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Abstract— Relations between similarity-based systems, evaluat-
ing similarity to some prototypes, and fuzzy rule-based systems,
aggregating values of membership functions, are investigated.
Similarity measures based on information theory and probabilis-
tic distance functions lead to a new type of membership functions
applicable to symbolic data. Fuzzy membership functions on the
other hand lead to a new type of distance functions. Several
such novel functions are presented. This approach opens new
ways to generate fuzzy rules based either on individual features
or on their combinations used to evaluate similarity. Transition
from prototype-based rules using similarity and fuzzy rules
is illustrated using artificial data in two dimensions. As an
illustration of usefulness of prototype-based rules very simple
rules are derived for leukemia gene expression data.

I. I NTRODUCTION

Relationships between fuzzy systems and similarity based
systems seem to be largely unexplored. Investigation of these
relationships is quite fruitful, leading to new methods in both
fields. Fuzzy models usually start from membership functions
(MFs) defining linguistic variables. While this may be useful
if the application domain is close to human experience, or if
the goal of modeling is to mimic human reasoning, in most
applications MFs should be derived from data together with
logical rules, optimizing the performance of the system. Some
neurofuzzy systems can do this [1], [2], [3]. Such systems
employ a network of nodes (called “neurons”), with each node
implementing a separable function, that is calculating products
of one-dimensional MFs. A fuzzy rule is an approximation to
some prototype elementary decision making process. Training
of neurofuzzy networks optimizes these decisions at three
levels: membership functions, rules, and the aggregation of
conditions that form the conclusion.

In the simplest probabilistic and RBF networks with Gaus-
sian functions all training data are used as a reference, cor-
responding to a large number of strongly overlapping fuzzy
rules. To be comprehensible prototype-based rules should use
a minimal number of rules with little overlap. In both network
and fuzzy approaches the form of the MFs is fixed, only
their parameters, and sometime their number (if constructive
networks are used) are optimized. The system designer selects
from a few types of elementary functions that determine the
type of decision borders that the system will provide, and thus

determine the complexity of the final system [1], [2], [4].
In similarity-based methods [5] the training set provides

the reference examples and the similarity of (or distance to)
new cases is used for evaluation. These methods may be
used in more general situation than neural or fuzzy methods
because they do not require numerical representation of inputs
with fixed number of components. Similarity between complex
objects (such as proteins, text documents, software codes or
organization of financial institutions) may be determined using
various quantitative and qualitative procedures. If a small
number of prototype reference cases that allow for reliable
classification using a few features in the distance function
can be found they may be used to formulate comprehensible
similarity-based rules. Such methods may also be presented
in a network form [6], providing an interesting alternative to
neurofuzzy approach.

How do the fuzzy rules that provide the same decision
borders as those resulting from similarity to prototypes look
like? In the simplest case using Euclidean distance metric
and a single prototype per class hyperplane decision borders
are created, leading to a linear classification machine. How
to create a set of fuzzy rules with identical decision borders
to that of prototype-based system? What type of similarity
measures correspond to the typical fuzzy functions and vice
versa? Are prototype-based rules always equivalent to some
sets of fuzzy rules? These questions are addressed below.

In the next section relation between similarity and fuzzy
systems are presented, and probabilistic, data-dependent simi-
larity measures leading to prototype rules that have no simple
equivalents in fuzzy rules introduced. Some examples illus-
trating the relations between fuzzy rules and prototype-based
systems are shown in the third section. Very simple prototype-
based rules are found for leukemia gene expression data. The
paper concludes with some general remarks on prototype-
based systems.

II. PROBABILITY, SIMILARITY AND FUZZY SETS

Fuzzy setF is defined by the universeX and the mem-
bership functionsχF(X), specifying the degree to which
elements of this universe belong to the setF . This degree
should not be interpreted as probability [7] and in fact at
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least four major interpretations of the meaning of membership
functions may be distinguished [8]. One natural interpretation
is based on the degree to which all elementsX ∈ X are similar
to the typical (orχF (X) ≈ 1) elements ofF . From this point
of view fuzzy modeling seems to be a special case of similarity
modeling, field that have not yet been fully developed. On
the other hand fuzzy models are quite successful and may
contribute to new similarity measures. Relations between fuzzy
rules and similarity to prototypes are worth of exploration.

An analogy with human object recognition is quite fruitful.
Perceiving and recognizing an object requires attention to be
paid to its most characteristic features. First feature valuesXi

are measured by the senses with relatively high precision (for
example, physical parameters of sound), and then primary and
secondary sensory cortex filters these measured values creating
higher-order receptive fields (such as phoneme perception),
integrating spatio-temporal patterns. In fuzzy modeling each
featureXi of an objectX is filtered through a large receptive
field Fij , defined by a membership functionµFj (Xi). Simple
MFs, such as triangular, trapezoidal or Gaussian, are used to
model the degree to which some valueX i belongs to the
receptive fieldFij . Comparing to the sophisticated processing
of sensory signals by the brain this is a very crude approach
in which larger receptive fields are obtained directly from in-
dividual features using membership functions, instead of non-
linear combinations of several features. Brain-like information
processing may of course be more accurately modeled using
hierarchical fuzzy systems.

Several higher-order features (in the simplest case defined
by their membership values) are aggregated together to eval-
uate similarity to known objects or memorize new objects.
A general form of prepositional classification rule may be
formulated in the following form:

IF X ∼ O(i) THEN Class membership isχCj (X) (1)

The operator∼ represents similarity determining the mem-
bership valuesχCj (X) in classesCj to which objectsO(i)

typical for this class belong,χCj (O
(i)) ≈ 1. The similarity

operator may have different interpretations; in fuzzy logic
it means “belongs to” in the fuzzy sense. Rules partition
the feature space into areas whereχCi(X) > χCj (X), that
is similarity to objects from different classes dominates. In
fuzzy logic the overall similarity is calculated as a T-norm
(frequently a product) of membership functionsµ ji(Xj) for
relevant features [2], [4], [7].

The crisp form of logical rules (L-rules) is obtained when
subsets of nominal values are used, or for continuous features
rectangular MFs are used,µji(Xj) = 1 if Xj ∈ [Xji−, Xji+]
and zero outside. For most T-norms the feature space is
then partitioned into hyperrectangles. Fuzzy rules (F-rules)
with popular triangular or Gaussian MFs provide more
complex decision borders, depending on the T-norm used. An
alternative way to partition the feature space and classify the
data is to use a set of prototype-based rules (P-rules) defined

by minimal distance:

IF P = arg minP′ D(X,P′) THAN Class(X) = Class(P),

whereD(X,P) is a dissimilarity function (usually a dis-
tance function). For many distance functions decisions borders
have polyhedral shapes, providing piecewise-linear partition-
ing of the feature space.

In contrast to pattern recognition methods such as thek-
nearest neighbor method (k-NN) that use many reference vec-
tors, the goal here is to find a small number of prototypes and
simple similarity functions that can give accurate classification
and understanding of the problem. Similarity functions based
on Minkovsky’s distance are very useful:

D(X,P)α =
N∑

i=1

Wi|Xi − Pi|α (2)

where Wi are feature scaling factors, calculated by the
standardization procedure, or treated as adaptive parameters
that are optimized to achieve the best classification results.
For large exponentsα contours of constant Minkovsky
distance become rectangular. In the limit of the infinite
exponent values Chebyshev (orL∞ norm) distance function
is obtained,D∞(X,P) = maxi |Xi − Pi|, with rectangular
contours of constant values. Introducing thresholdsdP , rules
of the form:

IF D∞(X,P) ≤ dP THEN C,

are equivalent to conjunctive crisp rules:

IF X1 ∈ [P1 − dP1/W1, P1 − dP1/W1] ∧
... ∧ [Pk − dPk/Wk, Pk − dPk/Wk] ThenC

These rules may not cover the whole feature space, while
minimal distance rules always partition the whole space.
Although systematic relations between various similarity func-
tions and membership functions and the S and T-norms in
fuzzy logic remain to be investigated some remarks are given
below.

Any T-norm, for example a product or a minimum of the
membership functionsµ(Xi − Pi) centered atPi (triangular,
Gaussian and other MFs have additional parameters besides
the center), may always be used as a similarity function. For
example, using the product normS(X,P) =

∏
i=1 µ(Xi −

Pi). Similarity functions may be related to distance functions
by many transformations, but here only exponential transfor-
mations are considered,S(X,P) = exp(−D(X,P)). Addi-
tive distance functions are then converted to the multiplicative
similarity factors (membership functions). For example, Eu-
clidean distance functionD2(X,P)2 =

∑
i Wi(Xi − Pi)2

is equivalent to a multivariate Gaussian similarity function
S2(X,P) = exp(−||X − P||2) centered atP with ellip-
soidal contours of constant values||X − P|| =const, equal



to the product of univariate Gaussian membership functions
S2(X,P) =

∏
i G(Xi, Pi).

Using exponential transformation fuzzy rules (F-rules) with
product norms may always be replaced by prototype-based
rules (P-rules) with appropriate similarity functions. On the
other hand all additive distance functions may be replaced
by product T-norms with membership functions given by
exponential one-dimensional distance factors. For example,
the Manhattan distance functionD1(X,P) =

∑
i=1 |Xi −Pi|

is equivalent to a product ofexp(−|Xi − Pi|) membership
functions. Many other distance measures are useful (see [9],
such as the Canberra distance:

DCa(X,Y)
∑

i=1

|Xi − Yi|/|Xi + Yi|, (3)

used in the next section. These equivalences lead to new
types of membership functions that have not been previously
considered. For non-additive distance functions such simple
equivalence may not exist.

More general form of rules are obtained if more than one
prototype is used in the rule condition: IF amongk most
similar prototypesPi classC is dominating thanC(X) =
C. Such rules should be useful in approximation problems,
but for classification they are rather difficult to understand
and require more prototypes (at leastk) per class. Oblique
distribution of data may require linear combination, or non-
linear transformation, of input features [9]. The meaning of
rules build with such features may be difficult to comprehend.
Convex, polyhedral shapes obtained from a union of halfspaces
defined by hyperplanes also do not lead to comprehensible
rules.

An interesting group of distance measures is based on the
Value Distance Metrics (VDM) [9], [10]. A value difference
for featureXj in a K-class problem is defined as:

dV (Xj , Yj)q =
K∑

i=1

|p(Ci|Xj) − p(Ci|Yj)|q (4)

where p(Ci|Xj) = Ni(Xj)/N(Xj) is the number of times
Ni(Xj) the valueXj of feature j occurred in vectors be-
longing to classCi, divided byN(Xj), the number of times
the valueXj occurred for any class. The distance between
two vectorsX,Y with discrete (nominal, symbolic) elements
is computed as a sum of value differencesDV (X,Y)q =∑N

j=1 dV (Xj ,Yj)q. Distance is defined here via a data-
dependent matrix with the number of rows equal to the
number of classes and the number of columns equal to the
number of all attribute values. Since VDM is additive P-
rules may be replaced by F-rules with membership functions
µV DM (Xi − Pi) = exp−dV (Xi,Pi) obtained by exponen-
tial transformation. This opens the possibility for principled
derivation of MFs from symbolic-valued data.

The probabilitiesp(Ci|Xj) needed for VDM calculation
may be replaced by mutual information between the value
of a feature and the class label. For continuous inputs proba-
bilities are computed either by discretization (Discrete Value

Difference Metric, DVDM), or via interpolation (Interpolated
Value Difference Metric, IVDM) (see [9], [10] where other
types of VDM functions are also presented). P-rules based on
VDM distances in continuous case may still be replaced by F-
rules by creating MFs that approximate their decision borders.
Distance functions will be converted to similarity functions
and replaced by products of MFs (only product T-norm is used
in this paper). VDM distance functions are useful especially
for symbolic features, where typical distance functions may
not work so well.

III. PEDAGOGICAL ILLUSTRATION

Two-dimensional models will be used first to visualize
decision borders in order to understand P-rule systems. P-
rules may be used for symbolic data, including sequential
data and data with complex structure, and it would be fairly
easy to generate rules for a real-world data. However, it is
quite important to understand first how this approach works
in simple cases. Therefore in Fig. 1 three clusters, each with
50 vectors generated from a Gaussian distribution, were used.
Prototypes for each cluster have been selected; for the 3-class
problem one per class, although this could also represent two-
class problem with two prototypes assigned for one of the
classes.

Similarity functions corresponding to the Minkowski’s dis-
tance measuresD(X,P)α, for different α, after exponential
transformation become products of membership functions cen-
tered on selected prototype. Contours of constant distance are
displayed, as well as the decision borders partitioning the
feature space into areas where the distance to one of the
prototypes is closer than to the others. P-rules that are based
on thresholds assign to each prototype only those vectors
that are inside some contour and thus may leave areas of
the feature space that are far from prototypes not covered
by any rule. Classification probabilities may be parameterized
for each rule using these thresholds. If the winning prototype
(most similar) is selected independently of the threshold,
partitioning the whole feature space into areas assigned to each
prototype. In either case the shape of decision areas is clearly
displayed. Such analysis is unfortunately rarely done for neural
or neurofuzzy systems, making it difficult to understand what
these systems really do and how do their decision borders look
like.

For small α (Fig. 1, upper row) MFs have exponential
character with sharp peaks, and piece-wise linear decision
borders composed of several segments are created. Euclidean
distance (or more precisely, squares of Euclidean components)
lead to Gaussian membership functions (Fig. 1, middle row)
giving linear decision borders. Increasingα leads to more
steep MFs (1, bottom row), withα → ∞ giving rectangular
contours for crisp logic.

The number of unique membership functions for each
dimension is equal to the number of prototypes. Positions of
the prototypes are reflected in the centers of the MFs. The
width of these functions result from scaling factorsW i that are
used for each feature. These factors may be used as adaptive
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Fig. 1. Contours and decision borders for a 3-class problem using Minkowski
distance function withα=1, 2, 10, and the MFs for the two dimensions derived
from these distances.
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Fig. 2. Contours and decision borders for a 3-class problem using weighted
Minkowski distance function withα=2 andWi = 1, 2, 3, and the MFs derived
from these distances.

parameters; small value ofWi corresponds to a very flat MF
that covers the whole data, and thus provides a rule condition
that is always true and therefore may be deleted. Changes of
decision borders that result from scaling are quite dramatic,
as is evident in Fig. 2. Even for Eculidean distance functions
decision borders become non-linear. They are recreated by
fuzzy rules with products of MFs if in the defuzzification
process the rule with the highest activation is take as a winner.

Most of fuzzy logic systems use a few typical membership
functions such as triangular, trapezoidal or Gaussian. Trans-
formation of distance functions into similarity functions leads
to new types of MFs of different shapes. For example, using
Canberra distance function (popular in the nearest neighbor
pattern recognition methods [5]) asymmetric MFs are created
(Fig. 3).

The inverse transformation, going from membership func-
tions to distance functions, is also interesting. Gaussian MFs
lead to the square of Euclidean distance function, and all bell-
shaped MFs will show similar behavior. Membership functions
of triangular or trapezoidal shapes do not have an equivalent
among the commonly used distance functions. Products of
triangular functionsT3(x − xm; ∆x) equal to zero outside
xm±∆x interval and to 1 forx = xm, correspond to sums of
distance functionsd3(x−xm; ∆x) that are infinite outside this
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Fig. 3. Contours of a 3 class problem for the square of Canberra distance
function and the MFs derived from these distances.

interval and behave like− ln(1+(x−xm)/∆) for x ∈ [xm−
∆x, xm] and− ln(1 − (x − xm)/∆) for x ∈ [xm, xm −∆x].
Thus fuzzy logic rules with triangular MFs are equivalent to
P-rule system with prototypes centered at the maxima of the
products of MFs andD3(X − Xm; ∆X) distance function
(sum of d3(x − xm; ∆x) components). Complex neurofuzzy
systems are frequently constructed [1], [2] without checking
what type of decision borders such systems provide. Obviously
understanding of data without such analysis, just by inspection
of MFs and rules, is difficult.

To verify this equivalence in practice 20 points for each of
the 3 Gaussian distributions centered at the prototypes shown
in Fig. 1 has been generated, and the Adaptive Neuro-Fuzzy
Inference System [11] was used to model this data using
triangular membership functions. In Fig. 4 decision borders
and MFs generated in this way are presented, together with
the equivalent distance functions.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.4

0.6

0.8

1

1.2

1.4

1.6

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

in1

D
eg

re
e 

of
 m

em
be

rs
hi

p

in1mf1 in1mf2in1mf3

0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

in2

D
eg

re
e 

of
 m

em
be

rs
hi

p

in2mf1 in2mf2in2mf3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

Fig. 4. Decision borders of fuzzy logic rules with triangular MFs, and
corresponding prototypes and distance functions for each prototype.

The same data has been used to find 3 prototypes using
the LVQ approach. Fig. 5 presents decision borders for P-
rules, together with the membership functions derived from
the Euclidean distance measures. They are essentially identical
with those found by the ANFIS system.

It is also interesting to see how VDM measure works
for such continuous-valued data. The VDM distance measure
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Fig. 5. 3 Gaussian distributions, with Euclidean distances from their centers,
and the membership functions derived from these distances.

depends on details of discretization (DVDM method) or inter-
polation (IVDM method). Naive discretization with 9 bins of
equal width leads to the decision contours and membership
functions shown in Fig. 6. Numerical artifacts related to
the estimation of probabilities required for calculation of
VDM distances may manifest themselves in rather complex
decision borders, leading to a poor approximation of optimal
borders. With sufficient number of points to estimate prob-
ability distributions good results may be achieved even with
naive discretization, but with small number of points better
discretization methods should be used, and various smoothing
algorithms or Parzen window techniques will be helpful. Nev-
ertheless even with only 20 points and simple discretization
the interpolated IVDM approach generated acceptable decision
borders. MFs discovered by IVDM have smooth trapezoidal
shapes that may be obtained by a difference of two error
functions (erf) or logistic functions [13]. Thus one way of
using VDM distances is to generate approximate shapes of
membership functions and fit some analytical functional form
that may be further optimized.

IV. RULES FORLEUKEMIA GENE EXPRESSION DATA

The Leukemia gene expression data [12] has been analyzed
looking for best prototype for each of the two classes, acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML). Distinguishing between these two leukemias is con-
sidered to be challenging because their appearance is highly
similar [12]. 7129 gene expression features from microarray
experiments are given for each case. The “neighborhood anal-
ysis” method developed in the original paper finds 1100 genes
that are correlated with ALL-AML class distinction. Prediction
is based on a rather complex method that assigns weights to the
most useful 50 genes and than calculates “prediction strengths”
(PS) as a sum of votes with threshold 0.3. Training was done
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Fig. 6. Contours of a 3 class problem defined by Gaussian distributions.
Contours of constant densities calculated with IVDM and DVDM distance
functions and the appropriate membership functions derived from this distance

on 38 samples (27 ALL and 11 AML), using the leave-one-out
method to set parameters, and testing was done on 34 samples
(20 ALL and 14 AML). As a result 36 samples were correctly
predicted and for two samples PS was below the critical 0.3
threshold. 29 of 34 test samples had large correct PS (median
0.77).

Using logical rules with a single condition based on thresh-
old value for each of the 7129 features identified one feature
for which no errors are made on the training data, two features
that make a single error, and 14 features that make 2 errors.
Since the best feature has quite narrow gap between the two
classes 3 best features were taken to generate prototypes,
optimizing them using the LVQ approach. Resulting P-rules
use VDM metric and one prototype per class, making no errors
on the training data, and only 3 errors on the test data.

Creating membership functions from data-dependent VDM



distance functions allows for a discovery of a “natural” MFs
for problems with symbolic or nominal attributes. VDM mea-
sure can be used with continuous attributes after discretization
of the training data features. Application of this measure to
purely symbolic data, such as searching for promoters in the
DNA strings [16], gave excellent result that may be reproduced
using fuzzy rules derived from a few prototypes. Using 21
prototypes gives only 5 errors in the leave one out test. The 21
prototypes include 9 for the promoters (positive) class and 12
for the non-promoters (negative) class. Each of the prototype’s
positions was adjusted using LVQ algorithm. Lower number of
prototypes leads to an increase in the number of missclassified
vectors; two prototypes per class give already 13 errors.

V. CONCLUSIONS

Neurofuzzy systems generate fuzzy rules and optimize
membership functions [1]. Selection of prototypes and features
together with similarity measures offers new, so far unexplored
alternative to neurofuzzy methods. Duality between similarity
measures and membership functions allows for generation of
prepositional rules based on individual membership functions.
Fuzzy rules apply large receptive fields (membership funci-
tons) to these individual features, combining them later. P-
rules in their natural form first create a combination of fea-
tures (via similarity functions) and apply various membership
functions to this combination. Neurofuzzy methods use input
vectors defined in fixed-dimensional feature spaces. Similarity
may be evaluated between objects with complex structures
that are not easy to describe using a common sets of features.
In particular the use of probabilistic, data dependent distance
functions allows for definition of membership functions for
symbolic data (such as the sequential DNA or protein strings)
that may be difficult to derive in other way.

Experiments in cognitive psychology show that human
categorization is based on exemplars and prototypes; logical
rules are rarely used to define natural categories [14]. In the
approach presented here similarity functions are used to model
the importance of different features in evaluating similarity
between the new case in relation to stored prototypes. Multi-
plicative similarity factors may easily be converted to additive
distance factors and vice versa. Although similarity measures
provide great flexibility in creating various decision borders
this may turn to be a disadvantage if our primary goal is to
understand the data (neurofuzzy approaches have of course the
same problem). Optimized similarity measures may not agree
with human intuition. In such cases larger number of prototype
examples with simpler similarity measures may be a better
solution. An interesting possibility is to use the prototype-
based rules to describe exceptions in the crisp or fuzzy logic
systems.

Rule-based classifiers are useful only if the rules they use
are reliable, accurate, stable and sufficiently simple to be
understood [13]. Prototype-based rules seem to be a useful
addition to the traditional ways of data explanation based on
crisp or fuzzy logical rules. They may be helpful in cases
when logical rules are too complex or difficult to obtain. A

small number of prototype-based rules with specific similarity
functions associated with each prototype may provide complex
decision borders that are hard to approximate using logical
systems. Such simple rules have been recently generated for
medical datasets using heterogeneous decision tree [15]. A sin-
gle rule P-rule for the Wisconsin breast cancer data classifying
as malignant cancer all cases that are closer to prototype case
(taken as one of the training cases) than a certain threshold
achieves 97.4% accuracy (sensitivity 98.8% and specificity
96.8%). The accuracy in this case is at least as good as that
of any alternative system tried on this data. Results obtained
here for the artificial data, leukemia gene expression and
DNA promoters data also confirm the usefulness of P-rules.
Combining various feature selection and prototype selection
methods with similarity functions leads to many interesting
algorithms. Systematic investigation of various membership
functions, T-norms and conorms, and their relation to distance
functions is under way.

We are confident that algorithms for generation of P-rules
will prove to be competitive to the existing neurofuzzy algo-
rithms and will become an important addition to the methods
of computational intelligence.
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