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{wduch,tmaszczyk}@is.umk.pl

http://www.is.umk.pl

Abstract. Backpropagation of errors is not only hard to justify from biological
perspective but also it fails to solve problems requiring complex logic. A simpler
algorithm based on generation and filtering of useful random projections has bet-
ter biological justification, is faster, easier to train and may in practice solve non-
separable problems of higher complexity than typical feedforward neural net-
works. Estimation of confidence in network decisions is done by visualization of
the number of nodes that agree with the final decision.
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1 Introduction

The discovery of backpropagation of errors (BP) algorithm [1] for training of the mul-
tilayer perceptrons (MLPs) broke the deadlock of training non-linear systems to solve
non-separable problems. However, the degree of non-separability that can be handled,
measured by the k-separability index [2], is rather low. Although various version of
backpropagation algorithm can deal with the XOR problem finding optimal solution
for higher than the 4-bit parity problems without assuming special architecture and ini-
tialization of the network is quite hard. The original BP article was entitled “Learning
internal representations by error propagation”, however these internal representations
have rarely been analyzed, because they are not too informative. Neural networks that
have clear neurobiological motivation create sparse, simple representation in their hid-
den layers [3]. Popular MLP neural networks are much simpler, they do not use internal
inhibition and their only bias towards simple solutions is based on regularization [4],
smoothing the mapping implemented by the network. This is not an appropriate bias
for problems with complex logical structure, therefore poor generalization should be
expected. Analysis of other useful biases and realistic learning targets is quite fruitful
[5].

Biological neural networks solve complex learning problems inherent in optimiza-
tion of behavior, creation of internal models, understanding of linguistic patterns. Cre-
ating algorithms capable of solving problems of similar complexity is an important
challenge and is needed to open the doors for a new generation of ambitious machine
learning applications. Backpropagation of errors is hard to justify from the neurobi-
ological perspective. Algorithms that are biologically plausible and should be able to
learn complex functions are therefore of great interest. Deep belief networks are one
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interesting candidate [6]. Maass et al. [7] have stressed that high-dimensional dynamics
allows for real-time computing without stable states. Instead of attractor neural net-
works that require extensive training his Liquid State Machines can use much simpler
high-dimensional dynamics that corresponds to very complex microcircuit resonances.
Perceptrons may work then as readout neurons, extracting in real-time stable informa-
tion from transient internal states formed by such high dimensional system. Kernel ma-
chines [8] work on similar principle, implicitly projecting data into high-dimensional
spaces, where decision borders become flat and separation by linear hyperplanes is rel-
atively easy.

The almost Random Projection Machine (aRPM) algorithm presented here is based
on the following inspirations. Learning to read, learning multiplication table or similar
tasks takes weeks, although brain plasticity of children is higher than adults. Synaptic
learning is usually rather slow and it takes a long time before new connections will de-
velop. Yet even old people may quickly learn and remember many things after a single
exposure. The amount of synaptic learning must thus be rather limited. Neurons in as-
sociation cortex form strongly connected microcircuits found in cortical minicolumns,
resonating with different frequencies when an incoming signal X(t) appears. A percep-
tron neuron “observing” the activity of thousands of microcircuits in these minicolumns
learns to react to specific signals around particular frequency. However, resonators do
not get excited when overall activity (weighted combination of inputs W ·X) is high,
but rather react when specific levels of activity are reached, selecting only signals from
some soft interval G(W ·X). If these signals are correlated with important activity its
contribution is taken into account, otherwise the signal is not used.

The feature space created in this way is based on those combinations of inputs that
have been found interesting for some task, and thus have some meaning and interpre-
tation. These features are not learned but selected from random projections, with new
features added if they show interesting correlations with some aspect of the problem
being solved. In classification this would mean a subset of vectors from a single class,
some of which have not yet been captured by too many other features and thus carry
interesting information. In fact this model is not too far from the original Selfridge Pan-
demonium architecture [9], where demons, representing interesting observations, shout
to influence decisions of demons that are higher in the hierarchy.

In the next section aRPM algorithm is formally introduced, including relations to the
research on random projections. Section three presents empirical tests and comparisons
with standard machine learning methods, and the last section some conclusions.

2 Almost random projections

Presentation of new input activates large number of microcircuits in the cortex, but
competition and local inhibition will finally leave only a small number of the most active
circuits that provide relevant information. They provide several views on the same data,
in each case discovering a particular angle and projecting a group of similar (from this
particular angle) cases, while cutting off the remaining cases from the projection. A
simple threshold neuron may then read out the level of activation of specific circuits,
estimating familiarity of the presented item by activation proportional to the number



Almost Random Projection Machine 3

of clusters from each category that this item excites. Similar idea has been used in the
liquid state machines [7] designed to analyze spatio-temporal patterns. Many random
oscillators are postulated, projecting the signal into highly dimensional space, and a
threshold neuron is used to read out the activity of the column and discriminate between
different categories. In this paper random filters are used and those that find something
interesting are selected to contribute to the output.

Multi-layer perceptron (MLP), the most successful neural network model, is based
on a perceptron model, or a neuron that performs soft threshold logic operation using
weighted sum of input signals [10]. This is a rough but useful abstraction of activity of a
single biological neuron. Logical threshold neurons, for various noisy input signal dis-
tributions concentrated around some average values, estimate conditional probabilities
that change in a sigmoidal way, depending on the strength of the signal [11]. Perceptrons
may thus be seen as logical devices operating on noisy data. Many random perceptrons
form a hidden layer that projects the data into high-dimensional space.

Two important ideas come from such neurocognitive inspirations. First, many views
of the same item should be considered, generating interesting transformations Ti(X)
that involve non-local projections Wi ·X. Such projections are filtered through local-
ized functions Ti(X) = Gi(Wi · X) discovering useful features specific to a given
category. The number of features should not be fixed, as they are dynamically gener-
ated until there is sufficient information to make decision. The interplay between local
and global analysis has been missing in neural networks and other types of machine
learning algorithms. Transformations Ti(X) map input cases to one-dimensional clus-
ters that should be either relatively pure or at least partially discriminative, excluding
some categories [12]. A single large projected cluster is sufficient for categorization if
there is no strong competition, but some redundancy should be preferred. The winner-
takes-most mechanism of biological networks should be approximated to make final
decision based on memberships in projected clusters [3]. It is surprising that so far
neural networks took only the simplest inspirations from biology.

The aRPM algorithm inspired by the ideas mentioned above has only a few pa-
rameters (see Algorithm 1). First, a relevance index [13] is applied to determine if the
projected cluster is interesting, taking into account only “new” vectors, that is those
that have not been already covered more than β times by other clusters (if β = 1 new
nodes should cover training vectors only once). Boosting-like variants may be consid-
ered [14], but here only the simplest version is tested. Any filter based on information
indices, purity or other criterion is suitable. Second, to justify adding new features (at-
taching hidden node to the output) new clusters that give rise to features should not be
too small, covering at least α fraction of all vectors, and at least one new vector. Inter-
vals G(zi; C) that extract clusters from projections may for example be modeled by a
difference of two logistic functions, providing a soft trapezoidal function [15], but be-
low only a simple [min,max] intervals have been used. The number of repetitions Nrep

has been set here to 10.
The weights in this algorithm are randomly selected, and their values do not change

– no additional learning of weights is needed, in contrast to all other methods for neural
network training. In some feedforward network models learning is restricted only to
the linear output layer [16], but here it is replaced by a simple addition of appropriate
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Algorithm 1 aRPM
Require: Flag all vectors X as “new”.
1: for i = 0 to Nrep do
2: Randomly assign weights w

¯ i, wi ∈ [−1, 1].
3: Generate new projection zi = w

¯ iX.
4: Analyze p(zi|C) distributions to determine “intersting” clusters.
5: Add them as new features G(zi; C), or class-labeled hidden network nodes.
6: Sum the activity of hidden node subsets for each class to calculate network outputs

y(C|X) =
∑

i G(zi; C).
7: Remove flag “new” from all vectors that reach y(C|X) ≥ β.
8: end for

Validate the network.
9: if Accuracy does not increase then

10: return network.
11: else
12: goto 1
13: end if

Fig. 1. Network structure of the aRPM algorithm.

inputs. The aRPM simply generates sufficient number of random weights and selects
new useful features G(zi; C). Each node corresponds then to a perceptron capturing
clusters that may be surrounded by samples from other classes. To make final decision
aRPM uses winner-takes-most mechanism.

Many variants of basic aRPM algorithm are possible and will be presented in a
longer paper. New features may be used in a Naive Bayes type of estimation, but then
one should avoid redundant nodes, while in the additive model the more nodes are ex-
cited by a given vector the better. There is no reason why all clusters should be pure,
although projections that overlap with existing ones may be discouraged to generate
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more interesting views on the data. Additional parameter γ may determine the thresh-
old for relevance of the new feature, for example the purity level of each new cluster.
Another possibility is to introduce weights proportional to the size of the cluster (num-
ber of vectors that pass through a particular filter), or use linear discrimination on the
activity of the hidden nodes (this is more costly). G(zi;C) may reflect class-dependent
probability density.

3 Illustrative examples

The usefulness of aRPM algorithm has been evaluated on two artificial and four real
datasets downloaded from the UCI Machine Learning Repository [17] and from [18]
(Leukemia). A summary of these datasets is presented in Tab. 1. Artificial 8 and 10-bit
parity datasets have been selected because they are very difficult to analyze correctly
by standard MLPs, Support Vector Machines or other machine learning algorithms. The
four other datasets are standard examples of benchmark type and are used here to enable
typical comparison of different learning methods. Leukemia has 7129 dimensions and
it would be quite easy to get perfect results with such a large space, therefore 100 best
features from a simple Fischer Discriminant Analysis (FDA) ranking index have been
used [13]. Vectors with missing values have been removed (6 vectors from Heart disease
dataset, and 16 from Wisconsin cancer), although it is quite easy to use projections
based only on features that have been defined (formally undefined features should turn
off nodes that use it, but it is enough to give it sufficiently low value).

Title #Features #Samples #Samples per class Source
Parity8 8 256 128 even 128 odd artificial

Parity10 10 1024 512 even 512 odd artificial
Leukemia 100 72 47 ALL 25 AML [18]

Heart 13 297 160 absence 137 presence [17]
Wisconsin 10 683 444 benign 239 malignant [19]

Liver 6 345 145 C1 200 C2 [17]

Table 1. Summary of datasets used for comparison of aRPM algorithm with other methods.

To compare aRPM with 4 popular classification methods 10-fold crossvalidation
tests have been repeated 10 times and average results collected in Table 2, with accura-
cies and standard deviations for each dataset. Additionally in each column the complex-
ity of the generated models have also been noted: for C4.5 size of the tree, for kNN the
number of nearest neighbours, for SVM the number of support vectors, and for MLP
and aRPM the number of hidden nodes. Only linear SVM has been used as for these
dataset results obtained with Gaussian kernel are not better. Parameters of all classifiers
have been optimized. In case of aRPM pure clusters were enforced, with the minimum
number of vectors in each cluster set as 1% of all vectors for the Heart and Wisconsin
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datasets, for the Leukemia at least 10 vectors have been required, and for the parity very
large clusters were enforced, for the 10-bit parity over 200 elements.

Dataset Method
C4.5 kNN MLP SVM aRPM

Parity8 31.6 ± 1.3 (1) 100 ± 0 (17) 94.1 ± 2.1 (17) 32.4 ± 4.4 (230) 99.2 ± 1.6 (12)
Parity10 40.4 ± 1.6 (1) 100 ± 0 (21) 89.2 ± 12.3 (21) 39.1 ± 6.5 (920) 99.5 ± 0.9 (12)

Leukemia 82.6 ± 8.3 (5) 97.2 ± 1.6 (2) 95.8 ± 3.6 (52) 98.7 ± 3.9 (15) 96.1 ± 8.6 (19)
Heart 77.8 ± 2.1 (33) 81.8 ± 6.6 (45) 79.5 ± 1.3 (8) 81.5 ± 1.3 (94) 78.3 ± 4.2 (43)

Wisconsin 94.7 ± 2.0 (21) 97.0 ± 1.7 (5) 94.2 ± 0.2 (6) 96.3 ± 2.1 (49) 97.9 ± 1.6 (30)
Liver 65.8 ± 2.2 (51) 62.0 ± 1.1 (44) 67.5 ± 3.1 (5) 69.2 ± 10.3 (236) 61.1 ± 5.1 (47)

Table 2. Accuracy results

High-dimensional parity problem is very difficult for most classification methods.
Many papers have been published on special neural models for parity functions, and the
reason is quite obvious. Linear separation cannot be easily achieved because this is a
k-separable problem that should be separated into n+1 intervals for n bits [2, 20]. This
is a very interesting example showing that aRPM solves quite easily difficult problems
in almost perfect way even when most standard classifiers fails. Although kNN may
also work perfectly well it requires k > 2n for n-bit parity to overcome the influence
of the nearest neighbors.
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Fig. 2. Typical convergence curve, showing errors as a function of the number of nodes (Heart
dataset); dashed line - training errors, solid line - test errors.

Reduced Leukemia dataset is classified by aRPM at 96%, significantly better than
C4.5 result and at the similar level as all other systems. For Cleveland Heart data the new
algorithm gives about 78± 4% accuracy, with the base rate of 54%. This is not signifi-
cantly different from other classifiers because variance is rather high, although SVM has
some advantage here, with over 100 support vectors creating rather complicated model.
Wisconsin breast cancer dataset is classified by aRPM with higher accuracy then other
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classifiers, and relatively small variance 98 ± 2%. For Liver dataset variance of most
methods is quite high, but SVM may have some advantage, other classifiers do not give
significantly different results.

These results are by no means the limits of aRPM algorithm as α and β parameters
have not been optimized and γ = 0 was taken. How many hidden nodes should be cre-
ated? If α is small more nodes are created, giving higher training accuracy, but clusters
covered by these nodes have to be smaller, or less pure, so some learning of optimal
values is needed. The simplest version used here is very fast as it does not perform any
learning, except for setting the interval in one-dimensional projections. Typical conver-
gence with respect to the number of nodes (Fig. 2) is quite fast and monotonic, quickly
saturating. For example for the Heart data accuracy saturates at 78% for about ≈43
nodes.

aRPM classifier allows for easy estimation of confidence in the results. This is seen
in Fig. 3 scatterplots. The network has two linear outputs and their value, for binary
activations of hidden nodes, is simply an integer number between 0 and the number of
nodes for each class. Each plot presents output of aRPM model trained inside cross-
validation and then applied to all dataset, thus showing test and training errors. Most
vectors activate only nodes from the correct class, some of them as many as 8. Large
pure clusters show high-confidence predictions. Some vectors are rejected and fall into
(0,0) cluster; they may be assigned to a default majority class. In case of Heart one
test vector excites as many as 5 nodes from the wrong class, showing that it may be an
outlier. For each cluster confidence factor is equal to the purity of this node estimated
in crossvalidation.

4 Discussion and new directions

Neurocognitive informatics draws inspirations from neurobiological processes respon-
sible for learning. So far only a few general inspirations have been used in computa-
tional intelligence: threshold neurons that perform parallel distributed processing, orga-
nized in networks. Even with our limited understanding of the brain many more inspi-
rations may be drawn and used in practical learning and object recognition algorithms.
Arguments for biological plausibility of random projections rather than slow learning
mechanisms have been presented and simplest version of almost Random Projection
Machine tested. Surprisingly, results of a model that does not perform any optimization
are on benchmark problems at least as good as MLPs, and on parity problem which is
quite difficult to learn for MLPs and SVMs are almost perfect.

Many variants of aRPM will be discussed in a longer paper: they improve results by
optimizing minimal number of vector per cluster, adding impure clusters and enforcing
minimal number of new vectors that have not been correctly classified, changing hard-
limit intervals into more soft-window filters, and setting the threshold for similarity of
new projections before new nodes are created. The brain does not use fixed number of
features, as most pattern recognition algorithms do, but starting from a small number of
features actively searches for new, most discriminative features that neural filters may
provide. Objects are recognized using different features that characterize them. Thus
feature selection and construction is not separable from the actual process of catego-
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Fig. 3. Output of aRPM algorithm for training and test data, top row: Parity8 and Parity10, middle
row: Leukemia and Heart, bottom row: Wisconsin and Liver.
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rization and learning. This is easily incorporated into our algorithms by using subsets
of all available original features to create new hidden nodes. If a very large (or small)
number is inserted for the unknown value nodes that use this feature will be inactive
while nodes that do not use it will provide normal activations. Visualization of outputs
and the ability to estimate confidence in predictions made by such classifiers is a very
useful feature of all variants of these algorithms.

The final goal of learning is to categorize, but the intermediate representations are
also important. Finding interesting views on the data, or constructing interesting infor-
mation filters, is the most important thing. Each filter does its own feature selection or
feature weighting. Instead of using networks with fixed number of inputs systems that
actively sample data, trying to “see it” through their filters, are needed. Once they have
sufficient information to categorize data structures they have done their job. This opens
the way to new algorithms that may learn from objects that have diverse structures,
including many missing values. It is much easier to achieve non-linear separability in
the hidden layers of neural networks than linear separability [5]. If the structure of
non-linear mapping that creates image of data is known it may be then analyzed and
understood. The most important part for good generalization in learning systems is to
create large clusters, as small clusters are not reliable and will be washed out by neural
noise. The learning process is greatly simplified by changing the goal of learning to
easier target and handling the remaining nonlinearities with well defined structure.

Random projections facilitate rapid learning, but in biology rapid learning is fol-
lowed by slow learning that perfects the function. Learning to increase usefulness of in-
dividual nodes to increase purity/separation of hidden nodes may follow initial creation
of a functional network. Projection pursuit with Quality of Projected Clusters index
[21] may be used for discovery of interesting views, and it should be very interesting
to use it as an algorithm for deep belief networks [6] that are trained using Restricted
Boltzmann Machines. All these approaches create interesting hidden representation of
the data.
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