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Abstract. A filter algorithm using F-measure has been used with feakden-
dancy removal based on the Kolmogorov-Smirnov (KS) testdogh equality
of statistical distributions. As a result computationafjicient K-S Correlation-
Based Selection algorithm has been developed and testadsertiigh-dimensional
microarray datasets using four types of classifiers. Reswdt quite encouraging
and several improvements are suggested.

1 Introduction

Feature ranking and feature selection algorithms apgdédablarge data mining prob-
lems with very high number of features that are potentialiglévant for a given task
are usually of the filter type [1]. Filter algorithms remoeafures that have no chance
to be useful in further data analysis, independently ofipaldr predictive system (pre-
dictor) that may be used on this data. In the simplest cagargeéilter is a function
returning a relevance indekS|D, C) that estimates, given the dafg how relevant a
given feature subsef is for the taskC' (usually classification, association or approx-
imation of data). Since the data and the task are usually fixedonly the subsetS
vary, the relevance index will be written d$S). This index may result from a simple
calculation of a correlation coefficient or entropy-bassdkix, or it may be computed
using more involved algorithmic procedures (for exampeuiring creation of partial
decision tree, or finding nearest neighbors of some vectéos)arge problems simpler
indices have an obvious advantage of being easier to ctdgutuiring an effort on
the order ofO(n), while more sophisticated procedures based on distancesamaire
O(n?) operations.

Relevance indices may be computed for individual feat¥gs = 1... N, pro-
viding indices that establish a ranking ord&rX;,) < J(X;,) -+ < J(X,;,). Those
features which have the lowest ranks are subsequentlyefilteut. For independent
features this may be sufficient, but if features are coreelatany of them may be re-
dundant. Ranking does not guarantee that a small subsepoftamt features will be
found. In pathological situations a single best feature matyeven be a member of the



best pair of features [2]. Adding many redundant featureg cn@ate instable behavior
of some predictive algorithms, with chaotic changes oflts$ar a growing number of
features. This is a major problem especially for small s&naaita with very large di-
mensionality, but has been also observed with large datfgetHowever, methods that
search for the best subset of features may first use filtelenove irrelevant features
and then use the same ranking indices on different subsé&sinifres to evaluate their
usefulness.

Despite these potential problems in practical applicatidter methods for ranking
are widely used and frequently give quite good results. &feelittle empirical experi-
ence in matching filters with predictive systems. Perhafisrént types of filters could
be matched with different types of predictors, but so far meotetical arguments or
strong empirical evidence has been given to support suah.cldhe value of the rele-
vance index should be positively correlated with accurdcgny reasonable predictor
trained for a given task’ on the dat& using the feature subsst

Although filter methods do not depend directly on the prexgbbviously the cut-
off threshold for relevance index to reject features mayegibe set arbitrarily at some
level, or by evaluation of feature contributions by the jictmt. Features are ranked by
the filter, but how many best features are finally taken isrd@teed using the predictor.
This approach may be called “filtrapper” or “frapper” [1],dait is not so costly as the
original wrapper approach, because evaluation of precigterformance (for example
by crossvalidation tests) is done only after ranking forwa pee-selected feature sets.
The threshold for feature rejection is a part of the mode&aain procedure and may be
determined using crossvalidation calculations. To avsill@tions only those features
that really improve the training results should be accepthi area between filters and
wrappers seems to be rather unexplored.

In the next section a new relevance index based on the Kolmagdmirnov (KS)
test to estimate correlation between the distribution efdee values and the class la-
bels is introduced (used so far only for datasets with smathlmer of features [4]).
Correlation-based filters are very fast and easily compéte mformation-based fil-
ters. In section three empirical comparisons between K& fiRearson’s correlation
based filter and other filters based on information gain aréenom three widely used
microarray datasets [5], [6], [7].

2 Theoretical framework

2.1 Correlation-Based Measures

Pearson’s linear correlation coefficient is very populastatistics [8]. For featur&l
with valuesz and classe€’ with valuesc treated as random variables it is defined as

o(X,C) = 2iEi—m)ei—a) )

o(X,C) is equal tot1 if X andC are linearly dependent, and zero if they are com-
pletely uncorrelated. The simplest test estimating praitathat two variables are re-



lated given the correlation( X, C) is [8]:

P(X ~C) = erf(|g(X, C)|\/N/2) , )

where erf is the error function. Thus fof = 1000 samples linear correlation coeffi-
cients as small as 0.02 really signify probabilities of etation around 0.5.

The feature list ordered by decreasing value® ok ~ (') provides feature rank-
ing. Similar approach is also taken witf? statistics, but the problem in both cases is
that for larger values of? or correlation coefficient probabilitp (X ~ C) is so close
to 1 that ranking becomes impossible due to the finite nuraksiccuracy of compu-
tations. Therefore initial threshold fo?(X ~ C) may be used in ranking only to
determine how many features are worth keeping, althougle maiable estimations
may be done using crossvalidation or wrapper approaches.

Information theory is frequently used to define relevanckces. Mutual Informa-
tion (Ml) is defined as\f I(f,C) = H(f) + H(C) — H(f,C), where the entropy and
joint entropy are:

H(f) = =3 P(f)log(P(fi);  H(C) == P(ClogP(Ci)  (3)

and
H(f,C) ==Y P(fi,C;)log P(fi,C)) (4)
i.j
Symmetrical Uncertainty (SU) Coefficient is defined as [8]:
_ M]
V) =257 L ©

If a group ofk features has already been selected, correlation coefficiayp be
used to estimate correlation between this group and the, dhesuding inter-correlations
between the features. Denoting the average correlatiofficiert between these fea-
tures and classes as. = p(Xy,C) and the average between different features as
ree = 0(Xy, Xy ) the relevance of the feature subset may be defined as:

k?‘kc

J(X;, C) = .
( r ) k"’(k_l)rkk

(6)

This formula has been used in the Correlation-based Fe&gleetion (CFS) algorithm
[9] adding (forward selection) or deleting (backward stteg one feature at a time.
Non-parametric, or Spearman’s rank correlation coeffisiemay be useful for ordinal
data types.

F-score is another useful index that may be used for ranki@p [1

F(C, fi) = ﬁ an (fir — ﬁ)Q (7)
ik



wheren,, is the number of elements in clasf;; is the mean and,ﬁi is the variance
of featuref; in this class. Pooled variance for featyids calculated from:

of = a*(f) —ﬁ;(”k—l)o’?}c (8)

wheren = )", nj, and K is the number of classes. In the two-class classification
caseF-score is reduced to thescore ¢ = t2).

Predominant correlation proposed by letial.[11] in their Fast Correlation-Based
Filter (FCBF) compares relations between feature-cladSeature-feature. First rank-
ing using theSU coefficient Eq. 5 is performed, and the threshold coefficttier-
mining the number of features left is fixed. In the second sigh feature; is com-
pared to allf; lower in ranking, and if their mutugdU ( f;, f;) coefficient is larger then
SU(C, f;) thenf; is considered redundant and removed.

ConnSF, selection method based on a consistency measareeéa proposed by
Dashet al.[12]. This measure evaluates for a given feature subsetuhdar of cases
in which the same feature values are associated with diffetasses. More precisely,

a subset of feature values that appearsnes in the data, most often with the label
of classc, has inconsistency — n(c). If all these cases are from the same class then
n = n(c¢) and inconsistency is zero. The total inconsistency coutfiessum of all
the inconsistency counts for all distinct patterns of adeasubset, and consistency is
defined by the least inconsistency count. Application of gigorithm requires discrete
values of the features.

2.2 Kolmogorov-Smirnov test for two distributions.

The Kolmogorov-Smirnov (K-S) test [8] is used to evaluatéwb distributions are
roughly equal and thus may be used as a test for feature radapdThe K-S test
consists of the following steps:

— Discretization process createslusters (vectors from roughly the same class), each
typically covering similar range of values.

— A much larger number of independent observatignn, > 40 are taken from the
two distributions, measuring frequencies of differensskes.

— Based on the frequency table the empirical cumulativeidigion functionsF'1;
and F'2; for two sample populations are constructed.

— MK-S statistics) is proportional to the largest absolufeedénce of F'1; — F'2;]:

A= nin2 Sup|F1i _ F2i| for i=1,2,..., k. 9)
ni + N2

When A < A, then the two distributions are equal, wherds the significance
level and)\,, is the K-S statistics fore [13]. One of the features with distribution that
are approximately equal is then redundant. In experimeggsribed below all training
samplesi; = ny = n were used.



2.3 Kolmogorov-Smirnov Correlation-Based Filter Approach.

Kolmogorov-Smirnovtestis a good basis for the Correlai@sed Selection algorithm
(K-S CBS) for feature selection. This algorithm is sketchrellig. 1. Feature ranking is
performed first, requiring selection of the ranking indessdere index Eq. 7 is used in
all calculations here. The threshold for the number of fiestleft for further analysis
may be determined in a principal way using the frapper appraaat is evaluating the
quality of results as a function of the number of featureshinsecond step redundant
features are removed using the K-S test. The optimsaignificance level for feature
removal may also be determined by crossvalidation.

Algorithm K-S CBS:

Relevance analysis

1. Order features according to the decreasing values ofamte indices creating list.
Redundancy analysis

2. Initialize F; to the first feature in thé list.

3. Use K-S test to find and remove frafhall features for which¥; forms an approxi-
mate redundant covel( F;).

4. Move F; to the set of selected features, takefaghe next remaining feature in the
list.

5. Repeat step 3 and 4 until the end of $hést.

Fig. 1. A two-step Kolmogorov-Smirnov Correlation Based Selat{ig-S CBS) algorithm

This is of course quite generic algorithm and other rankimdjdes and tests for
equality of distributions may be taken instead. Two paranset the threshold for rele-
vancy and the threshold for redundancy — are successivedyndimed using crossvali-
dation, but in some cases there may be a clear change in theofahese parameters,
helping to find their optimal values.

3 Empirical Study.

To evaluate the usefulness of K-S CBS algorithm experimmmtiree gene expression
datasets [5], [6] [7] have been performed. Datasets usexf lage quite typical for this
type of applications. A summary is presented in Table 1.

1. Leukemia data is divided into training set consists of 38 bone marramwdes (27
of the ALL and 11 of the AML type), using 7129 probes from 681liitan genes;
34 test samples are provided, with 20 ALL and 14 AML cases.

2. Colon Tumor contains 62 samples collected from colon cancer patieritis, 40
biopsies from tumor areas (labelled as “negative") and @athfhealthy parts of
the colons of the same patients. 2000 out of around 6500 gesrespre-selected,
based on the confidence in the measured expression levels.
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3. Diffuse Large B-cell Lymphoma[DLBCL] has measurements of gene expression
data for two distinct types of diffuse large lymphoma B-s¢this is the most com-
mon subtype of non-Hodgkin's lymphoma). There are 47 sasy2é of them are
from “germinal centre B-like" group while 23 are from “adiied B-like" group.
Each sample is represented by 4026 genes.

Splitting such small data into training and test subsets cha¢ make much sense.
Results reported below for all data are from the leave-angid©O) calculations, de-
terministic procedure that does not require averaging loutation of variance.

[Title |[# Genef# Samplef# Samples per clags Source |
Colon cancer 2000 62  |40/tumon22|normal Alon [5]
DLBCL 4026 47 24| GCB|23] AB |Alizadeh [6]
Leukemia 7129 72 47/ ALL |25 AML | Golub [7]

Table 1. Summary of microarray dataset properties.

The original gene expression data contain real numbersaltolate mutual infor-
mation probabilities Eq. (3, 4) are needed, therefore the ldas been discretized. This
also helps to reduce the amount of noise in the original easiens and facilitates di-
rect use of such predictive techniques as the Naive Bay&semsifier (NBC). Although
quite sophisticated methods of discretization exist, fanparison of information selec-
tion techniques simple discretization of gene expres®wal$ into 3 intervals is used
here. Using the varianeeand the meap for a given gene any value larger thar- Z
is transformed tot1, any value in thepu — %, + §] interval is transformed to 0,
and any value smaller thgn— ¢ becomes-1. These three values correspond to the
over-expressions, baseline, and under-expression obgBResults obtained after such
discretization are in some cases significantly improvedaaedyiven in parenthesis in
the tables below.

For each data set K-S CBS algorithm using F-measure (resitltsSU coefficient
are similar) in the filtering stage is compared with the ttatage-of-the-art feature selec-
tion algorithms: FCBF [11], CorrSF [9], ConnSF [12]. The ruenof features selected
obviously depends on the parameters of the feature sefect&hod. The authors of
the FCBF algorithm recommend taking the relevance thresbotresponding to the
nlogn features, and treating as redundant features with ls&¥geindex between fea-
tures than between the classes. The CorrSF correlatiofiaterf Eq. 1 is used in a
forward best-first search procedure with backtracking up tomes before search is
terminated, and selecting only those features that hagerdeature-class correlations
than correlation to already selected features. For ConsSkdual practice is followed,
searching for the smallest subset with consistency equédabof the full set of at-
tributes. One could introduce additional parameters in FGBorrSF and ConnSF to
change the preference of the relevance vs. redundancy aingizgpthem in the same
way, but we have not done so. For comparison the K-S CBS #hgoris used with
« = 0.05, representing quite typical value of confidence. This vakme easily be opti-



mized for individual classifiers in the frapper approachkr#fore results for other values
are provided.

Features selected by each algorithm serve to calculatadsdaccuracy using four
popular classifiers, decision tree C4.5 (with default Weksameters), Naive Bayes
(with single Gaussian kernel, or discretized probabgjti@mearest neighbor algorithm
(single neighbor only) and linear SVM with' = 1 (using Ghostminer implementa-
tion*). Each of these classifiers is of quite different type and tmaysed on raw as
well as on the discretized data.

Data Number of features selected

Full se{FCBFCorrSEConnSkK-S CBSr
Colon Cancer 2000 9 17| 4 5
DLCBL 4026 33 18 3 16
Leukemia 7129 52 28 3 118

Table 2. Number of features selected by each algorithm.

The number of features selected by different algorithmsvisrgin Table 2. K-S
CBF selected rather small number of features except for thekémia data, where
significantly larger number of features has been createsh Eora. = 0.001 the number
of features is 47, which is relatively large. Unfortunatelith the small number of
samples in the microarray data a single error differencéénliOO test is translated
to quite large 1.6% for colon, 2.1% for DLCBL and 1.4% for leakia. Thus although
percentages may clearly differ the number of errors mayrnéasi

First observation from results given in Table 3 is that featselection has signifi-
cant influence on the performance of classifiers. Improvésfen C4.5 on Leukemia
exceed 20%, for NBC on colon cancer reach almost 30%, for 1NRIcCBL almost
20% and for SVM on colon data over 7%. Discretization in m@stes improves the
results. For colon cancer SVM reaches the best result oeatilifes (80.1%), and the
highest accuracy on the 17 CorrSF selected features (87tB&t)also happens to be
the largest subset. However, on the discretized data hetseilts are achieved with
Naive Bayes with 9 FCBF features (90.7%). For DLCBL with alhifures Naive Bayes
reaches 97.9%, and 100% for both FCBF and CorrSF selectigtiisINN and SVM
reaching also 100% on these features. For Leukemia agaire NBgyes is the win-
ner, reaching 100% on all data, and for discretized datztseldy FCBF, CorrSF and
ConnSF achieving 100% balanced accuracy. K-S CBF alwayssgixorse results on
the discretized data, but on the raw data (K-S test is moreogpiate for real-valued
features) is not far behind.

It is clear that the default value for redundancy in K-S CBSaisfrom optimal;
unfortunately Kolmogorov-Smirnov statistics can be usely ¢ discover redundant
features, but cannot be directly compared with relevande@s. In real applications
estimation of optimad using crossvalidation techniques for a given classifier sigj-
nificantly improve results, as is evident from Table 4. Dethianalysis of the depen-

*http://www.fgs.pl/ghostminer/



Method c45

Data Allfeatures | FCBF | CorrSF | ConnSF |K-S CBSra=0.05
Colon Cancer72.05 (68.30)81.36 (80.11)77.84 (80.11)78.07 (78.07) 73.30 (68.30)
DLCBL 89.40 (74.55)82.77 (85.14)72.28 (89.4987.14 (85.24) 80.80 (85.24)

Leukemia | 73.23 (85.74)86.68 (95.72)79.49 (93.74)96.94 (95.74) 86.55 (85.74)
Average | 78.22 (76.20)83.60 (86.99)76.53 (87.78)87.38 (86.35) 80.22 (79.76)

Method NBC

Data Allfeatures | FCBF | CorrfSF | ConnSF [K-S CBSr,a=0.05
Colon Cancer57.84 (66.59)85.91 (90.68)84.43 (88.18)74.77 (79.32) 78.64 (66.59)
DLCBL 97.92 (91.58)100.0 (100.0)L00.0 (100.0)91.49 (89.40) 97.92 (93.66)

Leukemia |100.00 (82.55P6.94 (100.0)98.94 (100.0)86.94 (100.0) 98.00 (82.55)
Average | 85.25 (80.24)94.28 (96.89)04.46 (96.06)84.40 (89.57) 91.52 (80.93)

Method INN

Data Allfeatures | FCBF | CorrSF | ConnSF |K-S CBSra=0.05
Colon Cancer73.07 (64.55)82.39 (83.18)83.41 (78.41)79.00 (93.75) 74.55 (64.55)
DLCBL 76.27 (74.46)100.0 (97.83)L00.0 (100.0)93.66 (93.48) 93.66 (91.39)

Leukemia | 84.81 (88.81)96.94 (100.0)93.87 (100.0)94.81 (100.0) 92.94 (88.81)
Average | 78.05 (75.94)93.11 (93.67)92.42 (92.80)89.18 (95.74) 87.05 (81.58)

Method SVM

Data Allfeatures | FCBF | CorrfSF | ConnSF [K-S CBSr,a=0.05
Colon Cancer80.11 (70.80)84.89 (80.11)87.16 (83.41)74.77 (75.80) 82.61 (70.80)
DLCBL 93.66 (95.74)100.0 (100.0)L00.0 (100.0)91.58 (91.58) 95.83 (91.49)

Leukemia | 98.00 (88.81)98.00 (100.0)96.94 (100.0)85.87 (100.0) 98.00 (96.00)
Average | 90.59 (85.12)94.29 (93.37)94.70 (94.47)84.08 (89.13) 92.15 (86.09)

Table 3. Balanced accuracy from the LOO test for C4.5, NBC, 1NN and Sdaésifier on
features selected by four algorithms, results on dis@dtdata in parenthesis.

dence of the number of features and balanced accuraey isrpresented in Table 4
starting from very smald.

With optimizeda the best results with K-S CBS features are very similar to the
best results of the other algorithms. For colon cancer SMMg84.9% on 17 features,
which translates to 9 instead of 8 errors. For DBCL data SVH [daive Bayes reach
100%, while for Leukemia 100% is also reached with Naive Bagéthough for some-
how larger number of features. However, with such smalisiies larger number of
features is actually desirable to stabilize the expectefdilpr For example, with the
original division between training and test data [7] a stnggne gives 100% accuracy
on the training set, but this does not mean that it is suffi@ent makes 3 errors on the
test. Itis much safer to use leave-one-out evaluation sxdase.

4 Conclusions

Information filters may be realized in many ways [1]. They niegJp to reject some
features, but the final selection should remove redundatiifes, not only to decrease



v [0.001] 0.01]0.05] 0.1 [0.15] 0.2 [0.25] 0.3 [0.35] 0.4 [0.45 |
Dataset Colon cancer

No.featf 2 T 5 [ 5] 8] 9 [10]10[183] 18] 17 17
C45 [77.6180.3473.3(077.8466.2570.8070.8074.0974.0969.3469.32
NBC |82.6167.9978.6474.8979.8982.1682.1678.6478.6481.9381.93
INN  |78.6475.3474.5572.6172.0971.8471.8271.8471.8276.8376.82
SVM  [72.5(172.5(082.6181.3681.3681.3681.3680.3480.3484.8984.89
|Average]77.8474.0377.2476.6974.8976.5476.5476.2476.2378.2478.24
Dataset DBCL
No.feat| 7 | 13 ] 16 [ 22 22| 30| 43 [ 43| 43| 63 | 63
C45 [85.1482.9780.8093.6693.6691.4974.4674.4674.4674.3774.37
NBC  |91.4993.5797.9293.5793.5797.8397.8397.8397.83100.G100.Q
INN  [87.3295.8393.6693.7493.7589.4093.7593.7493.7593.5793.57
SVM  [89.49100.095.8389.4989.4995.89100.0100.0100.G100.4100.0
|Average]88.3693.0992.0592.6792.6293.6491.5191.5191.5191.9991.99
|Dataset] Leukemia |
No.feat] 47 | 75 [118] 167 207 268 268] 331 331] 456 | 456
C45 [85.7488.8186.5584.6991.7477.3677.3680.4380.4388.6§88.64
NBC  ]94.9496.9498.03100.098.00100.0100.498.9498.94100.G100.Q
INN  ]90.9489.8792.9492.9490.9492.9492.9492.9492.9490.9490.94
SVM  [90.00/96.0998.0098.0098.0096.9496.9498.0098.0098.0498.00

[Average[90.41/92.9193.8793.9195.1791.8191.8192.5§92.5§94.4194.4]

Table 4.LOO balanced accuracy for different significance levelor all data set; KSCBS on
standarized data.

dimensionality, but also to avoid problems that are assediaith redundant features.
Naive Bayes algorithm is clearly improved by removing redimcy, and the same is
true for similarity-based approaches and SVM. KolmogoBorirnov test for determi-

nation of redundant features requires only one paramétesignificance level, and is
a well-justified statistical test, therefore it is an inttheg choice for feature selection
algorithms.

The K-S CBS algorithm presented here combines relevandeemdF-measure,
Symmetrical Uncertainty Coefficient or other index) to ramd reduce the number of
features, and uses Kolmogorov-Smirnov test to reduce thebeuof features further.
It is computationally efficient and gives quite good resW@riants of this algorithm
may identify approximate redundant covély;) for consecutive featuref and leave
in the S set only the one that gives best results (this will usuallyHeefirst one, with
the highest ranking). Some ways of information aggregatairid also be used, for ex-

ample local PCA in th€ (F;) subspace. In this case the threshold for redundancy may

be set to higher values, leaving fewer more stable feataréifinal set, and assuring
that potentially useful information in features that weomsidered to be redundant is
not lost. One additional problem that is evident in Table d #rat frequently arises
in feature selection for small microrarray data, but may a@pgpear with much larger



data [3], is stability of results. Adding more features magide results instead of
improving them. We had no space here to review literatureltefor microarray data
(see comparison in [14] or results in [15]) but they are altable and do not signifi-
cantly differ from our results given in Tables 3 and 4. Theabdity problem may be
addressed using the frapper approach to select most staloll@¢ssible non-redundant)
subset of features i(m) steps, wheren is the number of features left for ranking.
This and other improvements are the subject of further tiyatson.
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