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Abstract. Neurodynamical systems are characterized by a large nuofiség-
nal streams, measuring activity of individual neuronsaldield potentials, ag-
gregated electrical (EEG) or magnetic potentials (MEGygex use (fMRI) or
concentration of radioactive traces (PET) in differenttpaf the brain. Vari-
ous basis set decomposition techniques that try to disamreponents that carry
meaningful information are used to analyze such signatghlese techniques tell
us little what the whole system is doing. Fuzzy Symbolic Dyies (FSD) may
be used for dimensionality reduction of high-dimensionghals, defining non-
linear mapping that may be used for visualization of thestrijries that define
the state of the whole system. Global visualization of hdghensional trajec-
tories shows various aspects of signals that are difficuttisoover looking at
individual components, or to notice observing dynamicabalizations. FSD can
be applied to raw signals, transformed signals (for exani@lé components), or
to signals defined in the time-frequency domain. Visuailiratf a model system
with artificial radial oscillatory sources, and of the outpayer (50 neurons) of
a neural Respiratory Rhythm Generator model (RRG) thatides 300 spiking
neural units, are presented to illustrate the method.

1 Introduction

Neurodynamical systems are characterized by multiplestseof nonstationary data,
and thus may be represented only in highly dimensional sgpeces. Electrical activ-
ity of neurons is observed in multielectrode recordingsaldield potentials or elec-
trocorticographic or electroencephalographic recorslinigh up to 256 electrodes and
sampling frequency of one millisecond. A large number ofrognaging methods pro-
duce even more streams of data. Understanding of such signabt easy because of
high volume of data that quickly changes in time. Simulatibcomplex dynamics is
usually described in terms of basins of attractors, butipeecharacterization of these
basins, relations between them in terms of possible tiansitis never attempted.
Popular signal processing techniques include removal tifhets by various fil-
tering techniques, waveform analysis, morphological ysigs] decomposition of data
streams into meaningful components using Fourier or Wavetnsforms, Principal
Component Analysis (PCA), Independent Component Anal{{§ig), etc [1, 2]. In-
teresting events are then searched for using processeal sigmponents, with time-
frequency-intensity colored maps showing how the procesaéold. Such techniques
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are very useful, but do not show global properties of the@sses in the high-dimensional
signal spaces. Global analysis is needed to see attrabtinsap dynamics, character-
ize the type of system’s behavior, notice partial desynecization or high frequency
noise that blurs the trajectories. For brain-computeriates and other applications a
static snapshot of the whole trajectory, showing its magrabteristics, could be very
useful.

In this paper a radically different approach to high-dinienal signal analysis is in-
vestigated (to focus attention we shall talk about neuradyins, although any dynam-
ical system can be analyzed in this way). Most important ertigs of the dynamics
may be uncovered if dimensionality of the problem is suffitereduced. This is done
with the help of fuzzy symbolic dynamics (FSD). To see th@ttories of the global
system state “probes”, or localized functions that arevatdd in a different way by the
trajectories that pass near their center, are placed indhealspace. Using such func-
tions, strategically placed in important points of the sigpace, a non-linear reduction
of dimensionality suitable for visualization of trajedes is achieved. Inevitably a lot
of details will be lost but with a proper choice of parametéisinformation that cor-
relates with observed behavior or experimental task mayésepved, while irrelevant
information will be suppressed.

Inthe next section FSD mapping that captures interestioggaties of trajectories is
described. To understand how to set up mapping parameiétsoanto interpret result-
ing images a model EEG situation is analyzed in Sec. 3, withra¢ sources of radial
waves placed in a mesh, and sensors that record the ampiittiteeincoming waves in
different points of the mesh. As an example of real applicain Sec. 4 trajectory vi-
sualizations for neural Respiratory Rhythm Generator h{RIRG) are analyzed. The
final section contains a brief discussion with a list of sal’epen questions.

2 Fuzzy Symbolic Dynamics

Assume that some unknown sources create a multi-dimensigmal that is changing
in time, for example an EEG signal measuredibslectrodes:

z(t) ={z;(t)} i=1,...,n t=0,1,2,... . 1)

Vectorsz(t) represent the state of the dynamical system at tifierming a trajectory
in the signal space. Observing the system for a longer tirnaldhreveal the landscape
created by this trajectory, areas of the signal space wheretate of the system is
found with the highest probability, and other areas whenewer wonders. Recurrence
maps and other techniques may be used to view this trajettatrgo not capture many
important properties that it reflects.

In the symbolic dynamics [3] the signal space is partitioiméol regions that are la-
beled with different symbols, emitted every time the tragegis found in one of the re-
gions. The sequence of symbols gives a coarse-grainedmtéstof dynamics that can
be analyzed using statistical tools. Dale and Spivey [4liartpat symbolic dynamics
gives an appropriate framework for cognitive represeoieti although discretization
of continuous dynamical states looses the fluid nature ofitieg. Symbols obviously



reduce the complexity of dynamical description but pamtitng of highly-dimensional
signal spaces into regions with sharply defined boundagibghly artificial.

The notion of symbolic dynamic is generalized here in a redtway to a Fuzzy
Symbolic Dynamics (FSD). Instead of discrete partitionagighe signal space lead-
ing to symbols, interesting regions are determined anadyprobability density(x)
of finding the trajectoryz(t) in some pointz, averaging over time. Local maxima of
this probability define quasi-stable states around whiafettories tend to clusters.
Such maxima may serve as centggsof prototypes associated with fuzzy member-
ship functionsy, (x; i) that measure the degree to which #{¢) state belongs to the
prototypeu:. Membership functions may be defined using knowledge-belsstering
[5], or as prototype-based rules with context-based dlimgaechniques [6]. Context
is defined by questions that are of interest, for exampleidigtation between differ-
ent experimental conditions, or searching for invariantene of these condition. For
visualization two Gaussian membership functions are qséful:

Y (s pig, Xi) = exp (— (@ — )" Tt (z - ,Uk)) )

In some cases diagonal dispersiansare sufficient, suppressing irrelevant signals, but
general covariance matrices (used in Mahalanobis disyamag extract more meaning-
ful combinations of signals that correlate with experina¢abnditions, or with qualities
that may be estimated in a subjective way. Such brain-mingpimng will be closer to
the idea of cognitive representations than symbolic dyoarf#]. Symbolic descrip-
tion may be easily generated by strongly activated pro&syput other prototypes may
correspond to sensorimotor actions that are not directipeoted with symbolic labels.
Selecting only two prototypes trajectorie&) may be visualized in a two-dimen-
sional spacdy;(t), y;(¢)}. If all Gaussian components have the same variance a single
parameter will define dispersion. For visualization eacinh giafunctions should have
sufficiently large dispersions; ando; to cover the space between them, for example:
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3D visualization can also be done by plotting transformeidtgdor three clusters,
one for each dimension. Dispersions should then be set téathest among the 3
pairs. Pairwise plots can be used to observe trajectory fiiff@rent points of view.
Normalization of vectors in the signal space is assumeddfgoal is to distinguish
several experimental conditions optimization of paramsetd membership functions
can be done using learning techniques to create clearetiffess in corresponding maps.
Adding more localized functions in some area where dynaisicemplex will show
fine structure of the trajectory.

An alternative to fuzzy membership functions is to definerefice points in the sig-
nal space, and measure the distance between the trajentbtlyese points using some
metric function. Non-linear metric functions should hawen® advantage in analysis
of neurodynamics, as the influence of the trajectory on pypts should sharply de-
crease to zero with the distance, reflecting non-linear gnttgs of neurons. We shall
not consider here adaptation of parameters or distanadhésualization, concentrat-
ing instead on the interpretation of global mappings. Toaustdnd the process better a
mixture of artificial radial and linear wave sources is amatyin the next section.



3 Plane and radial waves on a grid

To understand the structure of complex EEG and similar ssgaaery simple artifi-
cial model has been created. Sensors are placed on a quapti@tvith n x n points,
where plane and radial waves generated by several soutaeling, creating addi-
tive patterns and activating these sensors. Similar assomspare made about electric
potentials reflecting neuronal activity in the brain (fomexple, in the low resolution
electromagnetic tomography, LOREJA

The grid has equally spaced poimts = (z;, y;) inside the square:

1 n—2
i Yj 0,——,...,——,1 ,i=1,...,n . 4
v yje{ n—1 n—1 } “J " @

The activation of the sensor due to a plane wa\(t, z) traveling through the square
in the grid pointp;; at the timet =0, 1,2, ... is given by the equation:

F® (t,pij) = cos (wit — ki - pij) 5)

wherew; is the frequency of the wave (defining time intervals), thevevaectork;
defines the direction of the wave movement and its lengthusieq the inverse of the
wave length ang;; is the vector pointing to the grid poipi;. Thus, for horizontal
plane wave(k = ||k||[1,0]7) formula (5) becomes:

F (t,pij) = cos (wt — kx;) . (6)
Radial wave reaching the sensor at grid pgigtleads to an activation:

RW (t,p;) = cos (wlt — klr(l)) : (7)

O — \/(:CZ -~ I(()l))Z n (yj _ y(()l))Z ®)

is the distance between point and the wave sourdes, yo)-
The final activationA (¢, p;;) of the sensor in poinp;; at timet = 0,1,2,... is
obtained by summing and normalizing all wave values in egeig point:

where

Nr

Nf
At pij) = <Z FO(tpy)+ Y RO, pij)> J(Nf+Nr) . 9)
=1

=1

Sensor activations form a x n matrix A(¢) containing values for all sensors at
time t. Elements ofA(t) are defined im2-dimensional signal space and are in the
[—1, 1] interval. Gaussian membership functions (2) may serve @sesr(detectors of
activity) in this space. Placing their centers in two opfmsertices of the hypercube
S=[-1,1]"":

pr=[-1,...,-1"  pp=[,...,1" (10)

% See http://www.unizh.ch/keyinst/loreta.



the membership functions take af sensor activationd(t) as their argument:

GulAt): ) = exp (122 1)

whereoy, is the dispersion.

A lot of experiments have been conducted usinglthex 16 grid with 256 points
(maximum number of electrodes used in real EEG experimeats) various num-
ber of stationary and non-stationary sources, frequeragidsdirections. For this grid
o1 = o2 = ||p1 — u2l| /10 gives relatively wide range of sensor activations. In Fig.
1 examples of trajectories for one and two radial waves aeqnted, using = 0.1,
which is sufficient for smooth trajectory change, and theemaector length|k|| = 2.

Specific position of sources and combinations of planar adét waves may be
identified with correct placement of centers and dispessmiithe membership func-
tions.
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Fig. 1. Trajectories for one radial wave with the source at p()é}t%) (left side), and two radial

waves with the sources &, 1) and(2, 2) (right side).

4 Visualization of the activity of Respiratory Rhythm Generator

FSD approach has been used to study behavior of the neungit&esy Rhythm Gen-

erator model (RRG). The RRG is a parametric neural networlehconstructed from

three populations of spiking neurons: beaters (200 in thdef)pbursters (50 units)
and followers (50 units). The last population produce ampoubf model activity that

is used for synaptic excitation of motoneurons and in comsgge control of upper and
lower lung muscles. Our implementation of RRG is based ospiléng neural network

model described in [7, 8].



Below visualization of the followers (output layer neurpissexamined. The first
trajectory for time series corresponding to a single bwstresented in Fig. 2. The
number of samples along these trajectory was 49090, eatbreentaining membrane
potentials of 50 follower cells (normalized in every dimiem. Clusterization was done
with the k-means algorithm, for two clusters where Gaussian probetifums have been
placed. Trajectories have been drawn with a thick pen towatdor a jitter that blurs
them when longer time sequences are taken.
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Fig. 2. The time series plot (left) representing average membratengial (sum of all potentials
divided by the number of neurons) versus iteration numettiae mapping of the corresponding
trajectory (right).

Figure 3 shows trajectory for the same time series as the2-igpoming on one
of the attractors to show details of oscillation around hisTattractor corresponds to
oscillations visible in the highest part of the time seriést pFig. 2 left). Generating
more bursts slowly fill the whole area with trajectories giyalmost uniform probabil-
ity of finding the system there. This shows chaotic behavidhe system at the peak
of activity.

A common visualization technique in analysis of neural dyits is to show plots
of activations for selected pairs of neurons. In Fig. 4 twifedént pairs are shown.
Unfortunately with 50 neurons there are 1225 possible i most of them show
quite different plots, although the global dynamics is modre stable. Thus pairwise
visualization of single neuron activity does not provideamuseful information.

In Fig. 5 three cluster centers have been defined using-theans algorithmi( =
3). Pairwise diagrams show trajectories for all three cluptgrs. Distances between
cluster centers are printed above the graphs. The seconis padre sensitive to vari-
ability that appears during building of the discharge afgtivshowing quite a bit of
variance in this process.

The RRG model may generate various rhythms that correspodifférent breath-
ing patterns. Trajectory examples in Fig. 6 compare twardistases, one for normal,
regular burst generation, and one for pathological cask different burst strengths
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Fig. 3. Zoomed area of trajectory for time series with one burstradaunain attractor.
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Fig. 4. Neural activity plots for 2 neurons from RRG that have the in(le$t) and the least (right)
different vectors of neural activities.
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Fig. 5. Pairwise diagrams for 3 clusters found by k-means algoritipnesenting trajectories for
time series with one burst.



(i.e. different peak heights). The trajectories have beewd using 19600 vectors,
each containing values of membrane potentials of 50 folimeéls, covering about 20
spikes. Two clusters have been found usingkhmeans algorithm, and the same pa-
rameters of membership functions used in both cases. Pgibal case seems to reach
the same amplitude but as a whole behaves quite differestighing much smaller
values in first dimension, due to the lack of synchronizabetween different output
neurons.
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Fig. 6. Trajectory plots (bottom) done with thick pen for 19600 westcontaining membrane
potentials of 50 follower cells from RRG, and time seriegplpop) representing average mem-
brane potential vs. iteration number. Graphs on the lefiespond to a normal rhythm case, and
on the right to a pathological one, both presented usingahesnembership functions.

When two similar time series plots are compared small diffees between them
may not be noticeable. The FSD method is sensitive to smalhgés in the global
dynamical state and consequently it allows for quite adeucamparison. Figure 7
compares two normal rhythms that differ only slightly. Tireeries plots looks very
similar but global trajectories in FSD graphs show signiftadifferences.



In all examples presented in this section dispersions og&ans were set to the half
of the distance between centelig( — 12| /2) to cover the signals that are between the
centers.
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Fig. 7. Comparison of two similar normal rhythm cases. Time serfiesftop) looks very similar
while trajectory plots (bottom) differ noticeable. In batases sample of 19600 vectors have been
used.

5 Discussion

Symbolic dynamics has found many applications, while itzfuersion has never been
developed. It seems to be a very interesting method thatdlffiad many applications.
In this paper it has been applied to visualization of higmelsional neurodynamical
systems. Many aspects of dynamics may be analyzed usingthisique:

1. In which part of the signal space the state of the systemdspmost of its time?

2. How many attractors can be identified?

3. What are the properties of different basins of attradfiarge and shallow, or nar-
row and deep)?



4. What are the probabilities of transition between them?
5. What type of oscillations occur around the attractors?

Quantitative measures to compare different dynamicalkesystshould be intro-
duced, for example:

— the number of attractors;

— percentage of time spent by the system in a given attracginpa

— character of oscillations around attractors, includingeaneasures of chaos;
— distances between attractors, measured by the time ofttoanss

— probabilities of system transitions between attractors.

Such measures will give interesting characterization ofathyical systems. Appli-
cation of FSD to recurrent networks should show transitloetsveen their states. Ap-
plications to real EEG signals will require careful optimtibn of membership func-
tions, with conditional clustering to remove irrelevanfionmation by finding most in-
formative center locations and weights for different sign&isualization of highly-
dimensional trajectories obviously depends on what aspdthe system behavior are
of interest. Methods of parameter adaptation that incluhext [5, 6] will soon be ap-
plied to visualization of real experimental data. For stjlgmon-stationary signals the
whole landscape containing basins of attractors may slostite, preserving relations
between main attractors. For example, change in the lewved@wfomodulation may in-
fluence the landscape by increasing the overall activaiios®me regions of signal
space. Parametrization of probes that should then chartgaerto counter this effect
would be important. The great challenge is to find meaningduhbinations of signals
that are correlated with inner experiences, or find quaivitaneasures of the FSD low
dimensional representations that would be useful in bramputer interfaces.
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