
VARIABLE STEP SEARCH ALGORITHM FOR MLP TRAINING

 Mirosław Kordos Włodzisław Duch

 Faculty of Automatic Control, Department of Informatics
 Electronics and Computer Science Nicolaus Copernicus University,Toruń, Poland
 The Silesian University of Technology and School of Computer Engineering
 Gliwice, Poland Nanyang Technological University, Singapore

 www.phys.uni.torun.pl/~duch

ABSTRACT
The variable step search algorithm is based on a simple
search procedure that changes one network parameter at a
time. Visualization of learning trajectories and MLP error
surfaces is used for the algorithm design and optimization.
The algorithm is compared to three other MLP training
algorithms: Levenberg-Marquardt, scaled conjugate
gradient, and training based on numerical gradient.

KEY WORDS
neural networks, MLP, search algorithms, learning
trajectory

1. Introduction

The search-based algorithms for multi-layer perceptron
(MLP) training are based on the idea of changing network
parameters (weight and biases) and checking the influence
of such change on the mean-square error (MSE), or
another error measure. In contrast to backpropagation and
other training algorithms that use analytical gradients
search based algorithms impose no restrictions on transfer
functions, error functions or neural connection structures.
In particular transfer functions do not have to be
differentiable.

Many variants of search algorithms are possible. One
of the simplest from the search-based family called
variable step search algorithm (VSS) is presented here. It
changes one weight at a time and roughly searches for a
minimum of the error along the weight direction (bias is
considered here to be on of the weights). VSS algorithm
does not calculate gradients, but use certain properties of
MLP error surface that impose similar changes on the
same weight in two successive training cycles.

In the paper we consider only standard 3-layer MLP
networks with sigmoidal transfer functions in hidden and
output layer trained for classification tasks using MSE
calculated on the entire training set as performance
measure. The network structure is fixed during the
training.

Many papers compare new algorithms with standard
gradient backpropagation. Instead we compare VSS not
with the algorithm that was developed as first but with
algorithms that are considerd to be most effective as
Levenberg-Marquardt algorithm and scaled conjugate
gradient.

2. Training Algorithms

2.1 Variable Step Search Algorithm (VSS)

The simplest search-based algorithm works in the
following way: in one training cycle the value of dw is
added to or subtracted from a single weight w. If the error
decreases after the change then the change is kept,
otherwise it is rejected. Then dw is added or subtracted
from the next weight and again the error is calculated,
until the changes of all weights are examined. dW maybe
decreased each training cycle. The simplest search-based
algorithm was also used for rule extraction from MLP
network with not fully connected layers [1].

VSS is a modified version of that algorithm, in which
dw is not constant, but dynamically adjusted
independently for each weight during a rough
minimization in each weight direction. VSS was designed
taking the advantage of MLP error surface properties that
its steepness in different directions varies ranks of orders,
and the ravines in which the MLP learning trajectories lay
are usually curves, slowly changing their direction [2-5].
Basic on the properties we can expect that optimal dw for
the same weight in two successive training cycles will not
differ much while dw for different weights in the same
training cycle may differ ranks of order.

In each training cycle i the first guess of dwi[w] for a
given weight w might be the value dwi-1[w] that the
weights changes about in the previous training cycle.
However the detailed experimental analysis of the
algorithm behaviour lead to the conclusion that for most
cases the least number of calculations is obtained when
the first guess is dwi=(0.33÷0.37)dwi-1, in spite that
statistically the ratio dwi/dwi-1 is close to 1.

Fig. 1. shows a diagram for determining dw of a single
weight in one training cycle. Before the training starts the
weights are initialized with random values from the
interval (-1;1). (Initializing all hidden layer weights with
zero values and setting large d0 is a good way for feature
reduction in the first training cycle. The larger d0 (0.5, 1,
2) the more features are eliminated from further training.
After the first training cycle all hidden weights that are
still zero are pruned and d0 is set to a smaller value.)

In the first training cycle d=d0=0.25. Since dw0[w]=0,
for each weight w in the first training cycle the first guess

START

dw(i-1)=0

d=c*dw(i-1)

NE<OE

d=h*d

Y

d=d0(1-exp(-const/i)

NY

dw=d
N

d=-d

NE<OEdw=0

N

N Y

d=d/h Y

YN

NE<OE
|w|<max_w
|d|<max_d

n=n+1

n<max_n

D=d
d=2D/(h+1)

d=0.5D*(h+1)

NE<OE
Y

N

dw=d

NE<OEdw=d

dw=d

Y

d=D

N

1

2

4

7

3

5

6

10

8

9

11

12

13

14

15

n=1

n=1

Fig. 1. Determining a single weight value in one training cycle of the
Variable Step Search Algorithm

is dw1[w]=d0. The ravine on the error surface is narrow
close to the algorithm starting point. Thus setting d0>0.5
frequently causes that the trajectory cannot well fit into
the ravine bottom and some weights oscillate while others
do not change at all during some initial training cycles
what results in slowing down the training.

The VSS algorithm follows (Fig. 1):

for i=1 to NumOfTrainingCycles do begin
for w=1 to NumOfWeights do begin

1: If dwi-1[w]=0 then goto 3.
2: The value of c*dwi-1[w] (experimentally determined
optimal c=0.33÷0.37) is added to the weight w.
3: If the weight w did not change in the previous training
cycle try to add (or subtract) to it a smaller value
d=d0*(1-exp(-const/i). where i is the training cycle
number. Optionally the weights can be frozen.
4: If the new error NE after the change is smaller than old
error OE before the change then the direction of the
change is correct, goto 7.

5: otherwise change the direction of search d=-d.
6: If the new error NE after the change is not smaller than
old error OE before the change then do not change the
weight, take the next weight and goto 1.
7: Search for an approximate minimum along this
direction; set d=h*d (experimentally determined optimal
h=2.0÷2.5).
8: If the new error NE after the change is smaller the than
old error OE before the change, |w|<max_w and
|dw|<max_dw then goto 9 else goto 10 (maximal
acceptable values for a single weight max_w and for a
single weight change max_dw given in order to prevent
excessive weight growth, the values are optional and can
be set to infinity).
9: If n<max_n goto 7. max_n is given to prevent the loop
through points 7-9 from being executed too many times.
(experimentally determined optimal max_I=4 when h=2)
10: set d=d/h.
11-15: Optional steps. The error value is calculated in two
additional points that are the geometric mean of d and d/h
and of d and d*h. The best value of the two points and d
becomes dW. In most cases points 11-15 do not need to be
used. h=2 assures a maximum difference between dwi[w]
and the distance from wi-1 to the error minimum in the
direction w of 50%, what in most cases providing the
fastest network learning. Finding minima with greater
precision could also be done by setting h to a smaller
value but that slows down the training more

if error<desired_error then exit;
end;
end;

On average the error is calculated about 3 times while
determining a single weight value in one training cycle.
Since only one weight is changed at a time, the signals do
not need to be propagated through the entire network to
calculate the error, but only through the fragment of the
network in which the signals are different before and after
the change. The remaining signals incoming to all neurons
of hidden and output layers are remembered for each
training vector in an array called “signal table”. The
signals must be propagated through the entire network
only once at the beginning of the training thus filling in
the signal table. The dimension of the signal table is
Nv(No+Nh) where Nv is the number of vectors in the
training set and Nh and No the number of hidden and
output neurons. After a single weight is changed only the
appropriate entries in signal table are updated. Also the
MSE error of each output neuron is remembered and do
not need to be calculated again if a weight of another
output neuron is changed. Using the signal table causes a
significant speedup of the training, especially for bigger
networks. For the network 125-8-2 the speed up is 25
times and for the network 4-4-2 two times.

2.2 Numerical Gradient (NG)

NG algorithm developed by us [2] has many common
features with the Variable Step Search Algorithm. The
training algorithm consists of two stages: finding the
gradient direction and finding the minimal error along this
direction.

To find the gradient direction, a constant value dw is
added to each weight and the E[w+dw] calculated. If it
decreases, then the component of the gradient direction
V[w] is calculated as:

V[w] = η [(E[w] − E[w+dw]) / E[w]]

The same value ∆w is subtracted from the weight w and
the E[w-∆w] calculated. If it decreases more then it
decreased previously, then the gradient component should
be:

V[w] =η [(E[w] − E[w-dw]) / E[w]]

If changing of the weight does not change the error than
V[w]= 0. The values V[w] are proportional to the decrease
of error as a result of weight perturbation with ∆w.

Making one step dw along the gradient direction V
moves from the starting point D = dw ||V|| units, where

1/ 2

2[]
w

w


= 
 
∑V V

The starting point of an iteration is in the minimum of the
previous iteration, D is also the distance between two
successive starting points. The bigger ||V|| is the faster are
the error changes when moving along the gradient
direction (the error surface is steeper). Adding momentum
term usually makes the training faster.

2.3 Levenberg-Marqurdt Algorithm (LM)

LM algorithm is one of the most efficient training
algorithms for smaller networks. It uses gradient descent
incorporating curvature of the error surface (Newton’s
method) [3]. Combining these two approaches the
following update rule is obtained:

)()(1
1 iii wEIHww ∇+−= −

+ λ

where)(2
iwEH ∇= is the Hessian matrix and

)(iwE∇ is the Jacobian matrix. Replacing the identity

matrix with the Hessian diagonal increases the step in the
direction of small gradient minimizing the trajectory
oscillations [4]. Thus we get the final Levenberg-
Marquardt update rule:

1
1 (diag[]) ()i i iw w H H E wλ −

+ = − + ∇

λ is dynamically decreased by an order of magnitude if

the error decreases. If the error increases λ is increased
by an order of magnitude, the learning trajectory returns
to the previous point and the step is repeated.

The main disadvantage of LM algorithm is its high
memory requirement. The size of the Jacobian is NVNONW

and that of Hessian is
2
wN . In practice even for modest

networks it becomes a problem, for example for the
satellite image database with 27 hidden neurons (see [5])
the Jacobian alone requires 248 MB memory using double
precision (8 Byte) representation. By comparison VSS
algorithm requires only 1.26 MB for the same network
architecture. Storing the training set in memory takes 1.3
MB of RAM.

To reduce the memory requirements the Jacobian may
be divided into several parts and Hessian calculated by
summing partial results, but this adds a significant
computational overhead.

2.4 Scaled Conjugate Gradient (SCG)

SCG algorithm is considered to be the quickest one
among the well known algorithms for larger networks.

 With initial gradient g0 and initial vector d0=-g0 the
conjugate gradient method recursively constructs two
vector sequences:

)(11 ++ ∇= ii wEg and iiii dgd γ+= ++ 11

where g is gradient direction and d is called conjugate
direction. We proceed from wi along the direction di to the
minimum of E at wi+1 through line minimization and then
set gi+1 at the minimum. [6]

Since conjugate gradient methods do not compute any
matrices they scale well with the network size.

The conjugate direction d minimizes trajectory
oscillations and allows longer steps, which leads to a
faster convergence than steepest descent directions,
although the error function decreases most rapidly in the
steepest descent directions. A similar affect is caused by
momentum added to numerical gradient or to
backpropagation.

Scaled conjugate gradient algorithm is a version of
conjugate gradient that avoids the time-consuming line
search along conjugate directions. As a Levenberg-
Marquardt algorithm, it introduces a scalar λ to regulate

the indefiniteness of EH 2∇= . The scaling procedure
is described in details in [7].

3. Learning Trajectories

3.1 Visualization of Learning Trajectories and Error
Surface

MLP error surface E(W)=∑x||Y-M(X;W)|| is defined in
the weight space W for a given training data X, desired
output vector Y and structure of network mapping
M(X;W). An MLP training process can be defined as
searching for a minimum on the error surface, where the
learning process creates a trajectory on that surface.

PCA (Principal Component Analysis) as a natural
choice for visualizing high dimensional data and was
previously used for three-dimensional visualization of
learning trajectories [8][9][11] and MLP error surfaces
[10][11]. PCA is performed by singular value

decomposition on the covariance matrix of weights taken
from each training cycle.

The vertical axis in Fig.3. shows MSE error. Horizontal
axes show distances in the weight space in c1 and c2 PCA
directions corresponding to the first and second
eigenvector of the weight covariance matrix. The view of
error surface in PCA projections depends only on dataset
and on network structure, but does not depend almost at
all on the training algorithm so it is shown only once.
Instead the trajectories stronly depend on the training
algorithm.

All sample visualizations use the same network with 4
inputs, 4 hidden and 3 output neurons trained with iris
dataset.

Fig. 2. MSE error (E), classification accuracy on training set (A) and
||Wi||/||W5|| (W) during 5 training cycles of IRIS (4-4-3). After three
training cycles the training has converged and should be stopped

Fig. 3. Projection of IRIS (4-4-3) error surface trained with VSS and
learning trajectory in the first and second PCA direction. The trajectory
color changes every training cycle

Fig. 4. Projection of IRIS (4-4-3) learning trajectory trained with VSS in
the first and second PCA direction. The cross shows the zero point in the
weight space

Fig. 5. Projection of IRIS (4-4-3) learning trajectory trained with the
simplest search algorithm changing one weight at a time. (VSS version
going always through point 3 instead of point 2 with max_n=1, see
Fig.1) in the first and second PCA direction

Fig. 6. Projection of IRIS (4-4-3) learning trajectory trained with NG in
the first and second PCA direction

Fig. 7. Projection of IRIS (4-4-3) learning trajectory trained with LM in
the first and second PCA direction

Fig. 8. Projection of IRIS (4-4-3) learning trajectory trained with SCG
in the first and second PCA direction

Fig. 9. Projection of IRIS (4-4-3) learning trajectory trained with VSS in
the third and fourth PCA direction. Higher PCA components have
significant values only at the beginning of the training, what is clear,
because VSS algorithm frequently changes the direction at the beginning
of the training and weights grow quicker in the next cycles

3.2 Using Error Surface and Learning Trajectory
Properties to Enhance Algorithms Performance

The similarity between all trajectories presented in Fig.
4-8 is obvious; they create similar arcs following the
shape of iris error surface ravine Also the difference
between VSS and other algorithms learning trajectories is
clearly visible. Using gradient-based information makes
the training dependent on a factor that vanishes as the
training progresses, so gradient-based algorithms have a
tendency to decrease their learning steps as gradient
decreases and thus slowing down the training even more.
(LM and SCG additionally make smaller steps when the
trajectory is turning more and bigger when it goes through
relatively straight parts of the error surface ravine – effect
of using second order information, which is proportional
to the curvature).

VSS increases the step when the gradient decreases and
that makes the algorithm effective. The increase of VSS
step is caused by the fact that VSS does not rely on
gradient information, but rather on the learning history.
The learning history creates a trajectory. When
performing PCA on the points through which the
trajectory goes, then usually about 95% of total variance
is captured by the first and second PCA direction. So
figures 3-8 reflect the learning trajectory properties quite
well. The trajectories show some regularities, not only for
iris but also for all datasets. VSS uses the regularities to
make the training more effective.

Not only dw for the same weight in two successive
training cycles will not differ much while dw for different
weights in the same training cycle may differ ranks of
order but also some trends in weight changes may be
observed.

Many attempts were made to use the statistical
distributions of weight changes to speed up the algorithm
but so far none of them was successful, and the version of
VSS presented in that paper has the best performance.
Also some attempts were made to extrapolate the
trajectory in two or more PCA directions and then jump to
that point thus omitting several training cycles. But due to
the complex shape of the valleys on the error surface and
to the fact that PCA/ICA/kernel PCA/Principal Curves or
whatever directions are changing all the time during the
training it is extremely difficult to guess proper point in a
weight space several training cycles ahead. So far it was
successful only for a few databases. Nevertheless the
approaches seem very promising and worth further
research.

4. Comparison of VSS, NG, LM and SCG

Three parameters determining algorithm efficiency are
considered: the total computational complexity (Ct)
required to achieve the desired effect, the quality of the
solution the algorithm can find (%test) and the percentage
of the algorithm runs that converge to the solution (CR).

VSS and NG calculations were done using a program
developed by one of us (MK). Matlab Neural Network

Toolbox (written by H. Demuth and M. Hagen) was used
for LM and SCG calculations. Since the training times
between Matlab and our program written in Delphi could
not be directly compared, the computational complexity
of the algorithms was assessed in the following way: first
only the datasets were propagated through the network
with calculating the MSE error Sn times. Sn was set to a
value assuring the time of simulation St about 1 minute (in
the case of Matlab it was done by modifying trainscg.m so
that only sim() function was called within the plot). Then
the algorithms were run the average number of training
cycles require to converge Tn for mushroom, thyroid and
shuttle and 1000 training cycles for iris and breast and the
training time Tt was measured (the real training times for
iris and breast were too short for reliable direct
measurement). All on-screen display and additional
options were switched off in both programs during the
experiment. A given algorithm computational complexity
per one training cycle was calculated for given dataset and
network structure as: Ce=(Tt/Tn)/(St/Sn).

For VSS Ce is from 20 for the smaller networks (iris,
breast) to 100 for the bigger networks (mushroom). For
LM Ce is between 8 for iris and 540 for mushroom and
grows rapidly with network size. For SCG it does not
depend much on network size being between usually
between 4 and 8, however for very large datasets as
shuttle with 43,500 vectors it falls down even below 2.
The number of training cycles required to converge Nt was
always the lowest for VSS and the highest for SCG.

The total computational complexity Ct shown in Table
1. is the parameter reflecting the algorithm speed. It
express the ratio of the total training time to the time of
propagating the dataset through the network once. Ct can
be obtained by multiplying the per training cycle
complexity Ce by the average number of training cycles Nt
required to train the network: Ct=CeNt.

In all cases Ct for VSS was lower than that for LM. In
most cases it was also lower than that of SCG, however
for larger datasets that are relatively easy to train, as
mushroom, the difference between Ct for VSS and for
SCG vanishes.

VSS and LM were able to find the best solutions with
%test frequently higher than shown in Table 1, which
were in many cases out of reach for NG and SCG.
However LM frequently did not converge to the solution
and had to be repeated with other starting weights. The
CR parameter in Table 1. expresses the convergence rate
of algorithms, e.i. the percentage of the algorithm runs
that converged to the desired solution within 5000 cycles.

For VSS and NG the minimum and maximum number
of training cycles in that a given algorithm converges to a
given solution differed less than 30% from the mean
number Nt given in Table 1, while for LM the difference
was often over 100%. VSS and NG algorithms had the
smallest memory requirements. Though the performance
of NG could be frequently improved by adding
momentum, it still will be poorer than that of VSS. The
main difference between the algorithms is that NG uses
directly gradient information, while VSS does not.

For each training algorithm 10-20 experiments were
made with every dataset. The network was tested on test
sets (thyroid, shuttle) or in 10-fold crossvalidation (iris,
breast, mushroom). A vector was considered to be
classified correctly if its corresponding output neuron
signal was higher then other neurons signals and than 0.5.
All training algorithms were run with the same default
parameters for each dataset.

It is clear that including additional techniques such as
freezing or pruning the least significant weights,
calculating error on a different part of vectors each
training cycle instead of on the entire dataset or
eliminating from further training vectors that give the
least error [13] much shorter training times are possible
with each of the examined algorithms, but till now it was
not a matter of our research.

5. Conclusions

The proposed variable step search algorithm is fast, can
find very good solutions, does not require multistart and
has low memory requirements. It is also very simple to
program since it does not require calculation of
derivatives and matrices, therefore it is quite surprising
that in empirical tests it usually outperforms both LM and
SCG.

It is clear that search-based techniques, popular in
artificial intelligence and completely neglected in neural
networks (with an exception of Alopex algorithm [14]
based on simulated annealing), may be the basis for
competitive network training algorithms. They may be
used for initialization and combined with traditional
gradient-based techniques. But so far the performance of
VSS as a standalone algorithm has been more than
satisfactory.

References:

[1] W. Duch, M. Kordos, “Search-based Training for Logical Rule

Extraction by Multilayer Perceptron”, Int. Conf. on Artificial
Neural Networks (ICANN) and Int. Conf. on Neural Information
Processing (ICONIP), Istanbul, June 2003, pp. 86-89

[2] W. Duch, M. Kordos, “Multilayer Perceptron Trained with
Numerical Gradient”, Int. Conf. on Artificial Neural Networks
(ICANN) and Int. Conf. on Neural Information Processing
(ICONIP), Istanbul, June 2003, pp. 106-109

[3] Ananth Ranganathan, “The Levenberg-Marquardt Algorithm”
[4] D. Marquardt, “An algorithm for least-squares estimation of

nonlinear parameters”, SIAM J. Appl. Math., 1963, Vol.11,pp.431-
441.

[5] N.N.R. Ranga Suri, Dipti Deodhare, P. Nagabhushan, “Parallel
Levenberg-Marquardt-based Neural Network Training on Linux
Cluster – A Case Study”

[6] Fang Wang et al. “Neural Network Structures and Training
Algorithms for RF and Microwave Applications”

[7] Moller, M. F., "A Scaled Conjugate Gradient Algorithm for Fast
Supervised Learning," Neural Networks, vol. 6, pp. 525-533, 1993.

[8] M. Gallagher, “Multi-layer Perceptron Error Surfaces:
Visualization, Structure and Modeling”, PhD Thesis, University of
Queensland, 2000

[9] M. Gallagher, T. Downs, “Visualization of Learning in Multi-layer
Perceptron Networks using PCA”, http://www.itee.uq.edu.au/
~marcusg/ publications.html, 2003

[10] W. Duch, M. Kordos, “On Some Factors Influencing MLP Error
Surface”, 7th Int. Conf. on Artificial Intelligence and Soft
Computing (ICAISC), Zakopane, Poland, June 2004 (in print)

[11] W. Duch, M. Kordos, “A Survey of Factors Influencing MLP Error
Surface”, Control and Cybernetics, 2004 (submitted)

[12] C.J. Mertz, P.M. Murphy, UCI repository of machine learning
databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

[13] W. Duch, “Support Vector Neural Training”, IEEE Transactions
on Neural Networks, 2004 (submitted)

[14] E. Micheli-Tzanakou (ed) “Supervised and Unsupervised Pattern
Recognition: Feature Extraction and Computational Intelligence”,
CRC Press 2001

Table 1. Comparison of VSS, NG, LM and SCG algorithms.

dataset % VSS NG LM SCG

network test Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct
iris 96 2.3 100 41 14 100 223 20 80 223 118 90 948

4-4-3 98 3.5
-

100 63 22
-

100 350 22
-

80 246 157
-

90 1260
breast

10-4-2
98 1.0 - 100 30 10 - 100 280 20 1.5 100 109 438 0.4 10 807

mushroom 98 1.2 100 124 21 100 1070 4 90 2180 20 100 167

125-4-3 99.9 2.0
0.4

100 206 -
0.4

0 - 6
240

90 3260 45
40

100 377
thyroid 97 6.1 100 392 40 40 862 25 50 1640 103 70 581

21-4-3 98 10
0.2

100 643 -
0.2

0 - 35
30

40 2300 -
1.0

0 -

shuttle 98 4.5 100 423 34 90 1300 14 60 1430 780 50 1480

10-6-7 99 6.0
1.6

100 564 58
1.6

90 1740 19
1400

60 1940 1620
20

30 3080

Nt - number of training cycles
MB - memory usage in MB for storing network parameters, without including memory for the data set (calculated by subtracting the memory used by the
program running the algorithm on given dataset from the memory used by the program with the given dataset loaded in memory and running the algorithm
on xor dataset. Memory usage measured with Task Manager)
CR – convergence rate, percentage of training runs that converged to a given accuracy solution within 5000 training cycles
Ct - total computational complexity; the ratio of the total training time to the time of propagating the dataset through the network once

