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Abstract—Can computers have intuition, insights and be creative? Neurocognitive models 
inspired by the putative processes in the brain show that these mysterious features are a 
consequence of information processing in complex networks. Intuition is manifested in 
categorization based on evaluation of similarity, when decision borders are too complex to 
be reduced to logical rules. It is also manifested in heuristic reasoning based on partial ob-
servations, where network activity selects only those path that may lead to solution, exclud-
ing all bad moves. Insight results from reasoning at the higher, non-verbal level of abstrac-
tion that comes from involvement of the right hemisphere networks forming large “linguis-
tic receptive fields”. Three factors are essential for creativity in invention of novel words: 
knowledge of word morphology captured in network connections, imagination constrained 
by this knowledge, and filtering of results that selects most interesting novel words. These 
principles have been implemented using a simple correlation-based algorithm for auto-
associative memory. Results are surprisingly similar to those created by humans.  

 
Keywords—Creativity, intuition, insight, brain, language processing, higher cognitive func-
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One of the objections against computational intelligence considered by Alan Turing in his famous article 

“Computing machinery and intelligence” [1] recalls Lady Lovelace's objection (written in her memoirs in 1842) 
that a machine can “never do anything really new”, and in particular the Analytical Engine of Babbage (an early 
idea for universal computer) “has no pretensions to originate anything. It can do whatever we know how to order 
it to perform”. Turing’s response can be summarized as: “the evidence available to Lady Lovelace did not en-
courage her to believe” that machines could be creative, although “It is quite possible that the machines in ques-
tion had in a sense got this property” because “suppose that some discrete-state machine has the property. … 
universal digital computer … could by suitable programming be made to mimic the machine in question”. It is 
difficult to ascertain that something is really new, and Turing admits that “Machines take me by surprise with 
great frequency”.  

The last section of Turing’s article is devoted to learning machines as our best hope to realize computa-
tional intelligence and creativity. After proposing (albeit in a very vague terms) “the child machine” in the final 
paragraph of the paper the author writes: “We may hope that machines will eventually compete with men in all 
purely intellectual fields. But which are the best ones to start with? Even this is a difficult decision. Many people 
think that a very abstract activity, like the playing of chess, would be best.” This has indeed proved to be true 
and before the turn of the century – as Turing predicted – computers exceeded human level competence in chess. 
However, the connection between memory capacity and speed of calculations in chess is quite obvious, therefore 
the famous Big Blue – Kasparov 
match has been accepted more as a 
demonstration of sheer computer 
power rather than true machine in-
telligence. Turing suggested also 
another approach: “It can also be 
maintained that it is best to provide 
the machine with the best sense 
organs that money can buy, and then teach it to understand and speak English. This process could follow the 
normal teaching of a child. Things would be pointed out and named, etc.” Many people turn now to this, much 
harder, approach hoping that autonomous mental development using real embodiment of perception/action in 
robot brains may be the answer (see special issue of CIM [2]). Highly abstract symbolic activity and fully em-
bedded processes drawing on perception and exploration of the world are two extremes, with a lot of fertile 
ground in between.  

“We may hope that machines will eventually compete 
with men in all purely intellectual fields”, wrote Alan Tur-
ing. He believed that learning machines can be creative, 
and proposed to develop both computer chess and a “child 
machine”, or embodied intelligence approach.  
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Many low-level cognitive functions [3] involving perception and motor control have already reasonable 
neural models that capture more details every year. With growing sophistication of algorithms, software imple-
mentations, and new inspirations from neuroscience the field seems to be on a good track and some notable suc-
cesses are already evident [4], although reaching animal-level proficiency may still take some time. Understand-
ing and modeling of higher cognitive functions, including visual and auditory scenes, the use of language, think-
ing, reasoning, planning, problem solving or building architectures to coordinate all cognitive functions is in 
much worse shape. Models of thinking processes have been dominated mostly by search and rule-based sym-
bolic Artificial Intelligence (AI) algorithms, with a few toy examples based on connectionist approaches in lin-
guistic domain [2]. Consciousness is considered to be the most mysterious of all mental phenomena [5], but it 
may not so difficult to realize in artificial systems. Brain-like information processing have to lead to claims of 
consciousness in systems that are able to 
comment on their internal states [6]. These 
comments are needed to make sense of narra-
tive history of one’s own life as well as to 
learn any complex skill that requires coordina-
tion of perceptions, reasoning and actions [6]. 
Unraveling detailed brain circuits involved in creation of such comments, as well as computational implementa-
tion of complex systems based on recurrent modules that implement this type of information processing, may 
take long time. Research on many aspects of consciousness is quite active [5], but there are other, quite neglected 
faculties that all child machines or any artificial minds must posses.  

Arguably, three most important (and most mysterious) faculties of the mind needed for intelligent behav-
ior are intuition, imagination and creativity. Babies and animals do not reason making logical inferences, be it 
crisp or fuzzy, but even birds use intuition, imagination and creativity to solve problems [7]. Computers need to 
show similar qualities.  

 
Intuition 

 
The MIT Encyclopedia of Cognitive Sciences [8] has 10 articles devoted to various aspects of logic and 

almost 100 index references to logic. Intuition is not mentioned in the index at all, although several articles men-
tion definitions that agree with some intuitions. The word “intuitive” in biology, psychology, mathematics, phys-
ics and sociology is treated as synonym of naïve understanding in these fields. Yet in everyday activity very few 
people (and certainly no animals) base their decisions on logical analysis of all options. Most cognitive functions, 
such as understanding of human and animal intentions and emotional states, meaning of words or creative think-
ing, cannot be reduced to logical operations. Why then intuition is played down and so much effort is spent on 
logic? Perhaps we have been blinded by the apparent power of logics in the early models of brain functions, 
leading to AI focus on logical methods in symbol manipulation for problem solving. Computational functional-
ism in philosophy of mind separated neural and mental processes focusing on symbolic analysis of thinking 
processes. Logical approaches to truth, language and understanding of behavior gave rise to many technical 
questions keeping experts busy for many years, although little progress towards the initial goal has been made. It 
is much easier to develop existing theories and formalisms rather than to come up with new conceptualization of 
the problem. 

Intuition is defined in dictionaries as immediate knowing without the conscious use of reasoning, or cog-
nition without evident rational thought and inference. Deliberate thinking is critical, analytic and reasoning-like, 
while intuitive thinking is rapid, effortless, and perception-like. The subject of intuition has been abandoned by 
science, left mostly to esoteric psychology or at best to psychoanalysis. Only recently scientific psychology 
showed some interest in intuition. Social cognitive neuroscience views implicit learning processes as the cogni-
tive substrate of social intuition [9]. After 
publication of the book “Intuition: Its Pow-
ers and Perils” by D.G. Myers [10] review 
in Scientific American called intuition “... 
a rich emerging field of scientific inquiry” 
(quoted from the book cover). In experi-
mental psychology studies of subliminal priming, implicit memory, automatic processing, emotional cues, non-
verbal communication, prejudices and stereotypes, subconscious use of heuristics, decision making, blindsight 
and other brain damage phenomena, are all relevant to understanding intuition. Obviously simple perception 
leading to object recognition in any sensory modality, does not require logical reasoning but brings immediate 
knowing of the objects seen, heard or touched. Psychologists and neuropsychologists have thus given the re-
search on intuition some respect, although it still lacks multidisciplinary focus.  

Consciousness should arise in systems based on 
brain-like information processing that may com-
ment on their own internal states.  

For many years intuition has been neglected but now 
it is  “... a rich emerging field of scientific inquiry”, 
according to review in Scientific American.  
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From computational perspective modeling intuition is relatively simple. Decisions of neural networks (or 
other models) that learn from data frequently cannot be justified in terms of logical rules. In some cases logical 
rules that have similar or even higher predictive power may be extracted from trained neural networks [11]. In 
other cases judgments based on overall similarity provide better decisions. For example, data that is generated 
from a single oblique Gaussian probability density function will be classified with high accuracy using a single 
reference vector R with Mahalanobis metric ||X−R|| that measures dissimilarity between the query and the  refer-
ence vector. Neural networks may easily learn this type of similarity evaluation, but there is no simple way to 
express equivalent knowledge in terms of logical rules. Only for additive metric functions 
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identical decision borders as with the prototype-based rules may be recreated. For that reason it has been conjec-
tured [12] that prototype-based rules (P-rules) in threshold or nearest-neighbor form are more general than fuzzy 
or crisp rules (F-rules, C-rules), offering more flexibility and biological plausibility in modeling of perception 
and decision making (see [13] on interesting relations between uncertainty in data, multilayer perceptrons and 
fuzzy rules). If several such prototypes are needed P-rules can still handle the problem in an easy way while ap-
proximations based on fuzzy rules will almost always be of poor accuracy and will require many rules, making 
the whole system incomprehensible. Psychologists have noticed that rules and similarity judgments form a con-
tinuum, with logical rules (including threshold logic and fuzzy logic rules) applicable in relatively simple cases, 
while prototype-based rules applicable in situations when many factors are simultaneously taken into account for 
similarity judgments [14]. For example, medical doctors may use simple norms based on thresholds for some 
tests, but in case of emergency they have to make fast intuitive judgments, taking many factors into account. 
Experience leads to intuition, and it is obviously related to similarity evaluation and memorization of many pro-
totypes. Even for simple benchmark 
medical data, a single P-rule may offer 
more accurate explanation than sets of 
logical rules [15].   

Intuition is usually invoked in con-
text of reasoning and decision making. Herbert Simon claimed that AI has reached the stage where intuition, 
inspiration and insight could be modeled [16]. Intuition in problem solving has two defining characteristics: (1) 
the solution has to be reached rapidly, and (2) explanation why the steps leading to solution has been selected 
could not be given. In various experiments novices and experts solving the same problem were compared and the 
use of intuition has been clearly correlated with the ability to evaluate similarity and with the number of patterns 
stored in long term memory. Knowledge obtained through implicit learning or derived from partial observations 
(in contrast to the usual supervised learning situation, when full knowledge is provided) over a long period of 
time cannot be used directly in explicit reasoning. It is represented in a diffuse, rather weak connections, par-
tially in the right brain hemisphere, and thus cannot be accurately summarized in symbolic form. Some attempts 
to capture intuition in chess have been made recently [17], using rather sophisticated representational scheme. 
The claim is that “the postulated architecture models chess intuition as an emergent mixture of simultaneous 
distance estimations, chunk perceptions, abstract role awareness, and intention activations.” Our brains con-
stantly learn to pay attention to relevant features and remember many patterns. Even in tasks for which rules of 
correct actions exist intuitive learning comes before rules are discovered. 

Knowledge required for solving pattern recognition problems is usually quite limited, in most cases 
gained from a single dataset given for training. Problems that require systematic reasoning are solved in AI by 
using a lot of background knowledge, selecting and combining relevant rules in a process of searching for solu-
tion. Combinatorial explosion may be avoided if high level macro-operators are used as a shortcut; such strate-
gies are based on the idea of chunking (grouping) knowledge in hierarchical fashion, used in some AI systems 
such as SOAR [18]. Hierarchical Temporal Memory model, recently proposed as a general cortex mechanism, 
works using this principle [19], learning common spatial and temporal sequences to discover causes. This is 
quite similar to hierarchical correlation learning used already in the pandemonium model [20] almost half a cen-
tury ago, used also in brain-inspired vision systems [4].  

Intuitive machines should learn from partial observations, correlating subsets of features to create chunks 
of knowledge. In many domains strong symbolic rules are not known. Instead, implicit learning creates a number 
of neural modules that capture some correlations between selected variables. This is quite common in natural 
situations, for example observing animal behavior patterns various cues are memorized, and predictions of future 

Prototype-based rules offer a good model of recogni-
tion-based intuition, in many cases more accurate and 
simpler to comprehend than fuzzy rules.  
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activity and intentions are made. Some animals actively tease predators to test their reactions and gain valuable 
knowledge [7]. In the original PDP Books [21] several articles have been concerned with problems that required 
combinatorial constraint satisfaction. Relations between two or three variables constraining their possible values 
have been defined, and Boltzmann machines and harmony theory have been used to search for self-consistent 
states of these networks. Such methods proved to be rather inefficient because stochastic training algorithm does 
not scale well with the size of the problem. Recently multi-layer restricted Boltzmann machines and deep belief 
networks have been introduced [22], based on stochastic algorithms and binary representations, but their use was 
restricted to pattern recognition problems so far.  

Solutions of complex problems, including inferences about observed behavior, combine systematic search 
with intuitive recognition based on partial observations. An approach to capture essential aspects of intuitive 
reasoning based on systematic search has been proposed in [23]. Intelligence is sometimes a matter of fast intui-
tive estimation of what can, and what cannot be true. Suppose that a number of relations between small subsets 
of all features characterizing complex system are known a priori or are derived from observations. For example 
3 features may be constrained by some function F(A,B,C), logical relations, or by observation that (A,B,C) may 
take only restricted values. All basic laws of physics have this form. Relations may also be found for changes in 
feature values. In the simplest case one may assume ΔA=0 for no change, ΔA = + for increase, and ΔA = − for 
decrease. The speed of changes may of course be quantized into more steps. If only 3 values are admitted, for 3 
variables there are 33=27 possibilities, from all variables decreasing: (ΔA,ΔB,ΔC) = (−,−,−), to all variables in-
creasing: (ΔA,ΔB,ΔC) = (+,+,+). Introducing A=F(B,C) relation that is either additive A=B+C, multiplicative 
A=B.C or inverse additive A-1=B-1+C-1 (most laws of physics are in this form) excludes 14 out of the 27 possible 
patterns of (ΔA,ΔB,ΔC) triples, for example ΔA=0 (constant) is impossible if both ΔB and ΔC decrease or if both 
increase). It is quite surprising that when it comes to change many relations show qualitatively the same behavior, 
shown in Fig. 1 for (V,I,R) variables for V=I.R (Ohm’s law). There are 13 true facts and 14 false ones, with the 
strength of true relations being greater for (ΔV,ΔI,ΔR) = (+,+,+) then for (ΔV,ΔI,ΔR) = (+,+,−), as the first one is 
always true and the second one depends on relative speed of ΔI and ΔR changes. Note that averaging over all 
observations will show no correlations between ΔV and ΔI,ΔR, as all three situations: (+,+,−), (0,+,−), (−,+,−) are 
possible. Instead of calculating correlations facts are remembered and the response of a node is getting stronger 
with growing number of observations, as illustrated in Fig. 1 using different sizes of gray balls. This function is 
all that is needed for qualitative reasoning; it may be represented by: 

 
F(X)=F(A,B,C)=exp(−β ||X−(−1,−1,−1)||2)+ ... exp(−β ||X−0||2) + ... + exp(−β ||X−(+1,+1,+1)||2)  
with a large constant β.  
 
It is quite likely that our knowledge of 

qualitative physics is internalized in such simple 
manner; if the predator runs quickly the distance 
decreases fast and the time left before deadly en-
counter is short, so qualitative relations between 
time, speed, and distance are important. Checking 
if something is possible does not require writing 
and solving equations; if the response of neural 
node F(A,B,C)>0 than relation between (A,B,C) 
features is not violated. A soft penalty function 
F(A,B,C) = exp[−β(A−f(B,C))2] for violation of 
A=f(B,C) relation may be used if real feature val-
ues instead of changes are preferred. If the 
A=f(B,C) relation represents a law of nature β may 
be estimated from the accuracy of A, B, C meas-
urements, if this is just a preference relation value 
of β may be selected to account for it. Such 
mechanism allows to say what is possible and what is unlikely in purely intuitive way. Impossible patterns of 
feature values simple “do not come to mind”, as there is no activation that corresponds to them. 

Another surprising fact is that in complex situations expectations generated using such weak constraints – 
about half of the relations being true, and the other half false – are very useful. If many relations are applicable 
for N ternary features, out of 3N possible combinations of possible values only a few will be in agreement with 
all constraints that restrict the kind of situations that may really happen. For example, the following relations:   

f(A1,A2)=A3; f(A2,A3)=A4; ... f(AN-2,AN-1)=AN  

                 
  
Fig. 1. Qualitative changes of 3 variables related in 
additive, inverse additive or multiplicative way follows 
always the same pattern, with probability of different 
observations proportional to the size of the ball.  
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leave only 4N+1 solutions that agree with all constraints, a negligible fraction of all 3N patterns. Such 
knowledge based on partial observations may be implemented in several ways [23]. A network of “knowledge 
atoms” containing F(Ai,Ai+1,Ai+2) relations that represent correlations among a subset of variables (they may be 
discovered in data using algorithms similar to association rules mining) may be arranged in one-dimensional 
array, connected to relevant input features. If the values of any two variables in the node (Ai, Ai+1, Ai+2) are 
known then this nodes may provide unique value (or at least some constraints) for the third variable. Search with 
at most N−2 steps, in each step selecting nodes that have only one unknown variable, determines all missing val-
ues. Slightly more difficult situation occurs when only one feature in each node has specific value, for example 
A1 and A4. This requires systematic reasoning: suppose that A2 has some specific value, is that possible in view 
of all known constraints and fixed values of variables? Again all that is needed is to check whether F(X)>0 for 
subsets of features with known values. If only A1 and A4 are known assume that A2 is either −, 0, or +, starting 3 
branches of a search tree. In the first step relation f(A1,A2)=A3 determines A3, in the second step f(A2,A3)=A4 is 
checked for all 3 branches, stopping the search is both relations are not fulfilled. A useful heuristics is to look for 
maximally constrained feature, that is to find first the feature that may assume only one possible value; this re-
quires checking if F(X)=0 for all other values. Fixing the values of successive features restricts the remaining 
features, making the search process in most cases rather trivial.  

In the PDP book [21] a simple electric circuit with battery and two resistors has been analyzed using 
Boltzmann machines and harmony theory. The circuit (Fig. 2) can be fully described using 7 variables: current I, 
3 voltages Vi and 3 resistances Rj. Most students of physics or electrical engineering will answer questions such 
as: if R2 increases, and R1 and Vt are kept constant, what will happen to the current I and how will V1, V2 change? 
Although a novice may try to deduce the answer transforming Ohm’s and Kirchoff’s equations to calculate I, V1, 
V2 from known values, an expert will answer intui-
tively without any deliberation. If the question will 
change the novice will again have to solve equations, 
while the expert will come up intuitively with immedi-
ate answer. 

What useful knowledge do we have here? Both 
the novice and the expert know Ohm’s law V=I.R and 
know that Vt=V1+V2, but only in the brain of an expert, 
through frequent observations how currents and volt-
ages change in real circuits, qualitative behavior cap-
tured in the cube (Fig. 1) has been internalized. Focus-
ing on all elements 5 applicable laws are noticed:  
Vt=I.Rt, V1=I.R1, and V2=I.R2, and Rt=R1+R2, Vt=V1+V2. 
Thus the total heuristic function is a product of 5 iden-
tical factors: 
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There are 37 = 2187 different 7-dimensional ternary vectors X, but only for 111 of them give F(X)>0, 
other values lead to one or more factors equal to zero. Knowing that ΔVt=0, ΔR1=0, and ΔR2=+ the changes of 
the four remaining variables should be found. It is easy to check that assuming ΔV1=0, or +1, or −1, does not 
zero F(X), as the unknown change in current I and the voltage V2 may be consistent with any change in V1. 
However, ΔRt = + is the only solution as f(ΔRt, ΔR1=0, ΔR2=+) is 0 in other cases. The current I  has to decrease 
now, and this leads to decrease of V1 and increase of V2. No equations are transformed to solve for unknown 
values, only the response of functions that relate unknown to known variables is checked, in the first pass finding 
those features for which some factors may be uniquely determined, and if this is not possible assuming finding 
the most constrained feature and creating search tree with several branches.  

Networks of knowledge atoms may solve many problems where partial observations lead to some con-
straints, facilitating intuitive reasoning. Is this really the mechanism behind intuitive problem solving? A number 
of testable predictions on human intuitive performance can be generated assuming this mechanism. For example, 
learning only theory does not lead to good intuitions, observations of how things change are needed. Good car 
drivers may have problems recalling driving rules, they just make correct assumptions and predictions. If the 
problem admits more than one solution how likely is it that a student will find all solutions? This should depend 
on the working memory load, or complexity of the search, needed to find all solutions. In complex situations 
hierarchical decomposition of the problem is necessary, depending on the questions asked. For example, ele-

                 
 

 
 
Fig. 2. Electric circuits are good examples of using 
partial knowledge about relations between few vari-
ables to infer qualitative changes. In this example 
there are 7 variables involved.   
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ments of complex electrical circuits may be decomposed into larger blocks, there is no need to assign values to 
all variables. People in such cases analyze graphical structure of connections and nodes representing the problem, 
starting from elements mentioned in the problem statement.  

We have created several software implementations of algorithms for learning from partial observations 
that quickly find all solutions if many discrete feature values are missing (T. Maszczyk, J. Rzepecki, W. Duch, in 
preparation). Problems of this type are somewhere in between pattern recognition and symbolic reasoning prob-
lems. Neural networks may be used as heuristics to constrain search processes (a core AI technology) in problem 
solving. Robots, including autonomous vehicles, need to combine reasoning with pattern recognition in a real 
time. Intuitive evaluation of possible solutions to global goals may help to generate rough plans, find optimal 
patterns for behavior of a robot. Other applications include games as well as industrial installations, where opera-
tors learn to interpret complex signaling patterns. Collecting data for challenging problems of this kind would be 
very worthwhile, encouraging the development of more algorithms to solve them.  

 
Insight 

Intuition and insight have some similarities, but the sudden Aha! experience that accompanies solutions 
of some problems has distinct character [24]. Insight is usually preceded by an impasse, frustration after a period 
of lack of progress, followed by conviction of the imminence of solution, frequently after a period of incubation 
when the problem is set aside. New way of looking at the problem that leads to the solution is accompanied by a 
great excitement and understanding. The mild version of Aha! experience is fairly common during discussions 
when difficult concept or a confusing description of some situation is finally grasped. Herbert Simon believed 
that the EPAM (Elementary Perceiver And Memorizer) model developed by Feigenbaum and himself in the 
early sixties [25], combined with his GPS (General Problem Solver) model [26], explains insight. The initial 
process of searching for the solution reaches dead end, but during the search new features are constructed and 
stored in the long-term memory. After the failure control mechanism shift search to another problems space, and 
new control structures for this process are created in the short term memory. With additional features of the 
problem generated in previous runs the new search has greater chances to succeed. However, this explanation 
may be applied to typical attempts of solving a problem by using several different strategies, without any Aha! 
experience. Only recently neuroscience has provided a deeper understanding of  the insight phenomenon. 

Studies using functional MRI 
and EEG techniques contrasted insight 
with analytical problem solving that 
did not required insight [27]. An in-
creased activity in the right hemisphere 
anterior superior temporal gyrus (RH-
aSTG) has been observed during initial 
solving efforts and during insights. 
This area is probably involved in 
higher-level abstractions that can facilitate indirect associations. About 300 ms before insights occurred bursts of 
gamma activity has been observed. This has been interpreted by the authors as “making connections across dis-
tantly related information during comprehension ... that allow them to see connections that previously eluded 
them” ([27], p. 326). Bowden et. al [28] performed a series of fMRI experiments, confirming these results. In 
this interpretation initial impasse is due to the inability of left hemisphere, focused on the problem, to make pro-
gress. This deadlock is removed when the less-focused right hemisphere adds relevant information, allowing 
new associations to be formed. Aha! experience may result from activation by the pre-existing weak solution in 
the right hemisphere, suddenly reaching consciousness when the activation of the left hemisphere is decreased. 
Although these observations are important their explanation is rather nebulous. To understand the insight phe-
nomenon first representation of words, concepts and the whole problem statement in the brain should be eluci-
dated. 

Words in the brain are an abstraction of acoustic speech input, changed into phonological, categorical  
representation. Categorical auditory perception enables understanding of a speaker-independent speech and is 
more reliable in a noisy environment. Phonemes, quantized building blocks of phonological representations 
(typically about 30-50 in most languages) are linked together in ordered strings by resonant states that represent 
word forms. In brains of people who can read and write, strictly unimodal visual representation of words in the 
Visual Word Form Area (VWFA) in the left occipitotemporal sulcus has been found [29]. Adjacent lateral in-
ferotemporal multimodal area (LIMA) reacts to both auditory and visual stimulation and has cross-modal pho-
nemic and lexical links. It is quite likely that the homolog of the VWFA in the auditory stream is located in the 
left anterior superior temporal sulcus; this area shows reduced activity in developmental dyslexics. In the 
Broca’s area in the frontal lobe precise motor representations that generate speech are stored. All these represen-

Insight, a sudden Aha! understanding experience, occurs 
after an impasse, a period of frustration, and is preceded 
by feeling of imminence of solution and strong emo-
tions, before the solution becomes clear. Strong in-
volvement of right hemisphere of the brain has been ob-
served during problem solving when insight occurred.  



CI Magazine 
 

 7

tations of word forms help to focus thinking processes. Activations of word forms are correlated with activity of 
other brain circuits, pointing to some experiences, perceptions and actions that define the meaning of words. 
Polysemic words probably have a single phonological representation and differ only by semantic extension. 
Analysis of the N200 feature of auditory event-related potentials shows that phonological processing precedes 
semantic activations by about 90 ms [30]. Similar phonological word forms activate adjacent resonant microcir-
cuits. To recognize a word in a conscious way activity of its subnetwork must win a competition for an access to 
the working memory [31]-[34]. Hearing a word activates strings of phonemes, priming (increasing the activity) 
all candidate words and non-word combinations. Context priming selects extended subnetwork corresponding to 
a unique word meaning, while competition and inhibition in the winner-takes-all processes leaves only the most 
active candidate network. Semantic and phonological similarities between words should lead to similar patterns 
of brain activations for these words. 

Language is lateralized usually in left hemisphere (LH), with right hemisphere (RH) responsible for 
largely non-verbal processing of speech information and recognition of limited number of words [31]. Right 
hemisphere is strongly connected to the LH, but such long projections cannot carry precise information about 
activations in the word form and extended word representation areas. RH may thus generalize over similar “se-
mantic field” activations forming concepts at a high level of abstraction. Although these concepts have no names, 
as they are not associated with any word-form activation, they are very helpful in making inferences necessary to 
understand language. Simple inferences may be done locally through associative mechanisms in the LH, but 
more elaborate inferences relay on RH activations, involving especially the right temporal gyrus [35]. This con-
jecture is confirmed by a large psycholinguistic literature on the patients with RH damages, and similar conclu-
sions from functional imaging of normal people: “LH may focally activate the semantic network, while RH acti-
vation may be more diffuse, coactivating more distantly related concepts” [36]. Distributed activations in the RH 
form various configurations that should activate back some regions in the left hemisphere, enabling to capture 
complex relations inherent in large semantic fields for concepts that have no name but are useful in reasoning 
and understanding. For example, “left eye” sounds correct, but “left liver” sound strange. The feeling of under-
standing is a kind of readiness potential of the brain to signal that inference processes due to the interplay of the 
left-right hemispheres have successfully finished. Associations at higher level of abstraction in the RH are 
passed back to facilitate LH activations that form intermediate steps in language interpretation. High-activity 
gamma burst project to the left hemisphere will prime subnetworks with sufficient strength to form associative 
connections linking the problem statement with partial or final solution. This is a universal mechanism that oper-
ates in case of difficult problems as well as in understanding of complex sentences. 

High-activity gamma bursts, observed in the insight experiments [28], influence the left hemisphere prim-
ing larger subnetworks with sufficient strength to form associative connections that link problem statement 
through a series of intermediate transitions to partial or final solution. Such solutions may initially be difficult to 
justify, therefore the feeling of vague but imminent understanding is generated, replaced by real understanding 
when all intermediate steps are correctly linked. The solution may be surprising, based on quite different idea 
than initially entertained. Gamma bursts also activate emotions increasing plasticity of the cortex and facilitating 
formation of new associations. Emotional reaction should be proportional to the difficulty of forming new asso-
ciations, therefore grasping a new difficult concept in a discussion generates only a mild reaction, while solving 
a difficult problem generates strong emotions, activating the reward system. 

What computational inspira-
tions may be drawn from these obser-
vations? One approach to model in-
sight processes is based on small-
world network analysis at the graph-
theoretic level [37]. Activation of the 
RH during insight may create short-
cuts between different subnetworks 
with dense local connections (small-
world subnetworks). The qualitative picture is quite clear: words and their associations correspond to patterns of 
activations that activate more general concepts in hierarchical way and part of the processing proceeds at non-
verbal, high level of abstraction. The main challenge is how to use inspirations from neurocognitive linguistics to 
create practical algorithms for Natural Language Processing (NLP) and problem solving. It may be necessary to 
forget the details and look at the high-level, non-conceptual description of the problem. This process has distant 
analogy to reasoning at higher level of ontology and resembles the process of abstraction, that is formulation of 
general concepts by rejecting inessential details, very common in mathematics. Disambiguation and understand-
ing of concepts requires extensive a priori knowledge that should be gained preferably from textbooks and struc-
tured knowledge sources. This reference knowledge may be modeled in several ways. The spreading activation 

Understanding of words requires not only spreading ac-
tivation through associations but also larger “semantic 
receptive fields” that activate neurons in the right hemi-
sphere of the brain and usually do not have linguistic 
labels. Reasoning also involves concepts at different 
level of abstraction.  
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networks [38] could in principle provide most faithful models, but realistic large scale networks of this sort have 
so far not been created. These networks include both excitation and inhibition in the spreading activation process 
and are generalization of semantic networks [39]. Linguistic concepts should approximate word-form and se-
mantic field activations in the brain, therefore connectionist models should not use nodes that represent whole 
concepts, but rather a fine-grained information about construction of words, such as morphemes or syllables. 
Context analysis will then provide guidance for spreading activation. Clusterization or granular computing tech-
niques may try to capture similarities between semantic field activations and create hidden, internal concepts that 
correspond to the right-hemisphere activity, helping to make inferences during text comprehension.  

Language development is grounded in internal representations of objects formed by the brain using in-
formation derived from perception, creating non-trivial semantic fields. To what extent this process may be ap-
proximated without embodied cognition? The main difficulty with neurocognitive approach to NLP is the lack of 
structural descriptions of common objects and concepts. Even the simplest concepts, such as those related to 
animals, do not have good description in the dictionaries, making creation of semantic memories from machine-
readable sources quite difficult [40]. For example, everyone knows how a horse looks like, but a dictionary defi-
nition “solid-hoofed herbivorous quadruped domesticated since prehistoric times” (Wordnet), is certainly not 
sufficient to create correct associations. There are many proposals how to gain the missing knowledge from on-
tologies, dictionaries, encyclopedias, collaborative projects (MindNet, ConceptNet, Open Mind Common Sense 
Project), active search for possible relations between different concepts [40] and active dialogues in word games 
to add missing knowledge [41]. Statistical NLP approaches are based on the vector model, with different nor-
malization methods that change word frequencies into useful features [42]. Vector approach may be treated as a 
snapshot of the network activity after several steps of spreading activation. In document categorization a priori 
knowledge may then be stored in reference vectors derived from description of concepts, for example names of 
disease that documents are related to [43]. Fuzzy prototypes may also be used instead of single reference vectors. 
To simulate spreading activation semantic smoothing techniques may be used, adding activation to concepts that 
are related to those discovered in the text. Synonyms and their parent concepts that are higher in ontological hi-
erarchy should be added in the first place. In effect documents that may use quite different words are clustered 
into correct topics [44]. Knowing the 
topic and semantic types of concepts 
helps to disambiguate the meaning and 
annotate the text correctly. The activa-
tion of the semantic fields in the whole 
network has to be consistent, leading to 
the idea of active subnetworks, repre-
sented by graphs of consistent concepts 
[45]. These graphs should capture rela-
tions between concepts in their specific 
meanings, inhibiting alternative inter-
pretations.  

Brains are the only known systems capable of understanding natural language. Brain-like representations 
of linguistic concepts at morphological level have unique properties that facilitate various inferences needed to 
understand text. Although linguists are aware of the importance of the neurocognitive basis of language so far 
their interest has been restricted only to description of specific linguistic phenomena [46]. We do understand 
what has been missing in logical and statistical NLP approaches. This is a very fertile area for computational 
intelligence, with a lot of effort needed to create useful large-scale practical algorithms to approximate dynami-
cal processes involved in language comprehension and production and to create good semantic memories. This 
may still be faster and easier way towards linguistic competence than embodied cognition.  
 
Imagination and Creativity 
 

Creativity is one of the most mysterious aspects of the human mind. Research on creativity has been pur-
sued by educators, psychologists and philosophers. MIT Encyclopedia of Cognitive Sciences [8], Encyclopedia 
of Creativity [47] and Handbook of Human Creativity [48] described stages of creative problem solving and tests 
that can be used to asses creativity, but do not mention brain mechanisms or computational models of creative 
processes. Sternberg [48] has defined creativity as “the capacity to create a solution that is both novel and appro-
priate”. In this sense creativity manifests itself not only in creation of novel theories or inventions, but permeates 
our everyday actions, understanding of language and interactions among people. Brain processes behind creative 
thinking should not be much different from processes responsible for intuition and insight [49]-[51]. 

The lack of structural descriptions of common objects 
and concepts in lexical resources is a major problem in 
natural language processing. Statistical techniques do 
not solve this problem. Many experts place their hopes 
for progress in this area in embodied cognition.  In prin-
ciple this could create proper internal representations but 
development of good semantic memory may still be an 
easier way to understand language. 
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High intelligence is not sufficient for creativ-
ity although it is quite likely that both have similar 
neurobiological basis. Relationships between crea-
tivity and associative memory processes have been 
discussed already in [52]. Rich network of associa-
tions as well as strong right hemisphere involvement 
are clearly a pre-requisite for creativity. Heilman et. al agree that “creative innovation might require the co-
activation and communication between regions of the brain that ordinarily are not strongly connected”, binding 
“different forms of knowledge, stored in separate cortical modules that have not been previously associated” 
([53], p. 369). However, these authors do not consider lateralization of brain functions. One of the most impor-
tant techniques in experimental psychology is aimed at investigation of priming effects [54]. The pair-wise word 
association techniques [54] measure response times to presentation of verbal stimuli, and are the most direct way 
to analyze associations among local networks coding different concepts. Priming techniques are based on cues 
that have influence on responses. Associations may differ depending on the type of priming (semantic or phono-
logical cues), structure of the brain network that codes concepts, the activity arousal due to priming, and many 
other factors. Creative people should show greater ability to associate words and should be more susceptible to 
priming. Less creative people may not be able to make remote associations at all, while creative people should in 
this case show longer latency times, proportional to the difficulty of making an association (presumably related 
to the probability of making the transition between the two concepts, a good measure of distance in neural space).   

In one priming experiment [55] people with high and low scores in creativity tests saw the first word, fol-
lowed for a brief (200 ms) moment by the priming cue (word), before the second word of the pair was displayed. 
More creative people indeed show greater ability to notice associations, especially for more difficult associations 
that less creative people frequently fail to notice. It should be expected that in a network that has small-world 
structure higher creativity means that there are more connections and thus higher transition probabilities between 
different subnetworks are possible. However, priming effects should differ, depending on the type of the priming 
cue. For easy associations positive priming (words that have related meaning) should lead to faster associations 
in all cases. Neutral priming, based on nonsensical or unrelated words, may in this case create in densely con-
nected network (creative people) spread of activation in too many directions and thus competition for access to 
the working memory that will slow down the response times. In networks with fewer connections (less creative 
people) activation will mostly be spread through connections that correspond to easy associations, making the 
responses faster. When associations become difficult indirect activation routes are needed to facilitate transitions, 
perhaps involving inter-hemispheric transfers of activations. They are too weak or non-existing in less creative 
people and thus priming will not help them. Weak connections that exist in more creative brains may not be suf-
ficient to facilitate quick transitions between the two paired word representations, but adding neural noise via 
nonsensical priming may increase the chance of such transitions. This is an example of the stochastic resonance 
phenomenon [56] that has been reported in visual, auditory and tactile perception, but evidently can also be no-
ticed in associative thinking. Adding positive priming based on spelling activates only phonological representa-
tions close to that of the second word, therefore the influence should be weaker. All these effects have indeed 
been observed [55]. Experiments did not analyze the overlap between nonsensical words and the pair of words 
given for association at phonological and grapheme level, although this may reveal the microstructure of the 
associative process. These results support the idea that creativity relies on the associative memory, and in par-
ticular on the ability to link together distant concepts. 

The first ingredient needed for creativity is thus sufficiently rich associative network, neural space capa-
ble of supporting complex states. High intelligence does not guarantee creativity. The second ingredient is 
imagination. Mental imagery is a well established field with its own Journal of Mental Imagery, started in 1977. 
Brains try to make sense of subtle cues, forming in 
parallel many hypothesis that compete with each 
other. Replacing a part of the spoken word by 
noise is sufficient to create an impression that the 
actual word that fits to the later context has actu-
ally been heard. For example [57], in the phrase 
“[noise]eel is on the —–”, where the last word resolving the context is either “axle”, “shoe”, “orange” or “table”, 
incomplete information at the phonemic level is restored in the brain and the first word is heard as “wheel”, 
“heel”, “peel”, or “meal”, accordingly. The information that is consciously experienced is integrated in rather 
broad temporal window [30]. We are aware of the final result of the massive competition between various reso-
nant states forming shorter and longer chains of activation, waiting for additional cues in form of context to re-
solve ambiguities. In absence of such cues some stronger activations temporarily win the competition, popping 
up in the working memory. It is quite likely that working memory is not a separate subsystem, but simply an 

Creativity is “the capacity to create a solution 
that is both novel and appropriate”. It is 
manifested in everyday activities, including 
language comprehension and production.

First thing needed for creativity is rich asso-
ciative network, neural space capable of sup-
porting complex states. 
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active part of the long-term memory (LTM) network due to 
priming and spreading of neural activation (see the review 
of the evidence for this point of view in  [58]). The same 
brain regions are involved in perception, storage and re-
activation of LTM representations. Some activated LTM 
subnetworks may be in the focus of attention of the frontal 
lobe central executive areas (presumably this is the part we are conscious of) and some may be activated, but 
outside of this focus. Imagination depends on associations that the neural space is able to provide, but also on the 
energy, inner drive that may be due to the strong coupling via the dopamine projections between the frontal lobes 
and basal ganglia.  

The final ingredient needed for creativity is the filtering system that selects most interesting (from emo-
tional or cognitive point of view) mental images. Creativity is therefore a product of ordinary neurocognitive 
processes and as such should be amenable to computational modeling. However, the lack of understanding what 
exactly is involved in creative activity is one of the main reasons for the low interest of the computational intelli-
gence community in creative computing. Problems that require creativity are difficult to solve because neural 
circuits representing object features and variables that characterize the problem have only weak connections, and 
the probability of forming appropriate sequence of cortical activities is very small. The preparatory period – 
reading and learning about the problem – introduces all relevant information, activating corresponding neural 
circuits in the language areas of the dominant temporal lobe, and recruiting other circuits in the visual, auditory, 
somatosensory and motor areas used in extended representations. These brain subnetworks become highly active, 
reinforce mutually their activity, and form many transient configurations, inhibiting at the same time other acti-
vations. Difficult problems require long incubation periods that may be followed by an impasse and despair pe-
riod, when inhibition lowers the activity of primed circuits, allowing for recruitment of new circuits that may 
help to solve the problem. In the incubation period distributed sustained activity among primed circuits leads to 
various transient associations, most of them short-lived and immediately forgotten. Almost all of these activa-
tions do not have much sense and are transient configura-
tions, fleeting thoughts that escape the mind without being 
noticed. Only the most interesting associations (from the 
point of view of current goals) are noticed by the central 
executive and amplified by emotional filters that provides 
neurotransmitters increasing the plasticity of the circuits 
involved and forming new associations, pathways in the 
conceptual space.  

Very few computational models addressing creativity have been proposed so far, the most interesting be-
ing Copycat, Metacat, and Magnificat developed in the lab of Hofstadter [59][60]. These models define and ex-
plore “fluid concepts”, that is concepts that are sufficiently flexible and context-sensitive to lead to automatic 
creative outcomes in challenging domains. Copycat architecture is based on an interplay between conceptual and 
perceptual activities. Concepts are implemented in a Slipnet spreading activation network, playing the role of the 
long-term memory, storing simple objects and abstract relations. Links have length that reflect the strength of 
relationships between concepts, and change dynamically under the influence of the Workspace network, repre-
senting perceptual activity in the short-term or working memory. Numerous software agents, randomly chosen 
from a larger population, operate in this Workspace, assembling and destroying structures on various levels. The 
Copycat architecture estimates “satisfaction” derived from the content of assembled structures and concepts. 
Relations (and therefore the meaning) of concepts and high-level perceptions emerge in this architecture as a 
result of a large numbers of parallel, low-level, non-deterministic elementary processes. Although this model has 
not been directly inspired by neurocognitive considerations it may approximate some fundamental processes of 
creative intelligence. The main application so far was in the design of new font families [60]. 

Results of experimental and theoretical research lead to the following conclusions:  
1) creativity involves neural processes that are realized in the space of neural activities reflecting relations 

in some domain (in case of words knowledge about morphological structures), with two essential components:  
2) distributed fluctuating (chaotic) neural activity, constrained by the strength of associations between 

subnetworks coding different words or concepts, responsible for imagination; 
3) filtering of interesting results, amplifying certain associations, discovering  partial solutions that may 

be useful in view of the set goals. Filtering is based on priming expectations, forming associations, arousing 
emotions, and in case of linguistic competence on phonological and semantic density around words that are 
spontaneously created (density of similar active configurations representing words). 

Arguably the simplest domain in which creativity is frequently manifested is in the invention and under-
standing of novel words. This ability is shown very early by babies learning to speak and understand new words. 

Second thing needed for creativity is 
imagination, the ability to combine 
together in many ways local brain ac-
tivations in larger coherent wholes.

Third thing needed for creativity is 
filtering, granting access to the work-
ing memory of only the most interest-
ing products of imagination. 
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Neurocognitive approach to the use of words and symbols should draw inspirations from experimental psychol-
ogy and brain research and help to understand putative brain processes responsible for creativity manifested in 
novel word creation. This could be a good area for more precise tests of creative processes using computational, 
theoretical and experimental approaches. Interesting names for products and companies are always in great de-
mand. In languages with rich morphological and phonological compositionality (such as latin or slavic family of 
languages) novel words that cannot be found in the dictionary may appear in normal conversation (and more 
frequently in poetry). Although these words are newly invented their morphology gives sufficient information to 
make them understandable in most cases even without hearing the context. The simplest test for creative thinking 
in linguistic domain may be based on ingenuity of finding 
new words, names for products, web sites or companies 
that capture desired characteristics. A test for creativity 
based on ingenuity in creating new words could measure 
the number of words each person has produced in a given 
time, and should correlate well with the more demanding 
IQ tests.  

Suppose that several keywords are given, or a short text from which such keywords may easily be ex-
tracted, priming the brain at the phonetic and semantic level. The goal is to come up with novel and interesting 
words that capture associations among keywords in the best possible way. Large number of transient resonant 
configurations of neural cell assemblies may be formed in each second, exploring the space of all possibilities 
that agree with internalized constraints on the phonological structure of words in a given language (phonotactics 
of the language). Very few of those imagined words are really interesting, but they all should sound correctly if 
phonological constraints are satisfied. Imagination is rather easy to achieve, taking keywords, finding their syno-
nyms to increase the pool of words, breaking words into morphemes, syllables, and combining the fragments in 
all possible ways.  

In the brain words that use larger subnetworks common to many words have higher chance to win compe-
tition, as they lead to stronger resonance states, with microcircuits that mutually support activity of each other. 
This probably explains the tendency to use the same word in many meanings, and create many variants of words 
around the same morphemes. Creative brains support greater imagination, spreading activation to more words 
associated with initial keywords, and producing faster many combinations, but also selecting most interesting 
results through emotional and associative filtering. Emotional filtering is quite difficult to model, but in case of 
words two good filters may be proposed, based on phonological and semantic plausibility. Phonological filters 
are easier to construct using second and higher-order statistics for combination of phonemes (in some languages 
even combination of letters is acceptable, as spoken and written words are in close correspondence). Construc-
tion of phonological neighborhood density measure requires counting the number of words that sound similar to 
a target word. Semantic neighborhood density measures should evaluate the number of words that have similar 
meaning to a target word, including similarity to morphemes that the word may be decomposed to.  

The simplest domain for testing mod-
els of creativity is creation of novel 
words, appropriate for web sites, 
names of the products or companies. 

b p

r i 
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phones
ring - bell 

ring –  
benzen 

ring –  
wedding 

Fig. 3. Phonetic word-form „ring” has different extended representations.  
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Implementation of these ideas in a large scale neural model is possible, but as a first step simplest ap-
proximations have been tried [49]-[51]. The algorithm involves 3 major components:  
1) an autoassociative memory (AM) structure, constructed for the whole lexicon of a given language at the 

morphological level to capture its statistical properties; it stores the background knowledge that is modified 
(primed) by keywords;  

2) imagination implemented by forming new strings from combinations of substrings found in keywords (and 
their synonyms) used for priming, with constraints provided by the AM to select only lexically plausible 
strings;  

3) final ranking of the accepted strings should simulate competition among novel words, leaving only the most 
interesting ones. 

In the simplest version a binary correlation matrix [61] has been used as autoassociative memory using 
single letters represented by temperature coding. Experiments with such matrices show that for unrestricted dic-
tionaries they accept too many strings (metaphorically speaking such correlation matrices do not constrain suffi-
ciently imagination when random strings are created) and thus are not sufficient to model the process of forming 
candidate words. There are several simple extensions to this model, either at the level of word representations, 
more complex network models, or learning algorithms. The first possibility has been explored to keep the algo-
rithm as simple as possible. The list of elementary units has been expanded from letters to pairs of letters, se-
lected triplets, morphemes, or additional phonological representations, leading to an increase of the dimensional-
ity of vectors representing words, and thus creation of sparse correlation matrix providing stronger language 
model constraints. Word is converted into a string of morphological atoms. To reflect constraints for filtering 
novel lexical strings binary weights may be replaced by correlation probabilities, taking into account word fre-
quencies. The correlation matrix W is calculated and normalized by dividing its elements Wij by the sum of all 
elements in a row. Other ways to normalize this matrix have also been included in the program, or example addi-
tional position-dependent weights may stress the importance of the beginning and end atoms in words. 

In the mental imagination step various combinations of atoms should be considered. As the number of 
combinations grows rapidly sequential filtering is used, combining pairs first and adding more atomic compo-
nents to highly probable combinations only. Words are always created in some context. In practical applications 
we are interested in creating novel names for some products, companies or web sites. Reading descriptions of 
such objects people pick up important keywords and their brains are primed, increasing probability of creating 
words based on atomic components found in keywords and additional words that are strongly associated with 
these keywords. The key to get interesting new words is to supply the algorithm with a broad set of priming 
words somehow related to the main concept. In our model this is realized by priming with enhanced set of key-
words generated from Wordnet (wordnet.princeton.edu) synsets (sets of synonyms) to original keywords. The 
extended set of keywords may then be checked against the list generated from our corpus to get their frequencies. 
To account for priming the main weight matrix is modified by adding W+λWp, where Wp is the weight matrix 
constructed only from the keywords. Wp is multiplied by a factor λ that controls the strength of the priming ef-
fect. Using very large λ makes the background knowledge contained in the weight matrix W almost irrelevant; 
the results are limited only to a few words because the program filters out almost all words as the priming set is 
not sufficient to learn acceptable correlations. A binary Wp matrix may also be used if each row of the combined 
matrix is divided by its maximum element.  

In the brain priming of some words leads to inhibition of others. This may be simulated by implementa-
tion of negative or inhibitory priming that decreases the weights for words that are antonyms of keywords. For 
example, while creating words from such keywords as unlimited happiness combinations of “unhappy” types, 
although formally interesting, should be avoided and usually do not come to our mind. The algorithm for creat-
ing words works at the syntactic level and does not try to analyze the meaning of the words. Two desired charac-
teristics of a software product described by keywords “powerful” and “boundless”, analyzed at the morpheme 
level will lead to a perfect word “powerless” with a very high score, yet in most cases this association will not 
come to mind of people, inhibited at the semantic level. This score could be lowered by negative priming. In 
current implementation of our algorithm such words are ranked low only in the final stage, when the “relevance” 
and “interestingness” filters are applied, and associations of the created word are searched for. If strong associa-
tions with some antonyms of keywords are discovered the word gets low ranking. Novel words should not have 
too much resemblance with the words that are already in 
the dictionary because they will be not be treated as new, 
only as misspelled words. One way to estimate how in-
teresting the word may seem to be is to evaluate its “se-
mantic density”, or the number of potential associations 
with commonly known words. This may be done by cal-
culating how many substrings within the novel word are 

“Semantic density” around a novel word 
is estimated as the number of potential 
associations with words from the lexicon; 
this is taken as a measure of how inter-
esting the new word appears to be. 
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lexical tokens or morphemes. For longer morphemes general similarity to other morphemes (rather than string 
equivalence) is sufficient. If several substrings are similar to morphemes or words in the dictionary the word will 
certainly elicit a strong response from the brain networks and thus should be regarded as interesting. The influ-
ence of subjective, personal bias can also have an impact when judging the obtained results. It may be at phono-
logical or semantic level, related to some idiosyncratic preference that cannot be found in any dictionary. Know-
ing individual preferences and favorite expressions the algorithm could be to some degree personalized.  

A few examples of results from such algorithm are presented here. First, interesting names for a website 
offering shoes are searched for. From the company brochure the priming set of keywords is extracted, consisting 
of such words as “running, sport, youth, health, freedom, air”. Several variants of the extended ngram model 
produced the following words: shoebie, airenet, runnyme, sportip, windway, funkine, runnyme, moveman, runa-
bly, sporist, runniess. Google search for these words shows that some of them have been already invented by 
people, although not necessarily applied in the context of shoes. For example airnet is a great name for wireless 
services, and Winaway is a name of a racing greyhound champion. Although these words are relatively rare most 
of them have been already used in various ways. The domain www.sportip.com was for sale for 17.000$. Table I 
summarizes the results, quoting approximate number of entries in Google search engine at the end of the year 
2006.  

Table I: Summary of interesting words related to shoes. 
airenet 770 Mostly wireless networks 
funkine 70 Music term, “Funk in E” 
moveman 24000 Mostly moving companies 
runably  New  
runniess New  
runnyme 220 runnyme.de, company name 
shoebie  2700 Slang word, many meanings 
sporist 16400 sporist.com, used in Turkish language 
sportip 2500 Web sites, in many languages 
winaway  2400 Dogs, horses, city name 
windway  99500 windway.org, popular, many meanings 

 
The second example came from a real request for finding a good company and portal name; the company  

wanted to stress creative ideas, and the priming set consisted of such concepts as idea, creativity, portal, inven-
tion, imagination, time, space. The top words discovered in this case included ideates, smartne, inveney, timepie, 
taleney, crealin, invelin, visionet. Starting from an extended list of keywords: “portal, imagination, creativity, 
journey, discovery, travel, time, space, infinite”, more interesting words have been generated, with about ¾ al-
ready used as company or domain names. For example, creatival is used by creatival.com, creativery is used by 
creativery.com. Some words have been used only a few times (according to the Google search engine), for ex-
ample discoverity that can be derived from: disc, disco, discover, verity, discovery, creativity, verity, and may 
mean discovery of something true (verity). Another interesting word found is digventure, because it is easy to 
pronounce, and both “dig” and “venture” have many meanings and thus many associations, creating a subnet-
work of activity in the brain that resonates for a long time. This example shows the importance of using extended 
keywords. Unfortunately novel words in the Internet get immediate attention of companies that try to reserve 
them for web sites.  

In the near future we plan to create a web server for creation of novel words starting from short descrip-
tions.  

 
Perspectives 

 
In everyday life intuition, insight and creativity are used more often than logic. For many years AI efforts 

to understand higher cognitive functions have been dominated by logics, the whole 5th generation computer pro-
ject was focused on logic, but the results were less then encour-
aging. Evidently this was like barking at the wrong tree. Neuro-
cognitive approach to understanding of intuition, insight and 
creativity is build on the common set of ideas, and is capable to 
explain, at least in a qualitative way, many high cognition phe-
nomena. Obviously it is still quite speculative and the actual 
implementations are still rather simplistic but it seems to open 
the door to modeling of creative thinking at least in the narrow 

In everyday life intuition, insight 
and creativity are used more often 
than logic. AI focused on logic has 
been barking at the wrong tree. 
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domain of word creation. Brain imaging and electrophysiological studies of the brain activity during invention of 
new words, as well as during analysis of novel words, would make an interesting test of neurocognitive approach 
to creativity and may be done with methods already used to study word representations in the brain [31]-
[35],[62][63]. Probing associations and transition probabilities between brain states using priming techniques 
[54],[55] should lead to better understanding what kind of associations are most relevant. Research program on 
creativity, insight and intuition that includes neuroscience, cognitive psychology and theoretical modeling, fo-
cused on word representation and creation, could be an entry to a detailed understanding of this fascinating brain 
processes.  

Intuition is not difficult to explain, both in recognition and reasoning for solving problems. Understanding 
insight leads to interesting inspirations for natural language processing. Creativity requires prior knowledge of 
the domain, imagination, and filtering of interesting results. Imagination should be constrained by probabilities 
of composition of elementary operations, corresponding to activations of specific brain subnetworks. Products of 
imagination should be ranked and filtered in a domain-specific way. The same principles should apply to creativ-
ity in design, mathematics, and other domains, although in visual or abstract domain elementary operations and 
constraints on their compositions are not so easy to define as in the lexical domain. In arts emotional reactions 
and human reactions to beauty are rather difficult to formalize. Nevertheless it should be possible to create a 
network that learns subjective preferences evaluating similarity to what has been assessed as interesting. Starting 
from a series of portraits and working in a space that decomposes visual inputs to shape, color and movement 
primitives, in analogous way as the linguistic input is decomposed into morphological parts, it should be possible 
to come up with interesting novel variants of paintings. In ab-
stract domains various measures of relevance or interestingness 
may be used for filtering, but to be interesting creative abstract 
designs (for example in mathematics) will require rich concep-
tual space, reflecting many neural configurations that may be 
potentially active.  

To estimate practical usefulness of algorithms based on these principles their results should be compared 
with human inventiveness in a larger number of cases. Humans can obvious evaluate results in a better way then 
our scoring system. It should be quite interesting to see how word creativity tests correlate with more sophisti-
cated and well established tests. Computational models of creativity may be implemented at a different level of 
neurobiological approximations, from detailed neural models to simple statistical approaches. However, even 
simple algorithms are capable of producing interesting words, and the fact that many of these words have already 
been invented by humans shows that these algorithms are able to abstract some important properties of the crea-
tive process. With sufficiently rich concept representation natural language processing may progress quite far, 
alleviating the need to use embodiment for creation of internal linguistic representation.   

A neurocognitive model of brain processes should link low-level and higher-level cognitive processes, 
and allow for analysis of relations between mental objects, showing how neurodynamical processes are mani-
fested in inner experience at the psychological level. A fruitful way to look at this problem [64] is to start with 
the neurodynamical description of brain processes and look for approximations to the evolution of brain states in 
low-dimensional space where each dimension may be related to inner experience. This idea has been used to 
model category learning in experimental psychology, showing why counter-intuitive answers may be given in 
some situations [65]. Linking mind and brain at the level of neural models is a great challenge. This approach 
should include creative and intuitive processes. In any case neurocognitive informatics, taking  inspirations from 
the high-level brain functions, should have at least as bright future as artificial neural networks, taking their in-
spirations from the lowest, single neuron level.   

The last sentence from the paper by Turing [1] is still the best summary of our current situation: “We can 
only see a short distance ahead, but we can see plenty there that needs to be done.” 
 
Acknowledgment: Support by the Polish Committee for Scientific Research, research grant 2005-2007, is grate-
fully acknowledged. Algorithms to create novel words were implemented and run by Maciej Pilichowski.  
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