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Abstract— Creative thinking is one of the hallmarks of
human-level competence. Although it is still a poorly understood
subject speculative ideas about brain processes involved in
creative thinking may be implemented in computational models.
A review of different approaches to creativity, insight and
intuition is presented. Two factors are essential for creativity:
imagination and selection or filtering. Imagination should be
constrained by experience, while filtering in the case of creative
use of words may be based on semantic and phonological
associations. Analysis of brain processes involved in invention
of new words leads to practical algorithms that create many
interesting and novel names associated with a set of keywords.

I. INTRODUCTION

Human-level intelligence is in many respects far beyond
what computational intelligence may provide now. Tradition-
ally cognitive psychology divides human cognitive facul-
ties into low-level and high-level. The low-level cognitive
functions involve perception and motor control; most of
these functions are not more developed in humans than
in mammals and other animals. The high-level functions,
involving thinking, reasoning, planning and language, are
in most part unique to humans. This division is of course
only approximate, but surprisingly it is mirrored by the
computational intelligence community, divided between two
large camps: pattern recognition using neural networks and
other techniques that learn from data, focused on problems
related to perception, object recognition and memory, and
artificial intelligence focused on symbolic knowledge en-
gineering, logic, theorem proving, or linguistic problems.
Cognitive robotics is a natural meeting ground for these two
communities because it requires integration of low and high-
level cognition in one system.

Creativity is still rather neglected subject. MIT Encyclope-
dia of Cognitive Sciences has about 1100 pages but devotes
only a single page to creativity, and another page to creative
person. Intuition is not mentioned in its index at all. In
contrast to creativity and intuition 6 articles are devoted
to logic, and logic is mentioned in the index almost 100
times. Yet it may be argued that mental acts are rarely based
on logic, or well approximated using logic, but frequently
on intuitive and creative thinking. Creativity, defined by
Sternberg [1] as “the capacity to create a solution that is both
novel and appropriate”, manifests itself not only in creation
of novel theories or inventions, but permeates our everyday
actions, understanding of language and interactions among
people. On the road towards systems with human-level
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competence understanding and implementation of creativity
in computational systems should be of central concern.

Despite the limitation of the current knowledge of the neu-
ral processes that give rise to the higher cognitive processes
in the brain it is possible to propose a testable, neurocog-
nitive model of creative processes. A brief review of the
psychological perspectives and neuroscientific experiments
on creativity is presented in the next section. This is followed
by a general description of putative brain processes that lead
to creativity. This model is then simplified and applied to
one of the simplest domains where creativity is manifested:
invention of novel, interesting words. Discussion of future
direction of the neurocognitive approach to creativity closes
this paper.

II. CREATIVITY FROM PSYCHOLOGICAL AND

NEUROSCIENTIFIC PERSPECTIVE

Creativity is manifested in many areas, including invention
of new concepts and ideas or production of objects of art
and music. The degree of creativity involved in different
activities depends on the cultural context at a given point in
time. Bink and Marsh write that “there are as many research-
based definitions of creativity as there are approaches to
studying the topic” [2]. Boden [3] writes that creativity is
“a matter of using ones computational resources to explore,
and sometimes to break out of, familiar conceptual spaces.”
She distinguishes two dimensions of creativity: historical cre-
ativity (H-creativity) vs. personal, or psychological creativity
(P-creativity), when the idea is new for the humanity or only
for the agent (person) generating the idea; and exploratory
creativity (E-creativity) vs. transformational creativity (T-
creativity), based either on exploration of conceptual spaces
appropriate for the task, or allowing for a change of the
rules that are used to define conceptual spaces. Exploratory
creativity would then be more incremental and combinatorial
in nature, while transformational creativity would be a deeper
form, perhaps even a paradigm shift.

Creativity research lies mostly in the domain of philoso-
phers, educators and psychologists, with research reports
appearing in two specialized journals: Creativity Research
Journal and Journal of Creative Behavior. J.P. Guilford [4]
introduced tests to measure fluency, flexibility, and originality
of thought, still used in both visual and verbal domains.
Sternberg has edited the “Handbook of Human Creativity”
[1]. In his theory of successful intelligence [5] he distin-
guished between creative intelligence and cognitive intelli-
gence claiming that the former is more sensitive to individual
and developmental differences than the latter. The history
and current state of research on the mathematical creativity
is presented in [6], and psychological review articles in [7].



All aspects of creativity research were collected very recently
in the “Encyclopedia of creativity” [8], written by 167
experts. Only a few articles in this Encyclopedia (by Pribram,
Proctor and Schuldberg) concern general brain processes,
chaos and dynamical systems, but no testable neurological
or computational models of creativity have been proposed.

Intelligence is frequently reduced to a single, measurable
G-factor because the Intelligence Quotient test results are
positively correlated with scores of many independent tests of
quite diverse cognitive abilities [9]. Nevertheless Gardner’s
idea of multiple intelligences is now commonly accepted
[10]. Linguistic and logical-mathematical forms of intelli-
gence are measured in IQ tests, but musical, artistic, spatial,
and bodily-kinesthetic intelligences are of a different kind.
Interpersonal intelligence, including emotional intelligence,
is also rather different and not necessarily correlated with
other types of intelligence. In all these areas one can exhibit
intelligent, creative behavior. Different aspects of intelligent
behavior analyzed from psychological perspective may result
either from diffuse recruitment of multiple brain regions that
cooperate in an efficient way to solve the task, or from a
specific system that controls diverse forms of behavior. Brain
imaging studies [11] show that such central executive is
indeed involved, and intelligence in its many forms depends
on the working memory.

Computational models need as many constraints coming
from neuroscience as possible. Unfortunately direct brain
imaging observations of creative thinking or action have not
been done yet. The “Aha!” or Eureka phenomenon, an insight
experience [12] during problem solving, has been studied
using functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG) techniques, contrasting obser-
vations with analytical problem solving that did not required
insight [13]. After solving a problem presented in a verbal
way subjects indicated themselves whether they had an
insight or not. An increased activity of the right hemisphere
anterior superior temporal gyrus was observed during initial
solving efforts and during insights. About 300 ms before
insight a burst of gamma EEG activity was observed. This
has been interpreted by the authors as “making connections
across distantly related information during comprehension ...
that allow them to see connections that previously eluded
them” [13]. This process has been investigated by Bowden
and collaborators [14], who imagine that initial impasse
is due to the inability of left hemisphere, focused on the
problem, to make progress, and that it is overcome when less-
focused right hemisphere adds relevant information while
strong activation diminishes with time, allowing other associ-
ations to be formed. In their view subjective Aha! experience
results from activation by the pre-existing weak solution
in the right hemisphere suddenly reaching consciousness
when the overshadowing activation diminishes. Experiments
conducted by Bowden et al. showed that fMRI activations
for insight versus non-insight problem-solving were localized
in the right-hemisphere anterior superior temporal gyrus
(RH-aSTG). This area is probably involved in higher-level

abstractions that can facilitate indirect associations, and one
should expect that the same neural structures should be
involved in creative thinking.

Intuition is also a concept difficult to grasp, but com-
monly believed to play an important role in business and
other decision making. Sinclair and Ashkanasy [15] define
intuition as “a non-sequential information-processing mode,
which comprises both cognitive and affective elements and
results in direct knowing without any use of conscious
reasoning”. It has also been defined as “knowing without
being able to explain how we know” [16], [17]. Tests to mea-
sure intuition were introduced by Wescott already in 1961.
Intuition probably relies on implicit learning, gaining tacit
knowledge without being aware of learning. Psychologists
advance our understanding of the concept and measurement
of intuition comparing responses to different types of tests
and inventories, such as the Myers-Briggs Type Inventory
(MBTI) or the Accumulated Clues Task (ACT). Different
intuition measures are not correlated, showing problems
in constructing theoretical concept of intuition [18]. Direct
attempt to study relationships between intuition and creativity
has been reported in [19]. Significant correlations were found
between the Rational-Experiential Inventory (REI) intuition
scale and some measures of creativity. Lieberman [20] argues
that social intuition (which is the basis of nonverbal commu-
nication) is a phenomenological and behavioral correlate of
knowledge gained through implicit learning. Intuition does
not involve insight into structural relations, only judgment
or fast behavioral response capable of accurately extracting
probabilistic contingencies. He also reviews the neurobiolog-
ical and neuropsychological evidence that the caudate and
putamen structures of basal ganglia are involved in both
implicit learning and intuition.

Mathematical intuition is an interplay between spatial
imagination, abstraction and approximate reasoning, and
analytical reasoning. This requires an interaction between
visual-spatial and linguistic thinking, and has indeed been
observed in brain imaging studies [21]. Analysis of Ramanu-
jan’s intuitive approach to mathematics and its relation to
conventional cognitive processes may be found in Section 4.3
of [22]. It seems quite reasonable that distributed processes
employed in intuitive thinking (Ramanujan was not able to
justify his results) based on self-taught techniques go a long
way towards explanation of genius traits.

The original four-stage Gestalt model of problem solving
consists of preparation, incubation, illumination and verifica-
tion steps. These stages were identified in creative problem
solving by individuals and small groups of people [23].
Additional stages may involve elaboration on the preparation
stage that is preceded by finding or noticing a problem and
proposing interesting questions, frustration period that may
precede illumination, and the final stage of communication
that follows the verification stage. These stages do not have
to be sequential, may be revisited several times, and may
manifest in a different way in artistic, literary, scientific or
management activities. Lubart concludes [23] that under-



standing more details about various subprocesses and the
way they are sequenced yielding creative productions is a
central issue for creativity research.

Relationships between creativity and associative memory
processes have been analyzed using pairwise word associa-
tion technique in [24]. Semantic or phonological (spelling)
priming was applied, showing for a brief (200 ms) moment
an additional word before the second word of the pair was
displayed. Creativity was positively correlated with greater
ability to associate words and with susceptibility to prim-
ing, with distal associations showing longer latencies before
making decision. Less creative people were not able to make
such associations. Neutral priming, based on the nonsensical
or unrelated words, also increased the number of claims
that words are related. These results support the idea that
creativity relies on the associative memory, and in particular
on the ability to link together distant concepts. Priming with
nonsensical sounds partially activates many words facilitating
associations. Some puzzling results of this experiment are
addressed in section 4.

Psychological tests indicate that brains of creative people
accept more incoming stimuli from the surrounding envi-
ronment [25]. Creative individuals have low levels of latent
inhibition responsible for filtering stimuli that seem to be
irrelevant on the basis of past experiences. This may probably
be related to more complex representation of objects and
situations in creative minds. The need for everyday creativity
has been almost completely neglected in the artificial intelli-
gence research and may be credited for failures of some AI
programs.

Analysis of creative ideas used in advertising [26] and
product innovation [27] demonstrated that anarchist type of
methods encouraging unstructured approach (free associa-
tions, brainstorming, random stimulation or lateral thinking)
usually fail, while structured approaches, based on higher-
order rules and templates, lead to excellent results. For
example, 25% of the award-winning advertisements were
based on a single “Replacement” template, while 89% of ads
could be generated by one of the six “creativity templates.”
This process may be presented in an algorithmic way, with
finite number of symbols and operators, and used to suggest
new advertising ideas. Computer generated ideas based on
templates were rated significantly higher both for creativity
and originality than the ideas of non-professional people
working without any constraints.

Creativity is difficult to investigate because of its seem-
ingly fluid character, connections with poorly understood
phenomena such as intuition, insight and genius studies, as
well as philosophical and psychological pre-scientific bias
(for example, Bergson or Jung – for a detailed review
see [28]), and dependence on social context. Richards (in
[8]) emphasizes creativity in everyday activities, providing
flexible solutions to everyday problems. This is supported
by Bink and Marsh [2] who stress that creative processes
are based on the same cognitive processes as mundane
thinking. The “Geneplore” model of creative behavior [29],

well known in design, assumes interaction of generative
processes and exploratory processes. Preinventive cognitive
structures representing novel object forms, mental models, or
verbal combinations, are generated, refined and regenerated
to create mental representations.

III. CREATIVITY FROM COMPUTATIONAL PERSPECTIVE

Psychological and neuroscientific literature strongly argues
that creativity is a product of ordinary cognitive processes
and as such should be amenable to computational modeling.
However, the lack of understanding what exactly is involved
in creative activity is one of the main reasons for the
low interest of the computational intelligence community in
creative computing. Although no direct attempt to capture
creative brain-like processes has been made so far, work in
several directions is worth noting.

First, creativity is usually associated with discovery of
new knowledge and therefore work on computer approaches
that automatically discover new knowledge is relevant here.
Langley, Simon, Bradshaw and Żytkow proposed a heuristic
search-based AI models for modeling creative processes
that led to historical scientific discoveries [30]. This led
to the development of the “discovery science”, focused on
understanding historical discoveries of numeric and qual-
itative laws, as well as search for new scientific knowl-
edge. Application to astronomy, elementary particle physics,
superconductivity, chemistry and biology, generated some
interesting models [30], [31], [32], although quite different
from models generated by experts. There were no attempts
to connect search-based approaches to processes in the brain.

Research in automatic programming goes in similar di-
rection. Koza et al. [33] has used genetic programming
as an automated invention machine in automated synthesis
of antennas, analog electrical circuits, controllers, metabolic
pathways (networks of chemical reactions), genetic networks
and other areas, creating many useful patentable inventions.
In most cases these inventions are optimized versions of
known designs, therefore they should be considered rather
as a routine improvements than truly creative inventions.

The most interesting computational models directly ad-
dressing creativity are Copycat, Metacat, and Magnificat
models developed in Hofstadter’s group [34], [35], [22].
These models define and explore “fluid concepts”, that is
concepts that are sufficiently flexible and context-sensitive
to lead to automatic creative outcomes in challenging do-
mains, such as the artistic design of letters in the Letter
Spirit project [22]. Starting with examples of letters in a
new style the program was able to design the remaining
letters in similar style. Copycat architecture is based on
an interplay between conceptual and perceptual activities.
The first is implemented in a Slipnet spreading activation
network, playing the role of the long-term memory, storing
concepts, from simple objects to abstract relations. Links
have length that reflect the strength of relationships between
concepts, and change dynamically under the influence of
the Workspace network, representing perceptual activity in
the working memory. Numerous software agents, randomly



chosen from a larger population, operate in the Workspace,
assembling and destroying structures on various levels. The
Copycat architecture estimates “satisfaction” derived from
the content of assembled structures and concepts. Thus
relations (and therefore the meaning) of concepts and high-
level perceptions emerge as a result of a large numbers of
parallel, low-level, non-deterministic elementary processes.
This indeed may capture some fundamental processes of
creative intelligence, although connections with real brain
processes are not discussed [22], [34], [35].

IV. NEUROCOGNITIVE APPROACH TO CREATIVE AND

INTUITIVE COMPUTING

The only truly intelligent devices that can solve all kind
of complex problems are human brains. Cognitive science
research led to interesting architectures based on formal
models of cognition that do not seem to scale up to real world
problems. Neurocognitive approach to intuition and creativ-
ity advocated here is based on inspirations from putative
brain processes responsible for normal cognitive functions.
From computational perspective logic and comprehensible
sets of logical rules expressed in symbolic language may
be used only for simple categorization and reasoning [36].
More complex intuitive categorization based on similarity
to previously observed cases can sometimes be justified
using fuzzy rules [37]. Threshold logic rules implemented
by neural systems may have more expressive power [38]. A
model of intuitive problem solving with concepts defined by
probability density distributions over combinations of feature
values in psychological spaces has been presented in [39],
[40].

To simplify the large-scale neurodynamics of the brain
one should focus on resonant states between microcircuits
that belong to different minicolumns, as Grossberg has done
in the Adaptive Resonance Theory (ART) [41]. Memory
traces are coded by attractor states binding together activity
of many microcircuits that represent elementary features
derived from sensory inputs or hierarchically build upon
combinations of such features. In some circumstances all
modes of a complex dynamical system may be controlled
(enslaved) by only a few modes. Attractors of such systems
may lie on a low-dimensional hyperplane in the state space
of a huge number of dimensions [42]. Some aspects of the
world may become internalized in “neural spaces” [43]. It is
probable that all mind events, including learning, take place
in relatively low dimensional spaces that may be identified
with “psychological spaces”, or “conceptual spaces” [40].
Mental phenomena may be discussed in more natural way
using language of psychological spaces rather than language
of neurophysiological states. Seeing an object or hearing a
sound is reflected in brain dynamics, evoking mental objects.
This process may be modeled as activation of points in
psychological spaces, belonging to a complex fuzzy region
that represents natural category. For example, human face
is represented in some feature space by a connected area of
points (for different lighting conditions and face expressions),
while all possible faces form much larger and more complex

area that may be described using pdf, probability density
function P (Face; x) of different combinations of features that
still resemble a face. In the Feature Space Model (FSM) a
network of separable functions learns such pdfs from data
[39].

Application of FSM to qualitative physics and to cate-
gorization problems showed that once expectations based
on observation of partial behavior are internalized questions
related to complex systems may be answered intuitively (that
is without any explicit transformations). Problems involving
many variables have to be solved by search, but search
direction becomes almost unique when all constraints are
intuitively taken into account. Mutual values of features are
constrained, restricting possible solutions in such applica-
tions as discovery of scientific laws [31], [32]. Relations
A = f(B, C) between variables that are additive A =
B +C, inverse additive A−1 = B−1 +C−1 or multiplicative
A = B · C (as for example when resistances are added
sequentially, in parallel, or when the Ohm’s law V =
I · R is considered) show qualitatively identical behavior.
For example, if the values of B and C increase then the
value of A should also increase, it cannot stay constant or
decrease. Out of all 27 possible relations 13 are true and 14
false. This type of qualitative constraints are internalized and
remembered, enabling predictions of qualitative behavior in
complex cases. For N variables out of 3N possible solutions
only a few will be in agreement with all constraints. For
example, if A1 = f(A2, A3); A2 = f(A3, A4)...AN−2 =
f(AN−1, AN ) the number of possible solutions that agree
with all constraints is only 4N + 1, and if some information
is given solution may be unique. If it is known that A1

and A2 grows, then all other variables have to grow. In
the brain such qualitative relation A = f(B, C) may be
implemented between 3 microcircuits, each representing one
variable. Learning about the problem (for example, learning
that A and B grows), activates some microcircuits, and this
process activates all other microcircuits corresponding to
variables that are uniquely defined, effectively completing the
inference task without any reference to logic. This approach
provides quite natural solution to problems discussed in [31],
[32].

Analysis of a simple electric circuit using network that
knows Ohm and Kirchoff laws [39] showed how such
symbolic knowledge helps to find a solution to a problem
that for most neural networks is very difficult to solve [44].
If the problem has several solutions a pair of variables that
maximally constrain the third one should be selected first,
leading to a systematic, but quite simple search similar to
a typical reasoning: let’s assume that A and B, then what
can be said about C, ignoring all other information. It is the
activity of distributed network that decides whether relation
F (A1, A2, ...AN ) is feasible. The same mechanism is used to
solve input-completion problems, where only some elements
of the input vectors are defined. Setting some unknowns
temporarily aside is equivalent to finding a projection of
the whole situation on a lower-dimensional subspace of



the known inputs. Once a point in this subspace is fixed,
new dimension is added and unknown input values that
are in agreement with all applicable constraints found (a
one-dimensional line search procedure is sufficient). This
geometric picture corresponds to successive enlargement of
active subnetwork of resonating microcircuits in the brain.

In creative problem solving direct relations between vari-
ables, or object features, may be quite weak, because the
neural circuits implementing these variables do not have
direct connections, and thus probability of forming appro-
priate resonances may be very weak. The preparatory period
introduces all relevant information simultaneously activating
corresponding neural circuits that are mostly in the language
areas of the dominant temporal lobe (presumably Superior
Temporal Sulcus, STS), and that may recruit other circuits
in the visual, auditory, somatosensory and motor areas. These
circuits are now “primed” and may form many transient con-
figurations. If the problem is easy, associations are quickly
found and the results are not considered creative. If the prob-
lem is hard incubation period follows. This may be followed
by an impasse and despair period, when inhibitory activity
lowers activity of primed circuits allowing for recruitment of
new circuits. Alternatively, after a longer period of distributed
activity among primed circuits forming resonances between
different neural assemblies, an interesting solution may arise
for sufficiently long time to be amplified by emotional filters
(emotional arousal may provide more neurotransmitters to
the circuits involved). The third possibility, generating Aha!
experience, is via indirect connections to the non-dominant
(usually right) temporal lobe. Connections between left and
right hemisphere require long projections and cannot carry
precise information. Therefore right hemisphere has only a
global view corresponding to a higher level of abstraction, or
general categories. Distributed activation in the right hemi-
sphere may forms various configurations that will activate
back larger regions of the left hemisphere. Solution found via
this route will usually be based on abstract ideas (common
in mathematics). The result of the last two processes will
probably be assessed as creative.

At the neural level creativity requires two components:
distributed chaotic (fluctuating) neural activity that is respon-
sible for imagination, and selection of interesting results.
Imagination means that many transient patterns of excitations
arise in parallel guided by the strength of neural connections.
Most of these activations do not have much sense and are
transient configurations, fleeting thoughts that escape the
mind without being noticed. Selection is based on priming
expectations, forming associations, arousing emotions, and in
case of linguistic competence on phonological and semantic
density around new words that find their way to the working
memory, or pop up in mind.

Intelligence is correlated with creativity and it is quite
likely that both have similar neurobiological basis. The G-
factor is highly correlated with working memory capac-
ity, perceptual speed, choice and discrimination reaction
times, the structure of event-related EEG potentials (ERP

potentials), nerve conduction velocity, and cerebral glucose
metabolic rate during cognitive activity [9]. Brains of creative
people probably differ in the density of synaptic connections,
contributing to the richer structure of the waveform of ERP
potentials. This should also be true for the distal, inter-
hemispheric connections. Denser neural connections may
have an adverse efect on creating resonance states between
closely associated concepts. In simpler brains such associa-
tions will dominate, making the responses more predictable,
while in more complex brains there will be many competing
resonances and thus larger repertoire of possible responses.
Adding some neural noise may increase the chance to form
resonance states if connections are weak, but will have
little influence if connections are strong. This is a form of
stochastic resonance phenomenon [45].

From this point of view results of experiments by Gruszka
and Nȩcka [24] are not so puzzling. Less creative participants
have weak connections even for close associations, therefore
adding neural noise by showing them nonsensical priming
words that appear very briefly before the second word of
the pair is presented helps, while it will have much less
influence on the creative people. On the other hand adding
noise should help creative people to reach the resonance
threshold if associations are distant, but for less creative peo-
ple connections are simply too weak and priming may only
lead to chaotic behavior. In another experimental condition
[24] priming words were slightly misspelled version of the
second word of the pair. For close associations this increases
activity of the second word, and should always increase the
chance of a resonance, reducing also latency of the response.
However, for remote associations this will not help creative
people because the two neural circuits need more energy
(noise) in the intermediate circuits that may be activated only
by nonsensical primes.

V. CREATIVITY AT THE LOWEST LINGUISTIC LEVEL

Perhaps the simplest activity in which creativity is fre-
quently manifested is in understanding and creating new
words. In languages with rich morphological and phono-
logical compositionality (such as the Polish language) novel
words appear even in normal conversation. Although these
words are newly invented and cannot be found in any
dictionary they may be understandable even without hearing
them in a context. The simplest test for creative thinking in
linguistic domain may be based on ingenuity of finding new
names for products, web sites or companies that capture their
characteristics. This has also practical value: attractive new
names may be copyrighted and are always in demand.

The neuroscience of language in general, and word rep-
resentation in the brain in particular, is far from being
complete, but the cell assembly model of language has
already strong experimental support [46],[47]. In this model
words are represented as strongly linked subnetworks of mi-
crocircuits that bind articulatory and acoustic representation
of spoken word, as well as it meaning. This is achieved by
extending the phonological representation network to bind



also related perceptions and actions, grounding its mean-
ing in being-in-the-world. Various neuroimaging techniques
confirm existence of such semantically extended networks.
Psycholinguistic experiments show that acoustic speech input
is quickly changed into categorical, phonological representa-
tion. A small set of phonemes (to be more precise, allophones
correspond to actual resonances) is linked together in ordered
string by a resonant state representing word form, and
extended to include other microcircuits defining semantic
concept. It has been conjectured (analyzing the N200 feature
of ERPs) that phonological processing precedes semantic by
about 90 ms [46].

To recognize a word in a conscious way activity of its
subnetwork must win a competition for an access to the
working memory [48]. Hearing a word activates string of
phonemes increasing the activity (priming) of all candidate
words and non-word combinations. Polysemic words proba-
bly have a single phonological representation that differs only
by semantic extensions. Context priming selects extended
subnetwork corresponding to a unique word meaning, while
competition and inhibition in the winner-takes-all processes
leaves only the most active candidate network. Similar pat-
terns of brain activations for different word subnetworks will
lead to strong transition probabilities between words and thus
semantic and phonological associations.

The phonetically-detailed computational models of spoken
word representation based on Adaptive Resonance Theory
(ART) have been developed by Grossberg and his collab-
orators [49]-[51]. ART is essentially a general model of
stable learning that includes bottom-up information filtering,
horizontal competition between network nodes, and top-
down attentional interactions between working memory and
long-term memory. The ARTPHONE model [49] has been
used for quantitative simulation of interesting phonological
phenomena, such as phonemic restoration in noisy and
silent conditions, while the ARTWORD model [50] can ac-
count for temporal chunking, word grouping, masking, rate-
independent speech recognition and many other phenomena.

Suppose now that several keywords or a short text contain-
ing such keywords is given, priming the brain at the phonetic
and semantic level. Experiments described below has been
motivated by a real letter from a friend: “I am looking for a
word that would capture the following qualities: portal to new
worlds of imagination and creativity, a place where visitors
embark on a journey discovering their inner selves, awaken-
ing the Peter Pan within. A place where we can travel through
time and space (from the origin to the future and back), so,
its about time, about space, infinite possibilities.” The goal is
thus to come up with a novel word that captures associations
with a set of keywords. Large number of transient resonant
configurations of neural cell assemblies may be formed in
each second, exploring the space of all possibilities that agree
with internalized constraints on the phonological structure of
words (phonotactics of the language).

Autoassociative network based on modified correlation
matrix memory [52] has been trained on a corpus of about
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Fig. 1. Listening to a word activates phonetic resonances that form phono-
logical representation, while context primes different extended subnetworks
providing semantic representation.

1 million words to capture statistical correlations at the pho-
netic level. Unfortunately English spelling significantly dif-
fers from pronunciation, therefore such experiments should
be done on phonologically encoded texts. In the simplest
case the network is represented by a weight matrix:

Wij =
∑

k

Sk,iSk,j

where Sk,i is a binary vector indicating the presence of
elementary word structure i in the word k, called for brevity
“a wordel”. Ideally a wordel should represent an elementary
resonance, activity of some microcircuit in the brain when
the word is presented. In the simplest model wordels indicate
presence of letters at selected positions. With 26 letters
plus space each letter in temperature coding is replaced
by a vector with 26 zeros, and a single 1 at the position
of this letter in the alphabet. Thus 10-letter English words
are represented by a string Sk with 270 elements. After
scanning a longer text the normalized weight matrix in such
representation reflects probability of finding combinations of
pairs of letters at some positions, with Wij far from diagonal
approaching the product pipj of probabilities of finding
letters i, j. Long-range correlations carry little information
and therefore only blocks around diagonal of the matrix W
differing on less than 3 positions (on the left and right) are
used. More details may be captured using wordels based
on bigrams. One could also introduce decomposition of
words into morphemes, indicating presence of morphological
components. The dimension of the weight matrix grows
quickly when higher-order wordels are used.

Experiments with Polish text corpus and bigram rep-
resentations have been conducted. With 35 letters in the
Polish language the number of possible bigrams is 1225,
but actually less than 800 were found in texts. Restricting
the number of letters in the word to 20 gives full matrices
of dimension 16000. This is further reduced by the fact
that correlations of elements differing on no more than two
positions (neighbors and next-neighbors) were taken into
account, making the number of 800x800 blocks equal to 94,
leaving about 60 million elements. Training autoassociative
correlation memory allows for capturing statistical correla-
tions between wordels. The world of possible word-forms



constrained by these correlations may be explored by setting
a threshold for probability of a word string (this should
be normalized to account for different word length), and
looping over all possible combinations of wordels. Using
a low threshold this algorithm produces a huge stream of
words, but increasing the threshold strings of quite interesting
words are produced at a slower rate (most branches of the
search tree lead to a dead end). Results from this experiment
are not discussed further here because structural differences
between Polish and English are too large.

Priming by keywords may be added as enhancement of
probability of wordels appearing in keywords, changing
probability of acceptance of novel strings. In the brain words
that use larger subnetworks common to many words have
higher chance to win competition, as they lead to stronger
resonance states, with microcircuits that mutually support
joint activity. This probably explains the tendency to use
the same word in many meanings, and create many variants
of words around the same morphemes. Creative brains have
probably greater imagination, producing faster and more
varied combinations, but also noticing interesting combina-
tion through emotional and associative filtering. Emotional
filtering will be rather difficult to model, but in case of
words filters based on phonological and semantic plausibility
may be proposed. Phonological filters are essentially build
in the autocorrelation matrix memory, but one could also
construct some measures of phonological neighborhood den-
sity, counting the number of words that sound similar to a
target word. Semantic neighborhood density measures should
evaluate the number of words that have similar meaning to
a target word, including similarity to morphemes that words
may be decomposed to.

The algorithm that has been used for generating interesting
English words contains the following steps:

1) Preparation: calculate probabilities for linking bigrams
using a text corpus.

2) Read initial pool of keywords.
3) Find phonological and semantic associations with key-

words to increase the pool (this may include foreign
translations with different morphemes).

4) Create wordels: break all words into chains of
phonemes and chains of morphemes.

5) Find all combinations of wordels.
6) Rank all candidate words according to their phonolog-

ical probability, reject those below a given threshold
(such as words that are difficult to pronounce).

7) Break each word into morphemes, and evaluate seman-
tic density around it, providing the final ranking.

This algorithm gave surprisingly interesting results (details
will be given in W. Duch and M. Pilichowski, in preparation).
The following keywords from the email quoted above were
extracted: portal, imagination, creativity, journey, discovery,
travel, time, space, infinite. Some of the top words created
include:

creativital, creatival; used by creatival.com
creativery (creativity, discovery); used by creativery.com

discoverity = (disc, disco, discover, verity, discovery, creativ-
ity, verity); used by some people
digventure =dig, digital, venture, adventure; new!
imativity (imagination, creativity); infinitime; new!
infinition (infinitive, imagination); a company name
journativity (journey, creativity); new!
learnativity; used by learnativity.com
portravel (portal, travel); used by portravel.com
sportal (space, sport, portal); used by sportal.com
timagination (time, imagination); company name
timativity (time, creativity); new!
tivery (time, discovery); new!
trime (travel, time); used frequently.

“Discoverity” has a connotation of discovering the truth
(verity). “Digventure” is interesting because it is easy to
pronounce, but also both “dig” and “venture” have many
meanings and thus lead to many associations, creating a
subnetwork of activity in the brain that resonates for a long
time. In December 2005 Google did not found a single
instance of this word, but a month later, after showing it in a
presentation accessible via the Interent, this word appeared
at an extremely long list of registered .com domains.

VI. DISCUSSION AND CONCLUSIONS

Neurocognitive approach to creativity outlined in this
paper may be implemented in many variants and at dif-
ferent level of neurobiological approximation, from detailed
neural models to simple statistical approaches. From the
methodological perspective simplest models should be tried
first and their limitations clearly understood. The algorithm
for creating new words based on the principles presented
here, even in its drastically simplified form, produced many
interesting words. Some of these words are novel, useful, ap-
propriate and certainly fulfill all criteria for creative products.
Applications of such algorithms include generation of names
that can be sold and copyrighted, playing word games and
understanding new words that have never been used before.
It should be possible to compare words generated by such
algorithms with words invented by humans. Computational
creativity in this area may be easier to achieve than previ-
ously thought.

Same principles should apply to creativity in design, math-
ematics, and other domains, although in visual or abstract
domain elementary transitions are not so easy to define as
in the lexical domain. Imagination should be constrained
by probabilities of composition of elementary operations; a
guiding principle here is that these elementary operations
are internalized as activations of specific brain subnetworks.
Results of imagination should be filtered and ranked in a
domain-specific way. In arts emotional reactions and beauty
are rather difficult to formalize, but a network that learns
individual preferences evaluating similarity to previous cases
should be feasible. In abstract domains various measures of
relevance or interestingness are possible.

Brain imaging and electrophysiological studies of brain
activity during invention of new words and hearing of new
words that require analysis would be quite interesting [46].



Probing associations and transition probabilities between
brain states may be done using psychological experiments
[24]. Research program on creativity that includes neu-
roscience, cognitive psychology and theoretical modeling,
focused on word representation and creation, could be an
entry to a detailed understanding of creativity, still considered
to be one of the most mysterious brain processes. Results
presented here support the idea that creative processes are
based on ordinary cognitive processes. Research on creativity
will hopfuly belong to the mainstream research areas in the
near future.
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[24] A. Gruszka, E. Nȩcka, “Priming and Acceptance of Close and Re-
mote Associations by Creative and Less Creative People.” Creativity
Research Journal, vol. 14(2), pp. 193-205, 2002.

[25] S. Carson, J.B. Peterson and D.M. Higgins, “Latent inhibition and cre-
ative achievement in a high-achieving normative population”. Journal
of Personality and Social Psychology, vol. 85, 499-506, 2003.

[26] J. Goldenberg, D. Mazursky, S. Solomon, Science, vol 285(5433), pp.
1495–1496, 1999.

[27] J. Goldenberg, D. Mazursky, Creativity in Product Innovation, Cam-
bridge Uni. Press, 2002.

[28] G. Henden, Intuition and its Role in Strategic Thinking. Norwegian
School of Management, Dept. of Strategy and Logistics, Series of
Dissertations, Oslo, April 2004.

[29] T.B. Ward, S.M. Smith, R.A. Finke, “Creative cognition”. In: Stern-
berg, R.J (Eds), Handbook of Creativity, Cambridge Uni. Press, pp.
189–212, 1999.

[30] P. Langley, H.A. Simon, G.L. Bradshaw, and J.M. Żytkow, Scientific
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