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   Abstract 
 
The final goal of neuroscience is to fully understand neural processes, their rela-
tions to mental processes and to cognitive, affective, and behavioral disorders. 
Computational modeling, although still in its infancy, already plays a central role 
in this endeavor. A review of different aspects of computational models that help 
to explain many features of neuropsychological syndromes and psychiatric dis-
ease is presented. Recent advances in computational modeling of epilepsy, corti-
cal reorganization after lesions, Parkinson’s and Alzheimer diseases are re-
viewed. Some trends in computational models of brain functions are identified.  
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1. A bit of history 

Neuroinformatics has two large branches. On the one hand it provides tools for 
storage and analysis of information generated by neuroscience. On the other hand it 
provides simulations and models that capture some aspects of information processing 
in the brain. Complexity of the brain dynamics may be too high to understand brain‘s 



 
 
 
 
 
 
 

functions in details in conceptual terms. Computational models based on correct prin-
ciples may capture progressively larger number of essential features of brain dynam-
ics, eventually leading to models of the whole brain that no individual expert will ever 
be able to understand in details. This situation is analogous to the cell biology, where 
the sheer number of biomolecules and their interactions will prevent experts from 
understanding all genetic and metabolic mechanism of a living cell. From the engi-
neering perspective understanding a complex system implies the ability to build a 
model that behaves in important aspects in the same way as the system that is being 
modeled. At this point in history computer simulations are the easiest way to build 
complex models, but progress in building neuromorphic devices that implement some 
neural functions in hardware may change this situation in future (1).  

In 1986 two volumes “Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition” (2), written mostly by psychologist, were published. The 
first volume of the PDP book (as it was commonly called) focused on general proper-
ties of parallel information processing, drawing analogies with human information 
processing. The Parallel Distributed Processing (PDP) name did not gain popularity, 
replaced by “connectionism”, the name that stressed the importance of connections 
that pass information between network of nodes representing neural cell assemblies, 
increasing or inhibiting their activations. One of the chapters described now famous 
“backpropagation of errors” algorithm that can be used to train a network of simple 
artificial neurons with a one-way (feedforward) signal flow desired responses to in-
coming signals. Such artificial neural networks became very useful for medical diag-
nostics support, signal and image analysis and monitoring, search for carcinogenic 
agents and other data analysis tasks. In these applications neural networks face strong 
competition from statistical, pattern recognition, machine learning, and other mathe-
matical techniques.  

The second volume of the PDP book contained models of psychological proc-
esses (speech perception, reading, memory, word morphology and sentence process-
ing) and biological mechanisms (neural plasticity, neocortex and hippocampus mod-
els). In this area neural models have little competition, with exception of continuum 
neural field theory (CNFT) that treats neural tissue as a substrate in which various 
excitations are propagated. Although this theory contributes to the understanding of 
global models of the cortex and it gives rise to interesting phenomena that may be 
experimentally observed (3) neural field theory is not yet sufficiently developed to 
account for properties of biological memory, not to mention more complex functions.  

The two PDP volumes gave rise to a great interest in formal neural network mod-
els, connectionist modeling in psychology inspired by the parallel distributed com-
petitive brain-style information processing, and computational neuroscience, that 
focus on the biologically plausible models of single neurons or small neural assem-
blies. These neural models are fairly detailed, up to the level of ionic channels and 
specific neurotransmitters, producing spikes that have very similar characteristics to 
those observed in vivo. The question “at which level should one model the brain” 
obviously depends on the purpose of such modeling, and thus cannot have general 
answer. It would be very interesting if various artificial neural networks based on 
graded (non-spiking) neurons could be derived as an approximation to biologically 
plausible models. A common assumption is that an average number of spikes per 
second represents neural activity, and therefore artificial neural network models may 



 
 
 
 
 
 
 

use neurons that are characterized by a single number reflecting their activity. Poten-
tially important phase relations between spikes and differences between dynamics of 
various types of synapses and neurotransmitters are lost in this way. There are many 
other approximations to biological neural processes that remain to be explored.  

Despite these difficulties simple models of neural networks are surprisingly suc-
cessful providing insight into various brain functions. One year after the PDP book 
appeared Ralph Hoffmann published in the Archives of General Psychiatry the first 
paper that used neural network model to understand psychiatric problem, the schizo-
phrenia–mania dichotomy (4). In 1988 National Institute of Mental Health (NIMH) 
initiated “Computational, Theoretical and Mathematical Neuroscience program”, 
supporting computer simulations in psychiatry, and the first international workshop 
on neural modeling of cognitive and brain disorders, sponsored by the National Insti-
tutes of Health, was held at the University of Maryland in 1995, resulting in the first 
book on this topic (5). At the same time inspirations derived from recurrent neural 
networks treated as dynamical systems started to penetrate brain science (6,7) and 
even developmental psychology (8,9).  

 Computational psychiatry is thus quite young, and bearing in mind the differ-
ences between the style of thinking in psychiatry and computational modeling it may 
take a long time before it will become a part of the mainstream psychiatry. Only a 
small percentage of the authors of papers in books devoted to this topic are profes-
sional psychiatrist (5,6,10). Nonetheless, almost all neuropsychological syndromes 
and psychiatric disorders have reasonable computational models generating useful 
hypotheses that can be verified by experimental work. Spiking neurons (11) and so-
phisticated biologically plausible models of neurons (12-14) applied to understanding 
of brain dysfunctions show the overlapping interest of computational neuroscience 
and psychiatry.  

Before reviewing the current state of the art in computational psychiatry a short 
discussion in section two introduces key concepts and problems in this field. This is 
then followed by the discussion of work on neurological problems and Alzheimer 
disease, with more emphasis on the understanding and ideas generated with the help 
of computational models than on technical details. Future prospects of computational 
psychiatry are discussed in the final section. 

2. How to model brain functions 

All models of brain functions have to face the tradeoff between simplicity and 
biological faithfulness. Simplicity implies the ability to understand in conceptual 
terms how and why the model works the way it does, leading to new ideas that may 
grasp the imagination of researchers for a long time. Lateralization of brain functions 
(left-right hemisphere division) found its way into popular psychology books. 
McLean’s theory of the triune brain (15) introduced in the 1950’s division into archi-
pallium, reptile-like brain stem functions, paleomammalian limbic system functions, 
and neocortex, the rational mammalian brain. Although the concepts of the limbic 
system is rather vague and is severely criticized (16) simplified theories are still 
prevalent. Computer models are usually constructed to account for results of a single 
experiment and have always a limited range of applicability. Computer simulations 
may rarely lead to wide-ranging theoretical concepts, but they may provide simpli-



 
 
 
 
 
 
 

fied, metaphoric language that facilitates thinking about brain processes. Brain-as-a-
computer information processing metaphor has been replaced by new metaphors: 
brain as a connectionist system, dynamical system, and self-organizing system (17). 
These metaphors penetrated now deeply into psychology (7-9) and make their ways 
slowly into psychiatry. They can be used to describe dynamics of neural cell assem-
blies, but also global activity of the brain, for example mood swings in bipolar disor-
ders (18). Such simple models are quite far from biological realism but may still be 
quite useful providing metaphorical language that reflects neurodynamical processes. 

Biological faithfulness requires large scale neural simulations at the sufficient 
level of details to guarantee comparison with experimental results obtained by neuro-
physiologists. Until recently such simulations were possible only for quite small net-
works composed of a few dozens of neurons, but in 2005 projects proposing simula-
tion of whole cortical minicolumns with 104-105 neurons and 108 connections on 
teraflop supercomputers were formulated (for example, the IBM Blue Brain project 
(19)). Such detailed simulations, if successful, should allow to make experiments in 
silico that will be very difficult or even impossible to perform in vivo. It is therefore 
possible that answers to fundamental questions, such as the nature of the neural in-
formation codes, will be found using computational models. Once these questions 
will be solved simplified architectures for brain-like computing, as well as models for 
different disorders, could be constructed.  

2.1 Neural models 

Traditional neuropsychological theories describe information processing in the 
brain using box-and-arrow diagrams, treating brain dysfunctions as disturbances in 
the information flow. Biophysical models may be very detailed, aiming for biologi-
cally faithfulness in many aspects. Majority of neural and connectionist brain function 
models are somewhere in between. They are usually based on inspirations by, rather 
than systematic approximations to, biophysical models. Successful connectionist 
models capture principles behind biological realization of certain brain functions, 
providing proofs that postulated mechanisms may in principle explain some results of 
observations and experiments, without quantitatively predicting any variables that 
may be directly measured.  

A network of nodes interacting with each other through connections of different 
strength can collectively do interesting computations. Some of these computations 
involve:  

 
• transforming the incoming signals: filtering irrelevant information, aggregat-

ing information to construct new features, enhancing salient features;  
• categorizing elementary signals (such as phonemes or graphemes) to sim-

plify analysis of complex signals in discretized form;  
• self-organizing to reflect general topographical properties of sensory inputs 

and motor actions; 
• memorizing associations at many levels, providing models of different types 

of distributed, content addressable memory;  
• making decisions, setting goals and controlling behavior. 



 
 
 
 
 
 
 

 
Each network node, frequently called “an artificial neuron”, may represent either 

a single neuron of a specific type, a generic neuron, a group of a few neurons, a neu-
ral assembly or an elementary function realized in an unspecified way by some brain 
area. Two key features of neural models are internal signal processing done by their 
nodes, and the type of interactions among these nodes. Signal processing mechanisms 
that neurons (network nodes) internally possess are a form of internal knowledge 
representation allowing for transformation of the incoming signals. In the simplest 
case this knowledge is specified by just a single parameter, a threshold for activation 
of a neuron by the incoming signals. This threshold is an “adaptive parameter”, which 
means that it is adjusted by the learning algorithm of the model to improve perform-
ance of the task the whole network is required to do. Real neurons send single spikes 
when the sum over all incoming signals in a given time window (called neuron’s 
activation) exceeds certain threshold value. This fact, and the brain-computer anal-
ogy, gave rise to the logical neuron model, introduced by McCulloch and Pitts (for 
anthology of early papers on neurocomputing see (20)). If the activation of a logical 
neuron is below the threshold its output is zero, and if it is above the threshold its 
output is one. Networks of such logical neurons may implement arbitrary Boolean 
function, but training such networks is fairly difficult. Single spikes do not matter 
much, and the frequency of spikes is approximately proportional to the activation of 
the neuron around the threshold activation value, going to zero for activation value 
significantly below the threshold, and saturating at maximum frequency for high 
activation values. This gives rise to the graded response neuron models, with output 
defined by a non-linear tilted S-shaped (sigmoidal) function of activation. The re-
sponse gain of the neuron is defined by the steepness of this function. Because the 
output functions are squashing linear activations to keep all outputs between zero and 
some maximum values they are sometimes called “squashing functions”.  

It is clear that such simplified models loose important features of biological net-
works, such as the ability to synchronize the activity of several units for specific time 
delays between spikes (phase relations). Models of real neurons at different abstrac-
tion level, from simple “integrate and fire” neurons without specific spatial structure, 
to multi-compartmental models that take into account geometry of dendrites and ax-
ons, are available in NEURON and GENESIS software packages (12-14). Sophisti-
cated biophysical models of compartmental neurons provide information directly 
related to neurophysiological parameters measured in experiments. Already in 1994 
Callaway and collaborators modeling reaction times to different drugs stated: “Neural 
network models offer a better chance of rescuing the study of human psychological 
responses to drugs than anything else currently available” (21). Such detailed models 
related to psychiatric problems are available only in rare cases (a few papers may be 
found in books (5,6,10) and (22)).  

Connectionist models go in quite different direction, as their nodes are not related 
to single neurons, representing rather memory states realized as a joint activity of 
neural ensembles. High activity of such nodes may represent recognition of letters, 
phonemes, words or iconic images. These models provide a bridge between neural 
and symbolic information processing, rule-based systems for systematic reasoning 
and grammatical analysis. Knowledge stored in nodes of connectionist networks is 
still rather simple, although many parameters may be required to represent it. In the 



 
 
 
 
 
 
 

limit each node may become an agent, with more internal knowledge and some meth-
ods to process this knowledge depending on the information received (23).  

The second main aspect of neural models is the communication between the 
nodes. Signals carrying information about activity of input units may flow through the 
network in one direction, from designated inputs, through some hidden elements that 
process these signals, to output elements that determine the behavior or signify deci-
sions of the network. In logical networks signals have only two values, True and 
False, and connections between two logical neurons may either leave them un-
changed, or negate them. By analogy to biological neurons connections are some-
times called “synaptic”, direct connections are “excitatory” and negated connections 
“inhibitory”. Activity of the neuron is simply calculated as the number of true inputs 
received by the neuron minus the number of the false inputs. This activity is then 
compared with the threshold to determine whether the neuron should output the signal 
True or False. Although this is a very simple model threshold logic implemented by 
such neurons allows for definition of non-trivial concepts, such as “the majority” (at 
least half of the inputs should be True to output True value).  

Graded neurons are used in the popular Multilayer Perceptron (MLP) neural net-
works that assume feedforward flow of information between layers of neurons. Such 
architecture (Fig. 1) simplifies training of the network parameters that include thresh-
olds and the strength of connections Wij between pairs of neurons ni and nj. The only 
information that is passed through such networks is the strength of the signals Xi, and 
the only knowledge that neurons hold are activation thresholds θi. MLPs are examples 
of mapping networks that transform input signals into output signals and may learn, 
given sufficient examples of inputs and desired outputs, how to set the connections 
Wij and the thresholds θi (or the interactions between the nodes and the local knowl-
edge in the nodes) to perform heteroassociation between inputs and outputs. Learning 
algorithm of such networks is driven by errors that are assumed to be propagated 
from the output to the input layer, although such a process is difficult to justify from 
biological point of view. MLP networks may thus signify the presence of certain 
categories of inputs, reduce the amount of information needed for making decisions, 
or provide new set of features for further processing.  
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Fig. 1.  Mulit-layer perceptron feedforward network with a single hidden layer.  
 
Biological networks are almost never feedforward, containing many feedback 

loops, and assuming dynamical states that memorize or represent information re-
ceived by the network. Given n logical neurons in some initial state and connecting 
them all together one may observe how their mutual excitations and inhibitions 
evolve until either a static configuration of activities is reached and no further change 
is possible (point attractor), or cyclic changes occur indefinitely (cyclic attractor), or 
the system reaches chaotic state. In 1982 John Hopfield described such fully con-
nected network of the two-state neurons (24). With additional assumptions that there 
are no self-connections and all weights are symmetrical the evolution of such network 
always ends in one of several static configurations, depending on the initial state and 
on the weights that connect neurons. Such networks are commonly called “the Hop-
field networks”, and are the simplest type of attractor neural networks, or dynamical 
systems motivated by neural ideas. A version of such network with graded neuron 
activities and continuous weights is very useful as a model of autoassociative mem-
ory. Learning in Hopfield type of network may be based on the Hebb principle that 
neurons that show correlated activity should have stronger excitatory connections, 
those that show negative correlation (one active when the other is not active) should 
have stronger inhibitory connections, and those that do not show any correlations may 
have weak connections or loose them completely. Therefore Hebbian learning is also 
known as the correlation-based learning. 

 



 
 
 
 
 
 
 

 
 
Fig. 2. Hopfield network with 6 neurons, 3 dark neurons are in an active state and  

     3 light neurons are in the inactive state.  
 
The MLP and the Hopfield networks are frequently used in modeling of brain 

functions related to perception and memory. One more basic model that is very useful 
in understanding the development of topographical mappings has been introduced by 
Teuvo Kohonen (25), and is known as the Self-Organizing Mappings (SOM), or Ko-
honen network. It is also a very simple model, with two-dimensional grid of nodes 
(neurons) that do not communicate with each other directly (Fig. 3), but tend to react 
in a similar way when the training signals are presented. These neurons have no inter-
nal parameters, only weights Wi that may be compared to the input signals. Evaluation 
of similarity, the basic operation in SOM network, may be viewed as a simplification 
of neural activation by a specific train of spikes. Initially all weights are random, but 
after presenting training signals to the network many times the learning mechanisms 
pulls together those weights that are similar to typical signals (centers of clusters in  
the input space). In effect different part of the neural grid show maximum activity for 
different types of signals, discovering for example the phonetic structure of speech 
signals. SOM networks may model spontaneous perceptual and motor learning in 
infancy, but may also be useful as a model of reorganization of cortical functions after 
stroke or loss of limbs (see below). 



 
 
 
 
 
 
 

 
Fig. 3. Self-Organized-Mapping is a grid of processors, each with parameters that 

     learn to respond to signals from the high-dimensional input feature space. 
 
These three type of models and their many variants are used extensively in the 

“Computational Explorations in Cognitive Neuroscience” book (26) that contains 
many experiments made with accompanying PDP++ software for biologically based 
modeling of psychological functions. Although it is not directed at psychiatric disor-
ders it has been used to set up many experiments to elucidate various brain mecha-
nisms involved in perception, attention, recognition, semantic, episodic and working 
memory, phonology and speech perception, reading and dyslexia, mapping phono-
logical to orthographical representations, and executive frontal lobe functions.  

2.2 Brain simulations and mental functions 

Large neural networks based on biologically plausible spiking neural models may 
be used for modeling of many brain functions, but such models may not only be diffi-
cult to simulate, sometimes requiring supercomputing power, but may also be rather 
difficult to analyze and understand. Although simple approaches presented above are 
much less faithful to biology they may elucidate some brain mechanisms, generating 
useful hypothesis. Neural simulations should capture casual relations between activity 
of brain structures and their general neuroanatomical features, in particular influence 
of lesions and neuropathological changes on modification of normal behavior and 
cognitive performance. It is not a priori clear that simplified neural models will be 
sufficient to capture such casual relations. Convergence of the modeling process 



 
 
 
 
 
 
 

could be too slow to make them useful; for example some pathological effects could 
appear only in models based on complex multi-compartmental spiking neurons.  

Fortunately there are some indications that the qualitative behavior of complex 
models based on spiking neurons (27) may also be obtained in simplified neural mod-
els (5). Even the simplest neural models of associative memory show many character-
istics known from psychology, such as: content-addressability – cues lead to the 
whole memorized patterns, even when they are imperfect (computer memory needs 
an address to find information); graceful degradation – damage to some connections 
does not erase specific facts, only increases the recall error rates; time of recall does 
not depend on the number of memorized items (in computers time of recall is propor-
tional to the number of items); similar items get more frequently mixed up; an attempt 
to understand too many things quickly leads to chaotic behavior, etc.  

Thus there is a chance that simple neural models may help to understand neuro-
logical and neuropsychological syndromes, providing some insight into the source of 
pathologies and some understanding of the effects of therapeutic procedures. Classi-
cal methods of psychiatry and neuropsychopharmacology are restricted to observa-
tions of correlations between behavior and physiological responses of the organism to 
medical treatments. They usually try to understand the mechanisms leading to neuro-
pathological behavior at the neural level, while cooperative network-level effects may 
be quite complex and difficult to infer from experiments. Brain simulations can com-
plement traditional techniques in several ways. They provide insights into possible 
causal relations, allow for a full control of all aspects of experiments, they are inex-
pensive and are not restricted by ethical considerations. An early review article (28) 
and the books (5,6,10,22,26,29) provide many insights into the mechanisms behind 
the memory and language impairments, psychiatric disorders, Alzheimer and Parkin-
son disease, epilepsy and other neurological problems.  

Hierarchical approach to modeling of brain functions at different levels of com-
plexity has been presented in (23) and (30), addressing the problem of creating under-
standable description of complex phenomena and the gap between neuroscience and 
psychology. Neural models may predict behavioral patterns but do not capture the 
inner, first-person subjective perspective, they do not offer any vision of mind. Tran-
sitions between quasi-stable states of attractor networks lead to behaviorist rules, 
reducing complex neurodynamics to simple symbolic description of animal and hu-
man behavior. Rules are very rough approximation to neurodynamics, but an inter-
mediate level of modeling, presenting current state of the network in reduced-
dimensionality spaces, is possible. At the level of conscious decision making only 
some highly processed features are accessible, with active “mind objects” in psycho-
logical spaces reflecting neural dynamics. This line of modeling, still quite rare, is in 
line with Roger Shepard’s search for universal laws of psychology in appropriate 
psychological spaces (31). It has been applied to analysis of psychological experi-
ments on human categorization, providing both neurodynamical and psychological 
perspective of the processes responsible for puzzling human judgments (32). Al-
though such mental-level models have a chance in future to complement neural mod-
els providing deeper understanding of brain dysfunctions so far they have not been 
used in this area. 

In the remaining part of the paper a review of two applications areas of computa-
tional psychiatry is presented, various neurological problems and Alzheimer disease. 



 
 
 
 
 
 
 

This review illustrates the type of models that has been used, and emphasize insights, 
understanding and hypothesis generated by computational models. 

3. Neurological problems 

Neurological problems, such as epilepsy, ischemic or hemorrhagic strokes, cere-
bral palsy or parkinsonism, are usually associated with well defined anatomical and 
physiological changes in the brain. In this respect the modeling problem is easier than 
in case of such psychiatric disease as for example schizophrenia. An early review of 
different neurological problems has been presented in (33). 

Perhaps most detailed models so far have been made for epilepsy, which is one 
of the most widespread neurological disorder, characterized by recurrent unprovoked 
seizures that frequently lead to the loss of consciousness. Many types of epilepsy 
exist, differing in region of origin of synchronous neural oscillations (usually hippo-
campus and certain neocortical regions), with frequency that may either be quite low, 
or extremely high (up to 600 Hz). Dynamical neural networks with strong feedback 
connections and little inhibition may easily be brought to a threshold of epileptic-like 
discharge, but this is rather trivial observation. Much deeper and more detailed under-
standing is required. For example, it is known that small changes in the molecular 
structure of neuron’s sodium ionic channels may be one of the causes of epilepsy, and 
some drugs act by modulating those currents. Therefore detailed models that include 
many pyramidal neurons with several types of ion channels are particularly useful 
here. Many such models have been developed in the Jeffreys (34) and Traub (35,36) 
groups. They are able to generate EEG patterns that closely resemble experimental 
ones, elucidating the role of various types of neurons and pharmacologic agents in 
epilepsy. 

Generation of extremely high frequency oscillations is not possible in model 
networks without electrotonic synapses, much faster than the classical chemical syn-
apses. Although it is known since the early 1980s that such synapses should exist 
(because blocking of chemical synaptic transmission does not stop the epileptic sei-
zures), direct evidence for their existence in the neocortex is still controversial. Fast 
electrical nonsynaptic communication is possible through gap junctions filled with 
connexins, intramembranous proteins, that have rapidly modifiable conductance prop-
erties. Predictions of computational models are even more specific, gap junctions 
should exist between the axons of pyramidal cells in hippocampus and neocortex.  

These hypothesis focus the search for therapeutic strategies on direct manipula-
tion of gap junctions to decrease synchrony. A better understanding of molecular 
processes at the gap junctions may be achieved by detailed biophysical modeling 
techniques based on molecular dynamics.  

Parkinson’s disease is connected with the loss of dopaminergic neurons in the 
substantia nigra that project to one of the basal ganglia large nuclei, the putamen. As a 
result motor control problems develop, including akinesia (difficulty initiating 
movements), tremor, rigidity, slowing of movements and poor balance. In a substan-
tial percentage of patients cognitive impairment, hallucinations and depression may 
occur. The origins of this disease are not yet clear and therapy is based on dopamine 
precursor, L-DOPA, that slows down the progress of the disease.  



 
 
 
 
 
 
 

Movements are smooth if the timing between activation of agonist and antagonist 
muscles is synchronized. Low level of dopamine in the putamen may lead to the im-
balance in the cortico-basal-ganglia-thalamic-cortical loop that controls the motor 
system (involvement of the cerebellum in this loop is usually neglected). In computa-
tional models the dynamics of four layers of neurons was therefore investigated, with 
feedback from the fourth to the first layer (38). In such attractor networks change of 
parameters leads to sudden bifurcation, changing qualitative behavior of the network 
from point attractor to a cyclic attractor. Borrett et al. (38)  interpret this change as the 
sudden onset of tremors when a significant decrease in dopamine level is reached. In 
their model it is preceded by a slower network response that may lead to slow move-
ments. Edwards et al. (39) investigated richly connected inhibitory neural networks of 
the Hopfield type showing that such transitions between irregular and periodic dy-
namics are common if synaptic connections are weakened, because the number of 
units that effectively drives the dynamics is reduced, leading to simpler behavior. 
Fixed points in the dynamics of networks correspond to akinesia, while irregular 
dynamics may correspond to the normal low-level physiological tremor. Parkinson’s 
high-amplitude tremor is regular and results from cyclic attractors in networks with 
simplified dynamics. Such models may produce variety of symptoms, relating them to 
different forms of cooperative behavior (see also papers in (5,6)).  

Cognitive aspects of Parkinson’s disease, and the influence of pharmacological 
therapy on cognitive abilities, have been modeled by Frank (40). Complexity of brain 
systems involved is to high to have a good verbal model of interactions between basal 
ganglia, motor cortex and prefrontal cortex. Although dopaminergic drugs ease the 
motor symptoms they may increase problems with execution of cognitive tasks. Basal 
ganglia is not only involved in motor actions, but also working memory updates and  
initiation of thought movement. This is a subtle system that normally operates with 
wide dynamic range of dopamine levels, but in Parkinson’s patients taking dopa-
minergic medication this range is reduced, leading to frontal-like and implicit learn-
ing impairments. This model, implemented in the Leabra framework (26), provides 
many detailed testable predictions for neuropsychological and pharmacological stud-
ies.  

Stroke and brain lesions have the longest history of computational modeling. 
The situation in case of focal cortical lesions in some areas is rather clear and detailed 
experimental data exist from animal and human studies. For example, in the somato-
sensory cortex topographical organization reflecting spatial relationships has been 
studied at many levels (see the review (41)). Cortical representations may reorganize 
as a result of lack of stimulation due to the nerve damage, limb amputation, direct 
lesion or other processes. The simplest model that leads to formation of topographical 
maps is based on the self-organized mapping networks (25) and has been used with 
success to model details of visual system development (42). SOM has been used in a 
number of studies involving cortical reorganization after lesions and stroke (43,44). 

More complex networks designed for cortical map reorganization with excitatory 
and inhibitory cells were used to model inputs from the hand, including fingers 
(45,46). The model showed a number of physiologically correct responses, such as 
expansion and contraction of representations of the stimulated areas, effects of nerve 
deafferentation and gradual disappearance of the “silent” regions in the map, as seen 
in experiments. Self-organizing models with competitive activation and representa-



 
 
 
 
 
 
 

tion of thalamus (a relay of sensory inputs) account also for the “inverse magnifica-
tion” rule: the size of cortical representation is inversely related to the size of the 
cortical cells receptive fields, leading to large cortical representations devoted to the 
skin areas with small receptive fields (43). In this model thalamic and cortical areas 
are represented by two-dimensional sheets of neurons, folded into a toroidal shape to 
avoid the border areas. Each of the network nodes should stand for a microcolumn of 
about 110 neurons, with hexagonal 32x32 node network. Thalamic neurons, activated 
by external inputs from the skin, excite cortical receptive field composed of a central 
neuron and 60 neurons surrounding it in 4 rings. These thalamo-cortical connections 
are trained using competitive learning, while cortico-cortical connections have local 
excitatory connections to the nearest neighbors, and inhibitory connections to the 
further neighbors (the shape of the function describing the type of connections resem-
bles a Mexican hat, with broad peak and a dip before leveling off). Effects of lesions 
may be investigated either by cutting the thalamic connections or by removing all 
connections of a group of neurons, which simulates their death. The remaining neu-
rons surrounding the lesioned region do not receive the inhibitory inputs, therefore 
their dynamics changes quickly and they become more responsive to weak stimula-
tions from the thalamic area. As a result of these activations slower synaptic learning 
processes lead to reorganization of the cortex responses, with neurons close to the 
lesioned areas partially taking over the function of the dead neurons. This reorganiza-
tion may be faster if only those skin areas that lost their representation in the somato-
sensory cortex are repeatedly activated. Simple devices that provide tactile, vibration, 
and temperature stimuli placed over selected parts of the skin should speed up reha-
bilitation and prevent formation of phantom limbs (see below). 

Reorganization due to the diffuse branching thalamic projections is limited to no 
more than 1 mm, but experimental evidence shows that after a long time reorganiza-
tion processes may extend to over 10 mm. Cortical areas devoted to hand that has 
been amputated may for example start to specialize in face. It is not yet clear how 
exactly the reorganization process happens, but it is quite likely that new connections 
due to sprouting (and may be even due to the development of new neurons) are 
formed. Of course it is quite easy to put such effects into computational models, but 
without experimental constraints models can provide explanations that have nothing 
to do with reality. On the other hand some models are over-constraint by their as-
sumptions, for example neglect of inhibition between cortical neurons (45).  

Intriguing effects have been experimentally observed as a result of anesthesia: 
receptive fields are immediately expanding to neighboring neurons even before addi-
tional stimulation. This is probably due to the presence of weak connections between 
thalamus and topographically adjacent cortical areas and the lack of inhibition from 
neurons that become silent. Similar effect are also observed in visual cortex when 
artificial scotoma is created – the fill-in processes makes it invisible after several 
minutes (33). In this case the lack of inhibition, making neurons more responsive, 
leads to changes in the gain response of neurons.  

A biologically plausible state–of–the–art model of the 3b area of primary soma-
tosensory cortex and thalamic nuclei has been constructed by Mazza et al. (47) using 
the GENESIS simulator. In this model cortex is composed of excitatory (regular and 
burst spiking) and inhibitory (fast spiking) neurons. All parameters of the model were 
taken from literature, therefore some aspects of simulations may be compared with in 



 
 
 
 
 
 
 

vivo measurements. NMDA, AMPA and GABA types of synapses were used and the 
synaptic changes observed during reorganization of maps after lesions. The hand 
mechanoreceptors give a short burst of action potentials when stimulated, adapting 
quickly to the pressure. A palm and four fingers containing together 512 receptors 
was simulated. The ventral posterior lateral (VPL) part of the thalamus contains exci-
tatory neurons and inhibitory interneurons. The thalamic relay cell model contains a 
soma and three dendrites, with sodium, low threshold inactivating calcium, fast cal-
cium, voltage dependent potassium, slow calcium dependent potassium and delayed 
rectifier potassium ionic channels. The thalamic interneuron has a soma and a den-
drite with three type of ionic channels.  

Cortical neurons are arranged in 3 layers (corresponding to the layer III, IV and 
V of the area 3b), with each layer composed of a 32×32 node grid of excitatory and 
inhibitory neurons. Three types of neurons were included: excitatory pyramidal cells, 
fast spiking inhibitory basket cell GABAergic neurons, and burst spiking excitatory 
stellate neurons, in total 3072 excitatory neurons and 1536 inhibitory neurons. Al-
though real cortex contains more types of neurons these were selected as the most 
common.  

Equations describing currents flowing through ionic channels have many pa-
rameters, but they are fixed using experimental values. Connectivity between these 
neurons is matched to the statistical information about real connectivity. Simulation 
of one second of real time processes took less than 4 hours on a personal computer. 
Many properties of normal maps are exhibited by this model, including stable repre-
sentation of hand that has been developed in each cortical layer and in the thalamus 
nuclei. The most precise topographical maps occur in layer IV, and this is also shown 
in the model. Simulation of amputation of a finger showed immediate reorganization 
of the cortical (but not that much thalamic) representations, leading to expansion of 
the representation areas of the intact hand regions. This is followed by a slower im-
provement and consolidation of the new map. When a finger is removed the lack of 
activity from this finger removes inhibition, and the expansion follows. This process 
may be analyzed in all details, including the dynamics of the AMPA, NMDA and 
GABA receptors in the dendrites of model neurons. It appears that the information in 
the NMDA channel increases rapidly after lesion. This may be an important clue for 
pharmacological treatment of patients during rehabilitation.  

Although the model is quite detailed it does not include such important features 
as long-term-potentiation (LTP). Of course the complexity of real neurons is orders of 
magnitude greater. Nevertheless, it is clear that models at this and higher levels of 
details will be more common in future.  

Phantom limbs are experienced by some patients after amputation of arm, hand 
or breast. This curious phenomenon has been studied by Ramachandran (48). In the 
somatosensory cortex representation of hand is adjacent to the face. Patients that 
experienced phantom limb had also rather detailed representation of the hand in sev-
eral places on their face, for example the sensation of touching a given finger could 
be elicited by touching three different well localized spots on the face. In another case 
sensation of touching the removed breast was elicited by touching the ear (49).  

These sensations appears within hours after amputation and evidently shows that 
larger scale reorganization and rapid expansion of the cortical receptive fields took 
place rapidly. Some attempts at modeling this process have been based on self-



 
 
 
 
 
 
 

organizing networks (50) with the reorganization processes driven by noise generated 
by dorsal root ganglion sensory neurons that fire irregularly after injury. Unfortu-
nately this model has not yet been tested. It seems that more experimental data is 
needed to create detailed models of this phenomenon and gain more understanding of 
large-scale reorganization processes. Many questions arise, for example why only 
some patients experience it (due to stimulation of the skin?), or how to slow down the 
rapid reorganization (blocking NMDA receptors? avoiding stimulation o certain skin 
areas through local anesthesia?) to prevent appearance of the phantom limbs that 
create pain and discomfort to many patients. 

Phantom limbs phenomenon is similar to another strange phenomenon, experi-
ence of additional ghost arm parallel to the normal arm. Despite apparent similarity 
the mechanism in this case seems to be quite different. The unitary percept of the 
body after stroke or other lesions may dissociate, creating an experience of additional 
arm that occupies the previous position of the real arm with a time lag of 60–90 sec-
onds. fMRI study of one such stroke patient (51) with a right frontomesial lesion 
showed strong supplementary motor area (right medial wall) activity. This could be 
interpreted by the brain as an intention for movement of a hand that does not exist in 
this position.  

Computational models of visual hemineglect and similar phenomena (52-55) 
may help to explain such experiences. Neglect patients, usually after lesions to the 
right parietal cortex, are not able to see objects in their left visual field if there is an 
object in their right field. In the particularly curious version of neglect, called object-
based visual neglect, patients do not see the left half of each object spread out hori-
zontally in the visual field. Because this is object-based visual impairment attention 
mechanism have to be involved. Deco and Rolls (55) created a model of attention that 
included three areas: primary visual cortex (V1), object recognition areas (inferior 
temporal cortex, IT) and spatial orientation areas (posterior parietal cortex, PP). The 
spatially local lateral inhibition in the parietal and visual cortex produces at the edges 
of each object high contrast effects. If the damage in the parietal cortex increases 
linearly through the left visual field, local peaks in the resulting neuronal activation 
appear only for the right half of each object. There are many new models of attention 
(for example (52,56)) and thanks to the cooperation of experimental observations and 
computational modeling a better understanding of attention and executive function is 
slowly growing.  

 

4. Alzheimer disease 

Alzheimer disease (AD) is the most common neurodegenerative disorder gradu-
ally leading to a global cognitive and behavioral dysfunction. The disease is always 
progressive, without remissions but with great variability: life expectancy ranges 
between 1 and 25 years. The earliest symptoms involve memory degradation, both for 
learning new things and recalling known facts. This is followed by degradation of 
language skills, poverty of thoughts and associations, intellectual rigidity, loss of 
initiative and interest, disturbances in motor and executive functions. In advanced 
stages judgments are impaired, psychotic features may appear (such as paranoid delu-
sions), and personality is disintegrated.  



 
 
 
 
 
 
 

The disease usually attacks first the entorhinal cortex and the adjacent limbic ar-
eas, and then spreads out to the neocortex. Prominent atrophy of predominantly fron-
tal and temporal cortex is observed in neuroimaging studies and large amounts of 
senile plaques and neurofibrilliary tangles are found in the brain. Exact relations be-
tween cognitive decline and changes in the brain are rather complex and still not 
understood. Although knowledge of possible AD causes accumulates real causes of 
pathogenesis are still unknown. There are no reliable clinical tests and definitive di-
agnosis is made only after autopsy. Mild cognitive impairment, involving loss of 
short-term memory, represents an early stage of Alzheimer disease (57). Few drugs 
available specifically for Alzheimer treatment (for example Cognex and Aricept) do 
not slow the progress of disease directly, but are rather aimed at improving and stabi-
lizing memory and cognitive state of the patient, helping to retain and utilize in a 
better way acetylcholine, one of the most important neurotransmitters (cholinergic 
neurons in the basal forebrain are destroyed in the early stages of AD, resulting in low 
level of acetylocholine). Better understanding of the mechanisms and development of 
AD is thus necessary to propose better diagnostic and therapeutic procedures. This is 
a challenge to the neural modeling community because too little is known about the 
progression of the disease.  

The neurofibrillary tangles and senile plaques are clear markers of the Alzheimer 
disease. Neuronal death is probably preceded by loss of synaptic connections. Earliest 
changes in the brain have been observed around the enthorinal cortex and the hippo-
campal formation. The first symptom of the mild cognitive impairment and of the AD 
itself concerns memory. All these facts point to the importance of the memory models 
(58,59) in understanding Alzheimer’s disease. Hippocampus is involved in memory 
consolidation and seems to be an intermediate memory storage that allows for forma-
tion of stable long-term memories without catastrophic forgetting of contradictory 
information (58). Neural models should unravel the relation between changes at the 
cellular level and various clinical manifestations of the disease. Three models of 
pathogenesis of AD have been proposed, all focusing on synaptic processes and their 
role in memory maintenance.  

The “synaptic deletion and compensation” model of Horn et al. (60), developed 
further by Ruppin and Reggia (61), has been motivated by the following experimental 
observations. In the brains of AD patients the density of synaptic connections per unit 
of cortical volume decreases with progress of the disease, while the surviving syn-
apses increase physically in size and thus provide stronger connections. It is likely 
that these synapses are trying to compensate for synaptic deletion. In feedforward 
neural network models pruning of weak synaptic connections is frequently used to 
improve their predictive powers. Pruning allows to forget the accidental details of 
mapping learned from data, while the essential characteristics are captured with sim-
plified network structure using large synaptic weights of the remaining connections, 
necessary for realization of strongly non-linear behavior. How do these two processes 
– synaptic deletion and compensation – influence memory deterioration? What are the 
best compensation strategies that may slow down the memory deterioration process?  

The simplest associative memory models that may be used to investigate such 
questions are based on the Hopfield networks (Fig. 2). Assuming that the synaptic 
matrix Wij determines the strength of connections between neurons i and j, each of the 
N neurons has threshold Θi for firing, and is in one of the two states Vi = ±1, the ex-



 
 
 
 
 
 
 

ternal inputs are Ei, the total activation of neuron ni at the next time moment t+1 is a 
sum of all weighted activations at time t of neurons that connect to it, minus the 
threshold for activation and plus the external input: 
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The simplest network dynamics is defined by taking the sign of the activation: 
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This dynamics has only point-attractor corresponding to the minima of the en-
ergy function: 
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These stationary states are totally determined by the synaptic weights and thresh-
olds, and may be interpreted as the memory patterns of the system: starting with acti-
vation pattern V(t0)=V0 that carries partial information about memorized pattern the 
system will evolve, changing neural activity in a series of steps until at some step the 
activity V(t) does not change any more, reaching one of the memorized states. 

The number of patterns (Vi vectors in the stationary states) that may be correctly 
memorized in the fully connected Hopfield autoassociative memory model is about 
0.14N. Trying to memorize more patterns leads to chaotic, random associations. De-
leting a large number of synaptic connections will cause forgetting of some patterns 
and distortion of others. Assume that a certain percentage d of synaptic connections is 
randomly deleted (in the model their value is fixed at 0). Suppose also that some 
biological mechanism makes the remaining connections stronger. One way to express 
it is W’ij = c(d,k)Wij, where the compensating factor c(d,k)>1 is a multiplicative factor 
depending on d and a parameter k(d), called a compensation-strategy parameter, that 
is fitted to experimental data. Horn et al. (62) proved that taking c(d,k) = k(d)d/(1−d) 
significantly slows the memory deterioration. Depending on the compensation strat-
egy k(d) after the same evolution period various degrees of deterioration are obtained. 
Thus failure of proper compensation for synaptic deletion may explain why patients 
with similar density of synaptic connections per unit of cortical volume show quite 
different cognitive impairments. This approach gives the modeler the freedom to fit 
k(d) function to experimental data, but because the data is missing it simply shows 
what is possible, rather than what really happens in nature.   

There are several problems with such simple model. Hopfield neural networks 
are not plausible from the neurobiological point of view because they require sym-
metric weights, have only point attractors and are trained using non-local learning 
procedures. Compensation quite efficiently maintains memory capacity even when 
more than half of the connections and neurons are deleted, while in the latest stages of 
AD no more than 10% of neurons are dead, but the density of synaptic connections 
may drop below 50% of the normal level. Addressing some of these questions Ruppin 
and Reggia (61), and Horn et al. (62) improved the compensation model in several 
ways, obtaining similar conclusions from other memory models (Willshaw, Hebbian, 
and modified Hopfield networks), with over 1000 neurons used in simulations. Activ-
ity-dependent Hebbian models allow for studying memory acquisition, showing such 



 
 
 
 
 
 
 

effects as faster forgetting of more recent memories. The memory recency effect, 
known in the psychological literature on memory as the ‘Ribbot gradient’, has been 
noticed a long time ago in retrograde amnesia (63-65), and has also been observed in 
Alzheimer's patients. Temporal gradients of memory decline and several other ex-
perimental phenomena characterizing memory degradation in AD patients have been 
recreated in Hebbian models. In such models there is no global error function that is 
optimized, local compensatory mechanisms are sufficient to maintain high capacity of 
memory (62). The way deletion and compensation factors change in time has an in-
fluence on the final performance of the network. Cognitive impairments are therefore 
history-dependent in this model, leading to a broad variability of the AD symptoms 
despite similar levels of structural damage of the brain.  

Synaptic runaway model developed by Hasselmo (66,67) is focused on a differ-
ent phenomenon observed in associative memory attractor networks. To store a new 
pattern in the memory such networks explore first all similar patterns to find out if 
this is indeed a new pattern. If certain memory capacity is exceeded the new pattern 
may interfere with existing ones, creating an exponentially large number of slightly 
different patterns that the system tries to store. This initiates pathological, exponential 
growth of synaptic connections, known as the “synaptic runaway” effect. It is not 
clear whether such an effect exists in biological neural networks, but if it does, it 
should lead to a very high metabolic demands of hyperactive neurons, demands that 
in the longer time period cannot be satisfied. As a result toxic products should accu-
mulate and neurons will die because of excitotoxicity creating senile plaques.    

Synaptic runaway may arise due to excessive memory overload, reduced synaptic 
decay or a low level of cortical inhibition. If external synaptic strength is sufficiently 
large, or if internal inhibition is sufficiently strong, synaptic runaway may be pre-
vented, but after critical storage capacity is exceeded it is unavoidable. This model 
explains some intriguing experimental facts about AD:  

 
• Enthorinal regions (involved in recognition memory) suffer greater degradation 

than cortical areas and are usually impaired at an earlier stage; these regions lack 
internal inhibition present in cortical modules.   

• Cholinergic innervation in dentate gyrus, the primary afferent area to the hippo-
campus, is sprouting in AD patients.  
 
Acetylcholine (ACh) is a neurotransmitter that has complex functions. In dentate 

gyrus it does not influence external afferent synaptic transmission but it selectively 
suppresses the internal excitatory transmission, effectively increasing internal inhibi-
tion. Experiments that proved this were inspired by theoretical considerations of Has-
selmo (67). Thus sprouting of cholinergic innervation may reflect the brain’s attempts 
to stop the synaptic runaway by increasing internal inhibition. Another way to avoid 
this effect could be through separation of learning and recall mechanisms in the hip-
pocampal networks. Perhaps acetylocholine level can switch networks between the 
two modes (68), with high levels present during active waking facilitating encoding 
new information in the hippocampus without interference from previously stored 
information (by partially suppressing excitatory feedback connections), and lower 
levels of ACh during slow-wave sleep facilitating consolidation of memory traces. 



 
 
 
 
 
 
 

Acetylocholine neuromodulation in the CA3 region of the hippocampus is also 
the focus of the Menschik and Finkel model (69-72). The neuroregulatory network is 
quite intricate and severely perturbed in Alzheimer’s disease, involving death of neu-
rons in several nuclei (locus coeruleus, dorsal raphe) that control norepinephrine and 
serotonin levels. ACh is produced (73) in medial septal nuclei and the vertical nucleus 
(diagonal band of Broca). Understanding of pathological effects arising in neuroregu-
latory networks requires detailed, biophysical models of neurons. Menschik and 
Finkel used parallel version o GENESIS to construct quite detailed model of hippo-
campal pyramidal neuron with 385 compartments with ionic channels of several 
types. Although this model was too complex for network computations some conclu-
sions may be drawn even from single neuron simulations. For example, switching 
between learning and recall, corresponding to switching between burst and regular 
spiking, requires high level of acetylocholine that may not be available in hippocam-
pus of the AD patient. Moreover, complete lack of ACh may lead to excitotoxic lev-
els of calcium in dendrites.  

Networks up to 1032 cells were constructed using 51 or 66-compartment neu-
rons, based on the anatomy of the CA3 region of the hippocampus. The network was 
pre-wired in a Hopfield-like way to store some memory patterns, assuming that it has 
already undergone learning. This network behaves as an attractor network, with pat-
terns presented as a series of spikes at the beginning of theta rhythm cycle, progress-
ing to one of the stored cycles that appears as gamma bursts (100Hz) within the theta 
cycle. In a large network 40 randomly chosen patterns of 512 bit each were stored. 
This network helps to assess the neuromodulatory role of acetylocholine on different 
ionic channels. Decline in Ach slows down the intrinsic gamma rhythm, and this in 
turn makes memory retrieval more difficult, giving less time for the network to settle 
in the attractor. Unfortunately after the initial burst of activity this interesting model 
has not been developed further. 

All three neural models complement rather than compete with each other. Simple 
models that can be analyzed in details may be source of inspirations for more precise 
questions that biophysical models may answer. There may be several routes to devel-
opment of Alzheimer Disease: synaptic loss and insufficient compensation should 
lead to AD cases with little structural damage of the brain, while synaptic runaway 
should eventually lead to death of the hyperactive neurons and significant structural 
damage. Both type of AD cases are indeed known and the great variability in the life 
expectancy and manifestations of clinical symptoms is probably a reflection of differ-
ent underlying mechanisms.  

Assuming that computational models reflect real neural mechanisms leads to sev-
eral therapeutic suggestions, summarized in (74) and extended below. They may 
help to slow down the degeneration of synaptic connections and thus the development 
of the disease, at least in its early stages. These suggestions may be tested experimen-
tally, and in view of high variability of the AD symptoms should be matched to indi-
vidual cases.  

If synaptic runaway processes and failure of proper compensation are the cause 
of rapid memory impairment then one should minimize new memory load for AD 
patients. This should involve regular, simple daily routine, and minimization of the 
number of new facts or items that should be remembered. Heavy memory load may 
contribute to the rapid progress of synaptic deletion. Patients should not be allowed to 



 
 
 
 
 
 
 

follow visual, auditory or printed stories, such as the TV news, soap operas or TV 
series that require remembering of many new facts, names and interpersonal relations. 
Sedatives may have positive effect on the memory overload because in the absence of 
strong emotions the limbic neuromodulatory systems does not increase synaptic plas-
ticity, preventing formation of new memories. On the other hand activation of non-
declarative memory, for example by learning new skills, may work in a positive way. 
Engagement in new activity seems to benefit patients with mild dementia. Modeling 
this type of activity has not yet been attempted and it is likely that patients with dif-
ferent types of AD will respond in different ways 

 
• Strengthen the old, well-established memory patterns. 

 
A significant portion of time should be spent on recalling the stories and facts of 

patient’s life with the help of family members. These memories form a skeleton of the 
concept of ‘self’. Antonio Damasio (75) expressed it this way: “... the endless reacti-
vation of updated images about our identity (a combination of the memories past and 
planned future) constitutes a sizable part of the state of self as I understand it”. These 
memories are probably based on strong synaptic connections between cortical col-
umns, with little involvement from limbic inputs required by more recent memories 
(cf. Murre (63,76)). Strengthening old memory patterns related to one’s self is very 
much in line with the “Self-Maintenance-Therapy” (Selbst-Erhaltungs-Therapie) 
proposed by Romero (77) on quite different theoretical grounds and used in treatment 
of the early stages of Alzheimer’s disease. In this therapy patients are required to tell 
stories recalling various events of their life as means to strengthen their self.  

Compensation effects should selectively reinforce strong synaptic connections. 
This may be achieved through a combination of Self-Maintenance-Therapy (including 
family members) with drugs that allow for a short period of emotional arousal in-
creasing synaptic plasticity. 

 
• “Cool the brain”: simplify the brain dynamics to avoid memory interferences.  

 
Formation of new memory patterns or activation of existing memories requires 

repetitive high-frequency reverberations in the neocortex. For example, hearing and 
recognizing a real word leads to a noticeable rise in the EEG frequency, in compari-
son to a pseudoword, i.e. a meaningless combination of phonemes (78). Research on 
rats showed large effects of temperature on hippocampal field potentials (79). Inte-
grated electrical activity of cortical columns gives a measure of the overall activity of 
the brain. The power spectrum obtained from the multi-electrode EEG measurements 
should allow, in the limit of a large number of electrodes, to evaluate this energy. In 
analogy to thermodynamics of systems far from thermal equlibrium one could thus 
define the “brain temperature” and think about the synaptic runaway processes as 
overheating the system. Direct measurements of the brain temperature may also show 
interesting differences between patients. Only recently a non-invasive technique for 
monitoring temperature via “Brain Temperature Tunnel” has been developed (80). 
Monitoring blood flow to the brain is an alternative way to estimate the total energy 
used by the brain.  



 
 
 
 
 
 
 

Blood pressure lowering drugs significantly decrease the risk of dementia, in-
cluding Alzheimer's disease. This may be related to the decrease of overall brain 
temperature. Therefore ‘cooling the brain’, or reducing the average brain temperature, 
should decrease the effects of synaptic runaway and slow down the synaptic deletion 
processes. It may be achieved with the help of biofeedback, yoga meditation or other 
deep relaxation techniques. In particular the alpha-biofeedback is aimed at reducing 
the average EEG frequency (81), or achieving the ‘alpha relaxation state’. Such men-
tal activities as mantra repetition, chanting, visualization or contemplative absorption 
should lower the brain temperature, stopping the background thoughts and other 
processes that may lead to the synaptic runaway. There is a lot of evidence in medical 
literature showing various health benefits of such activities, and neuroimaging studies 
detailing the effect of relaxation response and meditative practices (82). Therefore in 
the early stages of AD it may be worthwhile to experiment with various relaxation 
techniques to slow down the development of the disease.  

It should be possible to draw more detailed therapeutic suggestions from better 
models related to Alzheimer’s disease. The existing models should be extended in 
several directions. Human memory involves interactions between hippocampal for-
mation, neocortex and neuromodulatory systems, regulating plasticity of synapses 
depending on the emotional contents of the situation (63,76,83). Such models have 
been initially created only at the conceptual level, but computational simulations 
followed (64,65). More realistic memory models that would allow studying the influ-
ence of different neurotransmitters on the inter-module inhibition and between-
module excitation should help to evaluate potential benefits of new drugs. Models 
based on simplified spiking neurons are needed to make direct connections with neu-
rophysiology. Many associative memory models based on simplified spiking neurons 
have been created recently and could be used in a near future to study the Alzheimer’s 
disease and other memory-related diseases. Other approaches to AD are discussed in 
(84).  

5. Conclusions 

Neuroinformatics covers not only databases and computer software to analyze 
data from neuroscience experiments, but its ultimate goal should be an integration of 
all information about the brain (a good example here is the Visome platform (85)). 
This should include data from neuroscience experiments and tools for analysis of 
such data, but also tools for and results of computer simulations that provide models 
for various brain functions and dysfunctions. Simple neural models based on small 
number of assumptions allow for qualitative understanding of experimental observa-
tions in neuroscience and may help to generate interesting ideas for new experiments. 
Biophysical models capture sufficient amount of details to answer in silico precise 
questions that may be very difficult to answer experimentally.  

A few models selected for this review show the potential of different approaches 
to neurological and psychiatric disorders, including Parkinson’s and Alzheimer dis-
ease. An interesting area of neural modeling concerns reorganization processes fol-
lowing focal damages of neocortex (stroke, lesions) and damages to afferent path-
ways (amputation of limbs). Some therapeutic suggestions may be offered for faster 
recovery of sensorimotor competence after stroke (43), reduction of pain in phantom 



 
 
 
 
 
 
 

limb phenomena (44) and even such strange neuropsychological syndromes as the 
object-based unilateral hemineglect (55). Although therapeutic suggestions drawn 
here from AD models are speculative they are also worth testing.  

Computer simulations appeared only quite recently as tool for modeling real 
brain processes. In view of the great complexity of the brain and lack of detailed 
understanding of its functions skepticism towards such models may seem to be justi-
fied. There are many fundamental problems related to the convergence of computa-
tional models, hypothesis on which they are based, selection of minimal neural mod-
els that capture relevant phenomena and are still amenable to computer simulations. 
Surprisingly, even very simple neural models of associative memory show a number 
of features that reflect many properties of real biological memories known from cog-
nitive psychology. Therefore even rough neural models may show interesting proper-
ties, elucidating some brain mechanisms. 

Neural models provide a new level of reasoning about brain diseases, level that 
cannot be adequately described in the language of psychiatry or psychopharmacology 
(30). They show how difficult it is to draw conclusions about causal mechanisms if 
only behavior is observed. Due to the limited capacity of human working memory 
verbal models, dominating in neuroscience, have to be relatively simple, and cannot 
incorporate too many factors and interactions. Computational models do not have 
such limitations and it is possible that such models will eventually capture all neuro-
science knowledge, becoming repositories of collective effort of many experts (85). 
However, so far most computer simulations are aimed at explanation of a single ex-
periment, or a single type of phenomena (with notable exceptions (86)), and they are 
frequently based on in-house computer algorithms and programs. Creation of flexible 
simulators that provide in silico models for a wide range of phenomena is a great 
challenge for the near future. There are already general purpose low-level modeling 
systems, such as NEURON or GENESIS, that provide models of specific dendrites, 
axons, whole neurons or small networks, but in most cases each new model has to be 
laboriously constructed from low-level elements.  

There are two intermediate-level software packages designed for construction of 
computational models of brain functions. The PDP++ approach of O’Reilly and 
Munakata (26) has been used mostly to model different aspects of normal brain func-
tions, but was also used recently for cognitive deficits in Parkinson’s disease (40). 
The Neural Simulation Language (NSL), developed by Weitzenfeld, Arbib, and 
Alexander, provides another simulation environment for modular brain modeling, 
including the anatomy of macroscopic brain structures (87). It offers object-oriented 
language applicable to all levels of neural simulation, providing high level program-
ming abstraction that use the Abstract Schema Language to create hierarchies of mod-
ules from the leaky integrator and other types of neural elements. Development tools 
are provided for visualization and analysis of models.  

Availability of these type of neural simulators will eventually lead to develop-
ment of a community of experts who will use them as primary tools for analysis and 
understanding of experimental data, as well as generating new ideas about normal and 
pathological brain functions. On the hardware side integrated circuits suitable for 
“neurophysiological” experimentations have already been constructed (88) and the 
whole neuromorphic sensory systems may slowly be developed (1). Computational 



 
 
 
 
 
 
 

models are certainly going to play an important role at every step of the long way 
leading to full understanding of the brain.  
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