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Summary. An algorithm for filtering information based on the Pearsgrtest approach has
been implemented and tested on feature selection. Thigstesguently used in biomedical
data analysis and should be used only for nominal (dise}ifeatures. This algorithm has
only one parameter, statistical confidence level that tvatriButions are identical. Empiri-
cal comparisons with four other state-of-the-art featsedsction algorithms (FCBF, CorrSF,
ReliefF and ConnSF) are very encouraging.

1 Introduction

For large highly dimensional datasets feature ranking @&adufe selection algo-
rithms are usually of the filter type [1]. In the simplest céessure filter is a function
(such as correlation or information content) returninglev@nce index/(S|D, C)
that estimates, given the dafg how relevant a given feature subskis for the task
C(usually classification or approximation of data). An altfunic procedure, such
as building a decision tree or finding nearest neighbors,atsybe used to estimate
this index. TheJ(S|D, C) filter index is calculated directly from data, without any
reference to the results of programs that are used for firtal @zalysis. Since the
dataD and the taslC are usually fixed and only the subsétsaries an abbreviated
form J(S) will be used.

Relevance indices computed for individual featués: = 1... N establish
a ranking ordetJ (X,;,) < J(X,,) -+ < J(Xi,). Those features which have the
lowest ranks may be filtered out. For independent featurssithy be sufficient, but
if features are correlated many of them may be redundante®ar, for some data
distributions the best pair of features may not even includigle best feature [2]!
Thus ranking does not guarantee that the largest subsetpofriamt features will
be found. Methods that search for the best subset of featuagsalso use filters to
evaluate the usefulness of subsets of features.

The thresholds for feature rejection may be set either fievamce indices, or
by evaluation of reduced dimensionality results. Feataresanked by the filter, but



how many are finally taken may be determined using adaptistesyas a wrapper.
Evaluation of the adaptive system performance (usuallgssralidation tests) are
done only for a few pre-selected feature sets, but still‘héoper” (filter-wrapper)
approach may be rather costly if many feature subsets ahga¢®d. What is needed
is a simple filter method that may be applied to a large dataseking and remov-
ing redundant features, parameterized in statisticallj-@stablished way. Such an
approach is described in this paper. Similar filter for reshgcredundant continuous
features based on Kolmogoros-Smirnov test has been propogs.

In the next section relevance index based on Pearsg@rtsst to estimate corre-
lation between the distribution of feature values and tlsslabels is introduced.
Section 3 compares it with four state-of-the-art featutlectmn algorithms using
three bioinformatics datasets.

2 Relevanceindices and algorithms

2.1 Correlation-Based M easures

For featureX with valuesz and classe€§’ with valuesc, whereX, C' are treated as
random variables, Pearson’s linear correlation coeffiégedefined as [4]:
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o(X,C) = £1if X andC are linearly dependent and zero if they are completely
uncorrelated. Probability that two variables are coreglds estimated using the er-

ror function [4]P(X ~ C) = erf(|g(X, C)|~/N/2). The feature list ordered by

decreasing values of tHe(X ~ C) may serve as feature ranking. An alternative
approach is to usg? statistics, but in both cases for large number of samplés-pro
ability P(X ~ () is so close to 1 that ranking becomes impossible due to the
finite numerical accuracy of computations. With= 1000 samples coefficients as
small asp(X,C) ~ 0.02 give correlation probabilitie® (X ~ C) ~ 0.5. The
o(X, ) or x? thresholds for the significance of a given feature may tloeecbe
taken from a large interval corresponding to almost the sprobabilities of cor-
relation. Non-parametric, or Spearman’s rank correlatioefficients is useful for
ordinal data types.

Information theory is frequently used to define relevanahicies. The Shannon
information for distribution of feature values and clasises

H(X):—Zp(xi)logp(xi); H(C):—ZP(ci)logP(ci) 2)

Q(X’ C) =

(1)

and the joint Shannon entropy is:

H(X,C)= —Z’P(xi,cj)logp(xi,cj) (3)
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Information filtering is frequently based on mutual infotina (Ml):
MI(X,C)=H(X)+ H(C)—-H(X,C) 4
or on the Symmetrical Uncertainty Coefficient (SU) with damproperties:

MI(X,C) (5)
H(X)+ H(C)

If a group ofk featuresX;, has already been selected, correlation coefficient may
be used to estimate correlation between this group and #ss,cincluding inter-
correlations between the features. Denoting the averagelaton coefficient be-
tween these features and classesias= 9(Xy, C') and the average between differ-
ent features as,, = 9(Xy, Xy) the relevance of the feature subset is defined as:

SU(X,C) =2

J(X;,,C) = K ie 6)

\/k‘ + (k - 1)Tkk .
This formula has been used in the Correlation-based Fe8eleztion (CFS) algo-
rithm [5] adding (forward selection) or deleting (backwaelection) one feature at
a time. A definition of predominant correlation proposed hyand Liu [6] for Fast
Correlation-Based Filter (FCBF) includes correlationstiaen feature and classes
and between pairs of features. The FCBF algorithm does aalypanking using
SU coefficient (Eq. 5) to determine class-feature relevanetting some threshold
value SU > ¢ or number of featuresn log(n), to determine how many features
should be taken. In the second part redundant featuresamseel by defining the
“predominant features”.

Selection method called ConnSF, based on inconsistencyureednas been pro-
posed by Daslet al. [7] and will be used for comparison in Sec. 3. Two identical
input vectors are inconsistent if they have identical clabsls (a similar concept is
used in rough set theory). Intuitively it is clear that ins@tency grows when the
number of features is reduced and that feature subsetetthtd high inconsistency
are not useful. If there are samples in the dataset with identical feature valugs
andn; among them belong to clagsthen the inconsistency count is defined as
n — maxy cg. The total inconsistency count for a feature subset is tine stiall
inconsistency counts for all data vectors.

A different way to find feature subsets is used in the Religbathm [8]. This al-
gorithm estimates weights of features according to how thelr values distinguish
between data vectors that are near to each other. For a rndelacted vector
X from a data sef with k features Relief searches the dataset for its two nearest
neighbors: the nearest hif from the same class and the nearest mis$rom an-
other class. For featureand two input vectors(, X’ the contribution to the weight
W, is proportional to theéD (x, X, X') = 1 — 6(X (z), X'(z)) for binary or nominal
features, and(z, X, X') = | X (z) — X'(z)| for continuous features. The process
is repeatedn times, wheren is a user defined parameter. Normalization within
calculation ofi¥, guarantees that all weights are in fhel, 1] interval. In Sec. 3 an
extension of this agorithm for multiclass problems, caRadiefF [8] has been used.




2.2 Pearson’s Redundancy Based Filters.

The Pearson¢? test measures the difference between the probabilityilligion

of two binned random variables. If a feature is redundam tine hypothesis that
its distribution is equal to already selected feature sthdnalve high probabilityn
independent observations of two random variabigs{’ are given in the training
data, where for the Pearsqs test to be validh should be more than 100. The test
for X, X’ feature redundancy proceeds as follows:

e Frequenciesf;, f/ of occurrences of feature values in each bin are recorded
(counting unique feature values).

e Based on the frequency counts emiprical probability distionsF; andF; are
constructed ang? (X, X’) matrix is constructed:

k /

Z (F; — F @)

=1
A large value ofy? or a different number of unique feature values indicate$ tha
features are not redundant. When p-vahig?) > « then the two distributions are
equivalent witha significance level, and thus one of the features is redundéet
best p-value could be estimated indepedently for eachifitasssing crossvalidation
techniques. Below several estimates for different valdes are made to find the
optimal value for each classification method. This repressiie frapper approach of
using filter for ranking and adding wrapper in the final deteation of the number
of selected features.

Pearson’s Redundancy Based Filter (PRBF) algorithm ispites in Fig. 1 First,

the relevance is determined using the symmetrical unceytéother relevance crite-
ria may also be used), and thghtest is applied to remove redundancy.

Algorithm PRBF:

Relevance analysis

1. CalculateSU (X, C) relevance indices and create an ordereddisif features
according to the decreasing value of their relevance.

Redundancy analysis

2. Take asX the first feature from thé list

3. Find and remove all features for which is approximately equivalent according
to the Pearsonr? test

4. Set the next remaining feature in the listasand repeat step 3 for all remaining
features in thes list.

Fig. 1. A two-step Pearson’s Redundancy Based Filter (PRBF) ahgori

3 Empirical Studies.

To evaluate the performance of the PCBF algorithm both eigtifand real datasets
have been used with a number of classification methods. Tiificiat datasets,



Gauss4, and Gauss8, have been used in our previous studyd®s4 is based on
sampling from 4 Gaussian functions with unit dispersion dirdensions, each clus-
ter representing a separate class. The first function ieoehat(0, 0, 0, 0), the next
at(1,1/2,1/3,1/4),(2,1,2/3,1/2),and(3,3/2,3,3/4), respectively. The dataset
contains 4000 vectors, 1000 per each class. In this casddhbranking should give
the following orderX; > X5 > X3 > X4.

Gauss8 used here is an extension of Gauss4, adding 4 adtlitéatures that
are approximately linearly dependeXit, s = 2X; + ¢, wheree is a uniform noise
with a unit variance. In this case the ideal ranking shoul@ dgine following order:
X1 > X5 > Xo > Xg > X3 > X7 > X4 > Xg andthe selection should reject all 4
linearly dependent features as redundant. The PRBF andaheSE [7] algorithms
had no problem with this task, but FCBF [6] selected only 3uess, CorrSF [5]
selected only first two, and ReliefF [8] left only feature Hd giving them both the
same weight 0.154 (for features 2 and 6 the weight was 0.06ppihg to 0.024 for
feature 3, 6 and to 0.017 for features 4, 8).

Title Selected features

Fullset | FCBF | CorrSF | ReliefF | ConnSF | PRBF
Feature 1to8 1+2+3 1+2+5 1+5 1to4 1to4
C4.5 78.85 +0.36|79.21 4+ 0.29|78.64 + 0.31|76.15 £ 0.09|78.85 £+ 0.36|78.85 £ 0.36
NBC 82.07 £ 0.07|81.57 4+ 0.08|80.25 + 0.07|76.98 + 0.06|82.08 £+ 0.07|82.07 £ 0.07
1NN 73.48 £+ 0.25(73.57 £+ 0.22(71.33 £ 0.25|68.19 £ 0.34|73.48 £ 0.25|73.48 £+ 0.25
SVM 81.97 +0.08|81.54 4+ 0.10(80.77 & 0.07|76.98 £ 0.07|81.88 £+ 0.08|81.87 £ 0.09
Average 79.09 £+ 0.19|78.97 £ 0.17|77.75 + 0.18|74.57 + 0.14{79.07 &+ 0.19{79.07 + 0.20

Table 1. Accuracy of 4 classifiers on selected subsets of featurdbéogBGauss8 dataset.

In Table 1 results of Naive Bayes Classifier (NBC) (Weka impatation, [10]),
the nearest neighbor algorithm (1NN) with Euclidean diseafunction, C4.5 tree
[12] and the Support Vector Machine with a linear kernel averg(Weka and SVM,
Ghostminer 3.0 implementatién

Title FeaturefnstancegClasses
Lung-cancer (Lung) 58 32 3
Promoters 59 106 2
Splice 62 3190 3

Table 2. Summary of the datasets used in empirical studies.

For the initial comparison on real data three biomedicahsketts from the UCI
Machine Learning Repository [11] were used. A summary adathsets is presented
in Table 2. They have rather modest number of nominal featmd range from 32 to
3190 samples. Lungs dataset is extremely small and 5 outioE8&hces containing

3 http://www.fgspl.com.pl/ghostminer/



missing values have been removed. The purpose is to sedltienice of the number
of samples on the quality of results for similar number of imtahfeatures.

For each data set all five feature selection algorithms amgpaoed (FCBF [6],
CorrSF [5], ReliefF [8], ConnSF [7], and PRBF) and the nundfdeatures selected
by each algorithm is given. 5 neighbors, 30 instances arsthétd 0.1 were used
for ReliefF, as suggested by Robnik-Sikonia and KononekoHor CorrSF and
ConnSF forward search strategy has been used, and for F@B&Rand the PRBF
forward search strategy based on ranking.

Dataset Selected features
Full se{FCBF CorrSHRelief ConnSEPRBH
Lung-cancer 58 6 7 11 4 12
Splice 62 22 6 24 10 19
Promoters 59 6 4 12 4 6
Average 59.6 | 11.3| 5.6 15.6 6 12.2

Table 3. The number of selected features for each algorithm; bolelfdowest number, italics
— highest number.

In Table 4 results of Naive Bayes Classifier (NBC) (Weka imp@atation, [10]),
the nearest neighbor algorithm (1NN) with Euclidean distafunction, C4.5 tree
[12] and the Support Vector Machine with a linear kernel ahe- 1 (estimated to
be close to optimal value for these datasets) are colle¢teel overall average bal-
anced accuracy (accuracy for each class, averaged ovéasabs) and the standard
deviation obtained from averaging 20 repetitions of 1@foloss-validation calcu-
lations with different initializations is reported in Tasl below. For datasets with
significant differences ia priori class distributions balanced accuracy is more sen-
sitive measure than the overall accuracy.

In Table 5 classification results for various sigificancesls\are presented. Sur-
prisingly the best results have been obtained for a veryldea o« = 0.001, re-
moving the largest number of redundant features.

4 Conclusion

A new algorithm for finding non-redundant binned featuressiib based on the Pear-
sonx? test has been introduced. PRBF has only one parametestistdtisignifi-
cance or the probability that the hypothesis that distriinsg of two features is equiv-
alent is true. In the first step SU indices Eq. 5 have been usedrking, and in the
second step redundant features are removed in an unsigtbwéy, because durn-
ing reduction of redundant features infromation about thsses is not used. Our
initial tests are encouraging: on the artificial data penfanking has been recreated
and redundant features rejected, while on the real dath rather modest number of
features selected results are frequently the best, or thabe best, comparing with
four state-of-the-art feature selection algorithms. Tae algorithm seems to work
especially well with the linear SVM classifier. Computatidbdemands of PRBF al-
gorithm are similar to other correlation-based filters, amngch lower than ReliefF.



Method

C 4.5 tree

Dataset

Full set

FCBF |

CorrSF |

ReliefF

ConnSF |

PRBFp.001

Lung

80.52 + 3.53

76.30+ 2.88

80.52 + 3.53

80.52 + 3.53

80.52 + 3.53

77.37 £ 3.49

Splice

94.16+ 0.26

94.30 + 0.24

93.07+ 0.16

94.02 £0.19

93.83 £0.21

94.03 £0.22

Promoter

79.20+ 1.90

81.04 £1.81

80.85 £ 2.65

81.09 £ 2.06

80.47 £2.21

82.69 + 1.57

Method

Naive

Bayes

Dataset

Full set

FCBF |

CorrSF |

ReliefF

ConnSF |

PRBFp.001

Lung

61.27+ 4.67

87.37 £2.10

90.98 + 1.95

83.43 £2.55

71.28 £3.93

88.09 £ 1.96

Splice

94.95 £ 0.08

96.10 + 0.06

93.33+ 0.05

95.54 £0.08

94.30 £ 0.08

94.62 £ 0.08

Promoter

90.47+ 1.40

94.43+ 0.52

94.58 + 0.86

91.27 £1.18

92.45 £ 1.30

91.18 £0.93

Method

1 Nearest Neighbor

Dataset

Full set

FCBF |

CorrSF |

ReliefF

ConnSF |

PRBFj.001

Lung

47.55+ 5.61

78.83 £2.98

82.17 +4.23

78.59 £ 3.71

74.33 £5.11

70.60 £ 5.02

Splice

80.16+ 0.47

85.14 £ 0.44

84.60 £ 2.19

83.54 £0.44

87.13+ 0.64

84.37 £0.65

Promoter

81.27+ 2.40

85.24 £2.51

88.63 + 1.90

81.04 £1.81

85.38 £ 2.62

85.33 £ 3.02

Method
Dataset
Lung
Splice
Promoter

SVM

CorrSF |
90.00 + 0.00
93.74 +0.03
95.76 + 0.94

ConnSF
80.63 + 2.07
94.24 + 0.16
87.31+ 1.08

Fullset |
47,90+ 5.71
92.35+ 0.31

1.51 £1.65

FCBF |
84.48 £2.74
95.78 £ 0.15
93.68 £ L.15

ReliefF |
90.00 + 0.00
95.49 4+ 0.24
87.78 + 2.38

| PRBFy.0m
80.78 £2.07
94.99 £0.17
90.66 £ 1.96

Table 4. Balanced accuracy for the 4 classification methods on featselected by each al-
gorithm; bold face — best results, italics — worst.

The x? test works well forn > 100 samples, therefore the results for very small
Lung-cancer data are rather poor.

For simplicity of interpretation only data with nominal teees have been used,
avoiding discretization. Features were ranked accordaitigg SU relevance index. In
real applications with very large number of features a dyoint for ranking should
be defined and optimized using crossvalidation tests taméte optimal threshold
value. Further reduction of the selected feature subsgtg tests for redundancy re-
quires another estimation of the significance parameténtag be done in crossval-
idation test and will depend on classifier used. Such fragipr-wrapper) approach
is not too costly and may be completely automatic. The sagmighm may be used
with other indices for relevance indication. Moreover,uadancy reduction based
on x? test may be used in unsupervised methods of data analysisu¥avariants
of this and similar test exist [4], including versions foralhsamples. This combina-
tion of filters, wrappers and redundancy evaluation is déggtound for information
selection, with many possibilities that remain to be exgtbi~urther tests on much
larger bioinformatics data will be reported soon.
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| | 0001 | 001 [ 0.05 | 0.1 | 015 ] 02 |
[lung [ 12 [ 14 [ 16 [ 16 | 18 [ 20 ]
C45 77.37 £ 3.49[77.37 + 3.49(77.37 4 3.49|77.37 & 3.49]77.37 £ 3.49(77.37 £ 3.49
NBC 88.09 + 1.96[85.56 + 1.14(83.22 & 2.45(83.22 + 2.45(84.89 + 1.85(84.47 + 2.04
INN 70.60 £ 5.02[72.17 + 4.64|68.49 & 3.7268.49 + 3.75(65.88 + 3.61(63.69 + 4.37
SVM 80.78 + 2.07[76.45 + 3.33[75.08 & 3.27|75.08 & 3.27|72.16 £ 3.09{70.20 + 4.04
Splice 19 24 27 28 30 31

C45 94.03 + 0.22[94.03 + 0.22[94.19 4 0.21[94.19 + 0.21]94.19 + 0.21]{94.22 + 0.20
NBC 94.62 £ 0.08]94.62 + 0.08]95.11 & 0.11]95.08 £ 0.07]94.96 £ 0.10[95.25 + 0.07
INN 84.37 £ 0.65[84.37 + 0.65[81.40 & 0.48(80.46 + 0.58(/80.66 + 0.42[81.14 £ 0.41
SVM 94.99 + 0.17[95.00 + 0.17[94.49 4 0.22(94.44 £ 0.19]94.20 + 0.17]94.42 + 0.22
Promoter 6 8 11 13 13 14

C45 82.69 + 1.57(82.41 + 1.69(79.72 4 2.09|79.77 & 1.72|79.77 £ 1.72[79.53 + 1.73
NBC 91.18 £ 0.93[91.98 + 0.94[92.78 & 1.24/91.65 £ 0.98]91.65 £ 0.98(92.45 + 0.69
INN 85.33 £ 3.02[85.10 &+ 2.90(88.68 & 1.8186.13 & 2.37|86.13 £ 2.37(85.33 £ 2.18
SVM 90.66 + 1.96]90.09 + 2.09(86.93 + 2.04/87.88 + 1.45|87.88 + 1.45(88.35 + 2.04

Table 5. Number of features for different levels of significance, @aathnced accuracy (bacc)
+ std(bacc) for C4.5, NBC, 1NN and SVM clasiffiers.
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