
Heterogeneous distance functions for prototype rules:  
influence of parameters on probability estimation. 

 
 
Marcin Blachnik1, Włodzisław Duch2,3, Tadeusz Wieczorek1 
 
1 Division of Engineering Informatics, Department of Electrotechnology, Faculty 

of Materials Engineering and Metallurgy, Silesian University of Technology 
Krasińskiego 8, 40-019 Katowice, Poland 

2 Department of Informatics, Nicolaus Copernicus University,  
Grudziądzka 5, 87-100 Toruń, Poland 

3 School of Computer Engineering, Nanyang Technological University  
Singapore 

 
 
Abstract. An interesting and little explored way to understand data is based on 
prototype rules (P-rules). The goal of this approach is to find optimal similarity 
(or distance) functions and position of prototypes to which unknown vectors are 
compared. In real applications similarity functions frequently involve different 
types of attributes, such as continuous, discrete, binary or nominal. 
Heterogeneous distance functions that may handle such diverse information are 
usually based on probability distance measure, such as the Value Difference 
Metrics (VDM). For continuous attributes calculation of probabilities requires 
estimations of probability density functions. This process requires careful 
selection of several parameters that may have important impact on the overall 
classification accuracy.  
In this paper various heterogeneous distance function based on VDM measure are 
presented, among them some new heterogeneous distance functions based on 
different types of probability estimation. Results of many numerical experiments 
with such distance functions are presented on artificial and real datasets, and quite 
simple P-rules for several heterogeneous databases extracted. 
 
Keywords: Prototype rules, probability estimation, heterogeneous distance 
functions, similarity-based methods, classification, data mining. 
 
 
1 Introduction 
Many important problems in artificial intelligence may be reduced to 
classification problems. Although the problem this is still a very active research 
area. Many different approaches to classification have been proposed, including 
such popular methods as artificial neural  networks or support vector machines. 
Unfortunately their possible applications are limited, because they usually act as 
black boxes, and it is impossible to understand their decisions in logical terms 



(however, it is possible to visualize them [1,2]). For some inputs their decisions 
may be unpredictable, leading to disastrous consequences. This constitutes the 
reason why they may be dangerous to use in decision support systems that require 
transparency of decisions. If some understanding of data is demanded machine 
learning algorithms for logical rule extraction are used [3]. The challenge is to 
generate set (or multiple sets) of rules that will be reliable, accurate and easy to 
understand by humans. Although the need for rule-based descriptions is generally 
acknowledged many methods create too many rules with too complex conditions, 
in effect creating incomprehensible descriptions of data. In such a case it may be 
better to use reliable pattern recognition classifiers rather than rules. 
 Statistical approaches based on the “divide-and-conquer” idea lead to univariate 
decision trees that generate crisp logic rules operating on each attribute 
separately. The most popular examples are Quinlan’s C4.5, Breiman’s CART [4] 
or SSV tree algorithms [5]. Expressive power of crisp rules (C-rules) is rather 
limited, therefore fuzzy rules (F-rules), generated by neurofuzzy systems [6] are 
frequently used, although they may sometimes generate rather complex 
description of the data that is hard to understand, even though a simple crisp set 
of rules exist [3]. An alternative is offered by recently introduced prototype-based 
rules (P-rules) [7,8]. The F-rules and P-rules may be transformed into one another 
and allow to express more interesting concepts then crisp logic rules. Experiments 
showed that both approaches are usually capable of generating highly accurate, 
yet small and understandable sets of rules.  
 To specify F-rules the shape of membership functions has to be defined and 
parameters determining rule properties estimated from the data. For the P-rules 
the type of distance measure has to be defined. The usual choice is the Euclidean 
distance function or more generally the Minkovsky’s family of distance 
functions. However, in practical applications it is not always the best solution. In 
real world most of datasets have mixed type of attributes, with some real-valued, 
some discrete, and some symbolic or nominal. For such data Euclidian distance 
functions are not directly applicable. In case of symbolic features results will 
depend on the method of conversion from nominal to numeric values. This 
problem also plays a role in fuzzy rules, where it is sometimes not clear what type 
of a specific membership function is appropriate. 
 Mixed types of attributes may be used in heterogeneous distance functions that 
use different types of measures for different types of attributes, combining 
information contained in their differences. This type of functions are usually 
based on probability distance measures, such as the Value Difference Metric 
(VDM) [9], adopted for continuous attributes by estimating probability density 
function for real feature values. The process of estimation requires selection of 
several parameters that may have an important influence on overall classification 
accuracy. This is the subject of this paper. 
 Section 2 describes relations between F-rules and P-rules and advantages which 
may be derived from this relation. In section 3 different heterogeneous distance 
function based on VDM measure are presented. Section 4 presents some new 



heterogeneous distance functions based on different types of probability 
estimation. Numerical experiments on artificial and real data are presented in 
section 5, and in section 6 the summary of results is given and some conclusions 
are drawn. 
 
2 F-rules versus P-rules 
Classical crisp logical rules are quit easy to understand, seem to be natural to 
most people, are easy to apply, and therefore are in wide use in decision support 
and similar applications. However, if the goal is to understand real-world data 
collected from some experiments crisp rules may often fail, because a large 
number of these rules with many conditions may be needed, making it impossible 
to understand structure of the data. F-rules and P-rules are much more flexible 
and a smaller number of such rules may be sufficient, therefore also more robust 
and easier to understand.  
 The process of learning F-rules starts with selecting shape of membership 
function (MF), their initial position separately for each feature, selecting 
appropriate fuzzy operators like T-norms, aggregation operators and inference 
scheme [6]. In the second step of the learning process algorithms tune the spread 
and position of each membership function and try to select appropriate 
combination of these functions to extract fuzzy if-then rules. Such methods are 
often based on neural adaptation algorithms, therefore are called neuro-fuzzy 
systems. 
 In P-rules the goal is to optimize position of prototypes to which unknown 
vectors will be compared using previously chosen distance function or similarity 
measure. Two different types of P-rules exist. First, the nearest neighbour rules 
(NNR), where distance is calculated between unknown case and all prototypes, 
and a prototype that is most similar is used in the condition part of the rule, 
claiming that the output class is the same as the class of the nearest prototype:  
 

( )
1:

IF ' arg min  THEN C( ) C( ')aa L
D

=
= =P X, P X P  

where X is the input vector, Pa  is one of the L prototypes, and C(P) is a function 
returning the label of the vector P. These rules are discriminative and for two 
prototypes from different classes define a decision hyperplane between them.  
 P-rules of the second type are threshold rules (TR) where each prototype has 
associated threshold value defining subspace of activation and all vectors that fall 
into this subspace have output label that is the same as this prototype label. 
 

( )IF D Tr THEN C( ) C( )< =X, P X P  

 
where Tr is threshold value. These rules provide coverings of parts of the feature 
space.  



 F-rules, and more precisely their MF have four major interpretations [9]. One 
of the most popular and natural interpretation tries to explain MF as a degree to 
which elements of universe X are similar or typical to a fuzzy set F defined by its 
MF. From this perspective F-rules seems to be special case of similarity base 
learning (SBL) [11]. This observation leads to a new perspectives in both fields: 
SBL and Fuzzy Modelling. New distance functions may be derived form 
membership functions, and vice versa [7,8]. The simplest example is 
transformation between additive distance functions, which is equivalent to a 
product of MF using exponential transformation function: 
 

( ) ( )∑
=

−=
m

i
iii yxwD

1

22, yx  

( )( ) ( ) ( )( )∏∑
==

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−==

m

i
iii

m

i
iii yxwyxwDF

1

2

1

22 expexp,exp yxμ  

( )∏
=

=
m

i
ii xF

1
μμ ;     ( ) ( )( )2exp iiiii yxwx −=μ  

 
 A main weakness of F-rules is the difficulty of their application to 
heterogeneous datasets. Theoretically fuzzy sets can also be defined for arbitrary 
features, however most of the neurofuzzy systems (ex. NEFCLASS, ANFIS) 
don’t support symbolic or non ordered attributes, and are defined only for real 
inputs values [6]. The problem with automatic construction of MFs for nominal 
attributes may be solved using the SBL approach. Probability-based distance 
functions, such as VDM metrics, may be defined for any type of features, and 
they may be combined with real-valued features in heterogeneous distance 
functions (HDF) [12].  They are described in the next two sections. 
 
3 Heterogeneous Distance Functions 
In most similarity based systems, such as the nearest neighbor [4], Radial Basis 
Function networks, or self-organizing maps [13], Minkovsky’s distance function 
are used, sometimes in rotated coordinate systems, or example the Mahalanobis 
distance function. Unfortunately this type of distance functions does not support 
symbolic and nominal features that are often found in real applications. On the 
other hand the Value Difference Metrics (VDM) and similar metrics [9] gives 
very good results for symbolic attributes, but using it directly with continuous 
attributes is impossible.  Constructing prototype-based rules for datasets with 
different types of attributes both types of similarity functions should be combined 
in a heterogeneous distance function [12]. 
 VDM distance measure is based on calculation the differences between 
posterior probabilities:  

  



( ) ( )
1

, ,
m

a a
a

VDM vdm x y
=

=∑X Y   (1) 

( ) ( ) ( )( )22

1

, | |
n

a a i a i a
i

vdm x y p C x p C y
=

= −∑                      (2) 

where probabilities are estimated by frequencies: 

( )|
Nxaip C xi a
Nxa

=   (3) 

X and Y are input vectors, Nxa is a number of instances in a training set with 
value of xa for the attribute a, Nxai is the same as Na but for the class Ci, n is 
number of classes and m is the number of attributes. P-rules use heterogeneous 
distance functions (HDF) for features of mixed types. One of the simplest ways 
leading to the HDF is combination of the Euclidean and VDM metrics, called the 
Heterogeneous Value Difference Metric (HVDM) [11]: 

 ∑
=

=
m

a 1
)ay,a(x2

ad)HVDM( yx,  (4)  

where  

continues is a
nominalor  discrete is a 

unknown arey or x 

y)(x,an_dif
y)(x,an_vdm

1,
y)(x,ad

⎪
⎩

⎪
⎨

⎧
=  (5) 

For the nominal data, da(x,y) assumes one of the forms: 

 

∑
=

−⋅=

∑
=

−=

∑
=

−=

n

i aNy
aiNy

aNx
aiNx

n

n

i aNy
aiNy

aNx
aiNx

n

i aNy
aiNy

aNx
aiNx

1

2
y)(x,an_vdm

 :N3
1

2
y)(x,an_vdm

 :N2
1

y)(x,an_vdm

 :N1

 (6) 

and for continuous data 

a

yx
avdmn

σ4
y)(x,_

−
=   (7) 

where σ  is the standard deviation for the attribute a. The Euclidean distance used 
by HVDM for continuous features is normalized by standard deviation of the 
attribute to reduce the influence of the outliers. 
 Three different forms of VDM distance with different normalization technique 
are used, and the decision which one should be chosen depends on a designer of 
the system. The main problem using HVDM is normalization, because it is very 



difficult to balance different terms in the overall distance metric. This problem 
does not occur for the Value Difference Metric when posterior probabilities are 
estimated for both discrete and continuous features. However, in such case the 
estimation of probability density for continuous features is a big problem. 
Martinez and Willson [11] described also Discretized Value Difference Metric 
(DVDM) and Interpolated Value Difference Metric (IVDM ).  
 DVDM is based on discretization process and for continuous attributes a simple 
constant width discretization method is used. DVDM is defined by the equation: 

( )∑
=

=
m

a
ayadiscaxadiscavdm

1
2)(),(2)DVDM( yx,  (8) 

Where disc is a discretization function defined as: 

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎥
⎢
⎣

⎢
+

−

=

discrete is x if

continous is x if1
min

)(

x
aw

ax

axadisc  (9) 

mina is the minimum of attribute a and wa is a parameter describing the number of 
discretization bins. However, the upper part of equation (9) can be replaced by a 
different form of discretization algorithm.  
 IVDM is very similar to DVDM, but  to improve the accuracy of posterior 
probability estimates a simple linear interpolation is used. IVDM is defined by: 

∑
=

=
m

a
ayaxaindmIVDM

1
),()( yx,   (10) 

( ) ( )⎪⎩

⎪
⎨
⎧

∑
=

−
=

continous is a
1

2
discrete is a),(

),( n

i
y

ai
px

ai
p

ayaxavdm

ayaxaivdm  (11) 

where  

( )

( )aiupuaip
uamiduamid

aumidx
aiupxaip

−+

⋅
−+

−
+=

1,

,1,  (12) 

Here paiu and pai,u+1 are posterior probabilities calculated in the middle of the 
discretized range u and u+1, u=disc(x) and midau and mida,u+1 are middles of 
discretized ranges u and next u+1, for which actual xa fulfill inequality. 
 
4 NEW HETEROGENEOUS DISTANCE FUNCTIONS 
The main problem in application of VDM distance measure to continuous 
attributes is to obtain appropriate shape of posterior probabilities. For discrete or 
symbolic features they can be easily computed using frequencies, Eq. (3), but for 
continuous attributes it will not work. Two simple techniques were presented in 
the previous section, but a better algorithms used for determining posterior 



probabilities may lead to a better overall results. These new methods are based on 
equation (11), but with a different density estimation technique. 
 
4.1 Gaussian Value Difference Metric 

Kernel smoothing techniques, for example Gaussian smoothing kernels, allow to 
calculate the posterior probability as: 

 ( )
2

1
| exp

Mi aj

j
C xai

x
p norm

σ=
= ⋅
⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟−⎢ ⎥∑ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

  (13) 

where Mi is the number of all vectors from the same class Ci, σ is the width of 
Gaussian functions, and norm is the normalization factor calculated by:  

 

2

1 1
1 exp

Mn i aj

k j

x
norm

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= = ⎝ ⎠

⎛ ⎞⎡ ⎤
⎜ ⎟= −∑ ∑ ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

  (14) 

 
4.2 Local Value Difference Metric (LVDM) 

Very simple and very fast technique for estimating probability is based on the 
Local Value Difference Metric (LVDM). This method uses local calculation of 
probability density surrounding the query data point. In this method probability is 
calculated by the equation (3), but the value of Nxai is the number of points in 

class Ci in the range limited to ⎥
⎦

⎤
⎢
⎣

⎡
+−

2
,

2
awidth

axwidth
ax a , and Nxa is similarly 

calculated in this range for all classes. Widtha  is a parameter defining range of 
width for attribute a.  
 
4.3 Parzen Value Difference Metric (PVDM) 

Another solution for density estimation is based on the Parzen Window technique 
[4] where rectangle window is moved by the step through the whole range of 
attribute a, and probability is calculated as a mean value of all window 
probabilities where x occurs: 

 ( )
1

( )1|
( )

b Z
iz a

i a
z b z a

N xp C x
Z N x

+

= +

= ∑   (15) 

where Z is number of windows, 
a

a
step

widthZ = , b is the index of first window where 

x occurs, Niz(xa) is the number of data points in z-th window that belong to class 
Ci, Nz(xa) is summed over all classes, widtha is window width for attribute a, and 
stepa is the size of the window movement.  
 
 



5 NUMERICAL EXPERIMENTS 
Experiments were performed on artificial and real data. The artificial data were 
generated to check the quality of probability estimations, and the influence of the 
parameters used on the probability estimation accuracy. Two artificial datasets 
were generated for this purpose. First dataset has two dimensions, 3 classes, with 
vectors for each class generated from a normal distribution. The second dataset 
has also two dimensios and 3 classes, but data vectors were generated using 
uniform distribution. In both datasets classes were partially overlapping.   
 In the second set of experiments P-rules were generated using probabilistic 
distance functions for several datasets taken from the UCI repository of machine 
learning datasets [14]. For these experiments different datasets were selected with 
different types of attributes: continuous, discrete, symbolic and nominal. 
 All tasks were carried out with SBPS software system especially developed for 
that purpose. SBPS is a similarity based rule generating system that allows fro 
defining different type of distance function for different attributes and combining 
the results obtained with each feature into a final value. SBPS system includes 
several prototype selection and optimization algorithms which are used to 
simplify and improve initial rules. For comparison of results obtained in different 
experiments only Fuzzy C-means algorithm for prototype selection and LVQ 
algorithm for their optimization have been used [13]. 
 
5.1 Artificial datasets 

Artificial datasets were created to verify the quality of five methods for 
probability estimation, compare them with a heterogeneous distance function, and 
evaluate the influence of parameters of these methods on the final classification 
results. For the first artificial dataset with normal distribution of samples in each 
class optimal border shape can be obtained using Euclidean distance function. 
These results determine a basis to judge and compare quality of probability 
estimation and classification for other functions. In this test only one prototype 
per class was generated. To reduce the influence of randomness and verify 
generalization 10-fold crossvalidation test was performed. Results presented in 
Tab. 1 show balanced accuracy for each method.  



 
Table 1. Balanced accuracy for different methods of probability estimation  

obtained on artificial datasets 
 

H V D
M

sig 0 . sig 0 . sig 0 . w id th w idth w idth w idth C W  1 C W  5 C W  1 C W  5

95,17
94,33

96,50
90,50

IV D M D V D M

D
at

as
et

 1

B al. 
Acc 96,83

95,67
96,50

96,17
95,00

95,33

G V D M LV D M

95,50
95,33

85,17
81,33

86,83
87,50

86,00
88,17

88,33
89,00

90,50
88,33

90,67
90,33

95,17
94,33

96,50
90,50

D
at

as
et

 1

B al. 
Acc 96,83

95,67
96,50

96,17
95,00

95,33
95,50

95,33

D
at

as
et

 2

B al. 
Acc

W 0.2 W 0.4 W 0.6 W 0.7 W 0.2 W 0.4 W 0.6 W 0.7 W 0.2 W 0.4 W 0.6 W 0.7

85,17
81,33

86,83
87,50

96,00
96,17

86,00
88,17

88,33
89,00

90,50
88,33

90,67
90,33

S tep 0 .01 S tep  0 .05

95,83
96,17

95,00
95,50

96,00
96,50

94,67
94,00

94,67
94,83

PV D M
Step  0 .1

D
at

as
et

 1

B al. 
Acc

D
at

as
et

 2

B al. 
Acc

86,50
87,00

88,83
88,67

96,00
96,17

86,67
87,17

88,33
89,00

86,33
88,17

90,00
90,00

95,83
96,17

95,00
95,50

96,00
96,50

94,67
94,00

D
at

as
et

 2

B al. 
Acc

94,67
94,83

D
at

as
et

 1

B al. 
Acc

86,50
87,00

88,83
88,67

86,67
87,17

88,33
89,00

86,33
88,17

90,00
90,00

D
at

as
et

 2

B al. 
Acc

 
 
5.2 Real datasets 

The 6 types of VDM distance functions have also been tested on real datasets to 
verify theoretical considerations. Several datasets with different types of 
attributes were selected from the UCI repository: Flag, Glass, Iris, Lancet and the 
Pima Indians. Because the aim was to obtain maximum balanced accuracy for all 
these distance measures we have used the algorithm for constructive rule 
generation to maximize classifier abilities.  
    The constructive algorithm for generation of P-rules does not favor any 
distance function because it adds new prototype to the class with lowest accuracy, 
maximizing overall balanced accuracy calculated as a mean value of individual 
accuracies. In all cases the algorithm was stopped after 10 iterations, generating at 
most 10 prototypes per class.  

 



Table 2. Balanced accuracy for different methods of probability estimation 
 obtained on real datasets 

 
flag glass iris lancet pima

HVDM Bal. Acc Bal. Acc Bal. Acc Bal. Acc Bal. Acc
18,958 37,772 96,000 90,228 73,740

GVDM
sig 0.2 23,229 48,948 96,000 89,994 71,815
sig 0.5 30,208 55,367 96,667 89,777 71,401
sig 0.7 28,438 46,865 96,667 89,777 71,386
mean 27,292 50,394 96,444 89,849 71,534
std 3,628 4,431 0,385 0,126 0,244

LVDM
width 0.2 25,625 47,778 96,000 90,103 72,886
width 0.4 27,708 44,147 96,667 89,994 72,049
width 0.6 26,563 48,978 95,333 89,994 71,490
width 0.7 26,875 42,054 94,000 89,777 71,676
mean 26,693 45,739 95,500 89,967 72,025
std 0,861 3,202 1,139 0,137 0,619

PVDM
W0.2 St0.1 30,104 39,722 96,667 90,103 71,613
W0.4 St0.1 26,563 42,639 96,667 89,994 71,504
W0.6 St0.1 24,375 49,702 95,333 89,777 70,531
W0.7 St0.1 27,396 49,206 96,667 89,876 71,034
W0.2 St0.01 29,479 46,359 96,000 90,005 71,820
W0.4 St0.01 25,625 45,694 96,000 89,994 71,468
W0.6 St0.01 24,375 58,046 96,667 89,777 71,234
W0.7 St0.01 27,083 48,075 96,667 89,777 71,041
W0.2 St0.05 28,542 46,319 96,000 90,103 71,386
W0.4 St0.05 26,250 44,345 96,000 89,994 71,482
W0.6 St0.05 24,375 56,141 96,000 89,777 70,970
W0.7St0.05 27,813 56,379 96,667 89,777 71,555
mean 26,832 48,552 96,278 89,913 71,303
std 1,953 5,717 0,446 0,133 0,355

IVDM
CW 10 26,563 46,984 96,000 90,225 70,818
CW 5 26,042 48,651 96,667 90,117 72,375
mean 26,302 47,817 96,333 90,171 71,597
std 0,368 1,179 0,471 0,077 1,101

DVDM
CW 10 26,979 43,810 97,333 90,325 71,081
CW 5 27,083 50,635 94,667 90,330 70,142
mean 27,031 47,222 96,000 90,327 70,612
std 0,074 4,826 1,886 0,003 0,664  
 
Because of the normalization problem of different distance functions, all 
continuous features in all datasets were standardized and then normalized to the 
interval [0,1]. The highest balanced accuracy for each combination of parameters 
for all datasets is presented in Table 2. 
 
 
 
 



 
6 Discussion of results and conclusions 
The “no free lunch” theorem [4] says that no single algorithm for data analysis 
may always be the winner, and the results presented in Tab. 2 certainly confirm it. 
For artificial data the GVDM algorithm seems to be better than other estimation 
methods. It could be expected that this algorithm should give a very good result 
for this type of artificial data, with high density of points, generating the 
smoothest estimated probability distributions, but selection of appropriate 
parameters has significant influence on the estimations. 
    Results on real datasets show that choosing correct algorithm parameters is 
now very important and selection of the single best distance function is 
impossible. In Table 2 the highest accuracies, marked as bold, appear for different 
methods for each dataset. The GVDM distance does not work so well now, 
sometimes giving large variance of results for different parameters of probability 
estimation algorithms. These results unfortunately do not lead to any definite 
conclusion about what type of distance should be used or which values of 
parameters are the best. If some values of estimation parameters are wrongly 
chosen contours of probability distribution may be very jagged and important 
information about data may be lost.  
 Some general conclusions about appropriate values of estimation parameters 
may be reached. For LVDM distance it is impossible to select accurate window 
size, for example for the Flag dataset most appropriate value is 0.4, but on the 
Glass dataset for the same value almost worst results have been obtained; still the 
standard deviation of the accuracy for LVDM is rather small for all dataset, 
making this method rather insensitive to the choice of its parameters.  
    Much better but less stable results were obtained with GVDM algorithm. 
Although for all datasets σ=0.5 leads to the best or nearly the best results, the 
variance of these results is larger. DVDM and IVDM methods were tested only 
with two significantly different parameter values, but the differences in accuracy 
is for these methods rather small. The Parzen window PVDM algorithms tends to 
prefer small step sizes, with the best results achieved with step 0.05 and 0.01, 
while the step size of 0.1 led to the worst results; also a wider window is 
preferred, about 0.6-0.7. 
    Comparison between different methods isn’t so clear, calculations performed 
on some datasets show that even the simplest DVDM measure may sometimes 
give good results. This situation occurs when a gap between different classes is 
very small, and the more advanced techniques that use smoothing usually lead to 
an increased number of errors; it is especially important for datasets with small 
number of training vectors. 
    An interesting extension of the work described here may be done by replacing 
VDM metric function with another probability distance metrics, such as the 
Minimum Risk Metric (MRM) or Short and Fukunga metric (SFM) [9]. Also 
other kernel smoothing techniques should be analyzed and compared. A 



significant influence of more advanced discretization algorithms may be 
expected. These methods will be analyzed in the near future. The final goal is to 
create simplest and most accurate P-rules for any kind of data.  
 
Acknowledgement: WD is grateful for the support by the Polish Committee for 
Scientific Research, research grant 2005-2007. 
 
References 
1. Duch W, Visualization of hidden node activity in neural networks: I. 

Visualization methods. Lecture Notes in AI Vol. 3070 (2004) 38-43; II. 
Application to RBF networks. Lecture Notes in AI Vol. 3070 (2004) 44-49 

2. Duch, W, Coloring black boxes: visualization of neural network decisions. 
International Joint Conference on Neural Networks, Portland, Oregon, 2003, 
IEEE Press, Vol. I, pp. 1735-1740 

3. Duch W, Setiono R, Żurada J. (2004) Computational intelligence methods for 
rule-based data understanding, Proceedings of the IEEE, 92(5): 771- 805 

4. Hastie T, Tibshirani R. and Friedman J. The Elements of Statistical Learning.  
Springer, 2001. 

5. Grąbczewski K, Duch W. (2000) The separability of split value criterion, 5’th 
Conf. on Neural Network and Soft Computing, Zakopane, Poland, pp. 201-208 

6. D. Nauck, F. Klawonn and R. Kruse, Foundations on Neuro-Fuzzy Systems. 
Wiley, Chichester, 1997 

7. Duch W, Grudziński K. (2001) Prototype based rules - a new way to 
understand the data. IEEE International Joint Conference on Neural Networks, 
Washington D.C., IEEE Press, pp. 1858-1863 

8. Duch W., Blachnik M. (2004) Fuzzy rule-based system derived from similarity 
to prototypes, Lecture Notes in Computer Science, 3316, 912-917  

9. Blanzieri E, Ricci F. (1999) Probability Based Metrics for Nearest Neighbor 
Classification and Case-Based reasoning. In: Case-Based reasoning and 
development. Althoff K., Bergmann R., Branting K. (eds), Springer, pp. 14-28  

10. Dubois D, Prade H. (eds.) (2000) Measurements of Membership Functions: 
Theoretical and Empirical Work, Fundamentals of Fuzzy Sets. Kluwer 

11. Duch W. (2000) Similarity based methods: a general framework for 
classification, approximation and association. Control and Cybernetics 29(4), 
937-968 

12. Wilson R.T, Martinez T.R. (1997) Improved Heterogeneous Distance 
Function, Journal of Artificial Intelligence Research, vol. 6, 1-34  

13. Haykin S, Neural networks: a comprehensive foundations. New York: 
MacMillian Publishing, 1994 

14. Mertz C.J, Murphy P.M, UCI repository of machine learning databases, 
http://www.ics.uci.edu/~mlearn/MLRepository.html 


