
An accurate MDS-based algorithm for the visualization
of large multidimensional datasets

Antoine Naud

Department of Informatics, Nicolaus Copernicus University, Toruń, Poland,
naud@phys.uni.torun.pl,

http://www.phys.uni.torun.pl/˜naud

Abstract. A common task in data mining is the visualization of multivariate ob-
jects on scatterplots, allowing human observers to perceive subtle inter-relations
in the dataset such as outliers, groupings or other regularities. Least- squares mul-
tidimensional scaling (MDS) is a well known Exploratory Data Analysis family
of techniques that produce dissimilarity or distance preserving layouts in a non-
linear way. In this framework, the issue of visualizing large multidimensional
datasets through MDS-based methods is addressed. An original scheme provid-
ing very accurate layouts of large datasets is introduced. It is a compromise be-
tween the computational complexity O(N5/2) and the accuracy of the solution
that makes it suitable both for visualization of fairly large datasets and prepro-
cessing in pattern recognition tasks.

1 Introduction

The increasing amount of data available over the Internet gives rise to a need in efficient
data analysis tools allowing an easier use of large databases. Data visualization is often
a necessary step in a data analysis process because it permits to detect the presence of
clusters or other regularities in data. This paper focuses on dimensionality reduction
methods as tools for the visualization of large multidimensional datasets, as well as a
feature extraction of such data. These tasks have been successfully performed by neural
networks as the Self-Organizing Maps [12], or by kernel methods [16], latent variable
methods as the GTM [8] or multidimensional scaling (MDS) [20]. In order to improve
the quality of layouts and to adapt them to the visualization of increasingly growing
datasets, newly developed approaches to the above models include local dimensionality
reduction and hierarchical visualization.

The visualization of large datasets using full scaling is often unpractical due to
the algorithmic complexity O(N3), where N is the number objects simultaneously
mapped. Such applications are limited to a few thousands items sized datasets. A strat-
egy to alleviate this constraint is to split the dimensionality reduction process into two
steps: first a smaller dataset built from the data (obtained by clustering or any other
method) is mapped, and second the input data is added in some way to the smaller
dataset’s layout obtained in the first step.

This general scheme for large scale dimensionality reduction has been realized in
many ways, using various approaches for the construction of the smaller dataset and for
the choice of the reduction technique. We mention here below some approaches very

closely related to our MDS-based proposal. Basalaj proposed incremental scaling [1]
where data points are incrementally added through a single (points are added 1 by 1)
least-squares scaling. The order in which points are added is extracted from a MST of
the data. This scheme leads to O(N7/3) complexity. Brodbeck and Girardin [2] use the
clustering capability of SOM and a spring model to produce whether local layouts of
cluster neighborhoods, or one global layout of the cluster centers. Morrison et al. [3]
[4] [5] use a sample of

√
N items instead of a data clustering followed by an inter-

polation strategy also proposed by Brodbeck and Girardin, achieving very low com-
plexities: O(N2), O(N

√
N) and O(N5/4), allowing to visualize a dataset of 108,000

14-dimensional objects. Schwenker et al. [6] combine in ACMDS adaptive c-means
and classical scaling. Williams and Muntzer [17] designed a steerable and progressive
MDS capable of visualizing 120,000 items and 294 dimensions in a few hours, using
hierarchical structures to select subsets of interest and progressive, in-depth and local-
ized layouts. There are also many algorithms proposed to adapt linear dimensionality
reduction algorithms such as classical scaling to the visualization of large datasets, let
us mention among others FastMap [19] and Locally Linear Embeding [10].

Our approach is to first build the smaller dataset (called Basis) using a k-means
clustering of the input data and map it using standard least-squares MDS. Then input
data is added to the Basis layout using relative MDS [14]. This new association scheme
of k-means clustering and multidimensional scaling is introduced in next Section 2. In
Section 3, experiments on 3 real datasets show the validity of the proposed scheme. A
short conclusion summarizes this paper.

2 A new approach to the association of MDS to k-means clustering

In least-squares MDS, the preservation of neighborhood relationships is ensured by the
minimization of the Stress functional S(Y) defined as

S(Y) =
1

Fn

N∑
i<j

wij · (Dij − dij(Y))2 (1)

in which Y is the matrix of coordinates of N points representing the given N D-
dimensional objects in the output d-dimensional space. {Dij} are given dissimilarities
or the inter-object distances, {wij} are weighting factors that permit to tune the impact
of large distance on the sum (hence wij is generally inversely proportional to Dij), and
{dij} are the output space inter-point distances. Fn is a normalization factor to keep
Stress values in unit range [0, 1]. The minimization of functional S(Y) with respect
to the N × d variables can be realized in various manners that may be local or global
optimization, with more or less accurate and time consuming procedures. In our imple-
mentation, a steepest descent procedure is used, including second order derivatives in
such a way that it is not as computationally intensive as a real Newton method. It was
found to be a good compromise between accuracy of the solution and computational
complexity.

In a first step, a NB-sized Basis is build from the set of cluster centers obtained
by a standard k-means clustering. Other cluster algorithms have been tested in this

framework [15] (Learning Vector Quantization or dendrograms), but it appeared that
k-means clustering is best suited to this task (i.e. leading to layouts with lower final
Stress values). This result was confirmed by an experiment on one dataset, in which 100
random Bases were generated as NB-sized samples of the Data, and the final layouts
resulting from their use were compared in terms of the general Stress expression (1).
The best final layout was obtained for the Basis made of points very close to the k-
means cluster centers. The association scheme presented in this paper is similar to the
one presented in [15], but is gives much better results (lower stresses) at relatively small
cost. The first step is identical: we map the NB Basis points using standard least-squares
MDS, that is minimizing the Stress functional Sb(Y) defined as

Sb(Y) =
1

Fn

NB∑
i<j

wij · (Dij − dij(Y))2 , (2)

The difference from the scheme of paper [15] lies in the second step, where input data
is not added on a point by point basis (as Basalaj did), but into K batches of NC input
data (NC = NB , except for the last batch in which NC ≤ NB , and K = �N/NC�). In
each batch only a subset of NC input data is added to the Basis layout by relative MDS.
So this step consists in the minimizations of a series of Stress functionals defined as

Sr,k(Y) =
1

Fn

NC∑
i<j

wij · (Dij − dij(Y))2 +
1

Fn

NC∑
i=1

NB∑
j=1

wij · (Dij − dij(Y))2 , (3)

for k = 1, · · · ,K. The layout resulting of this relative MDS mapping scheme cannot
be as low as the one obtained by one full MDS of the entire dataset, because in relative
MDS distances between points added in separate batches are never taken into account.
For this reason, adding points in batches of small subsets, whose inter-points distances
are included in Stress expression (3) should give better results than adding points one
by one. We have at hand groupings from the clustering stage: the cluster centers neigh-
borhoods (the set of points whose a center is the closest). Expressions (2) and (3) give
inherently more weight to larger distances, and even more when squared distances are
used. This suggests to form groups by picking up one point from each cluster center
neighborhood, in order to force having as much large distances as possible in each rel-
ative mapping batch, to finally produce to a lower Stress. We call this relative mapping
using inter-cluster groups. The experiments presented in next section will show that
this intuitive approach is well-founded.

To reduce the computation time, the above Stress expressions have been simpli-
fied by using squared Stress (SStress) where all input and output distances are squared
Euclidean distances. Besides this, all the weights {wij} are taken equal to 1 and the
normalization factor is Fn =

∑N
i<j D2

ij , which leads to a Stress functional called here
below SS1. The stopping criterion for the minimizations iterative process was the gra-
dient length per variable, that is divided by Nm×d, (Nm = {NB , NC} is the number of
mapped points and d is the dimensionality of the output space). The stopping threshold
value was εG = 1.0E − 12 for full MDS and εG = 1.0E − 8 for relative MDS, which
yields in general to a number of iterations of the same order as Nm.

As proven by expressions (4-6) and shown in next section’s experiments, minimiz-
ing expressions (2) and (3) is faster than minimizing the original expression (1). We
consider that the number of iterations needed in one standard MDS minimization pro-
cess is proportional to N , whereas it is proportional to

√
N in relative MDS. Compu-

tational complexities CCfull of full MDS on input data, CCsingle of relative MDS in
single batches and CCgroups of relative MDS of NC-sized batches can be assessed as
follows (following Chalmers et al. [4], we set NB =

√
N to simplify the expressions,

and neglecting the clustering stage):

CCfull = O
(
N3

)
, (4)

CCsingle = CCstep1 + CCstep2 = O
(
N3

b

)
+ O

(
N2

b N
) ≈ O

(
N2

)
, (5)

CCgroups = CCstep1 +CCstep2 = O
(
N3

b

)
+O

(
(N/Nb)2NbN

) ≈ O
(
N5/2

)
, (6)

3 Experiments on real datasets

We tested our approach on two well known real datasets, namely satimage and
abalone from the UCI repository [9] for the following reason: In order to assess the
accuracy of the results obtained by our approach, we need to compare their Stress val-
ues to the ones obtained by full scaling of the entire datasets. Those datasets are similar
in size (4435 items with 36 features in satimage, and 4177 items with 7 numeri-
cal features in abalone), which allows full scaling of the entire datasets because of
reasonable time and memory requirements. The different relative MDS mappings per-
formances are the final Stress values from expr. (1) for the whole datasets and they will
be compared to what should be their optimal values (obtained by direct MDS mapping
of the entire datasets). In order to evaluate its scalability, the method was also applied
to a larger dataset called here texture, it is a fragment of the Corel Image Fea-
tures dataset from the UCI KDD Archive [9] (from the 4 sets of features available,
we took the co-occurence texture with 16 features and 68040 items).

The k-means clustering used is the compiled standard k-means iterative approach
from Matlab. Since the k-means and relative MDS algorithms are not deterministic,
they were run 20 times for each mapping, keeping only the best solution. Although
k-means is considered as a fast clustering method, its application occurred to be the
bottleneck of our process for larger Basis sizes, i.e. when NB > 100, and making
prohibitive Basis of size NB > 500. The resulting Stress values are presented on Fig.
3. As could be expected, the Stress decreases when NB increases, due to the increasing
number of Basis reference points allowing a more precise location of the added data.
For smaller NB values, we observe important Stress variations probably related to the
curse of dimensionality occurring as the number of objects is too law w.r.t. the number
of dimensions of the input data. The bottom solid lines represent the minimal Stress
value reached using full MDS on the whole dataset: SS1 = 1.04E − 04 for abalone
dataset and SS1 = 8.15E − 03 for satimage dataset. It is interesting to note that
the minimum reached by full MDS for abalone dataset is outperformed by relative
MDS with Basis sizes NB > 200. This result shows that relative MDS does not only

0 100 200 300 400 500
8

8.5

9

9.5

10x 10
−3

one by one
inter−cluster groups
no clustering

(a) satimage dataset

0 100 200 300 400 500
0.5

1

1.5

2

2.5

3x 10
−4

one by one
inter−cluster groups
no clustering

(b) abalone dataset

0 100 200 300 400 500
1

1.5

2

2.5

3x 10
−3

Basis size N
B

St
re

ss
 S

S 1(Y
)

single (one by one)
inter−cluster (groups)

(c) texture dataset

Fig. 1. Final Stress values obtained by 3 different MDS-based mapping methods, for varying
Basis size NB ∈ [10, 500]. The bottom dotted line shows the minimum reached in one MDS
mapping of the entire dataset without clustering. The performance superiority of inter-cluster
groups mapping is clearly visible in each case, especially for NB ∈ [100, 200].

provide faster mappings for large datasets than standard MDS, but it can also reach
better solutions.

Execution times for those 3 datasets are presented in Table 3. Full MDS was not
performed on the entire texture dataset for obvious prohibitive time and memory
requirements. Full MDS and the different relative MDS versions were all run 20 times.
The relative MDS runs were for NB = 100. The two right-most columns present exe-
cution times for relative MDS using batches formed directly by cluster centers neigh-
borhoods (groups1) and by batches formed by picking randomly one input data from
each neighborhood (groups2). The durations differences between the datasets for rela-
tive MDS can vary from one Basis size to another. These performances can be reduced
if we decrease the iterations stopping criterion εG, at the cost of less accurate final
layouts.

Dataset
full MDS Relative MDS

(Data) (Basis) (Single) (Groups1) (Groups2)
abalone 65500 52 374 697 3042
satimage 60196 5.6 43 65 210
texture – 34 1448 7283 7372

Table 1. Execution times in seconds on an Intel Celeron CPU 2.2 GHz for the 3 datasets. The
computations for full MDS mappings (left-most column) were run on a Pentium IV CPU 3.0GHz.

4 Conclusion

This paper presents a new way to combine k-means clustering and multidimensional
scaling, as an alternative to other approaches reducing the computational complexity of
multidimensional scaling. The proposed association of relative MDS scaling allowed to
obtain accurate layouts of datasets of size up to 68000 items in a two hours. The com-
putational complexity of the designed process is reduced by combining MDS to a naive
iterative k-means clustering. The resulting solutions present very good Stress perfor-
mances, sometimes even outperforming the results of full MDS solutions. Experiments
showed that the bottleneck of the whole process as it is implemented now is the k-means
clustering. More efficient clustering techniques should be used in the future such as the
ones proposed in [11] [7] [21] in order to speed up the clustering stage. The proposed
scheme can be applied not only to data visualization, but everywhere a dimensionality
reduction of data is needed, for instance as a preprocessing stage in pattern recognition
applications.

References

1. W. Basalaj “Incremental multidimensional scaling method for database visualization,” Pro-
ceedings of the Visual Data Exploration and Analysis VI, SPIE, vol. 3643, pp. 149–158, 1999.

2. Brodbeck, D., L. Girardin, “Combining Topological Clustering and Multidimensional Scal-
ing for Visualising Large Data Sets”, Unpublished paper (accepted for, but not published in
Proceedings of the IEEE Information Visualization 1998)

3. M. Chalmers “A linear iteration time layout algorithm for visualising high-dimensional data,”
Proceedings of the IEEE Visualization’96 , San Francisco, pp. 127-132, Oct.-Nov. 1996.

4. Morrison A., Ross G., Chalmers M. “Fast multidimensional scaling through sampling, springs
and interpolation”, Proceedings of the Information Visualization 2, 1, pp. 68Ű77, 2003.

5. Morrison A., Chalmers M. “Improving hybrid MDS with pivot-based searching”, Proceedings
of the Information Visualization 4, 2, pp. 109Ű122, 2005.

6. F. Schwenker, H. Kestler and G. Palm “Algorithms for the visualization of large and multi-
variate datasets,” in Self-organizing neural networks U. Seiffet and L. C. Jain eds, chap. 8
pp. 165-183, Physica-Verlag, Heidelberg, 2002.

7. D. Pelleg and A. Moore, “Accelerating Exact k -means Algorithms with Geometric Reason-
ing,” in "Knowledge Discovery and Data Mining", pp. 277-281, 1999.

8. C.M. Bishop, J.F.M. Svensen and C.K.I. Williams “GTM: The Generative Topographic Map-
ping,” Neural Computation vol. 10(1), pp. 215–234, Jan. 1998.

9. C.L Blake and C.J. Merz, “UCI Repository of machine learning databases,” Irvine, CA: Uni-
versity of California, Department of Information and Computer Science, 1998.

10. L. K. Saul and S. T. Roweis “Think Globally, Fit Locally: Unsupervised Learning of Low
Dimensional Manifolds,” Journal of Machine Learning Research, 4, pp. 119-155, 2003.

11. Kanungo and Mount A local search approximation algorithm for k-means clustering Heidel-
berg, Berlin: Springer-Verlag, 1995.

12. T. Kohonen Self-Organizing Maps Heidelberg, Berlin: Springer-Verlag, 1995.
13. A. Naud and W. Duch “Interactive data exploration using MDS mapping,” Proceedings of

the Fifth Conference on Neural Networks and Soft Computing, Zakopane, pp. 255–260, 2000.
14. A. Naud and W. Duch “Visualization of large datasets using MDS combined with LVQ”

Proceedings of the Sixth International Conference on Neural Networks and Soft Computing,
Zakopane 2002, pp. 632–637, L. Rutkowski and J. Kacprzyk eds.

15. A. Naud “Visualization of high-dimensional data using an association of multidimensional
scaling to clustering” Proceedings of the 2004 IEEE Cybernetics and Intelligent Systems,
Singapore 2004.

16. B. Schölkopf, A. Smola and K.-R. Müller “Nonlinear Component analysis as a Kernel Eigen-
value Problem,” Neural Computation, vol. 10(5), pp. 1299–1319, July ‘1998.

17. M. Williams and T. Munzner “Steerable, Progressive Multidimensional Scaling,” Proceed-
ings of the InfoVis 2004, pp. 57-64, 2004.

18. K. Alsabti, S. Ranka, and V. Singh. “An efficient k-means clustering algorithm,” Proceedings
of the IPPS/SPDP Workshop on High Performance Data Mining, 1998.

19. Christos Faloutsos and King-Ip Lin, “FastMap: A Fast Algorithm for Indexing, Data-Mining
and Visualization of Traditional and Multimedia Datasets,” Proceedings of the SIGMOD Con-
ference, pp. 163-174, 1995.

20. T. F. Cox and M. A.A. Cox “Multidimensional Scaling,”, Monographs on Statistics and Ap-
plied Probability, vol. 59, Chapman & Hall, 1994.

21. Tapas Kanungo and David M. Mount and Nathan S. Netanyahu and Christine D. Piatko and
Ruth Silverman and Angela Y. Wu “An Efficient k-Means Clustering Algorithm: Analysis and
Implementation,” in IEEE Trans. PAMI, 24 (7), pp. 881-892, 2002.

