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Abstract Visualization methods are used to discover simplest data transformations
implemented by constructive neural networks, revealing hidden data structures. In
this way meta-learning, based on search for simplest models in the space of all data
transformations, is facilitated.
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1 Introduction

Ryszard Michalski has always been interested in discovering comprehensible struc-
tures in the data, and has developed his own multistrategy learning approach [10].
In this spirit we shall look at the problem of finding the best set of transformations
to solve classification and regression problems, searching for such transformations
that will reveal the inherent structure in the data. Instead of trying to solve all prob-
lems with the same universal tool this approach leads to a meta-learning scheme [8],
building the final model from components that are heterogeneous [7].

Each data model depends on some specific assumptions about the data distribu-
tion in the input space, and is successfully applicable only to some types of prob-
lems. For example SVM and many other statistical learning methods [21] rely on
the assumption of uniform resolution, local similarity between data samples, and
may completely fail in case of high-dimensional functions that are not sufficiently
smooth [2]. In such case accurate solution may require an extremely large number
of training samples that will be used as reference vectors, leading to high cost of
computations and creating complex models.
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The type of the solution offered by given data models may not be appropriate for
the particular data. Each data model defines a hypotheses space, that is a set of func-
tions that this model may easily learn (the bias of model). Although many basis set
expansions (such as the multilayer perceptron neural networks, MLPs) are universal
approximators, in the sense that given sufficient number of functions they may ap-
proximate arbitrary data distributions, models created in this way are not necessarily
optimal from the complexity point of view. Linear discrimination models are obvi-
ously not suitable for spherical distributions of data, requiring O(N2) parameters
to approximately cover each spherical distribution in N dimensions, where an ex-
pansion in radial functions requires only O(N) parameters. On the other hand many
spherical functions are needed to approximate a hyperplane. Some problems, such
as the multidimensional parity problem, cannot be easily approximated by neither
by radial nor by hyperplane functions [6]. An optimal solution may only be found
if a model based on suitable transformations is defined.

In general each supervised learning machine may be represented by an operator
T that transforms a given vector X into some output vector Y

T X = Y

The goal is to find an operator T that not only gives correct answers on the train-
ing data but also provides a model that has low Kolmogorov complexity, facilitating
easy interpretation. Operator T may in general be created as a sequence of trans-
formations (for simplicity recurrent processes are not considered here):

T = T1T2 . . .Tk

For example, initial transformations may define data preprocessing, based on linear
scaling (standardization or normalization), projection on a low-dimensional space
defined by principal components or other criteria, or a simple feature selection. The
final transformation should provide desired output; for classification tasks this out-
put Y should provide discrete values of class labels. This representation covers also
combinations of many learning algorithms (classifier committees, boosting). Each
layer of the MLP network can be seen as a single mapping Ti, although taken sepa-
rately these transformations do not have a well-defined goal. Data preparation may
have a crucial influence on algorithms applicable for further training. For exam-
ple, some computationally expensive algorithms require dimensionality reduction
to deal with large datasets. Therefore model selection cannot focus only on search-
ing for suitable classifier or regression tool, selection of supportive transformations
is also very important.

With no a priori knowledge about a given problem finding of optimal sequence
of transformations is a great challenge. Many meta-learning techniques have re-
cently been developed to deal with the problem of model selection [22, 3]. Most
of them search for optimal model characterizing a given problem by some meta-
features (e.g. statistical properties, landmarking, model-based characterization), and
by referring to some meta-knowledge gained earlier. For example, one can use the
classifier that gave the best result on a similar dataset in the StatLog Project [18].
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However, choosing good meta-features is not a trivial issue as most of these fea-
tures do not characterize the complexity of data distributions. In addition the space
of possible solutions generated by this approach is bounded to already known types
of algorithms. General meta-learning algorithm should browse through all interest-
ing models, searching for the best composition of transformations. Thus the meta-
learning problem may be seen as a search in the space of all possible models, for
example all transformations in the similarity-based approach [8]. General search in
model space requires a very sophisticated intelligent system and search strategies.
Some ideas for building such systems and for controlling the process of composing
transformations based on observation of machine complexity have recently been
proposed in [13, 14].

Proper transformation performed at the beginning of learning does not only lead
to simplification of further learning but also can provide useful informations guiding
researcher through the set of possible models. Based on structures emerging in low-
dimensional visualizations of a given problem an experienced researcher is able to
construct the best learning strategies to learn the data. In this paper such approach
to meta-learning has been tested. In the next section a few dimensionality reduction
algorithms suitable for visualization are presented and in the third section applied to
the real and artificial data. Upon visual inspection it becomes quite clear which type
of transformation should be applied to the data to create it simplest model.

Initial transformation Visualization Final transformation

Fig. 1 After initial transformation and visualization the final transformation is selected.

2 Visualization algorithms

Visualization methods are discussed in details in many books, for example [20, 23].
Below a short description of three popular visualization methods is given: principal
component analysis (PCA), Fisher discriminant analysis (FDA), and multidimen-
sional scaling (MDS), followed by description of our two new approaches based on
the SVM [17] and Quality of Projected Clusters (QPC) algorithms [16]. Only MDS
is a non-linear method, and only PCA and MDS are unsupervised.

Principal Component Analysis (PCA) is a linear projection method that finds
orthogonal combinations of input features X = {x1,x2, ...,xN}, with each new di-
rection accounting for largest remaining variation in the data. This method is unsu-
pervised, therefore PCA transformation may be done on all available data. Principal
components Pi that result from diagonalization of data covariance matrix guarantee
minimal loss of information when position of points are recreated from their low-
dimensional projections. Taking 1, 2 or 3 principal components and projecting the
data into the space defined by these components yi j = Pi ·X j provides for each input
vector its representative

(
y1 j,y2 j, ...yk j

)
in the target space.
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Fisher Discriminant Analysis (FDA) is a supervised method that uses informa-
tion about the classes to find projections that separate data from different classes.
This popular algorithm maximizes the ratio of between-class to within-class scatter,
seeking a direction W such that

max
W

JW =
WT SBW
WT SIW

(1)

where the scatter matrices SB and SI are defined by

SB =
C

∑
i=1

ni

n
(mi−m)(mi−m)T ; SI =

C

∑
i=1

ni

n
Σ̂i (2)

where mi and Σ̂i are the means and covariance matrices for each class and m is the
total mean vector [23]. FDA is frequently used for classification and projecting data
on a line. For visualization generating the second FDA vector in a two-class problem
is not so trivial. This is due to the fact that the rank of the SB matrix for the C-class
problems is C−1. Cheng et al. [4] proposed several solutions to this problem:

• stabilize the SI matrix by adding a small perturbation matrix;
• use pseudoinverse, replacing S−1

I by the pseudoinverse matrix S†
I ;

• use rank decomposition method.

In our implementation pseudoinverse matrix has been used to generate higher FDA
directions.

Multidimensional scaling (MDS) is a non-linear technique used for proximity
visualization [5]. The main idea is to decrease dimensionality of data while preserv-
ing original distances between data points as defined in the high-dimensional space.
MDS methods need only similarities between objects, so explicit vector representa-
tion of objects is not necessary. In metric scaling quantitative evaluation of similarity
based on numerical distance measures (Euclidean, cosine, or any other measure) is
used, while for non-metric scaling qualitative information about the pairwise simi-
larities is sufficient. MDS methods also differ by their cost functions, optimization
algorithms, the number of similarity matrices used, and the use of feature weight-
ing. There are many measures of topographical distortions due to the reduction of
dimensionality, most of them variants of the stress function:

ST (d) =
n

∑
i> j

(Di j−di j)
2 (3)

where di j are distances (dissimilarities) in the target (low-dimensional) space, and
Di j are distances in the input space, pre-processed or calculated directly using some
metric functions. These measures are minimized over positions of all target points,
with large distances dominating in the ST (d). The sum runs over all pairs of vec-
tors and thus contributes O(n2) terms. In the k-dimensional target space there are
kn parameters for minimization. For visualization purposes the dimension of the
target space is k = 1− 3. The number of vectors n may be quite large, making the
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approximation to the minimization process necessary [19]. MDS cost functions are
not easy to minimize, with multiple local minima representing different mappings.
Initial configuration is either selected randomly or based on projection of data to the
space spanned by principal components. Orientation of axes in the MDS mapping
is arbitrary, and the values of coordinates do not have any simple interpretation, as
only relative distances are important. However, if the data has clear clusters in the
input space MDS may show it.

Linear SVM algorithm searches for a hyperplane that provides a large margin
of classification, using regularization term and quadratic programming. Non-linear
versions are based on a kernel trick [21] that implicitly maps data vectors to a high-
dimensional feature space where the best separating hyperplane (the maximum mar-
gin hyperplane) is constructed. Linear discriminant function is defined by:

gW(X) = WT ·X+w0 (4)

The best discriminating hyperplane should maximize the distance between de-
cision hyperplane defined by gW(X) = 0 and the vectors that are nearest to it,
maxW D(W,X(i)). The largest classification margin is obtained from minimization
of the norm ‖W‖2 with constraints:

Y (i)gW(X(i))≥ 1 (5)

for all training vectors X(i) that belong to class Y (i). Vector W, orthogonal to the
discriminant hyperplane, defines direction on which data vectors are projected, and
thus may be used for one-dimensional projections. The same may be done using
non-linear SVM based on kernel discriminant:

gW(X) =
Nsv

∑
i=1

αiK(X(i),X)+w0 (6)

where the summation is over support vectors X(i) that are selected from the training
set. The x = gW(X) values for different classes may be smoothed and displayed as a
histogram, estimating either the p(x|C) class-conditionals or posterior probabilities
p(C|x) = p(x|C)p(C)/p(x).

SVM visualization in more than one dimension requires generation of additional
discriminating directions. The first projection should give gW1(X) < 0 for vectors
from the first class, and > 0 for the second class. This is obviously possible only
for linearly separable data. If this is not the case, a subset D(W1) of all vectors that
have projections in the [a(W1),b(W1)] interval containing the zero point is selected.
This interval should include all vectors for which p(x|Ci) class-conditionals over-
lap. The second best direction may be obtained by repeating SVM calculations in
the space orthogonalized to the already obtained W1 direction, using only the subset
of D(W1) vectors, as the remaining vectors are already well separated in the first
dimension. SVM training in its final phase is using anyway mainly support vectors
that belong to this subset. However, vectors in the [a(W1),b(W1)] interval should
not include outliers that are far from the decision border, and therefore should gen-
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erate a significantly different direction. This process may be repeated to obtain more
dimensions. Each additional dimension should help to decrease errors, and the op-
timal dimensionality is obtained when new dimensions stop decreasing the number
of errors in crossvalidation tests.

In the case of non-linear kernel, gW(X) provides the first direction, while the
second direction may be generated in several ways. The simplest approach is to
repeat training on D(W) subset of vectors that are close to the hyperplane in the
extended space using some other kernel, for example a linear kernel.

The Quality of Projected Clusters (QPC) is a supervised projection pursuit
method which search for most interesting and informative linear projections by max-
imalization of following index [16]:

QPC(w) = ∑
x

(
A+ ∑

xk∈Cx

G
(
wT (x−xk)

)−A− ∑
xk /∈Cx

G
(
wT (x−xk)

)
)

(7)

where G(x) is a function with localized support and maximum in x = 0 (e.g. a Gaus-
sian function), and Cx denote the set of all vectors that have the same label as x. This
index achieves maximum value for projections on the direction w that group vectors
belonging to the same class into a compact and well separated clusters. It does not
enforce linear separability and is suitable for multi-modal data. Parameters A+,A−
control influence of each term in Eq. (7) and for large value of A− strong separation
between classes is enforced, while increasing of A+ impacts mostly compactness
and purity of clusters. The shape and width of the G(x) function used in E.q. (7) in-
fluent on learning convergence, if G(X) is continuous then gradient-based methods
may be used to maximize QPC index.

Data visualizations presented in next section was obtained by maximization of
QPC with an inverse quartic function

G(x) =
1

1+(bx)4 (8)

but all bell-shaped functions (e.g. Gaussian or bicentral function) that achieve max-
imum value for x = 0 and vanish for x → ±∞ are suitable here. The QPC index
provides a leave-one-out estimator that measures quality of clusters projected on
w direction, thus direct calculation of the QPC index (7), as in the case of nearest
neighbor methods, requires O(n2) operations. The greatest advantage of using this
index is that it is able to discover non-local structures and multimodal class distri-
butions (e.g. k-separable datasets with k > 2 [6]). The QPC may be used also (in the
same way as the SVM approach described above) as a base for creation of feature
ranking and feature selection methods where the strength of coefficients wi in the
final projection indicates significance of i-th feature. For noisy and non-informative
variables values of associated weights should decrease to zero during QPC opti-
mization.

Not only global, but also local extrema of the QPC index are of interest, as they
may also provide useful insight into the structure of data and may be used in a
committee-based approach that combines different views on the data. For complex
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problems usually more than one projection is required therefore one can search for
the next linear projection either in the orthogonalized space, or using additional
penalty term:

QPC(w;w1) = QPC(w)−λ f (w,w1) . (9)

This term should provide punishment for solutions similar to those found earlier,
thus the value of f (w,w1) should become large for direction w close to the previous
direction w1, e.g. some power of the scalar product between these directions may be
used f (w,w1) = (w1

T ·w)2. Repeating this procedure leads to a creation of sequence
of unique interesting projections [16].

3 Illustrative examples

Visualization methods described above will be used to determine what kind of trans-
formations should be used to discover structures hidden in the multidimensional
data. The usefulness of this meta-learning approach has been tested on a several
datasets, one artificial binary dataset, and four real datasets downloaded from the
UCI Machine Learning Repository [1], and an microarray gene expression data from
[11]. A summary of these datasets is presented in Tab. 1; their short description fol-
lows:

1. Parity 8: 8-bit parity dataset (8 binary features and 256 vectors).
2. Heart disease dataset consists of 270 samples, each described by 13 attributes,

150 cases labeled as the “absence”, and 120 to the “presence of heart disease”.
3. Wisconsin breast cancer data [24] contains 699 samples collected by doing

biopsies on patients. Among them, 458 biopsies have been labeled as “benign”,
and 241 as “malignant”. Feature 6 has 16 missing values, removing correspond-
ing vectors leaves 683 examples.

4. Leukemia: microarray gene expressions for two types of leukemia (ALL and
AML), with a total of 47 ALL and 25 AML samples measured with 7129 probes
[11]. Visualization and evaluations of this data is based here on pre-selected 100
best features, done by simple feature ranking using FDA index.

5. Monks 1: dataset contains 124 cases, where 62 samples belong to the first class,
and the remaining 62 to the second. Each sample is described by 6 attributes.
Logical function has been used to created class labels.

Title #Features #Samples #Samples per class Source
Parity 8 8 256 128 C0 128 C1 artificial

Heart 13 270 150 “absence” 120 “presence” [1]
Wisconsin 10 683 444 “benign” 239 “malignant” [24]
Leukemia 100 72 47 “ALL” 25 “AML” [11]
Monks 1 6 124 62 C0 62 C1 [1]

Table 1 Summary of used datasets

For each dataset one and two-dimensional mappings have been created using
MDS, PCA, FDA, SVM and QPC algorithms (Figs. 2-6). Then, on the basis of
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these visualizations, an optimal classificator that should fit to the particular data
distribution has been chosen from the following list:

1. Naive Bayesian Classifier (NBC)
2. k-Nearest Neighbours (kNN)
3. Separability Split Value Tree (SSV) [12]
4. Support Vector Machines with Linear Kernel (SVML)
5. Support Vector Machines with Gaussian Kernel (SVMG)

Some methods before classification require standardization of data. Analyzing visu-
alizations we have tried to choose the best classifier for each dataset. To check if this
choice has been optimal comparison with classification accuracies for each dataset
using all classifiers listed above has been done, in the original as well as reduced
one and two-dimensional space. 10-fold crossvalidation tests results are collected in
Tables 2-6, with accuracies and standard deviations given for each dataset. For the
kNN classifier the number of nearest neighbours has been automatically selected
from the 1−10 range using crossvalidation estimation. Also the SVM parameters C
and σ have been chosen in an automatic way using crossvalidation estimations. All
calculations have been performed using the Ghostminer package developed in our
group [9].

In all cases visualization helps to estimate reliability of predictions for individual
cases, showing how far they are from the decision border where strong overlaps
occurs. This is very important in many applications, and may be useful also in cases
of complex decision borders, when simple rule-based systems will not be able to
provide good approximation.

High-dimensional parity problem is very difficult for most classification meth-
ods. Many papers have been published on special neural models for parity func-
tions, and the reason is quite obvious, as Fig. 2 illustrates: linear separation cannot
be easily achieved because this is a k-separable problem that should be separated
into n+1 intervals for n bits [15, 6]. MDS is completely lost and does not show any
interesting structure, as all vectors from one class have their nearest neighbors from
the opposite class. PCA and SVM find a very useful projection direction [1,1..1],
but the second direction does not help at all. FDA shows significant overlaps for
projection on the first direction.

Only the QPC index finds both directions that are quite useful. Points that are in
small clusters projected on the first direction belong to a quite large cluster projected
on the second direction. This is a very interesting example showing that visualiza-
tion may help to solve a difficult problem in a perfect way even when almost all
classifiers fail. Looking at these pictures one can notice that because data are not
linearly separable, probably the best classifier to solve this problem should be:

• any decision tree, after transformation to one or two-dimensions by PCA, SVM
or QPC;

• NBC, in one or two-dimensions, combining directions for the most robust so-
lution, provided that it will use density estimation based on a sum of Gaussian
functions or similar localized kernels;
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• kNN on the 1D data reduced by PCA, SVM or QPC, with k=1, although it will
make a small error for the two extreme points.

This choice agrees with the results from tables 2-6, where the highest accuracy
(99.61±1.21) is obtained by the SSV classifier on the 2D data transformed by SVM
or QPC method, but NBC and kNN results are not worse from the statistical point
of view (are within standard deviation). kNN results on original data with k≤ 10 are
always wrong, as 8 closest neighbors are from the opposite class. After dimension-
ality reduction k=1 is sufficient. It is also interesting to note the complexity of other
models: SVM takes all 256 vectors as support vectors, achieving results around the
base rate of 50%, with the exception of SVM with Gaussian kernel that does quite
well on the one and two-dimensional data reduced by SVM and QPC projections.
SSV creates moderately complex tree with 7 leaves and a total of 13 nodes.

Visualization in Fig. 2 also suggest that using 2D QPC projected data kNN rule
may be easily modified: instead of a fixed number of neighbors for vector X, take its
projections y1,y2 on the two dimensions, and count the number of neighbors ki(εi)
in the largest interval yi± εi around yi that contain vectors from a single class only,
summing results from both dimensions k1(ε1)+ k2(ε2). This is an interesting new
version of the kNN method, but it will not be explored here further.

Cleveland Heart data Fig. 3 is rather typical for biomedical data. The information
contained in the test data is not really sufficient to make a perfect diagnosis. Almost
all projections show comparable separation of a significant portion of the data, al-
though looking at probability distributions in one dimensions SVM and FDA seem
to have a bit of an advantage. In such case strong regularization is advised to im-
prove generalization. For kNN this means rather large number of neighbors (in most
cases 10, the maximum allowed here, was optimal), for decision tree strong pruning
(SSV after FDA has only a root and two leaves), while for SVM rather large value
of C parameter and (for Gaussian kernels) dispersions, with significant number of
support vectors.

The best recommendation for this dataset is to apply the simplest classifier –
SSV or linear SVM on FDA projected data. Comparing this recommendation with
calculations presented in tables 2-6 confirms that this is the best choice.

Wisconsin breast cancer dataset is similar to Cleveland Heart data, but it shows
much stronger separation (Fig. 4) of the cases that belong to the two classes for
all types of visualization. It is quite likely that this data contains several outliers.
All methods give comparable results, although reduction of dimensionality to two
dimensions helps quite a bit to reduce the complexity of the data models, except for
the SVM that achieves essentially the same accuracy requiring similar number of
support vectors for the original and the reduced data.

Again, the simplest classifier is quite sufficient here, SSV on FDA or QPC projec-
tions with a single threshold (a tree with just two leaves), or more complex (about
50 support vectors) SVM model with linear kernel on 2D data reduced by linear
projection. One should not expect that more information can be extracted from this
data.

Leukemia shows remarkable separation using both one and two-dimensional
QPC, SVM and FDA projections (Fig. 5), providing more interesting solution than
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MDS or PCA methods. Choosing one of the three linear transformations (for ex-
ample the QPC), and projecting original data to the one-dimensional space, SSV
decision tree, kNN, NBC and SVM classifiers, give 100% accuracy in the 10CV
tests (Table 5). All these models are very simple, with k=1, or trees with 3 nodes,
and 2 support vectors for linear SVM. Results on the whole data are much worse
than on the projected features.

In this case dimensionality reduction is the most important factor, combining the
activity of many genes into a single profile. As the projection coefficients are linear
the importance of each gene in this profile may be easily evaluated.

# Features Parity 8 Heart Wisconsin Leukemia Monks1
PCA 1 99.21±1.65 80.74±6.24 97.36±2.27 98.57±4.51 56.98±14.12
PCA 2 99.23±1.62 78.88±10.91 96.18±2.95 98.57±4.51 54.67±13.93
MDS 1 38.35±7.00 75.55±6.80 96.63±1.95 92.85±7.52 67.94±11.24
MDS 2 30.49±13.79 80.74±9.36 95.16±1.70 98.57±4.51 63.52±16.02
FDA 1 75.84±10.63 85.18±9.07 97.07±0.97 100±0.00 72.05±12.03
FDA 2 74.56±10.69 84.07±8.01 95.46±1.89 100±0.00 64.48±17.54
SVM 1 99.23±1.62 85.92±6.93 95.90±1.64 100±0.00 70.38±10.73
SVM 2 99.21±1.65 83.70±5.57 97.21±1.89 100±0.00 71.79±8.78
QPC 1 99.20±2.52 81.48±6.53 96.33±3.12 100±0.00 72.56±9.70
QPC 2 98.41±2.04 84.44±7.96 97.21±2.44 100±0.00 100±0

ALL 23.38±6.74 72.22±4.70 95.46±2.77 78.28±13.55 69.35±16.54

Table 2 NBC 10-fold crossvalidation accuracy for datasets with reduced features.

# Features Parity 8 Heart Wisconsin Leukemia Monks1
PCA 1 99.20±1.68 (1) 75.92±9.44 (10) 96.92±1.61 (7) 98.57±4.51 (2) 53.97±15.61 (8)
PCA 2 99.21±1.65 (1) 80.74±8.51 (9) 96.34±2.69 (7) 98.57±4.51 (3) 61.28±17.07 (9)
MDS 1 43.73±7.44 (4) 72.96±7.62 (8) 95.60±1.84 (7) 91.78±7.10 (4) 69.48±10.83 (8)
MDS 2 48.46±7.77 (1) 80.37±8.19 (6) 96.48±2.60 (3) 97.32±5.66 (8) 67.75±16.51 (9)
FDA 1 76.60±7.37 (10) 84.81±5.64 (8) 97.35±1.93 (5) 100±0.00 (1) 69.35±8.72 (7)
FDA 2 99.23±1.62 (1) 82.96±6.34 (10) 96.77±1.51 (9) 100±0.00 (1) 69.29±13.70 (9)
SVM 1 99.61±1.21 (1) 82.59±7.81 (9) 97.22±1.98 (9) 100±0.00 (1) 70.12±8.55 (9)
SVM 2 99.61±1.21 (1) 82.96±7.44 (10) 97.36±3.51 (10) 100±0.00 (1) 69.29±10.93 (9)
QPC 1 99.21±1.65 (1) 81.85±8.80 (10) 97.22±1.74 (7) 100±0.00 (1) 81.34±12.49 (3)
QPC 2 98.44±2.70 (1) 85.55±4.76 (10) 96.62±1.84 (7) 100±0.00 (1) 100±0 (1)

ALL 1.16±1.88 (10) 79.62±11.61 (9) 96.34±2.52 (7) 98.57±4.51 (2) 71.15±12.68(10)

Table 3 kNN 10-fold crossvalidation accuracy for datasets with reduced features (optimal k value
in parenthesis).

The last dataset used in this section is Monks 1. This is a very interesting exam-
ple how visualization can help to choose which classificator should be used. Almost
all visualization methods (MDS, PCA, FDA and SVM, Fig. 6) for one and two-
dimensional projections do not show interesting structure. However, the 2D scatter-
plot of the QPC projection shows quite clear structure that can easily be separated
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# Features Parity 8 Heart Wisconsin Leukemia Monks1
PCA 1 99.21±1.65 (13/7) 79.25±10.64 (3/2) 97.07±1.68 (3/2) 95.71±6.90 (7/4) 57.94±11.00 (3/2)
PCA 2 99.23±1.62 (13/7) 79.62±7.03 (15/8) 97.36±1.92 (3/2) 95.81±5.16 (7/4) 61.34±11.82 (11/6)
MDS 1 47.66±4.69 (1/1) 77.40±6.16 (3/2) 97.07±1.83 (3/2) 91.78±14.87 (3/2) 68.58±10.44 (3/2)
MDS 2 49.20±1.03 (1/1) 81.11±4.76 (3/2) 96.19±2.51 (9/5) 95.71±6.90 (7/4) 66.98±12.21 (35/18)
FDA 1 73.83±6.97 (17/9) 84.07±6.77 (3/2) 96.92±2.34 (3/2) 100±0.00 (3/2) 67.82±9.10 (3/2)
FDA 2 96.87±3.54 (35/18) 83.70±6.34 (3/2) 96.93±1.86 (11/6) 100±0.00 (3/2) 68.65±14.74 (3/2)
SVM 1 99.23±1.62 (13/7) 83.33±7.25 (3/2) 97.22±1.99 (3/2) 100±0.00 (3/2) 70.32±16.06 (3/2)
SVM 2 99.61±1.21 (13/7) 84.81±6.63 (3/2) 97.22±1.73 (3/2) 100±0.00 (3/2) 69.35±9.80 (3/2)
QPC 1 99.20±2.52 (13/7) 82.22±5.46 (9/5) 96.91±2.01 (3/2) 100±0.00 (3/2) 82.43±12.22 (47/24)
QPC 2 99.61±1.21 (13/7) 83.33±7.25 (13/7) 96.33±2.32 (3/2) 100±0.00 (3/2) 98.46±3.24 (7/4)

ALL 49.2±1.03 (1/1) 81.48±4.61 (7/4) 95.60±3.30 (7/4) 90.00±9.64 (5/3) 83.26±14.13 (35/18)

Table 4 SSV 10-fold crossvalidation accuracy for datasets with reduced features (total number of
nodes/leaves in parenthesis).

# Features Parity 8 Heart Wisconsin Leukemia Monks1
PCA 1 39.15±13.47 (256) 81.11±8.08 (118) 96.78±2.46 (52) 98.57±4.51 (4) 63.71±10.68 (98)
PCA 2 43.36±7.02 (256) 82.96±7.02 (113) 96.92±2.33 (53) 97.14±6.02 (4) 63.71±10.05 (95)
MDS 1 42.98±5.84 (256) 77.03±7.15 (170) 95.60±2.59 (54) 91.78±9.78 (28) 69.61±11.77 (88)
MDS 2 43.83±8.72 (256) 82.96±6.09 (112) 96.92±2.43 (52) 97.32±5.66 (5) 64.74±16.52 (103)
FDA 1 45.73±6.83 (256) 85.18±4.61 (92) 97.21±1.88 (52) 100±0.00 (2) 69.93±11.32 (80)
FDA 2 44.16±5.67 (256) 84.81±5.36 (92) 96.77±2.65 (51) 100±0.00 (3) 69.23±10.57 (80)
SVM 1 54.61±6.36 (256) 85.55±5.36 (92) 97.22±1.26 (46) 100±0.00 (2) 71.98±13.14 (78)
SVM 2 50.29±9.28 (256) 85.55±7.69 (92) 96.92±2.88 (47) 100±0.00 (5) 72.75±10.80 (80)
QPC 1 41.46±9.57 (256) 82.59±8.73 (118) 96.34±2.78 (62) 100±0.00 (2) 67.50±13.54 (82)
QPC 2 43.01±8.21 (256) 85.92±5.46 (103) 96.62±1.40 (54) 100±0.00 (2) 66.92±16.68 (83)

ALL 31.61±8.31 (256) 84.44±5.17 (99) 96.63±2.68 (50) 98.57±4.51 (16) 65.38±10.75 (83)

Table 5 SVML 10-fold crossvalidation accuracy for datasets with reduced features (number of
support vectors in parenthesis).

# Features Parity 8 Heart Wisconsin Leukemia Monks1
PCA 1 99.20±1.68 (256) 80.00±9.43 (128) 97.36±2.15 (76) 98.57±4.51 (20) 58.84±12.08 (102)
PCA 2 98.83±1.88 (256) 80.00±9.99 (125) 97.22±2.22 (79) 97.14±6.02 (22) 67.17±17.05 (99)
MDS 1 44.10±8.50 (256) 73.70±8.27 (171) 95.74±2.45 (86) 91.78±7.10 (36) 64.67±10.88 (92)
MDS 2 43.04±8.91 (256) 82.59±7.20 (121) 96.63±2.58 (78) 98.75±3.95 (27) 62.17±15.47 (104)
FDA 1 77.76±7.89 (256) 85.18±4.61 (106) 97.65±1.86 (70) 100±0.00 (12) 72.37±9.29 (85)
FDA 2 98.84±1.85 (256) 84.81±6.16 (110) 97.07±2.06 (74) 100±0.00 (15) 70.96±10.63 (85)
SVM 1 99.61±1.21 (9) 85.18±4.61 (107) 96.93±1.73 (69) 100±0.00 (14) 72.82±10.20 (77)
SVM 2 99.61±1.21 (43) 84.07±7.20 (131) 96.92±3.28 (86) 100±0.00 (21) 68.65±13.99 (93)
QPC 1 99.21±1.65 (256) 82.59±10.33 (130) 97.07±1.82 (84) 100±0.00 (10) 67.43±17.05 (84)
QPC 2 98.44±2.70 (24) 85.18±4.93 (132) 96.33±1.87 (107) 100±0.00 (12) 99.16±2.63 (45)

ALL 16.80±22.76 (256) 82.22±5.17 (162) 96.63±2.59 (93) 98.57±4.51 (72) 78.20±8.65 (87)

Table 6 SVMG 10-fold crossvalidation accuracy for datasets with reduced features (number of
support vectors in parenthesis).
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using decision tree as classifier (SSV) on the reduced data. Moreover, a very simple
tree with 7 nodes and 4 leaves is created. Comparing this with the results in Table
4 one can confirm that this is really the best possible classification method for this
data, giving in most crossvalidations 100% accuracy. Moreover, analysis of the QPC
projection coefficients helps to convert the solution obtained to logical rules in the
original space.

4 Conclusions

The holy grail of computational intelligence is to create methods that will automati-
cally discover the best models for a given data. There is no hope that a single method
will be always the best and therefore multistrategy approaches [10] should be de-
veloped. Most known machine learning methods may be presented as sequences
of transformations. Searching in the space of all possible transformations may be
done in an automatic way if a restricted framework for building models is provided,
such as the similarity based framework [8]. However, in a general case of arbitrary
transformations such search may be quite difficult. Linear separability is the most
common, but not the best goal of learning. Initial transformation may show non-
linear structures in the data that – if noticed – may be easy to handle with specific
transformations.

Visualization may help to notice what type of algorithm is the most promising.
Several linear and nonlinear visualization methods presented here proved to be use-
ful in dimensionality reduction, evaluation of the reliability of classification for indi-
vidual cases, but also discovering whether simple linear classifier, nearest neighbor
approach, radial basis function expansion, naive Bayes or a decision tree will pro-
vide simplest analysis. In particular the QPC index recently introduced [16] proved
to be quite helpful, showing structures in the Monk 1 problem that other methods
were not able to reveal. Studying visualization and transformation-based systems
should bring us a bit closer to systems that use meta-learning to create automati-
cally the best data models.
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8. Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization.

In: L. Rutkowski, J. Kacprzyk (eds.) Advances in Soft Computing, pp. 13–22. Physica Verlag,
Springer, New York (2002)

9. Duch, W., Jankowski, N., Gra̧bczewski, K., Naud, A., Adamczak, R.: Ghostminer data mining
software. Tech. rep. (2000-2005). Http://www.fqspl.com.pl/ghostminer/

10. (ed), R.M.: Multistrategy Learning. Kluwer Academic Publishers (1993)
11. Golub, T.: Molecular classification of cancer: Class discovery and class prediction by gene

expression monitoring. Science 286, 531–537 (1999)
12. Gra̧bczewski, K., Duch, W.: The separability of split value criterion. In: Proceedings of the 5th

Conf. on Neural Networks and Soft Computing, pp. 201–208. Polish Neural Network Society,
Zakopane, Poland (2000)

13. Grabczewski, K., Jankowski, N.: Versatile and efficient meta-learning architecture: Knowl-
edge representation and management in computational intelligence. In: CIDM, pp. 51–58.
IEEE (2007)

14. Grabczewski, K., Jankowski, N.: Meta-learning with machine generators and complexity
controlled exploration. In: L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (eds.)
ICAISC, Lecture Notes in Computer Science, vol. 5097, pp. 545–555. Springer (2008)

15. Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Construc-
tive Feedforward Neural Network. Lecture Notes in Computer Science 4668, 180–189 (2007)

16. Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks Based on Qual-
ity of Projected Clusters. Lecture Notes in Computer Science 5164, 754–762 (2008)

17. Maszczyk, T., Duch, W.: Support vector machines for visualization and dimensionality reduc-
tion. Lecture Notes in Computer Science 5163, 346–356 (2008)

18. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classifi-
cation. Elis Horwood, London (1994)

19. Naud, A.: An Accurate MDS-Based Algorithm for the Visualization of Large Multidimen-
sional Datasets. Lecture Notes in Computer Science 4029, 643–652 (2006)
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Fig. 2 8-bit parity dataset, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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Fig. 3 Heart data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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Fig. 4 Wisconsin data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.



Discovering Data Structures using Meta-learning 17

−25 −20 −15 −10 −5 0 5 10 15 20
w

1

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

w
1

w
2

−15 −10 −5 0 5 10 15
w

1

−10 −5 0 5 10

−12

−10

−8

−6

−4

−2

0

2

4

6

w
1

w
2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
w

1

−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

w
1

w
2

−3 −2 −1 0 1 2 3 4 5
w

1

−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

w
1

w
2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
w

1

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

w
1

w
2

Fig. 5 Leukemia data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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Fig. 6 Monks 1 data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.




