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Abstract. Neurodynamical systems are characterized by a large numberof sig-
nal streams, measuring activity of individual neurons, local field potentials, ag-
gregated electrical (EEG) or magnetic potentials (MEG), oxygen use (fMRI) or
concentration of radioactive traces (PET) in different parts of the brain. Vari-
ous basis set decomposition techniques that try to discovercomponents that carry
meaningful information are used to analyze such signals, but these techniques tell
us little what the whole system is doing. Fuzzy Symbolic Dynamics (FSD) may
be used for dimensionality reduction of high-dimensional signals, defining non-
linear mapping that may be used for visualization of the trajectories that define
the state of the whole system. Global visualization of high-dimensional trajec-
tories shows various aspects of signals that are difficult todiscover looking at
individual components, or to notice observing dynamical visualizations. FSD can
be applied to raw signals, transformed signals (for example, ICA components), or
to signals defined in the time-frequency domain. Visualization of a model system
with artificial radial oscillatory sources, and of the output layer (50 neurons) of
a neural Respiratory Rhythm Generator model (RRG) that includes 300 spiking
neural units, are presented to illustrate the method.

1 Introduction

Neurodynamical systems are characterized by multiple streams of nonstationary data,
and thus may be represented only in highly dimensional signal spaces. Electrical activ-
ity of neurons is observed in multielectrode recordings, local field potentials or elec-
trocorticographic or electroencephalographic recordings with up to 256 electrodes and
sampling frequency of one millisecond. A large number of neuroimaging methods pro-
duce even more streams of data. Understanding of such signals is not easy because of
high volume of data that quickly changes in time. Simulationof complex dynamics is
usually described in terms of basins of attractors, but precise characterization of these
basins, relations between them in terms of possible transitions, is never attempted.

Popular signal processing techniques include removal of artifacts by various fil-
tering techniques, waveform analysis, morphological analysis, decomposition of data
streams into meaningful components using Fourier or Wavelet Transforms, Principal
Component Analysis (PCA), Independent Component Analysis(ICA), etc [1, 2]. In-
teresting events are then searched for using processed signal components, with time-
frequency-intensity colored maps showing how the processes unfold. Such techniques
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are very useful, but do not show global properties of the processes in the high-dimensional
signal spaces. Global analysis is needed to see attractors that trap dynamics, character-
ize the type of system’s behavior, notice partial desynchronization or high frequency
noise that blurs the trajectories. For brain-computer interfaces and other applications a
static snapshot of the whole trajectory, showing its main characteristics, could be very
useful.

In this paper a radically different approach to high-dimensional signal analysis is in-
vestigated (to focus attention we shall talk about neurodynamics, although any dynam-
ical system can be analyzed in this way). Most important properties of the dynamics
may be uncovered if dimensionality of the problem is sufficiently reduced. This is done
with the help of fuzzy symbolic dynamics (FSD). To see the trajectories of the global
system state “probes”, or localized functions that are activated in a different way by the
trajectories that pass near their center, are placed in the signal space. Usingk such func-
tions, strategically placed in important points of the signal space, a non-linear reduction
of dimensionality suitable for visualization of trajectories is achieved. Inevitably a lot
of details will be lost but with a proper choice of parametersthe information that cor-
relates with observed behavior or experimental task may be preserved, while irrelevant
information will be suppressed.

In the next section FSD mapping that captures interesting properties of trajectories is
described. To understand how to set up mapping parameters and how to interpret result-
ing images a model EEG situation is analyzed in Sec. 3, with several sources of radial
waves placed in a mesh, and sensors that record the amplitudeof the incoming waves in
different points of the mesh. As an example of real application in Sec. 4 trajectory vi-
sualizations for neural Respiratory Rhythm Generator model (RRG) are analyzed. The
final section contains a brief discussion with a list of several open questions.

2 Fuzzy Symbolic Dynamics

Assume that some unknown sources create a multi-dimensional signal that is changing
in time, for example an EEG signal measured byn electrodes:

x(t) = {xi(t)} i = 1, . . . , n t = 0, 1, 2, . . . . (1)

Vectorsx(t) represent the state of the dynamical system at timet, forming a trajectory
in the signal space. Observing the system for a longer time should reveal the landscape
created by this trajectory, areas of the signal space where the state of the system is
found with the highest probability, and other areas where itnever wonders. Recurrence
maps and other techniques may be used to view this trajectory, but do not capture many
important properties that it reflects.

In the symbolic dynamics [3] the signal space is partitionedinto regions that are la-
beled with different symbols, emitted every time the trajectory is found in one of the re-
gions. The sequence of symbols gives a coarse-grained description of dynamics that can
be analyzed using statistical tools. Dale and Spivey [4] argue that symbolic dynamics
gives an appropriate framework for cognitive representations, although discretization
of continuous dynamical states looses the fluid nature of cognition. Symbols obviously



reduce the complexity of dynamical description but partitioning of highly-dimensional
signal spaces into regions with sharply defined boundaries is highly artificial.

The notion of symbolic dynamic is generalized here in a natural way to a Fuzzy
Symbolic Dynamics (FSD). Instead of discrete partitioningof the signal space lead-
ing to symbols, interesting regions are determined analyzing probability densityp(x)
of finding the trajectoryx(t) in some pointx, averaging over time. Local maxima of
this probability define quasi-stable states around which trajectories tend to clusters.
Such maxima may serve as centersµk of prototypes associated with fuzzy member-
ship functionsyk(x; µk) that measure the degree to which thex(t) state belongs to the
prototypeµk. Membership functions may be defined using knowledge-basedclustering
[5], or as prototype-based rules with context-based clustering techniques [6]. Context
is defined by questions that are of interest, for example discrimination between differ-
ent experimental conditions, or searching for invariants in one of these condition. For
visualization two Gaussian membership functions are quiteuseful:

yk(x; µk, Σk) = exp
(

− (x − µk)
T

Σ−1
k (x − µk)

)

(2)

In some cases diagonal dispersionsΣk are sufficient, suppressing irrelevant signals, but
general covariance matrices (used in Mahalanobis distance) may extract more meaning-
ful combinations of signals that correlate with experimental conditions, or with qualities
that may be estimated in a subjective way. Such brain-mind mapping will be closer to
the idea of cognitive representations than symbolic dynamics [4]. Symbolic descrip-
tion may be easily generated by strongly activated prototypes, but other prototypes may
correspond to sensorimotor actions that are not directly connected with symbolic labels.

Selecting only two prototypes trajectoriesx(t) may be visualized in a two-dimen-
sional space{yi(t), yj(t)}. If all Gaussian components have the same variance a single
parameter will define dispersion. For visualization each pair of functions should have
sufficiently large dispersionsσi andσj to cover the space between them, for example:

σi = σj =
1

2
‖µi − µj‖ . (3)

3D visualization can also be done by plotting transformed points for three clusters,
one for each dimension. Dispersions should then be set to thelargest among the 3
pairs. Pairwise plots can be used to observe trajectory fromdifferent points of view.
Normalization of vectors in the signal space is assumed. If the goal is to distinguish
several experimental conditions optimization of parameters of membership functions
can be done using learning techniques to create clear differences in corresponding maps.
Adding more localized functions in some area where dynamicsis complex will show
fine structure of the trajectory.

An alternative to fuzzy membership functions is to define reference points in the sig-
nal space, and measure the distance between the trajectory and these points using some
metric function. Non-linear metric functions should have some advantage in analysis
of neurodynamics, as the influence of the trajectory on prototypes should sharply de-
crease to zero with the distance, reflecting non-linear properties of neurons. We shall
not consider here adaptation of parameters or distance-based visualization, concentrat-
ing instead on the interpretation of global mappings. To understand the process better a
mixture of artificial radial and linear wave sources is analyzed in the next section.



3 Plane and radial waves on a grid

To understand the structure of complex EEG and similar signals a very simple artifi-
cial model has been created. Sensors are placed on a quadratic grid with n × n points,
where plane and radial waves generated by several sources are traveling, creating addi-
tive patterns and activating these sensors. Similar assumptions are made about electric
potentials reflecting neuronal activity in the brain (for example, in the low resolution
electromagnetic tomography, LORETA3).

The grid has equally spaced pointspij = (xi, yj) inside the square:

xi, yj ∈

{

0,
1

n − 1
, . . . ,

n − 2

n − 1
, 1

}

i, j = 1, . . . , n . (4)

The activation of the sensor due to a plane waveF (l)(t, x) traveling through the square
in the grid pointpij at the timet = 0, 1, 2, . . . is given by the equation:

F (l) (t, pij) = cos (ωlt − kl · pij) , (5)

whereωl is the frequency of the wave (defining time intervals), the wave vectorkl

defines the direction of the wave movement and its length is equal to the inverse of the
wave length andpij is the vector pointing to the grid pointpij . Thus, for horizontal
plane wave

(

k = ||k||[1, 0]T
)

formula (5) becomes:

F (t, pij) = cos (ωt − kxi) . (6)

Radial wave reaching the sensor at grid pointpij leads to an activation:

R(l) (t, pij) = cos
(

ωlt − klr
(l)
)

, (7)

where

r(l) =

√

(

xi − x
(l)
0

)2

+
(

yj − y
(l)
0

)2

(8)

is the distance between pointpij and the wave source(x0, y0).
The final activationA (t, pij) of the sensor in pointpij at timet = 0, 1, 2, . . . is

obtained by summing and normalizing all wave values in everygrid point:

A (t, pij) =

(

Nf
∑

l=1

F (l)(t, pij) +

Nr
∑

l=1

R(l)(t, pij)

)

/(Nf + Nr) . (9)

Sensor activations form an × n matrix A(t) containing values for all sensors at
time t. Elements ofA(t) are defined inn2-dimensional signal space and are in the
[−1, 1] interval. Gaussian membership functions (2) may serve as probes (detectors of
activity) in this space. Placing their centers in two opposite vertices of the hypercube
S = [−1, 1]n

2

:
µ1 = [−1, . . . ,−1]T µ2 = [1, . . . , 1]T (10)

3 See http://www.unizh.ch/keyinst/loreta.



the membership functions take alln2 sensor activationsA(t) as their argument:

Gk(A(t); µk, σk) = exp

(

−
‖A(t) − µk‖

2σ2
k

)

, (11)

whereσk is the dispersion.
A lot of experiments have been conducted using the16 × 16 grid with 256 points

(maximum number of electrodes used in real EEG experiments), and various num-
ber of stationary and non-stationary sources, frequenciesand directions. For this grid
σ1 = σ2 = ‖µ1 − µ2‖ /10 gives relatively wide range of sensor activations. In Fig.
1 examples of trajectories for one and two radial waves are presented, usingω = 0.1,
which is sufficient for smooth trajectory change, and the wave vector length‖k‖ = 2π.

Specific position of sources and combinations of planar and radial waves may be
identified with correct placement of centers and dispersions of the membership func-
tions.
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Fig. 1. Trajectories for one radial wave with the source at point( 1

2
,

1

2
) (left side), and two radial

waves with the sources at( 1

4
,

1

4
) and( 3

4
,

3

4
) (right side).

4 Visualization of the activity of Respiratory Rhythm Generator

FSD approach has been used to study behavior of the neural Respiratory Rhythm Gen-
erator model (RRG). The RRG is a parametric neural network model constructed from
three populations of spiking neurons: beaters (200 in the model), bursters (50 units)
and followers (50 units). The last population produce an output of model activity that
is used for synaptic excitation of motoneurons and in consequence control of upper and
lower lung muscles. Our implementation of RRG is based on thespiking neural network
model described in [7, 8].



Below visualization of the followers (output layer neurons) is examined. The first
trajectory for time series corresponding to a single burst is presented in Fig. 2. The
number of samples along these trajectory was 49090, each vector containing membrane
potentials of 50 follower cells (normalized in every dimension). Clusterization was done
with thek-means algorithm, for two clusters where Gaussian probe functions have been
placed. Trajectories have been drawn with a thick pen to account for a jitter that blurs
them when longer time sequences are taken.
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Fig. 2. The time series plot (left) representing average membrane potential (sum of all potentials
divided by the number of neurons) versus iteration number, and the mapping of the corresponding
trajectory (right).

Figure 3 shows trajectory for the same time series as the Fig.2, zooming on one
of the attractors to show details of oscillation around it. This attractor corresponds to
oscillations visible in the highest part of the time series plot (Fig. 2 left). Generating
more bursts slowly fill the whole area with trajectories giving almost uniform probabil-
ity of finding the system there. This shows chaotic behavior of the system at the peak
of activity.

A common visualization technique in analysis of neural dynamics is to show plots
of activations for selected pairs of neurons. In Fig. 4 two different pairs are shown.
Unfortunately with 50 neurons there are 1225 possible pairsand most of them show
quite different plots, although the global dynamics is muchmore stable. Thus pairwise
visualization of single neuron activity does not provide much useful information.

In Fig. 5 three cluster centers have been defined using thek-means algorithm (k =
3). Pairwise diagrams show trajectories for all three cluster pairs. Distances between
cluster centers are printed above the graphs. The second pair is more sensitive to vari-
ability that appears during building of the discharge activity, showing quite a bit of
variance in this process.

The RRG model may generate various rhythms that correspond to different breath-
ing patterns. Trajectory examples in Fig. 6 compare two distinct cases, one for normal,
regular burst generation, and one for pathological case with different burst strengths
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Fig. 3. Zoomed area of trajectory for time series with one burst around main attractor.
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Fig. 4.Neural activity plots for 2 neurons from RRG that have the most (left) and the least (right)
different vectors of neural activities.
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Fig. 5. Pairwise diagrams for 3 clusters found by k-means algorithmrepresenting trajectories for
time series with one burst.



(i.e. different peak heights). The trajectories have been drawn using 19600 vectors,
each containing values of membrane potentials of 50 follower cells, covering about 20
spikes. Two clusters have been found using thek-means algorithm, and the same pa-
rameters of membership functions used in both cases. Pathological case seems to reach
the same amplitude but as a whole behaves quite differently,reaching much smaller
values in first dimension, due to the lack of synchronizationbetween different output
neurons.
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Fig. 6. Trajectory plots (bottom) done with thick pen for 19600 vectors containing membrane
potentials of 50 follower cells from RRG, and time series plots (top) representing average mem-
brane potential vs. iteration number. Graphs on the left correspond to a normal rhythm case, and
on the right to a pathological one, both presented using the same membership functions.

When two similar time series plots are compared small differences between them
may not be noticeable. The FSD method is sensitive to small changes in the global
dynamical state and consequently it allows for quite accurate comparison. Figure 7
compares two normal rhythms that differ only slightly. Timeseries plots looks very
similar but global trajectories in FSD graphs show significant differences.



In all examples presented in this section dispersions of Gaussians were set to the half
of the distance between centers (‖µ1 − µ2‖ /2) to cover the signals that are between the
centers.
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Fig. 7.Comparison of two similar normal rhythm cases. Time series plots (top) looks very similar
while trajectory plots (bottom) differ noticeable. In bothcases sample of 19600 vectors have been
used.

5 Discussion

Symbolic dynamics has found many applications, while its fuzzy version has never been
developed. It seems to be a very interesting method that should find many applications.
In this paper it has been applied to visualization of high-dimensional neurodynamical
systems. Many aspects of dynamics may be analyzed using thistechnique:

1. In which part of the signal space the state of the system spends most of its time?
2. How many attractors can be identified?
3. What are the properties of different basins of attractors(large and shallow, or nar-

row and deep)?



4. What are the probabilities of transition between them?
5. What type of oscillations occur around the attractors?

Quantitative measures to compare different dynamical systems should be intro-
duced, for example:

– the number of attractors;
– percentage of time spent by the system in a given attractor basin;
– character of oscillations around attractors, including some measures of chaos;
– distances between attractors, measured by the time of transitions;
– probabilities of system transitions between attractors.

Such measures will give interesting characterization of dynamical systems. Appli-
cation of FSD to recurrent networks should show transitionsbetween their states. Ap-
plications to real EEG signals will require careful optimization of membership func-
tions, with conditional clustering to remove irrelevant information by finding most in-
formative center locations and weights for different signals. Visualization of highly-
dimensional trajectories obviously depends on what aspects of the system behavior are
of interest. Methods of parameter adaptation that include context [5, 6] will soon be ap-
plied to visualization of real experimental data. For strongly non-stationary signals the
whole landscape containing basins of attractors may slowlyrotate, preserving relations
between main attractors. For example, change in the level ofneuromodulation may in-
fluence the landscape by increasing the overall activationsin some regions of signal
space. Parametrization of probes that should then change intime to counter this effect
would be important. The great challenge is to find meaningfulcombinations of signals
that are correlated with inner experiences, or find quantitative measures of the FSD low
dimensional representations that would be useful in brain computer interfaces.
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