
Feature Selection with Decision Tree Criterion

Krzysztof Grąbczewski and Norbert Jankowski
Department of Computer Methods

Nicolaus Copernicus University
Toruń, Poland

kgrabcze,norbert@phys.uni.torun.pl

Abstract

Classification techniques applicable to real life data are
more and more often complex hybrid systems comprising
feature selection. To augment their efficiency we propose
two feature selection algorithms, which take advantage of
a decision tree criterion. Large computational experiments
have been done to test the possibilities of the two methods
and to compare their results with other techniques of simi-
lar goal.

1. Introduction

Effective and versatile classification can not be achieved
by single classification algorithms. They must be hybrid
complex models comprising a feature selection stage. Sim-
ilarly to other data analysis tasks, also in feature selection it
is very beneficial to take advantage of different kinds of al-
gorithms.

One of the great features of decision tree algorithms is
that they inherently estimate a suitability of features for sep-
aration of objects representing different classes. This facil-
ity can be directly exploited for the purpose of feature se-
lection.

After presenting the Separability of Split Value criterion,
we derive two algorithms of ranking features. The methods
are applied to a number of publicly available datasets and
their results compared to those obtained with some most
commonly used feature selection techniques. At the end we
present a number of conclusions and future perspectives.

2. SSV based algorithms

One of the most efficient heuristics used for decision tree
construction is the Separability of Split Value (SSV) crite-
rion [3].Its basic advantage is that it can be applied to both
continuous and discrete features in such a manner that the

estimates of separability can be compared regardless the
substantial difference in types.

The split value is defined differently for continuous and
symbolic features. For continuous features it is a real num-
ber and for symbolic ones it is a subset of the set of alterna-
tive values of the feature. The left side (LS) and right side
(RS) of a split value s of feature f for a given dataset D are
defined as:

LSs,f (D) =

{
{x ∈ D : f(x) < s} if f is continuous

{x ∈ D : f(x) �∈ s} otherwise

RSs,f (D) = D − LSs,f (D)

where f(x) is the f ’s feature value for the data vector x.
The definition of the separability of split value s is:

SSV(s, f, D) = 2 ·
∑
c∈C

|LSs,f (Dc)| · |RSs,f (D −Dc)|

−
∑
c∈C

min(|LSs,f (Dc)|, |RSs,f (Dc)|)

where C is the set of classes and Dc is the set of data vec-
tors from D assigned to class c ∈ C.

Originally the criterion was used to construct decision
trees with recursive splits. In such an approach, current split
is selected to correspond to the best split value among all
possible splits of all the features (to avoid combinatorial ex-
plosion in the case of discrete features with numerous sym-
bols the analysis is confined to a relatively small number
of subsets). The subsequent splits are performed as long as
any of the tree nodes can be sensibly split. Then the trees are
pruned to provide possibly highest generalization (an inner
cross validation is used to estimate the best pruning param-
eters).

2.1. SSV criterion for feature selection

The SSV criterion has been successfully used not only
for building classification trees. It proved efficient in data
type conversion (from continuous to discrete [2] and in the

opposite direction [4]) and as the discretization part of fea-
ture selection methods, which finally rank the features ac-
cording to such indices like Mutual Information [1].

Decision tree algorithms are known for the ability of de-
tecting the features that are important for classification. Fea-
ture selection is inherent there, so it is not so necessary at
the data preparation phase. Inversely: the trees’ capabilities
can be used for feature selection.

Feature selection based on the SSV criterion can be de-
signed in different ways. From the computational point of
view, the most efficient one is to create feature ranking on
the basis of the maximum SSV criterion values calculated
for each of the features, for the whole training dataset. The
cost is the same as when creating decision stubs (single-
split decision trees). However, when the classification task
is a multiclass one, separabilities of single splits can not
reflect the actual virtue of the features. Sometimes two or
three splits may be necessary to prove that the feature can
accurately separate different classes. Thus it is reasonable
to reward such features, but some penalty must be intro-
duced, when multiple splits are being analyzed. These ideas
brought the following algorithm:

Algorithm 1 (Separate feature analysis)

� Input: Training data (a sample X of input patterns
and their labels Y).

� Output: Features in decreasing order of importance.

1. For each feature f

(a) T ← the SSV decision tree built for one-
dimensional data (feature f only).

(b) n← the number of leaves in T .

(c) For i = n− 1 downto 1
i. si ← SSV(T)

log(2+i) , where SSV(T) is the sum of
the SSV values for all the splits in T .

ii. Prune T by deleting a node N of minimum
error reduction.

(d) Define the rank R(f) of feature f as the maxi-
mum of the si values.

2. Return the list of features in decreasing order ofR(f).

Another way of using SSV for feature ranking is to cre-
ate a single decision tree and read feature importance from
it. The filter we have used here is the algorithm 2.

Algorithm 2 (Feature selection from single SSV tree)

� Input: Training data 〈X, Y 〉.
� Output: Features in decreasing order of importance.

1. T ← the SSV decision tree built for 〈X, Y 〉.
2. For each non-leaf node N of T , G(N) ← the classifi-

cation error reduction of node N .

3. F ← the set of all the features of the input space.

4. i← 0

5. While F �= ∅ do:

(a) For each feature f ∈ F not used by T define its
rankR(f)← i. Remove these features from F .

(b) Prune T by deleting all the final splits of nodes
N for which G(N) is minimal.

(c) Prune T by deleting all the final splits of nodes
N for which G(N) = 0.

(d) i← i + 1

6. Return the list of features in decreasing order ofR(f).

This implements a ,,full-featured” filter – the decision tree
building algorithm selects the splits locally, i.e. with respect
to the splits selected in earlier stages, so that the features oc-
curring in the tree, are complementary. It is important to see
that despite this, the computational complexity of the algo-
rithm is very attractive (contrary to wrapper methods of fea-
ture selection).

The ranking generated by the algorithm 2 can be used for
feature selection either by dropping all the features of rank
0 or by picking a given number of top-ranked features.

In some cases the full classification trees use only a small
part of the features. It does not allow to select any num-
ber of features – the maximum is the number of features
used by the tree, because the algorithm gives no informa-
tion about the ranking of the rest of the features.

3. Algorithms used for the comparison

Numerous entropy based methods and many other fea-
ture relevance indices are designed to deal with discrete
data. Their results strongly depend on the discretization
method applied before calculation of feature ranks [1]. This
makes reliable comparisons of ranking algorithms very dif-
ficult, so here we compare the results obtained with meth-
ods, which do not suffer from such limitations. We have
chosen two simple but very successful methods based on
the Pearson’s correlation coefficient and a Fisher–like cri-
terion. Another two methods being the subject of the com-
parisons belong to the Relief family.

The Pearson’s correlation coefficient detects linear corre-
lation. Thus, used for feature selection it may provide poor
results in the case of nonlinear dependencies.Nevertheless
in many applications it seems optimal because of very good
results and computational simplicity.

The Fisher-like criterion is the F-score defined as

m0 −m1

s0 + s1
, (1)

where mi is the mean value of the feature calculated for the
elements of i-th class, and si is the corresponding standard

deviation. Such criterion can be used only in the case of bi-
nary classification. For multiclass data our estimate of fea-
ture relevance was the maximum of the “one class vs the
rest” ranks.

The two representatives of the Relief family of algo-
rithms are the basic Relief method [6] and its extension by
Kononenko known as ReliefF [7]. The basic algorithm ran-
domly selects m vectors and for each (vector V) of them
finds the nearest hit H and miss M (neighbors belonging to
the same and different class respectively) – then the weight
of each feature f is changed according to

Wf ←Wf −
1
m

difff (V, H) +
1
m

difff (V, M), (2)

where difff , for numerical feature f , is the normalized dif-
ference between the values of f and for nominal f it is the
truth value of the equality of given values.

The ReliefF algorithm differs from the basic version in
that it takes k nearest hits and k nearest misses of each class
in a generalization of formula (2). All our calculations used
k = 10.

The m parameter was selected to be less than or equal to
500. For smaller datasets we used each training vector once
instead of m randomly selected vectors.

Most of the calculations time was spent on running the
Relief methods, which are most complex of the six methods
being analyzed – all the complexities are given in table 1.

Method Complexity
CC fn
F-score fn
Relief m(n + f)
ReliefF m(n log k + fk)
SSV1 fn log n
SSV2 fn log n

Table 1. Feature selection methods complex-
ities (n – vectors count, f – features count)

4. Testing methodology

The algorithms resulting in a feature ranking can be com-
pared only in the context of particular classifiers. Different
kinds of classification learning methods may broaden the
scope of the analysis, so we have applied Naive Bayesian
Classifier, k Nearest Neighbors (kNN) method with Eu-
clidean and Manhattan distance metrics and Support Vec-
tor Machines (SVM) with Gaussian and linear kernels (all
our SVMs were trained with parameters C=1 and bias=0.1).

All datasets were standardized before the tests, however
it must be pointed out, that none of the feature ranking
methods tested here is sensitive to data scaling – the stan-
dardization affects only kNN and SVM classification meth-
ods. Moreover, Naive Bayes and SSV based selections di-
rectly deal with symbolic data, so in such cases, the stan-
dardization does not concern them at all.

Drawing reliable conclusions requires appropriate test-
ing strategy and appropriate analysis of the results. The ma-
jor group of our tests were 10-fold cross-validation (CV)
tests repeated 10 times to obtain good approximation of the
average result. In each fold of the CV tests we ran six fea-
ture ranking algorithms: CC based ranking, F-score based
ranking, basic Relief, ReliefF, and two our methods pre-
sented as algorithms 1 (SSV1) and 2 (SSV2). The six rank-
ings were analyzed to determine all the feature subsets gen-
erated by selecting a number of top-ranked features. Then
for each such subset the classification algorithm was ap-
plied and results collected (these are the results averaged
by the 10 repetitions of 10-fold CV). Such strategy may re-
quire enormous amount of calculations. For example: when
we tested SVM models on features selected from a 60 fea-
tures dataset, we needed to solve about 320 classification
tasks at each CV pass (there are 6*60 = 360 possible selec-
tions – some feature subsets are always repeated). If we deal
with a 3-class task we need to build 3 SVM models for each
CV pass (“one class vs the rest” technique), which implies
3*320 = 960 SVM runs. We repeat 10 times the 10-fold CV,
so finally we need to build almost 100 000 SVM models –
such calculations took more than 100 hours of (one half of)
a 3.6GHz Pentium 4 HT.

To determine the statistical significance of the differ-
ences in the results we used the t-test (or paired t-test)
methodology with p = 0.05.

5. Results

To make thorough analysis possible, feature selection
methods must be applied to datasets defined in a space of
not too large dimensionality, but on the other hand too small
dimensionality would make feature selection tests baseless.
Thus we decided to use the higher-dimensional classifica-
tion tasks data available in the UCI repository [8]. Table 2
presents the datasets we have used for the tests, however
because of the space limits we discuss just a representative
part of the results – the figures for all the datasets can be
seen at http://www.phys.uni.torun.pl/∼kgrabcze/papers/05-
sel-figures.pdf.

The datasets distributed in separate training and test files
had been merged and CV tests performed for the whole
data.

The figures present average classification accuracies (10
repetitions of 10-fold CV) obtained with different classi-

dataset features vectors classes
chess 36 3196 2
glass 9 214 6
image segmentation 19 2310 7
ionosphere 34 351 2
mushroom 22 8124 2
promoters 57 106 2
satellite image 36 6435 6
splice 60 3190 3
thyroid 21 7200 3

Table 2. Datasets summary

fiers trained on data after given number of top-ranked fea-
tures were selected (the rankings were generated for each of
the CV folds independently).

Ionosphere data (Figure 1). The results obtained with
Naive Bayesian classifier for the ionosphere data are
unique. The SSV2 algorithm selecting all the features
used by SSV decision trees leads to much higher accu-
racy (89.87%) than obtainable with the other methods.
Please notice that the SSV2 algorithm can sensibly rank
only the features which occur in the tree, thus we can not re-
liably select more features than there are in the tree – the
figures reflect this fact by constant values of the SSV2 se-
ries for the numbers of features exceeding the sensible
maximum.

5NN classifier with Euclidean metric gives maximum ac-
curacy (89.95%) when 4 features are selected with CC or
F-Score, but a very high result (88.32%) can be obtained
for just 2 features selected with SSV2 (the accuracy is sig-
nificantly better than for the whole dataset – 84.65%). 5NN
with Manhattan distance yields maximum 91.11% accuracy
for 10 features selected with SSV2.

It is interesting that the SSV1 selection with SVM clas-
sifier works poorly for small numbers of features, but is one
of the fastest to reach the accuracy level of SVM trained in
the whole data. Although feature selection can not signif-
icantly improve the accuracy, it may be very precious be-
cause of the dimensionality reduction it offers.

Promoters data (Figure 2). This is an example of a dataset
for which almost each selection method improves the ac-
curacy of each classifier and the improvement is very sig-
nificant. The exceptions are the combinations of the Naive
Bayes classifier with the Relief and SSV2 feature selection
methods.

Please, notice that the maximum accuracy is obtained
usually for the number of features between 3 and 5, so the
selection is crucial here.

Splice data (Figure 3). The conclusions for this dataset are
very similar to those of the promoters data. Feature se-
lection provides very significant improvement of 5NN and

Naive Bayes

30252015105

1

0,95

0,9

0,85

0,8

0,75

0,7

0,65

0,6

5NN (Manhattan)

30252015105

1

0,95

0,9

0,85

0,8

0,75

0,7

0,65

0,6

SVM (gaussian kernels)

30252015105

1

0,95

0,9

0,85

0,8

0,75

0,7

0,65

0,6

CC F-Score Relief ReliefF SSV1 SSV2

Figure 1. Results for the ionosphere data.

SVM classifiers. For Naive Bayes we get a slight improve-
ment but also statistically significant – the best results are
within the range of 30-40 features and are obtained with Re-
liefF (96.2% accuracy with standard deviation of 0.14%),
and SSV1 (96.11% ± 0.14%), while with no selection we
achieve 95.66% ± 0.08%. The results show less variance
than in the case of promoters (this is due to the larger train-
ing data samples). Hence even small differences can be sta-
tistically significant here.

Other data sets (Figure 4). Image segmentation and thyroid
data are the examples of classification tasks, where decision
trees show best adaptation abilities. It is consistent with the
fact that for these datasets the SSV2 selector is most use-
ful also for other classification algorithms.

5NN applied to image segmentation achieves its best

Naive Bayes

5040302010

0,9

0,85

0,8

0,75

0,7

0,65

0,6

0,55

5NN (Manhattan)

5040302010

0,9

0,85

0,8

0,75

0,7

0,65

0,6

0,55

SVM (gaussian kernels)

5040302010

0,9

0,85

0,8

0,75

0,7

0,65

0,6

0,55

CC F-Score Relief ReliefF SSV1 SSV2

Figure 2. Results for the promoters data.

result (96.43% ± 0.22%) after selecting 11 features with
SSV2, which is significantly better result than with any
other feature selection method, we have tested. 3 features
are enough to get 96.28%± 0.13%.

The plot showing the results of 5NN with Euclidean
measure, applied to the thyroid data shows clearly the ad-
vantage of SSV2 selector (its ability to detect dependencies
between features) – selecting 3 features yields a high accu-
racy of very high stability (98.54% ± 0.04%), specific for
decision trees in the case of this dataset.

The remaining two plots of figure 4 demonstrate some
interesting negative results. For the satellite image data
CC based selection loses any comparisons, though proves
very valuable in many other tests. It is also an exceptional
dataset, where ReliefF performs worse than Relief. For the
chess data, SSV1 selection methods is not in the same

Naive Bayes

605040302010

1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

5NN (Euclidean)

605040302010

1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

SVM (gaussian kernels)

605040302010

1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

CC F-Score Relief ReliefF SSV1 SSV2

Figure 3. Results for the splice data.

league with others. Also the F-Score and CC methods can
not improve the accuracy of SVM while SSV2, Relief and
ReliefF offer significant improvements.

6. Conclusions

We have presented two feature selection methods based
on the SSV criterion and experimentally confirmed that they
are a very good alternative to the most popular methods. On
our way we have shown several examples of spectacular im-
provement obtained by means of feature selection.

Feature selection algorithms can not be estimated with-
out the context of final models. We must realize that differ-
ent classifiers may require different feature selectors to do
their best, however in general we observe that for a partic-
ular dataset, a feature selectors performing good (or bad)

Image segmentation data - 5NN (Euclidean)

18161412108642

1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0

Thyroid data - 5NN (Euclidean)

2015105

1

0,99

0,98

0,97

0,96

0,95

0,94

0,93

0,92

0,91

0,9

Satellite image data - 5NN (Manhattan)

3530252015105

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

Chess data - SVM (gaussian kernels)

3530252015105

1

0,95

0,9

0,85

0,8

0,75

0,7

0,65

0,6

0,55

0,5

CC F-Score Relief ReliefF SSV1 SSV2

Figure 4. Other interesting results.

for some classifier, perform good (or bad respectively) with
other classifiers. In accordance with the no-free-lunch the-
orem, there is no single feature selection method perform-
ing very good for any dataset. Thus effective feature selec-
tion requires a validation stage to confirm methods usability
in a given context. Such validation can be expensive, so we
must be careful. To reduce the complexity of the search for
optimal feature sets we may find some regularities and use
them as heuristics (for example, we see that SSV2 is usu-
ally very good feature selector for the datasets, where deci-
sion tree algorithms provide high accuracies).

Further research. The comparison presented here treats
each of the feature selection methods separately. It is a nat-
ural step forward to think about efficient algorithms to com-
bine the results of different feature selection methods. Some
simple methods have already been used [5] but deeper meta-
level analysis should bring many interesting conclusions
and more versatile feature selection methods.

Acknowledgements. The research is supported by the Pol-
ish Ministry of Science – a grant for years 2005–2007.

References

[1] W. Duch, J. Biesiada, T. Winiarski, K. Grudziński, and
K. Grąbczewski. Feature selection based on information the-
ory filters and feature elimination wrapper methods. In Pro-
ceedings of the Int. Conf. on Neural Networks and Soft Com-
puting (ICNNSC 2002), Advances in Soft Computing, pages
173–176, Zakopane, 2002. Physica-Verlag (Springer).

[2] K. Grąbczewski. SSV criterion based discretization for Naive
Bayes classifiers. In Proceedings of the 7th International
Conference on Artificial Intelligence and Soft Computing, Za-
kopane, Poland, June 2004.

[3] K. Grąbczewski and W. Duch. A general purpose separabil-
ity criterion for classification systems. In Proceedings of the
4th Conference on Neural Networks and Their Applications,
pages 203–208, Zakopane, Poland, June 1999.

[4] K. Grąbczewski and N. Jankowski. Transformations of sym-
bolic data for continuous data oriented models. In Artifi-
cial Neural Networks and Neural Information Processing –
ICANN/ICONIP 2003, pages 359–366. Springer, 2003.

[5] K. Grąbczewski and N. Jankowski. Mining for complex
models comprising feature selection and classification. In
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Fea-
ture extraction, foundations and Applications. Springer, 2005.

[6] K. Kira and L. A. Rendell. A practical approach to feature
selection. In ML92: Proceedings of the ninth international
workshop on Machine learning, pages 249–256, San Fran-
cisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[7] I. Kononenko. Estimating attributes: Analysis and extensions
of RELIEF. In European Conference on Machine Learning,
pages 171–182, 1994.

[8] C. J. Merz and P. M. Murphy. UCI repos-
itory of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

