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Abstract –  

Many different approaches to the 
problem of classification have been 
collected. An interesting way to 
understand data leads to prototype rules 
(P-rules). In this approach the aim is to 
find optimal position of prototypes to 
which we compare unknown vectors. 

One of important problems in 
applications P-rules for real datasets are 
distance functions operating on different 
type of attributes like discrete, linear, 
symbolic, nominal. Solution for such 
problems are heterogeneous distance 
functions. This type of functions are 
usually based on probability distance 
measure like Value Difference Matrix 
(VDM), adopted for continues attributes 
by estimation of probability density 
function for continues values. The process 
of estimation requires selection of several 
parameters, which have important 

influence on overall classification 
accuracy.  

Accuracy and this impact is investigated 
in the paper. Various heterogeneous 
distance function based on VDM measure 
are presented, among them some new 
heterogeneous distance functions based on 
different type of probability estimation. 
Practical experiments using the described 
methods and discussion of obtained results 
are presented.  
 
 
 

I. INTRODUCTION 
 
One of the most important aims in 
artificial intelligence field are 
classification problems and after so many 
years of researches this issue is still open. 
We have collected many different 
approaches to this aim. One of most 



popular methods which try to solve 
classification problem are artificial neural  
networks, however their applications are 
limited,  because we don’t know how do 
they work and if there are any weaknesses  
of their solution we can not find them 
because they are “black boxes”. This is, 
why we can’t use them in some classes of 
problems like for example an autopilot in 
airplanes or in medical applications. 
Much more better algorithms in this field 
are systems basing on rules, however the 
question is how to generate a set of rules, 
which will be reliable, accurate and as 
small as possible, but not smaller so that 
we could understand them without losing 
accuracy [6]. The first idea are statistical 
methods like decision trees,  which are 
generating  rules operating on each 
attribute separately. The most popular 
examples are C4.5 [8] Quinlan algorithm, 
or SSV tree [7].  
Another solution are Fuzzy Sets [4],[10] 
which can be used for rule construction. 
Another interesting way to understand 
data leads to prototype rules (P-rules) [5]. 
How experiment shows they allow to 
fulfill defined earlier criteria, generating 
small and easy to understand set of rules 
characterized by very good accuracy [2]. 
In this approach the aim is to optimize 
position of prototypes to which we 
compare unknown vectors using 
previously chosen distance function or 
similarity measure. One of the most 
frequently type of rules in P-rules are 
nearest neighbor rules, where we calculate 
distance between unknown case and all 
the prototypes and look for nearest 
prototype, saying  that output class is the 
some as class of closest prototype. 
The question is what type of measure 
shall we use? and of course the simplest 
answer is Euclidian distance function 
However in practical applications we find 
datasets, which have mixed attribute 
types, some are continues, some are 
discrete and some are symbolic or 
nominal, where Euclidian distance 
function does not work so well, moreover 
in case of symbolic features obtained 

result depend on the method of convertion 
into numeric values. This problem also 
pay a rule in fuzzy rules where we do not 
know how to generate so specific type of 
membership function. 
Solution for such problems are 
heterogeneous distance functions which 
use different type of measure for different 
type of attributes joining them together. 
This type of functions usually basing on 
probability distance measure like Value 
Difference Matrix (VDM) [1], adopted for 
continues attributes by estimation of 
probability density function for continues 
values. The process of estimation requires 
selection of several parameters, which 
have important influence on overall 
classification accuracy and this impact is 
investigated in the paper. 
In section II we present different 
heterogeneous distance function based on 
VDM measure. Section III presents some 
new heterogeneous distance functions 
based on different type of probability 
estimation. Practical experiment is 
presented in section IV and in section V 
we summarize obtained results and draw 
conclusions. 
 

II. HETEROGENEOUS DISTANCE 
FUNCTIONS 

 
In most similarity based systems like 
nearest neighbor, radial bases function 
networks [9] or self-organizing maps 
mostly Euclid’s, or rather Minkovsky’s 
distance function is used, or other 
modified functions like Mahalanobis 
distance function. Unfortunately this group 
of functions does not support symbolic and 
nominal features, which we can often find 
in real applications, although Value 
Difference Matrix (VDM) [9] gives very 
good results for symbolic attributes, but 
using it with continues attributes is 
impossible. Building an universal 
similarity system specially, when we are 
looking for prototype rules, we should 
consider both types of similarity functions, 
which are called heterogeneous distance 
function. 



VDM distance measure is based on 
calculation the differences between 
posteriori probabilities, that is described 
by equation (1).  
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Where probabilities are worked out by the 
form (2). 
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Where X and Y are input vectors, Na is 
number of instances in a training set that 
has got a value of x for the attribute a, Nai 
is the some as Na but for class i, n is 
number of classes and m is number of 
attributes.  
In P-rules we are interested to operate on 
all types of features so the only solution 
for such situation are heterogeneous 
distance functions (HDF). One of the 
simplest way leading to HDF is 
combination of Euclid’s and VDM matrix 
called Heterogeneous Value Difference 
Matrix (HVDM) [3]: 
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If we operate on nominal data, da(x,y) 
assumes form 
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and for continous data 
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whereσ is the standard deviation for the 
attribute a.  
Main problem using HVDM is 
normalization, because it is very difficult 
to receive a form of the distance matrix 
which can be compared to obtain correct 
and optimal results of joined distance 
value. In this situation three different 
forms of VDM distance with different 
normalization technique are used, and the 
decision which one should be chosen 
depend on a designer of the system The 
benefits of HVDM measure is the Euclid’s 
distance (7) used for continues features, 
however it is normalized by standard 
deviation to reduce the influence of 
outliers. 
Distance functions, where the problem of 
normalization does not occur are value 
difference matrix with posterior 
probabilities estimated for both discrete 
and continues features. However, in such 
case the estimation of probability density 
for continues features is a big problem. 
Martinez and Willson in [3] describe 
Discretized Value Difference Matrix 
(DVDM) and Interpolated Value 
Difference Matrix (IVDM ).  
DVDM is based on discretization process 
and for continous attributes a simple 
constant width discretization method is 
used (9). 
DVDM is described by the equation: 
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Where disc is a discretization function 
defined as: 
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mina is the minimum of attribute a and wa 
is a parameter describing number of 
ranges. However upper part of equation 
(9) can be swapped by a different form of 
discretization algorithm.  
IVDM is very similar to DVDM, but  to 
improve shape of posterior probability a 
simple linear interpolation was used. In 
this situation IVDM can be described: 
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Where paiu and pai,u+1 are posterior 
probabilities calculated in the middle of 
the discretized range u and u+1, 
u=disc(x) and midau and mida,u+1 are 
middles of discretized ranges u and next 
u+1, for which actual xa fulfill inequality. 
  

III. NEW HETEROGENEOUS 
DISTANCE FUNCTIONS 

 
Main problem in taking advantage of 
VDM distance measure to continues 
attributes is the way to obtain appropriate 
shape of posterior probabilities. For 
discrete or symbolic features it can be 

easily computed by frequencies with 
equation (3) but for continues attributes it 
does not work. Two simple techniques was 
presented in previous section but better 
algorithms used for determining posterior 
probabilities may lead to better overall 
results. All this new methods are based on 
equation (11) but with a different density 
analyze technique. 
 
A. Gaussian value difference matrix 
 
An interesting solution is Gaussian 
smoothness which is very popular in 
Bayesian neural networks. In this kind of 
algorithms posterior probability is 
calculated as (13) 
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Where Mi is number of all vectors from 
the some class i, σ is width of Gauss 
function and norm is normalization factor 
calculated by the form (14) 
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B. Local Value Difference Matrix (LVDM) 
 
Very simple and very fast technique 
estimating probability is the Local Value 
Difference Matrix (LVDM). This method 
is based on local calculation of data 
density surrounding interesting data point 
for which we are trying to determine 
probability. In this method probability is 
calculated by the equation (3), but value of 
Nxai is  the number of points in class i of 
area limited to range 
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some as Nxai but calculated for all classes. 
Widtha  is a parameter defining range of 
width for attribute a.  
 
C. Parzen Value Difference Matrix 

(PVDM) 
 
Another solution for density estimation is 
based on Parzen Window technique 
where rectangle window is moved by the 
step through whole range of attribute a 
and probability is calculated as a mean 
value of all window probabilities where x 
occurs (15). 
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Where Z is number of windows  

a

a
step

widthZ = , b index of  first window 

where x occurs, Niz(xa) number of data 
points in z-th window which class is i, 
Nz(xa) the some as Niz(xa) but for all 
classes, widtha is window width for 
attribute a, and stepa is size of window 
movement.  
 

IV. EXPERIMENT AND RESULTS 
 
Experiment was performed in two steps. 
At the first step we wanted to verify 
quality of probability estimation, and 
influence  of estimation parameters. In 
this case two artificial datasets were 
generated. First one was two dimensional, 
three class problem where each class was 
generated with normal distribution, and a 
the other dataset, was also two 
dimensional three class problem but data 
points where generated with uniform 
distribution. In both datasets classes were 
overlapping.   
In the second step we perform a 
classification task on real datasets chosen 
from UCI repository, to verify true 
abilities of classification and to verify 
results obtained in the first step. In this 

approach we selected datasets with 
different type of attributes: continues, 
discrete, symbolic and nominal. 
All tasks were carried out with a self 
created SBPS system. SBPS is  a similarity 
based rules generating system, which 
allows to define different type of distance 
function for different attributes, in the last 
step joining obtained results for each 
feature into one value. This system has 
build in different type of prototype 
selection and optimization algorithms 
which are used to reduce and improve 
obtained rules. Making results obtained in 
each task comparable for all of them we 
used simple Fuzzy C-means algorithm for 
prototype selection and LVQ algorithm for 
their optimization. 
  
A. Artificial datasets 
 
How it was previously mentioned, 
artificial datasets were created to verify 
quality of probability estimation and 
meaning of adjustment parameters into 
final classification results. For the first 
artificial dataset with normal distributed 
classes optimal border shape can be obtain 
with Euclidian distance function. These 
results determine a basis to judge and 
compare quality of probability estimation 
and classification for other functions. In 
this test only one prototype per class was 
selected and to reduce influence of 
randomness and verify generalization ten 
fold cross validation test was performed. 
Results presented in tab. 1 show balanced 
accuracy for each method. 
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B. Real datasets 
 
Each of HDF have been also tested on 
real datasets to verify theoretical 
considerations. We have chosen a group 
of datasets with different types of 
attributes, from UCI repository: Flag, 
Glass, Iris, Lancet and Pima Indians. 
Because our aim was to obtain maximum 
balanced accuracy for all this distance 
measures we have used the algorithm for 
constructive rule generation to maximize 
classifier abilities.  
The constructive algorithm used in our 
researches do not favor any distance 
function because it adds new prototype to 
class with lowest accuracy, maximizing 
overall balanced accuracy calculated as a 
mean value of individual accuracies. In all 
cases constructive algorithm was stopped 
after 10 iterations, so maximum we could 
get 10 prototypes per class.  
Because of problem of normalization 
different distance functions, all continues 
features in all datasets were previously 
standardized and then normalized to the 
interval [0,1]. Obtained results – highest 
balanced accuracy for each combination 

of parameters - are presented in Table 2 
 

V. RESULTS DISCUSSION AND 
CONCLUSIONS 

 
Theorem “No free lunch” says that gold 
algorithm for data analyzing and 
optimization does not exist and obtain 
results have proofed it. However we can 
see that for artificial data, the GVDM 
distance function is better than other 
methods, moreover for second artificial 
data set obtained accuracy was higher then 
obtained with Euclidian distance. It was 
predictable that this algorithm should give 
very good results because for such data 
distribution with so high density this 
method generate smoothest shape of 
estimated probability, but selection of 
appropriate values is very significant. 
As we can see on real datasets important 
problem with HVDM is adjustment of 
parameters values. Choosing correct value 
is now much more important and selection 
of the best method is not so easy, even 
impossible. Marked as bold highest 
accuracies appear in different methods for 
each dataset, but what is interesting now 



GVDM distance do not work so well, 
sometimes leading to spread results. 
Obtained results unfortunately do not lead 
us to any strict conclusion about what 
type of distance shall we use or which 
values are the best. If some values of 

estimation parameters are wrongly chosen 
it may appears as very jagged contour of 
probability, then we say about overfitting, 
or it may lead to lose an important 
information about data, what is also 
undesirable.  

 
flag glass iris lancet pim a

HV D M Bal. A cc Bal. A cc Bal. A cc Bal. A cc Bal. A cc
18,958 37,772 96,000 90,228 73,740

G V D M
sig 0.2 23,229 48,948 96,000 89,994 71,815
sig 0.5 30,208 55,367 96,667 89,777 71,401
sig 0.7 28,438 46,865 96,667 89,777 71,386
m ean 27,292 50,394 96,444 89,849 71,534
std 3,628 4,431 0,385 0,126 0,244

LV D M
width  0.2 25,625 47,778 96,000 90,103 72,886
width  0.4 27,708 44,147 96,667 89,994 72,049
width  0.6 26,563 48,978 95,333 89,994 71,490
width  0.7 26,875 42,054 94,000 89,777 71,676
m ean 26,693 45,739 95,500 89,967 72,025
std 0,861 3,202 1,139 0,137 0,619

PV D M
W 0.2 St0.1 30,104 39,722 96,667 90,103 71,613
W 0.4 St0.1 26,563 42,639 96,667 89,994 71,504
W 0.6 St0.1 24,375 49,702 95,333 89,777 70,531
W 0.7 St0.1 27,396 49,206 96,667 89,876 71,034
W 0.2 St0.01 29,479 46,359 96,000 90,005 71,820
W 0.4 St0.01 25,625 45,694 96,000 89,994 71,468
W 0.6 St0.01 24,375 58,046 96,667 89,777 71,234
W 0.7 St0.01 27,083 48,075 96,667 89,777 71,041
W 0.2 St0.05 28,542 46,319 96,000 90,103 71,386
W 0.4 St0.05 26,250 44,345 96,000 89,994 71,482
W 0.6 St0.05 24,375 56,141 96,000 89,777 70,970
W 0.7St0.05 27,813 56,379 96,667 89,777 71,555
m ean 26,832 48,552 96,278 89,913 71,303
std 1,953 5,717 0,446 0,133 0,355

IV D M
CW  10 26,563 46,984 96,000 90,225 70,818
CW  5 26,042 48,651 96,667 90,117 72,375
m ean 26,302 47,817 96,333 90,171 71,597
std 0,368 1,179 0,471 0,077 1,101

D V D M
CW  10 26,979 43,810 97,333 90,325 71,081
CW  5 27,083 50,635 94,667 90,330 70,142
m ean 27,031 47,222 96,000 90,327 70,612
std 0,074 4,826 1,886 0,003 0,664

 



  
 
Calculations of some datasets show that 
even simplest DVDM measure may give 
good results. This situation occurs when a 
gap between different classes is very 
small, so any advanced techniques usually 
lead to increase number of faults, 
especially it is important in datasets with 
low number of training vectors. 
Interesting extension of described here 
methods may be replacement VDM 
matrix with different probability distance 
matrix like minimum risk matrix (MRM) 
or Short and Fukunga marix (SFM) [7]. 
Also other smoothness techniques should 
be analyzed  and compared  together, a 
specially different more advanced and 
supervised discretization algorithms 
should lead to increase accurancy. This 
group of methods will be analyzed in the 
next step of our work and we hope that 
obtain results will be also interesting. 
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