottom.   

Changed from “at the beginning of the training” to “in the first training epoch” to make 
it clear that the figure shows the dependence for only a single epoch and thus the 
points cannot be joined.

Pg. 5, first column, line -6: the exponent of dE1 should be c and not \alpha 

Corrected.

Pg.5, second column, last line. Perhaps what you mean by unit vectors are the coordinate axes.

Corrected.

Pg. 6, first column, middle. You kill with one sentence decades of research and practice on 
Simulated Annealing. 

The second sentence has been changed so that the reader does not have an impression that 
we criticize Simulated Annealing:

 “To avoid local minima stochastic algorithms, such as simulated annealing Error! 
Reference source not found., Alopex Error! Reference source not found., and several 
other global optimisation algorithms, accept (using specific probability distribution) 
changes that lead to an increase of the error. The VSS algorithm does not use this 
approach, relaying on the method of exploring the error surface that allows for 
effective MLP training, as long as the next point is within the same ravine of the error 
surface (Fig.5).”

Revision Notes



Pg. 7, first column middle. The dimension of the signal table has been already discussed on Pg. 
6. Rather, you could use this place to discuss the formulas reported in Table 1.  

The paragraph has been restructured, redundant information removed and explained 
how the formulas in Table 1 have been calculated. Here is the new version of the 
subsection 3.1:

3.1.  Signal Table 

Because only one weight is changed at a time the input signals do not need to be 
propagated through the entire network to calculate the error. Propagation through the 
fragment of the network in which the signals may change as a result of the weight 
update is sufficient. The remaining signals incoming to all neurons of hidden and output 
layers are remembered for each training vector in an array called the “signal table”. 
After a single weight is changed only the appropriate entries in the signal table are 
updated. The MSE error of each output neuron is also remembered and do not need to 
be recalculated again if a weight of another output neuron is changed. 

At the beginning of the training the signals are propagated through the entire 
network (this is done only one time), thus filling in the signal table entries. The use of the 
signal table significantly shortens training time enabling effective training of larger 
networks. Table 1 contains the formulas for the number of arithmetical operations with 
and without the signal table. The formulas are based on the analysis of the signal flow. 
For example in the first formula, No(Nh+1) is the total number of weights in the output 
layer, Nh(Ni+1) in the hidden layer and (No+Nh) is the total number of activation 
functions in the network. Thus, calculating the network error after every single weight 
change the activation function would have to be calculated that many times.

The dimension of the signal table is NV(No+Nh), where NV is the number of vectors in 
the training set and Nh and No  are the numbers of hidden and output neurons, 
respectively. For example, for a network with 30 neurons and 10,000 training vectors, 
storing variables in 8 bytes (double type) the signal table needs only 2.3 MB of memory, 
that is two or more orders of magnitude less than the memory requirements for the LM 
algorithm, and also less than the requirements of SCG algorithm (see details in section 
five).

Pg. 7, column 2, after formula (5). The time saving deriving from staircase approximation is 
independent from the use or not of signal table 



Section 3.2 has been changed and an additional comment has been added making it clear 
that such dependence exists: 

The number of operations required to calculate single neuron output y(u) is reduced on 
average by the signal table by less than one order of magnitude. With signal table the 
staircase transfer functions additionally shortens the training time up to several times. On 
the other hand without the signal table the gain due to the staircase approximation of 
sigmoidal functions is quite small, because the calculation time is dominated by 
multiplications that enter activations u. 

Pg. 7, column 2, section 3.2. Many authors elaborated around ravines in neural network training. 
Maybe you could quote explicitly some of them.

Added quotations [35-38], (three of them were already cited later)

Pg. 8, column 1, middle. You refer to an average single weight value determination in a single 
cycle. Does it means that in some cycle you do determine 0 values? 

Yes, it does. Added the following sentence:

If the error does not change at the first attempt the weight value is kept unchanged for 
this iteration. 

9. Pg. 9, column 2, middle. "often flatter then original" -> "often flatter than original"  

Corrected.

10. Pg.13, formula (9) and ff. at least on my printer there is some overlap of symbols.  

Though we did not observed this effect, the equation object with formula has been replaced 
with a high resolution image, what insures that it will be printed correctly on any printer.
The text below has been re-written.


