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Abstract. The MLP training process is analyzed and a variable step search-based
algorithm (VSS) that does not require gradient information is introduced. This al-
gorithm finds rough position of the minima in each single weight direction, and
successively updates the weights. Only a small fragment of the network is ana-
lyzed for each update, making the method computationally efficient. The VSS al-
gorithm is simpler to program than backpropagation, yet the quality of results and
the speed of convergence are at the level of state-of-the-art Levenberg-Marquardt
and scaled conjugate gradient algorithms.

1 Introduction.

Multilayer perceptrons (MLP) are usually trained using analytical gradient-based algo-
rithms with error backpropagation. Some of the most popular methods that include the
standard backpropagation (BP), RPROP, Quickprop, Levenberg-Marquardt (LM) [1]
[2], and the scaled conjugate gradient (SCG) algorithm [3] [4]. Also many global opti-
mization methods were used for neural network training [5]. However in spite of much
higher computational cost they only seldom give better results for real-world problems
[6].

The MLP training is a search for the minimum of the multivariate error function
E(W;D) =

∑
X ||Y−M(X;W)||, known also as the error surface. The error surface

is a function of the network mapping M(X;W) parameterized by weights W (includ-
ing biases as W0 weights), the training dataset (X,Y) ∈ D, and the type of the error
measure used (frequently square of the Euclidean norm). However, the error surface
does not depend on the training algorithm. The learning processes are represented by
trajectories W(t) that lie on the hyper-surface E(W;D) in the weight space W. Error
surface can be visualized using projections of the original space on the PCA-directions
[7]. The first two PCA components capture usually about 95-97% of the total weight
variance during the training [8]. Although sophisticated learning techniques have been
derived from mathematical analysis of the learning process [9] they are rarely useful in
practice, while observations of weight changes in the PCA space lead to practical train-
ing heuristics. As a result of this analysis the Variable Step Search algorithm (VSS) for
MLP training has been developed [10]. In contrast to most other neural training meth-
ods it is based neither on analytical gradient nor on global optimization but on the local
search approach.



After an introduction of the VSS algorithm experimental results on several datasets
are presented, comparing convergence properties, accuracy and complexity of calcula-
tions. Many papers compare new algorithms with standard gradient backpropagation.
Instead we compare VSS not with the algorithm that was developed as first but with
algorithms that are considered to be most effective for smaller networks; Levenberg-
Marquardt algorithm and for bigger networks: scaled conjugate gradient. The networks
considered here have standard 3-layer MLP architecture, and use sigmoidal transfer
functions with unit slope, trained for data classification.

The final section of the paper contains conclusions and remarks on future work.

2 Variable Step Search algorithm

The analytical gradient-based algorithms have no direct access to the influence of hid-
den layer weights on the network error, instead they use the error backpropagation
mechanism to assess the gradient component in each hidden weight direction. Well-
known formulas for gradient of the output weights

∂E(W)
∂wk

= (M(X;W) − Y )
∂M(X;W)

∂wk
(1)

are expressed using derivatives of the transfer functions and the errors made by the
network, propagated to the input layer to calculate gradients for the remaining weights.
In numerical gradient network training [10] a single weight w k is subject to a small
perturbation dw and the network error change as a response to that perturbation is used
as a gradient component in wk direction:

∂E(W)
∂wk

=
E([w1, ..., wk + dw, ..., wn]) − E(W)

dw
(2)

Analytical backpropagation makes small gradient values even smaller than those com-
puted numerically, and the large ones larger, especially in larger networks trained with
complex data. In empirical tests a finite step along numerical gradient led in most cases
to a faster decrease of error than the same step along analytical gradient. The difference
between analytical and numerical gradient tends to be stronger when directional error
minimization is used with both algorithms. [10].

The error surface of networks with hidden layers has a starfish structure [11]. Near
the middle (W=0) all weight configurations have moderately high error values. Radiat-
ing out from the center the valleys get deeper as they go out, but asymptotically level
out. In the best valleys, the error is exactly or asymptotically zero, other valleys have
higher floors. Both global and local minima rarely create craters but frequently ravines
reaching their minimum in infinity (without penalty term for big weights added to the
error function). This corresponds to the infinite growth of (usually output layer) weights
when continuing the training enough long. Though local minima in finite points can ex-
ist [12], in practice flat areas and saddle points have much more important influence
on the training performance [13],[14]. Analytical gradient algorithms may get trapped
in the pleteaus because gradients on some parts of error surfaces may become very



small [15, 16]. In many cases a downward path exists from such points and a finite step
numerical gradient training starting from such points reaches final convergence.

The error surface near the end of the training becomes almost flat, slowing signif-
icantly the gradient-based training. More detailed analysis of this problem shows that
mostly the output layer weights contribute to the slower learning in the final stage.
Statistical relations between the size of the gradient component dEw in the weight w
direction and the distance mw from the current point W to the minimum of the error
function show that the optimal component dS(w) ≈ mw, expect for very large mw
values, where it should be limited. This leads to a heuristic formula:

dS(w) = (1 + a · exp(−b · epoch)) · sign(dE(w)) · dEα
1 (3)

where dE1 = |dE(w)| for −dE1 ≤ dE(w) ≤ dE1 and dE1 = dEmax otherwise, α is a
constant from (0, 1) interval (frequently α = 0.5 gives the best results). The parameter
values for a and b can be typically: a = 0 for the output layer; a ∈ [10, 20] for the
hidden layer; b ∈ [0.10, 0.20], and dE1 ∈ [5, 10]σ, where σ is the standard deviation of
gradient components in a given training cycle. Using this approximation Eq. (3) leads
to an average reduction of the number of epochs required for convergence by 40-60%.

In the Numerical Gradient neural training algorithm [10] all weight changes are
examined in the same point on the error surface and then a single step is made in the
calculated direction. In VSS, sequential line searches are made in the direction of each
individual weight (orthogonal directions). Once an approximate minimum is found in a
given weight direction, the step is immediately made to that minimum and the possible
changes of next weights are already examined in the new point. This is the main differ-
ence between VSS and numerical gradient algorithms. This difference causes VSS to be
much more effective than numerical gradient. Using numerical approach such micro-
iteration updates may be efficiently computed. In networks with many parameters, situ-
ations where this approach does not find the proper direction to the error minimum may
theoretically happen, but they were never observed in our experiments.

Since only one weight is changed at a time, the input signals need to be propagated
only through the fragment of the network in which the signals change as a result of
the weight update. The remaining signals incoming to all neurons of hidden and output
layers are remembered for each training vector in an array called “signal table”. All
training data must be propagated through the entire network only once at the beginning
of the training, thus filling in the signal table entries. The dimension of the signal table
is NV (NO + NH), where NV is the number of vectors in the training set and NH and
NO are the number of hidden and output neurons, respectively. After a single weight
is changed only the appropriate entries in the signal table are updated. Calculating the
value of sigmoidal transfer functions is the most time consuming part of the network
training. Since VSS algorithm does not relay on analytical gradient the transfer func-
tions do not have to be differentiable and an array implementing a staircase approxima-
tion to the transfer function (with at least 20 elements) was used, without compromising
accuracy. Using this approximation together with the signal table increases efficiency
of the algorithm for larger networks by more than two orders of magnitude. Without the
signal table the staircase transfer function would reduce the calculations only by a few
percent, because the signal table reduces the addition and multiplication operations sev-



eral orders of magnitude, reducing also at most several times the number of calculations
of sigmoid function values.

The VSS algorithm takes advantage of the MLP error surface properties. The steep-
ness of error surface in different directions varies by orders of magnitude, and the
ravines in which the MLP learning trajectories lay are usually curved, slowly changing
their directions Fig. (1) [7]. Therefore one can expect that an optimal dw for the same
weight in two successive training cycles will not differ much, while dw for different
weights in the same training cycle may have values that differ by orders of magnitude
(3). Higher PCA components have significant values only at the beginning of the train-
ing, because at that stage training algorithms have to choose the proper direction. As
the training approaches the final stage, the direction changes are usually slow. In each
training cycle i the first guess of the optimal change of a given weight dw(i) might
be the previous dw(i − 1) value. A detailed experimental analysis of the line search
behavior leads to the conclusion that in most cases the lowest number of calculations is
obtained when a smaller value dw(i) = 0.35 dw(i − 1) is taken, although statistically
the ratio dw(i)/dw(i−1) is close to 1. This is related to the way minima are calculated
along each weight direction. Surprisingly, high precision calculations (e.g. by repeated
parabolic interpolations) increase the number of the training cycles (the error surface
is not always convex), therefore only a rough estimation of the step size dw in each
direction is made.
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Fig. 1. Left: MLP error surface displayed in the first and second PCA direction (network structure
4-4-3, trained on the Iris dataset). Right: How the same error surface could look like using variable
projection directions in attempt to display the error surface properties more faithfully.

Before the training starts the weights are initialized with random values taken from
(−1, +1) interval. Since dw(0) = 0, for each weight w in the first training cycle the
first guess is dw(1) = d0 ∈ [0.2, 0.3]. The error surface ravine that leads to a good
solution is narrow close to the starting point in the weight space, therefore d0 must be
sufficiently small to keep the trajectory within the ravine. Although VSS algorithm has
several heuristic parameters to speed up the calculations they are kept fixed in normal
runs.



The number of epochs needed for VSS convergence is very small. In contrast to the
standard batch-like training each epoch here consists of Nw microiterations (Nw is the
number of weights). Fig. (2) shows the accuracy, MSE error and the total weight norm
growth during the training of an MLP network with 4-4-3 structure on the Iris data.
The error reaches minimum value already after two epochs. Analyzing directions of
the weight changes in the first two PCA directions shows that in each iteration correct
direction of the error function ravine is quickly found and maintained [10]. Although in
the second-order algorithms (such as LM) the hidden layer weights grow quicker than
in the first order ones, since the step component in a given weight direction is there
approximately proportional to the ratio of the first to the second derivative, they still
tend to be underestimated. VSS on the contrary does not estimate any weight changes
but directly searches for the optimal changes. The output layer weights change in a
similar manner in both algorithms; faster than the hidden weights in LM, but slower
than the hidden weights in VSS.

Fig. 2. MSE error (E), classification accuracy on the training set (A) and a normalized weight
vector length ||W (i)||/||W (5)|| (W) during the first 5 training cycles for the Iris (4-4-3) network.

VSS does not decrease the step when the gradient decreases, because it does not
rely on the gradient information, but rather on the learning history contained in the
trajectory, which frequently displays a repetitive pattern (3). Due to this the final part of
the network training is relatively fast and the number of epochs needed for convergence
is quite small, for simple data it can be as low as 2-3, and for complex data it may reach
20-30 epochs. But on the other hand it may lead to large weight values, making the
network “overconfident” in its decisions and focused more on the error minimization
then large margin generalization. To prevent the excessive weight growth either the
training must be stopped early or a regularization term should be added to the error
function (in complex cases this can give better results [3]). The purpose of the constants
Nmax, Wmax and dWmax used in the pseudocode below is to limit weight growth.
Alternatively the standard quadratic or Weigend [17] regularization term can be added
to the error function. Without weight regularization VSS decreases the step when the



curvature of the ravine gets tighter and stops when the numerical gradient reaches zero
values.

Symbols used in the VSS pseudo code: i - epoch number, n - number of iteration
during the line search for a minimum in a single weight direction, dw(i, n) - change
of weight w after n-th iteration in i-th epoch relative to its previous value. Typical val-
ues of constants: c1 = 0.33, c2 = 2, c3 = 0.3, d1 = 0.05 for i > 1 and 0.2 for
i = 1, Nmax = 4, Wmax = 100, dWmax = 30.

Algorithm 1. Variable Step Search

for i = 1 to NumberOfEpochs do
begin

for w = 1 to NumberOfWeights do
begin

if dw(i − 1) = 0 then
dw(i) = d1 ∗ sign(w)

else
dw(i) = c1 ∗ dw(i − 1)

if E(w + dw(i)) >= E(w) then
dw(i) = −dw(i) /*change the search direction*/

if E(w + dw(i)) >= E(w) then
begin

dw(i) = 0
next w

end
for n = 1 to Nmax do
begin

dw(i) = c2 ∗ dw(i) /* search for a minimum along this direction */
if |w| > Wmax or |dw| > dWmax

or E(w + dw(i, n)) >= E(w + dw(i, n − 1)) then
break

end
if c3(E(w + dw(i, n − 2)) − E(w + dw(i, n − 1))

> E(w + dw(i, n)) − E(w + dw(i, n − 1)) then
dw(i) = dw(i, n) /*accept that point in spite that the error in the previous
point was a bit lower. It is likely to bring gain in the next training cycle */

else
dw(i) = dw(i, n − 1)/c2 /* return to the previous point */

end
end

The complexity of the above algorithm look like linear, but the complexity of calcu-
lating the error grows approximately like log Nw (it would grow linearly without using
the signal table). Thus the total complexity of VSS is O(NwlogNw).

It is likely that a more efficient method exists that would reduce the average number
of error calculations (that is about 3 times per one weight update) without increasing



Fig. 3. Projection of MLP iris (4-4-3) learning trajectory trained with VSS; left: in the first and
second PCA direction: right: int the third and fourth PCA direction. The cross shows the zero
point in the weight space. The crosswise lines separate training cycles. Network structure 4-4-3,
trained on the Iris dataset)

the total number of training epochs. It is possible that the optimal sequence has not been
found so far, but it is quite likely that order of the parameter updates has only a weak
influence on convergence. Therefore the weights are changed either in random order or
one after another in a systematic way, first all weights from the hidden layer, and than
all weights from the output layer, or vice versa. After detecting that changing a given
weight does not significantly reduce the error, the weight is frozen or pruned.

3 Experimental Results

Numerical experiments were made on several well-known benchmark dataset from the
UCI learning repository [18]. For each training algorithm about 20 experiments were
made with every dataset. The network was tested either on a separate test data (Thyroid,
Shuttle) or using the 10-fold crossvalidation (Iris, WBC – Wisconsin Breast Cancer,
Mushroom). A vector was considered to be classified correctly if its corresponding
output neuron activation was larger then the other neuron signals and larger than 0.5.
All training algorithms were run with the their default parameters, the same for each
dataset.

Three measures to determine algorithm efficiency have been considered: the total
computational complexity Ct required to achieve the desired effect, the quality of the
solution the algorithm can find (% accuracy on the test set), and the percentage of the
algorithm runs that converge to the desired solution (CR).

VSS and NG calculations were run using a program developed by one of us (MK).
The Matlab Neural Network Toolbox (written by H. Demuth and M. Hagen) was used
for LM and SCG calculations. LM and SCG algorithms were chosen because they are
recommended for smaller and larger networks respectively [3]. Moreover, without tak-
ing into consideration time and memory requirements, LM seems to be the best among
gradient-based MLP training algorithms [2]. To make the training times of different im-
plementations directly comparable the computational complexity of the algorithms was
assessed in the following way: first, the datasets were repeatedly propagated through
the network calculating the MSE error Sn times, which took St time units. For larger
datasets (Mushroom, Thyroid, Shuttle) the algorithms were run the average number of
the training cycles Tn required to reach their convergence, which took T t time units.
For smaller datasets (Iris and Breast) VSS and SCG were given 100-fold more input
vectors (for LM small dataset complexity could not be measured). The algorithm com-



putational complexity was calculated for a given dataset and network structure per one
training cycle as: Ce = (Tt/Tn)/(St/Sn). For VSS Ce was from 15 for smaller net-
works (Iris, WBC) to 50 for the larger networks (Mushrooms). For the LM algorithm
Ce was between 9 and 80, rapidly growing with the network size. For SCG C e did not
depend much on the network size, staying between 2 and 6. The number of the training
cycles required to converge Nt was always the lowest for VSS and the highest for SCG.

The total computational complexity Ct shown in Table 1, reflects the overall algo-
rithm speed. To provide hardware independent measure it is calculated as the ratio of the
total training time to the time needed for a single feedforward propagation of the whole
dataset through the network. Ct can be obtained by multiplying the per training cycle
complexity Ce by the average number of training cycles N t required for convergence,
Ct = CeNt. It must be clearly stated that the Ct values cannot be compared with high
precision and may significantly vary depending on a given algorithm implementation,
nevertheless they give quite useful estimation of the training complexity dependence on
the properties of the dataset and the network architecture.

In all cases Ct for VSS was lower than that for LM. In most cases it was also lower
than that for SCG, however for larger datasets this difference tends to vanish. Only VSS
and LM were able to find the best solutions with the test accuracy frequently higher than
the required minimum shown in Table 1. However, LM frequently did not converge to
the solution and the training had to be repeated with new random weights. The CR
parameter in Table 1. gives the percentage of the algorithm runs that converged to the
desired solution in 250 epochs (1000 for Thyroid with SCG).

data set Iris WBC Mushroom Thyroid Shuttle
net 4-4-3 10-4-2 125-4-3 21-4-3 9-6-7

min % test 96.0 96.0 99.7 98.0 99.0

SCG

Nt 54 38 45 186 46
MB - 0.4 40 1.0 20
CR 90 60 100 75 60
Ct 245 165 90 619 238

LM

Nt 20 15 6.0 43 15
MB - 1.5 240 30 1400
CR 80 85 90 60 60
Ct - - 566 1333 1280

VSS

Nt 3.5 1.5 2.0 10 6.0
MB - - 0.4 0.2 1.6
CR 100 100 100 95 100

Ct(sigm) 112 64 160 697 457
Ct(stair) 84 38 64 366 287

Table 1. Comparison of the SCG, LM, and VSS algorithms

For VSS the minimum and the maximum number of training cycles required for
convergence to the specified accuracy differed less than 30% from the mean number N t

given in Table 1, while for LM the difference was often over 100%. VSS algorithm had
also the smallest memory requirements. Memory usage in megabytes (MB) for stor-
ing network parameters, without including memory for the data set, was calculated by
subtracting the memory used by the program running the algorithm on a given dataset



from the memory used by the program with the given dataset loaded in memory and
running the algorithm on the XOR dataset. Without the signal table the VSS memory
requirements would significantly decrease but also the training times would dramati-
cally increase.

4 Conclusions

Numerical search-based techniques, popular in artificial intelligence, have been almost
completely neglected by the neural network community, although they provide a good
basis for neural training algorithms. Global stochastic optimization models based on
genetic algorithms are quite popular [5], [19], but systematic search techniques are al-
most never used. VSS algorithm is based on heuristics deduced from analysis of the
standard MLP training trajectories observed on error surfaces projected on the first two
PCA components, as well as observations of single weight changes.

Many of these observations presented briefly in this paper (more details can be
found in [10]) may be useful to improve traditional algorithms. For real-world datasets
local minima on the error surface seem to be very rare. Local search algorithms based
on analytical gradients that do not have direct access to the influence of hidden layer
weights on the network error sometimes cannot determine the optimal next step direc-
tion and may fall in spurious local minima [12]. VSS does not fall in such minima and
seldom requires repeated starts, getting stuck only in the case when there is really no
way downwards from the starting point to one of the global minima.

State-of-the-art MLP training algorithms, such as the Levenberg-Marquardt or the
SCG algorithm, are known to be highly effective. Surprisingly, results of numerical
experiments (Tab. 1) show that MLP networks can be equally effectively trained with
much simpler VSS algorithm. The simplicity of the VSS algorithm described in this
paper makes the software implementation quite easy and requires almost no theoretical
background to understand it. It runs fast, may use arbitrary transfer functions, can find
very good solutions and has low memory requirements. So far its performance has been
more than satisfactory. It is quite surprising that in empirical tests VSS tends to perform
usually better then both scaled conjugate gradient and Levenberg-Marquardt algorithm,
except for very large networks when the training times obtained with scaled conjugate
gradient can be shorter than these with VSS. Combination of systematic search with
large steps and traditional gradient-based techniques may be useful for MLP initializa-
tion if starting point far from small weights is required to find global optimum.

The algorithm was also modified to extract logical rules from data using the analy-
sis of particular weight values. For that purpose a MLP2LN architecture was used [20],
adding the first layer that discretizes the data (if needed) and assigning not only output
but also hidden layer neurons to distinct classes [10].
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