
Prototype rules from SVM

Marcin Blachnik1 and Włodzisław Duch2

1 Division of Computer Methods, Department of Electrotechnology, The Silesian University
of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland; Email:
Marcin.Blachnik@polsl.pl

2 Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń,
Poland; Email Google: Duch

1 Why prototype-based rules?

Propositional logical rules may not be the best way to understand the class struc-
ture of data describing some objects or states of nature. The best explanation may
differ depending on the problem, the type of questions and the type of explanations
that are commonly accepted in a given field. Although most research has focused on
propositional logical rules [14, 19] their expressive powers have serious limitations.
For example, a simple majority voting can be expressed using the “majority is for
it" concept that is easy to formulate using M-of-N threshold rules. Given n binary
xi = 0, 1 answers the rule

∑n
i=1 xi > 0.5n is an elegant expression of such concept

and is impossible to state directly in propositional form, leading to
(

n
n/2

)
terms. This

type of rules may be regarded as a particular form of similarity or prototype-based
rules. In the voting example the similarity to the “all for it" prototype A, that is a
vector with all ai = 1, has to be greater than n/2 in the Hamming distance sense,
||A−X|| < n/2. Cognitive psychology experiments proved that human categoriza-
tion of natural objects and states of nature is based on memorization of numerous
examples and creation of prototypes that are abstractions of these examples [34].
Propositional logical rules are prevalent in abstract sciences but in real life they are
rarely useful, their use being restricted to enumeration of small number of nominal
values, or one or two continuous features with corresponding thresholds. In real life
“intuitive understanding" is used more often, reflecting experience, i.e. memorized
examples of patterns combined with various similarity measures that allow for their
comparison and evaluation.

Decision borders between different categories produced by propositional rules
are simple hyperboxes. Univariate decision trees provide even simpler borders based
on hierarchical reduction of decision regions to half-spaces and hyperboxes. Using
similarity to prototypes quite complex decision regions may be created, including
hyperboxes and fuzzy decision regions. Some of these decisions may be difficult to
describe using linguistic statements and thus may server as a model of intuition. One
may argue that comprehensibility of rules is lost in this way, but if similarity func-

2 Marcin Blachnik and Włodzisław Duch

tions are sufficiently simple interpretation may in fact be quite easy. For example,
interpretation of the ||A −X|| < n/2 rule is quite obvious. Other voting rules may
easily be expressed in the same way, including polarization of opinions around sev-
eral different issues. Weighting evidence before decision is made requires non-trivial
aggregation function to combine all available evidence, and similarity or dissimilar-
ity functions are the most natural way to do it. Despite these arguments the study of
prototype-based rules has been much less popular than of the other forms of rules.

Similarity-Based Methods (SBM) [8, 13] are quite popular in pattern recognition
and data mining. The framework for construction of such methods enables integra-
tion of many methods for data analysis, including neural networks [12], probabilistic
and fuzzy methods [15], kernel approaches and many other methods [32]. One of the
most exciting possibility that such framework offers is to build the simplest accu-
rate method on demand, in a meta-learning scheme, searching for the best model in
the space of all similarity-based methods [18]. This family of methods includes also
prototype-based rules (P-rules) [17] that are more general than fuzzy rules (F-rules),
crisp propositional rules (C-rules) and M-of-N rules, including them as special cases.
All methods covered by the SBM framework represent knowledge as a set of proto-
types or reference vectors, adding appropriate similarity metrics and the aggregation
procedures that combine information from different prototypes giving the final out-
put. Several similarity-based transformations may be done in succession, creating
higher-order SBM models. Prototype based rules are based on the SBM framework,
but their aim is to represent the knowledge hidden in the data in the most compre-
hensible way. This goal is obtained by reducing the number of prototype vectors
(prototype selection), minimizing the number of features used to create final model
and using simple similarity metrics.

One of the most important advantages of P-rules is their universality. They enable
integration of different type of rules, depending on the similarity function associated
with each prototype: classical crisp rules result form Chebychev distance, fuzzy rules
(F-rules) from any separable similarity metrics [16]. P-rules can also represent M-of-
N rules in a natural way using prototype threshold rules [21, 2], adding the distance to
a prototype as one of the coordinates. Such rules often give very simple interpretation
of data, for example a single prototype threshold rule gives over 97.5% accuracy on a
well known Wisconsin Breast Cancer dataset [21]. Thus P-rules provide most general
form of knowledge representation.

Two general types of P-rules are possible, the Nearest Neighbor Rules (PN-
rules), and the prototype threshold rules (PT-rules), introduced in the next section.
In the third section the use of support vectors as prototypes is discussed. Reduction
of the number of support vectors (SVs) and methods of searching for informative
prototypes are described in section 4 and 5, while numerical examples are presented
in section 6. Perspectives on the use of support vector machines for P-rule extraction
conclude this paper.

Prototype rules from SVM 3

2 P-rules and their interpretation

Prototype rules are based on analysis of similarity between objects and prototypes
that are used as a reference. In its most general form [13, 32] objects (cases) {Oi},
i = 1..n do not need to be represented by numerical features, a kernel (or a set
of different kernels that provide “receptive fields” that stress different perspectives)
estimating (dis)similarity is sufficient Kij = K(Oi,Oj) to characterize such ob-
jects. Selecting some of these objects as prototypes an object O is represented by
n-dimensional vector p(O) = Kp. Alternatively, each object is represented by N
feature values. In the first case features come from evaluation of similarity and may
be created for quite complex and diverse objects (such as proteins or whole organ-
isms), for which a common set of features is hard to define. Below it is assumed that
all objects are described by vectors in some feature space.

A single prototype p with associated similarity function S(·,p) defines for a
given threshold θ a subspace Sp of vectors x for which S(x,p) < θ. This subspace is
centered at the position of the prototype p and may have different shapes, depending
on the similarity function. Such interpretation defines a crisp logical rule for the new
feature xp = S(x,p). In this case the antecedent part of a P-rule uses similarity to
a single prototype and the class label of that prototype (in classification tasks) is the
consequence part.

If S(x;p) > θ Then C(x) = C(p) (1)

The similarity value may be used to estimate confidence factor for such rule. The
rescaled difference µp(x) = S(x,p) − θ may obviously be interpreted as a fuzzy
membership function defining the degree to which vector x belongs to the fuzzy
subspace Sp. Many similarity functions are separable in respect to all features:

S(x;p, σ) =
∏

i

S(xi, pi; σi) (2)

where x = [x1, x2, . . . , xn]T and p = [p1, p2, . . . , pn]T are n-dimensional vectors,
and S(·) is similarity function.

Threshold P-rules with separable similarity functions can be interpreted as fuzzy
rules (F-rules) with a product as a fuzzy and aggregation operator. Linguistic inter-
pretation of F-rules relies on semantics of linguistic values assigned to each linguis-
tic variable as adjectives describing the membership functions. Such representation
is sensitive to context. Good example of this context dependence is an adjective high
that may describe objects of different types, for example a person, but even in this
case different kinds of people: kids, women or basketball players will require differ-
ent membership function representing variable “high". Thus indirectly fuzzy rules
have to rely on prototypes of objects or concepts to define the context, but since in
fuzzy rules this context is not explicitly represented confusion is quite likely. P-rules
make this reliance explicit always pointing to prototypes of particular concepts, al-
lowing each concept to be decomposed into independent features that may be treated
as linguistic values in the fuzzy sense.

4 Marcin Blachnik and Włodzisław Duch

2.1 Types of P-rules

Two distinct types of P-rules are:

• Prototype Threshold Rules (PT-rules), where each prototype pi has an associated
threshold θi value and i-th rule is written as:

If S(x,pi) > θi Then C(x) = C(pi) (3)

where C(·) is a function returning class labels or some other information associ-
ated with the prototype.

• Nearest Neighbor Rule (PN-rules), where the most similar prototype is selected:

If k = arg max
i

S(x,pi) Then C(x) = C(pk) (4)

so the output value depends on the internal relations between prototypes.

More general form of PN-rules is used by the Generalized Nearest Prototype
Classifier [25]. From the rule-based perspective it is defined as: If x is similar to pi

then it is of the same class with some support wi:

If wi = S(x,pi) Then C(x) = C(pi) with support wi (5)

where P = [p1,p2, . . . ,pv]T is set of v prototype vectors, and wi is support for the
conclusion of the i-th rule. The final decision of the set of such rules is obtained as:

C(x) = A(wi, C(pi)) (6)

where A(·) is an aggregation operator, which joins conclusions of individual P-rules.

2.2 Support vectors as prototypes

The SVM model defines a hyperplane for linear discrimination in the feature space:

Ψ =
m∑

i=1

γiφ(xi) (7)

where φ(x) is function that maps vectors from n dimensional input space to some
feature space z. Since scalar products are sufficient to define linear models in the φ-
transformed space kernels are used to represent these products in the original feature
space. Decision function is in this case defined as:

f(x) =
m∑

i=1

γiyiK(x,xi) + b (8)

where m is the number of support vectors xi with non-zero γi coefficients (La-
grangian multipliers), K(x,xi) is the kernel function, and yi = C(xi) = ±1 are
the class labels.

Prototype rules from SVM 5

This model may be expressed as a set of PN-rules with weighted aggregation
A(·) (Eq. (5)) as a sum from i = 1 to m, replacing the kernel with a similarity func-
tion S(·, ·) and defining support for a rule as wi = αiS(x,pi; α). Similar ideas have
also been considered from the fuzzy perspective by Chen and Wang [5] who interpret
SVM model as a fuzzy rule based system. In their paper they introduced Positive-
Definite Fuzzy Classifiers using the Takagi Sugeno (TS) fuzzy inference system [37],
adopting this model to extract fuzzy rules from support vector machines. However, in
their solution comprehensibility and model transparency, the most important proper-
ties of any rule bases system, are lost. As stated in [19], logical rules are useful only
if they are simple and accurate, otherwise there is no point in extracting rules from
black box systems that works well because no additional understanding is gained
by creation of many complex rules. The goal of comprehensibility and transparency
can be achieved only when small number of support vectors (SV) can be defined,
or when SVM decisions can be replicated with another simpler rule-based model.
These two strategies have been studied by many research groups. The first leads to
methods aimed at reduction of the number of support vectors through removing ap-
proximately linearly dependent kernels in the SV set. The second one leads to the
“Reduced Set" methods aimed at reconstruction of the SVM hyperplane defined in
the kernel feature space with smaller number of kernel functions.

The initial idea behind the kernel reduction methods was to speed up the decision
process, but these methods can obviously be also used to understand data using small
number of P-rules. These two approaches differ in the way support vectors are used.
SVs are vectors that define or lie within the margin, that is they are close to the deci-
sion hyperplane. Those SVs that are outside of the margin on the wrong side should
be removed, as they are cases that cannot be correctly classified and should not be
used to create rules. Reducing linear dependencies removes some of the original SVs
but will leave other SVs intact. In the “Reduced Set" approach new support vectors
are not selected from the training examples but may be defined anywhere in the input
space.

2.3 Removing linear dependencies among support vectors

Many numerical methods of removing linear dependencies from the kernel matrix
K(xi,xj) may be defined. For smooth kernels the problem may also be analyzed in
the feature space, because it is created by vectors that are too similar to each other.
Therefore clusterization techniques may be used to select representative vectors that
are sufficiently distinct to avoid problems with linear dependencies. In some appli-
cations cluster centers may replace original vectors.

SVM approach based on quadratic programming has a unique solution, avoiding
the problem of local minima and initialization of parameters that neural network
algorithms have to face. Still there are some differences in SVM implementations
that use different quadratic programming solvers. Solutions obtained with SMO [33],
SVM Light [24], SVMTorch [6] or other SVM methods slightly differ from each
other. On the other hand even if identical decision function are obtained different
support vectors may be selected during the optimization procedure. Such situation

6 Marcin Blachnik and Włodzisław Duch

is bound to happen when SVs are linearly dependent. This observation leads to a
reduction of the number of support vectors, as studied by Downs et al. in [7] in the
algorithm referred below using RLSV acronym (removed linearly-dependent support
vectors). Linear dependence in the kernel space Φ can be written as:

φ(xk) =
vx∑

i=1
i6=k

qiφ(xi) (9)

where qi are scalar coefficients. If such vector xk exist (up to predefined precision)
the decision hyperplane (7) can be rewritten as:

Ψ =
m∑

i=1
i 6=k

γiyiφ(xi) + γkyk

m∑

i=1
i 6=k

qiφ(xi) + b (10)

Using the kernel equation (10) is written as:

f(x) =
m∑

i=1
i6=k

γiyiK(x,xi) + γkyk

m∑

i=1
i6=k

qiK(x,xi) + b (11)

This may be finally rewritten as:

f(x) =
m∑

i=1
i6=k

γ′iyiK(x,xi) + b (12)

where
γ′i = γi + γkqiyk/yi (13)

The form of the decision function is thus unchanged, but the coefficients are rede-
fined to account for the removed component.

2.4 Reducing the number of support vectors

The methodology of reduced set methods was proposed by Burges in [4]. When
support vectors are removed the dimensionality of the transformed space is decreased
and this is reflected in the change of the original decision hyperplane Ψ in the input
space to Ψ′ plane. The distance between the two hyperplanes

d = min ||Ψ−Ψ′||2 (14)

should be as small as possible, and the approximation Ψ′

Prototype rules from SVM 7

Ψ′ =
m′∑

i=1

βiφ(xi) (15)

for the P-rules should satisfy m′ ¿ m, with scalar coefficients βi. The inequality
m′ ¿ m should be considered very carefully because the number of SV cannot be
too small [27].

Now there are two possible solution to the problem stated in this way. First,
both the coefficients βi and the position of vectors xi in the input space may be opti-
mized, and second, only the coefficients are optimized while support vectors are kept
selected from the input vectors xi. Both approaches has some advantages and dis-
advantages. Optimization of SV positions allows for better approximation and thus
stronger reduction of the number of support vectors, but may lead to vectors that are
difficult to interpret from the P-rule perspective. For example, in medical applica-
tions unrestricted optimization of support vector positions may create cases that are
quite different from real patient’s data, including intermediate values of binary fea-
tures (such as sex). A compromise in which optimization of SVs is performed only
in selected dimensions may be the best solution from both accuracy and comprehen-
sibility point of view.

Optimizing support vectors zi requires minimization of (14) over β and z:

min
β,z

(d) =
∑m

i,j=1 γiγjK(xi,xj) +
m′∑

i,j=1

βiβjK(zi, zj)

−2
m∑

i=1

m′∑
j=1

βjγiK(xi, zj)
(16)

Directly minimization [4] requires evaluation of derivatives:

∂

∂βa

∥∥∥∥∥∥
Ψ−

m′∑

i=1

βiφ(zi)

∥∥∥∥∥∥

2

= 2φ(za)


Ψ−

m′∑

i=1

βiφ(zi)


 (17)

Setting this derivative to zero and replacing Ψ with (7) one obtains:

m∑

j=1

γjφ(xj) =
m′∑

i=1

βiφ(zi) (18)

In the kernel matrix notation Kzxγ = Kzzβ where γ = [γ1, γ2, . . . , γm]T ,
β = [β1, β2, . . . , βm′]T , and Kzx is matrix of the m′ × m dimensions containing
K(zi,xj) values. The solution may be written in a number of ways, for example:

β = (Kzz)−1
Kzxγ (19)

or using psuedoinverse matrices etc. Selection of the support vectors zi from the
initial pool of SVM-selected input vectors can be done using systematic search tech-
niques, or using some stochastic selection procedures.

8 Marcin Blachnik and Włodzisław Duch

An interesting procedure for approximation Ψ have been proposed in [35], where
the problem has been analyzed as clustering in the feature space. First notice that
instead of direct distance (17) minimization the distance between Ψ and orthogonal
projection of Ψ on the space generated by Span(φ(z)) may be used. Considering a
single vector z and equation (16) the value of β is calculated from (19) as:

β =
m∑

i=1

γiK(xi, z)

/
K(z, z) (20)

and then z may be optimized minimizing:

min
z

∥∥∥∥
Ψ · φ(z)
φ(z)φ(z)

φ(z)−Ψ
∥∥∥∥

2

= ‖Ψ‖2 − (Ψ · φ(z))2

φ(z)φ(z)
(21)

This is equivalent to maximization of:

max
z

(
(Ψ · φ(z))2

φ(z)φ(z)

)
(22)

In case of similarity-based kernels K(z, z) = 1 and maximization in (22) can be
simplified just to maximization of the numerator using fixed-point iterative meth-
ods. Calculating derivatives it is not hard to show that first approximation to z1 is
calculated as [35]:

z1 =

m∑
i=1

γiK(||xi − z||2)xi

m∑
i=1

γiK(||xi − z||2)
(23)

and iterations improve this estimation:

zn+1 =

m∑
i=1

γiK(||xi − zn||2)xi

m∑
i=1

γiK(||xi − zn||2)
(24)

Stability of this process is not guaranteed, and results strongly depend on the initial-
ization of z and may require multiple restarts to find good solution. This is one of
many possible approaches. Another interesting method has been proposed by Kwok
and Tsang [26], using Multidimensional Scaling (MDS) algorithm to represent im-
ages of the feature space vectors back in the input space.

2.5 Finding optimal number of support vectors

Analysis of numerical experiments performed by Downs et al. [7] shows that RLSV
method is not sufficient for rule generation. Elimination of linear dependencies

Prototype rules from SVM 9

among SVs leads to a small reduction of their number, although quality of results
is usually quite good. One exception is reduction of over 80% of the original number
of SVs for the Heberman dataset [7], where quadratic kernel with SMO optimization
found 87 SVs, while RLSV algorithm reduced it to just 10 vectors. Stronger reduc-
tion may be achieved relaxing numerical accuracy for linear dependency tests, but
this will probably degrade also the quality of results. The effects of such reduction
remains to be investigated.

Quality of this method depends on the type of kernel function, the C-value and
the complexity of the decision border created by the SVM algorithm. Parameter C
defining the size of SVM margins has important influence on the number of SVs. In
soft margin SVM harder margins (lower C value) leads to a higher number of SVs
that have more linear dependencies and thus higher reduction rate is obtained. Gen-
erally best results of RLSV algorithm are obtained for linear kernel, as in principle
two support vectors are sufficient to define a decision hyperplane.

RS-SVM approach allows for significant reduction of the number of SVs, leading
to more comprehensible models. To find optimal number of SVs any search method
can be used with typical cost function driven by minimization of the distance between
separating hyperplanes ((14)):

E1(m′) = ‖Ψ−Ψ′‖ = (25)



m∑

i,j=1

γiγjK(xi,xj) +
m′∑

i,j=1

βiβjK(zi, zj)− 2
m∑

i=1

m′∑

j=1

βjγiK(xi, zj)




2

An additional term αm′/m defining model complexity as a fraction of reduced num-
ber of SVs (m′) to the original number of SVs (m) multiplied by some constant α
may be added to the difference of distances between hyperplanes. Because the dis-
tance ‖Ψ − Ψ′‖ may take very high values α may be rescaled by 1/‖Ψ−Ψ′

1‖,
where Ψ′

1 is Ψ′ defined with just one SV.
An alternative function that measures changes in classification accuracy may be

defined as:
E2(m′) = acc(SVM)− acc(RSSVM(m’)) (26)

where acc() is classification accuracy measured using some loss function; in this case
also the penalty for complexity may be added. Because acc(SV M) doesn’t change
during optimization the number of SV, we can simplify the function (26) omitting
the first component, optimizing:

E3(m′) = acc(RSSVM(m’)) (27)

To compare the approach based on minimization of distance and accuracy few tests
have been done using Gaussian SVM on two datasets, Pima Indians Diabetes, and
Cleveland Heart Disease [28]. In the first step all datasets were normalized to the
[0, 1] range. The best C value for the SVM was selected using 5-fold cross validation
(CV) greedy search procedure in the C = 21 to C = 28 range, while σ = 1, and

10 Marcin Blachnik and Włodzisław Duch

10
0

10
1

10
2

10
3

0

50

100

150

200

250

(a) Dependence of the cost function E1 on the logarithm of
the number of SVs

10
0

10
1

10
2

10
3

0.55

0.6

0.65

0.7

0.75

0.8

(b) Dependence of the mean accuracy (cost function E3) on
the logarithm of the number of SVs. Dashed line represents
mean accuracy of the original SVM

Fig. 1. Comparison of the distance (Eq. (26)) and accuracy (Eq. (27)) based cost functions for
Pima Indians diabetes data.

Alpha cutoff=10−2 were fixed. Finally the process of 5-fold CV was used to test
different cost functions using Fixed Point Iteration algorithm (Fig. (1) for the first,
and Fig. (2) for the second dataset). The distance between hyperplanes plotted in
the top subfigure is decreasing in approximately linear way with the logarithm of

Prototype rules from SVM 11

the number of SVs. On the other hand the classification accuracy (Eq. (27)) grows
rapidly reaching the accuracy of SVM with just a few SVs.

10
0

10
1

10
2

10
3

0

50

100

150

200

250

300

(a) Dependence of the cost function E1 on the logarithm of
the number of SVs

10
0

10
1

10
2

10
3

0.65

0.7

0.75

0.8

0.85

(b) Dependence of the mean accuracy (cost function E3) on
the logarithm of the number of SVs. Dashed line represents
mean accuracy of the original SVM

Fig. 2. Comparison of the distance (Eq. (26)) and accuracy (Eq. (27)) based cost functions for
Cleveland Heart disease data.

12 Marcin Blachnik and Włodzisław Duch

Although increasing the number of SVs leads to decision border that are equiva-
lent to the one found by SVM algorithm without restrictions on the number of SVs
results are not correlated with increasing accuracy of the models. Large differences
between hyperplanes in the region far from data are not important, but the distance-
based approach does not distinguish between different regions, trying to decrease
the overall distance. This problem will be especially acute for Gaussian or other
non-linear kernels that place SV far from decision borders in the feature space. For
two overlapping distributions SVM with Gaussian kernels will use support vectors
that are all around both distributions, even though only those that are close to the
support vectors from the opposite class are really useful. It should be possible to use
the distance between closest support vectors from the opposite classes to rank can-
didates for removal in the SV selection process. This can simplify the search in the
accuracy-based approach.

2.6 Problems with interpretation

Even if a simple and transparent model that mimics SVM’s decision borders could
be created the question “what can be learned from it” still remains. Similar prob-
lems face most rule extraction approaches, including fuzzy and rough rule based
systems, with the exception of simple crisp rule sets that sometimes have straightfor-
ward interpretation [14, 19]. Prototype-based rules demand not only a small number
of prototypes but also a meaningful position of these prototypes among other input
vectors.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Contour plot of SVM classifier decision borders

None of the support vector reduction methods considered here gives prototypes
which have simple interpretation, as they are never placed at the centers of clusters

Prototype rules from SVM 13

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Contour plot of Schölkopf’s RS-SVM with marked positions of
prototypes

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c) Contour plot of Burges RS-SVM with marked positions of proto-
types

Fig. 3. An example of decision borders generated by a) SVM classifier, b) with RS-SVM
reduction according to Schölkopf and c) Burges algorithm.

(as in the RBF networks). This problem is illustrated in figure (3(a)). Four prototypes
selected by the Schölkopf algorithm are somewhere near the decision border and in
the “flattened” image space are sufficient to define good border, but in the feature
spaces they make little sense. More intuitive solution is obtained with the Burges

14 Marcin Blachnik and Włodzisław Duch

algorithm where position of prototypes looks more “natural”, however also here the
knowledge which can be inferred from these positions is not clear.

If the goal is to understand the data the problem of prototype selections should
be solved in some other way. In the next section algorithms driven by prototype
selection methods used in the k-nearest neighbor (kNN) classifiers are used to search
for informative prototypes.

3 Searching for informative prototypes

SVM decision borders should be approximated in such a way that uses informative
prototypes to understand data structure. These prototypes do not have to be selected
from support vectors, but may be placed in optimized positions. Possible solutions
can be taken from kNN learning algorithms where many prototype selection meth-
ods that reduce the number of reference vectors exist. Good comparison of existing
prototype selection algorithms can be found in papers by Jankowski and Grochowski
[23, 22] and Wilson and Martinez [39]. The general algorithm proposed here starts
from training SVM model, then selecting prototypes using one of the algorithms
developed for kNN methods, and then assigning to each prototype weight value to
reproduce the SVM decision border. The weights are calculated using equation (19).
To facilitate better interpretation of results weights can be normalized without any
loss of generalization using softmax procedure:

β′ =
β∑
β

(28)

The weight value after normalization indicates how strong is the influence of each
prototype on the final decision function. Generally the higher β′i is, the more impor-
tant associated i’th prototype is. The algorithm is schematically written below.

Algorithm 1
1: train SVM;
2: select prototypes with one of the kNN-based algorithms;
3: optimize prototype weights using formula (19);
4: normalize weights to [0,1] range.

3.1 Prototype selection using context dependent clustering

One of the most popular methods for prototype selection in kNN and RBF classi-
fiers is to use clustering of the training vectors. However, unsupervised clustering
algorithms do not use any knowledge about class structure, leading to unnecessar-
ily large number of prototypes. Such situation is presented in figure (4), where one
of the prototypes is useless because it does not participate directly in construction

Prototype rules from SVM 15

of the decision border. This problem may be solved with semi-supervised cluster-
ing. A clustering approach which uses additional knowledge to reduce the number

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
 [−]

x 2 [−
]

(a) Prototype selection using classi-
cal clustering method (FCM)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
 [−]

x 2 [−
]

(b) Prototype selection using context
clustering (CFCM)

Fig. 4. Comparison of prototype selection methods using two types of clustering methods,
FCM and CFCM

of prototypes was proposed by Blachnik et al. [3]. In this approach context depen-
dent clustering was used to train the kNN prototypes. Context dependent clustering
is a family of grouping algorithms which use external, user defined variable (for
each input vector) describing the strengths of association between the input vector
and external parameter. Context clustering was studied by Pedrycz [31, 29], Łęski
[36, 20] and others, and has been applied with very good results in training of the
RBF networks [30, 1].

3.2 The conditional fuzzy clustering algorithm

One of methods that belong to the context dependent clustering family of algorithms
is Conditional Fuzzy C-Means (CFCM). It is based on minimizing cost function
defined as:

Jm(U,P) =
c∑

i=1

m∑

k=1

(uik)δ ‖xk − pi‖2A (29)

where c is the number of clusters centered at pi, m is the number of vectors, δ > 1 is
a parameter describing fuzziness, and U = (uik) is a c×m dimensional membership
matrix with elements uik ∈ [0, 1] defining the degree of membership of the k-th
vector in the i-th cluster. The matrix U has to fulfill three conditions:
1o each vector xk belongs to the i-th cluster to some degree:

16 Marcin Blachnik and Włodzisław Duch

∀
1≤i≤c

∀
1≤k≤m

uik ∈ [0, 1] (30)

2o sum of the membership values of k-th vector xk in all clusters is equal to fk

∀
1≤k≤m

c∑

i=1

uik = fk (31)

3o no clusters are empty.

∀
1≤i≤c

0 <

m∑

k=1

uik < m (32)

Under these conditions cost function (29) reaches minimum for [29], :

∀
1≤i≤c

pi =
m∑

k=1

(uik)δxk

[
m∑

k=1

(uik)δ

]−1

(33)

∀
1≤i≤c
1≤k≤m

uik = fk




c∑

j=1

(‖xk − pi‖
‖xk − pj‖

)2/(δ−1)


−1

(34)

3.3 Determining the context

In classification problems the goal is to find a small number of prototypes that define
classification border. In simple cases when linear solution is sufficient one prototype
far from decision border implements approximately linear threshold P-rule. In more
complex situations prototypes that are close to the decision border are needed, and
they are also close to vectors from the opposite classes. This leads to a conclusion
that grouping algorithms should be focused on clusters found close to the decision
border and not on the whole space. For the context dependent clustering appropriate
coefficients f(k) taking this into account should be defined. Such a coefficient can
be introduced in various ways, with one possible approach [3] based on the ratio of
distances:

wk =
∑

j,C(xj)=C(xk)

‖xk − xj‖2

 ∑

l,C(xl)6=C(xk)

‖xk − xl‖2


−1

(35)

These coefficients are renormalized to fit the [0,1] range:

wk ←−
(
wk −min

i
wi

)(
max

i
wi −min

i
wi

)−1

(36)

Prototype rules from SVM 17

Normalized wk coefficients reach values close to 0 for vectors inside large ho-
mogeneous clusters, and close to 1 if the vector xk is near the vectors of the opposite
classes and far from other vectors from the same class (for example if it is an out-
lier). These normalized weights determine the external variable which then is used
to assign appropriate context or condition in the CFCM clustering process.

fk = exp
(−η(wk − µ)2

)
(37)

with the best parameters in the range of µ = 0.6−0.8 and η = 1−3, determined em-
pirically for a wide range of datasets. The µ parameter controls where the prototypes
will be placed; for small µ they are closer to the center of the cluster and for larger µ
closer to the decision borders. The range in which they are sought is determined by
the η parameter.

3.4 Numerical illustration of the CFCM approach

Conditional clustering proposed above does not use SVM to place prototypes di-
rectly, but the adjustment of weights is based on the SVM decision function. To
verify this approach some simple numerical experiments were performed. Because
in the CFCM method the number of prototypes for each class has to be determined
independently the total number of desired SVs has been divided equally among the
classes.

An artificial dataset example with a ring of data from one class between inner
circle and outer data from another class was considered first, generated using the
Spider toolbox subroutines [38]. Results from the Fixed Point Iteration calculations
(Schölkopf algorithm) and from the CFCM-based algorithm described are presented
in figure (5). The number of SVs was set to 20 (in CFCM 10 SVs per class), and
Gaussian SVM parameters C = 10000 and σ = 1 have been used for both methods.

5 SVs found by the Fixed Point algorithm could not be plotted because they lie
outside of the figure. Mean accuracy of the original SVM was 92.0 ± 1.7%, for the
Fixed Point algorithm 87.5± 1.4 and 91.5± 2.3 for the CFCM algorithm.

This example shows that our CFCM algorithm finds prototypes that are informa-
tive and represent the shape of the decision border with high accuracy. More knowl-
edge can be derived from CFCM prototypes if the number of prototypes per class is
optimized. This can be done using for example the racing algorithm described in [3].

Three well known benchmark datasets from the UCI repository [28] were used
to verify quality of the proposed solution on real data. The Pima Indians Diabetes,
Cleveland Heart Disease, and Ionosphere datasets have been selected. All calcula-
tions were performed with the Spider toolbox [38] using the 5-fold crossvalidation,
extended by our own subroutines for CFCM prototype selection algorithm. In all
cases the number of SVs were fixed to 4 (in CFCM two per class), the C value
for SVM was optimized using the greedy search approach, and the Gaussian kernel
parameter was fixed σ = 1. Classification results are presented in Table (1).

18 Marcin Blachnik and Włodzisław Duch

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) SVs selected using CFCM cluster-
ing

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) SVs selected using Schölkopf ap-
proach

Fig. 5. Comparison of the CFCM and Fixed Point algorithms on artificial data, showing sup-
port vector positions.

#SV SVM Schölkopf Burges CFCM
RS-SVM RS-SVM

Pima 305 23.4±2.3 37.9 ± 7.6 38.3 ± 8.1 25.9 ± 1.3
Cleveland 99 20.9±1.9 44.5 ± 8.8 31.6 ± 8.2 18.9 ± 1.8
Ionosphere 65 6.3±1.3 18.8 ± 3.3 16.5 ± 2.7 13.1 ± 1.9

Table 1. 5xCV classification error on the 3 datasets; the number of SVs from the Gaussian
SVM given in the second column has been reduced in all cases to 4.

These results show that also on the real-word problems CFCM clustering com-
bined with SVM gives quite good results. For such a small number of SVs Schölkopf
and Burges RS-SVM algorithms give rather poor results, while RS-SVM based on
CFCM clustering on the Cleveland Heart dataset obtained even better results then
the original SVM classifier.

4 Conclusions

Although SVMs is a very powerful black box data classification tool it cannot be
used directly for problems where decisions should be comprehensible. The hyper-
plane found in the image space cannot be easily translated into the knowledge useful
for data understanding in the original feature space. Therefore various ways of ex-
pressing this knowledge should be studied. In this paper prototype-based rules are
advocated as a natural extension of most of the rule based systems, well suited to the
form of knowledge that may be derived from the SVM algorithm.

To represent knowledge contained in the SVM model in a comprehensible way as
P-rules reduction of the number of SVs is necessary. This topic has been studied by

Prototype rules from SVM 19

many experts and a few approaches have been discussed in this chapter. Minimiza-
tion of the distance between original SVM hyperplane and the one obtained after
reduction of the number of SVs does not seem to be correlated with the accuracy
of the system obtained in this way. More comprehensible results are obtained using
cost functions that are based directly on the classification accuracy.

Another problem that is facing P-rules based on typical RS-SVM algorithms is
the interpretation of obtained prototypes. A solution proposed here is to use algo-
rithms developed for optimization of the classical kNN classifiers. As an example
conditional clustering algorithm (CFCM) was adopted to learn prototypes (SV) from
the original dataset, with SVM hyperplane used to fit appropriate weights to selected
prototypes. Results of such a combination on the artificial and real data used in this
paper appear to be quite good, although it should be tested on much wider range
of data and actual knowledge in form of P-rules should be carefully analyzed. This
approach should be combined with feature selection to simplify further the interpre-
tation of the rules.

An alternative to the rule-based understanding of the SVM function may be based
on visualization techniques, as it has been done for MLP [10] and RBF neural net-
works [11, 9].

References

1. M. Blachnik. Warunkowe metody rozmytego grupowania w zastosowaniu do uczenia ra-
dialnych sieci neuronowych. Master’s thesis, Silesian University of Technology, Gliwice,
Poland, 2002.

2. M. Blachnik and W. Duch. Prototype-based threshold rules. Springer Lecture Notes in
Computer Science, 4234, 2006.

3. M. Blachnik, W. Duch, and T. Wieczorek. Selection of prototypes rules – context search-
ing via clustering. Lecture Notes in Artificial Intelligence, 4029:573–582, 2006.

4. C. Burges. Simplified support vector decision rules. In International Conference on
Machine Learning, pages 71–77, 1996.

5. Y. Chen and J.Z. Wang. Support vector learning for fuzzy rule-based classification sys-
tems. IEEE Transactions on Fuzzy Systems, 11(6):716–728, 2003.

6. R. Collobert and S Bengio. SVMTorch: Support vector machines for large-scale regres-
sion problems. Journal of Machine Learning Research, 1:143–160, 2001.

7. T. Downs, K. Gates, and A. Masters. Exact simplification of support vector solutions.
The Journal of Machine Learning Research, 2:293–297, 2001.

8. W. Duch. Similarity based methods: a general framework for classification, approxima-
tion and association. Control and Cybernetics, 29:937–968, 2000.

9. W. Duch. Coloring black boxes: visualization of neural network decisions. In Int. Joint
Conf. on Neural Networks, Portland, Oregon, volume I, pages 1735–1740. IEEE Press,
2003.

10. W. Duch. Visualization of hidden node activity in neural networks: I. visualization meth-
ods. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and L. Zadeh, editors, Lecture
Notes in Artificial Intelligence, volume 3070, pages 38–43. Physica Verlag, Springer,
Berlin, Heidelberg, New York, 2004.

20 Marcin Blachnik and Włodzisław Duch

11. W. Duch. Visualization of hidden node activity in neural networks: Ii. application to rbf
networks. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and L. Zadeh, editors, Lec-
ture Notes in Artificial Intelligence, volume 3070, pages 44–49. Physica Verlag, Springer,
Berlin, Heidelberg, New York, 2004.

12. W. Duch, R. Adamczak, and G. H. F. Diercksen. Distance-based multilayer perceptrons.
In M. Mohammadian, editor, International Conference on Computational Intelligence for
Modelling Control and Automation, pages 75–80, Amsterdam, The Netherlands, 1999.
IOS Press.

13. W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, association and pattern
completion using neural similarity based methods. Applied Mathemathics and Computer
Science, 10:101–120, 2000.

14. W. Duch, R. Adamczak, and K. Gra̧bczewski. A new methodology of extraction, opti-
mization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural
Networks, 12:277–306, 2001.

15. W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to proto-
types. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and S.K. Parui, editors, Lecture Notes
in Computer Science, volume 3316, pages 912–917. Physica Verlag, Springer, New York,
2004.

16. W. Duch and G. H. F. Diercksen. Feature space mapping as a universal adaptive system.
Computer Physics Communications, 87:341–371, 1995.

17. W. Duch and K. Grudziński. Prototype based rules - new way to understand the data. In
IEEE International Joint Conference on Neural Networks, pages 1858–1863, Washington
D.C, 2001. IEEE Press.

18. W. Duch and K. Grudziński. Meta-learning via search combined with parameter opti-
mization. In L. Rutkowski and J. Kacprzyk, editors, Advances in Soft Computing, pages
13–22. Physica Verlag, Springer, New York, 2002.

19. W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for understand-
ing of data. Proceedings of the IEEE, 92(5):771–805, 2004.

20. J. Łȩski. Ordered weighted generalized conditional possibilistic clustering. In J. Chojcan
and J. Łȩki, editors, Zbiory rozmyte i ich zastosowania, pages 469–479. Wydawnictwa
Politechniki Śląskiej, Gliwice, 2001.

21. K. Gra̧bczewski and W. Duch. Heterogeneous forests of decision trees. Springer Lecture
Notes in Computer Science, 2415:504–509, 2002.

22. M. Grochowski and N. Jankowski. Comparison of instance selection algorithms. ii. results
and comments. Lecture Notes in Computer Science, 3070:580–585, 2004.

23. N. Jankowski and M. Grochowski. Comparison of instance selection algorithms. i. algo-
rithms survey. Lecture Notes in Computer Science, 3070:598–603, 2004.

24. T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer Academic
Publisher, 2002.

25. L.I. Kuncheva and J.C. Bezdek. An integrated framework for generalized nearest proto-
type classifier design. International Journal of Uncertainty, 6(5):437–457, 1998.

26. J.T. Kwok and I.W. Tsang. The pre-image problem in kernel methods. IEEE Transactions
on Neural Networks, 15:408–415, 2003.

27. K. Lin and C. Lin. A study on reduced support vector machines. IEEE Transactions on
Neural Networks, 14(6):1449–1459, 2003.

28. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases, 1998-2004.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

29. W. Pedrycz. Conditional fuzzy c-means. Pattern Recognition Letters, 17:625–632, 1996.
30. W. Pedrycz. Conditional fuzzy clustering in the design of radial basis function neural

networks. IEEE Transactions on Neural Networks, 9(4), 1998.

Prototype rules from SVM 21

31. W. Pedrycz. Fuzzy set technology in knowledge discover. Fuzzy Sets and Systems,
98(3):279–290, 1998.

32. E. Pȩkalska and R.P.W. Duin. The dissimilarity representation for pattern recognition:
foundations and applications. New Jersey; London: World Scientific, 2005.

33. J. Platt. Using sparseness and analytic qp to speed training of support vector machines.
Advances in Neural Information Processing Systems, 11, 1999.

34. I. Roth and V. Bruce. Perception and Representation. Open University Press, 1995. 2nd
ed.

35. B. Schölkopf, P. Knirsch, A. Smola, and C. Burges. Fast approximation of support vector
kernel expansions. Informatik Aktuell, Mustererkennung, 1998.

36. J. Łęski. A new generalized weighted conditional fuzzy clustering. BUSEFAL, 81:8–16,
2000.

37. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to model
ing and control. IEEE Transactions on Systems, Man, Cybernetics, 15:116–132, 1985.

38. J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The spider.
http://www.kyb.tuebingen.mpg.de/bs/people/spider/.

39. D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based learning algo-
rithms. Machine Learning, 38:257–268, 2000.

