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ABSTRACT

The variable step search agorithm is based on a simple
search procedure that changes one network parameter at a
time. Visualization of learning trajectories and MLP error
surfacesis used for the algorithm design and optimization.
The algorithm is compared to three other MLP training
algorithms: Levenberg-Marquardt, scaled conjugate
gradient, and training based on numerical gradient.
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1. Introduction

The search-based agorithms for multi-layer perceptron
(MLP) training are based on the idea of changing network
parameters (weight and biases) and checking the influence
of such change on the mean-square error (MSE), or
another error measure. In contrast to backpropagation and
other training algorithms that use anaytica gradients
search based a gorithms impose no restrictions on transfer
functions, error functions or neural connection structures.
In particular transfer functions do not have to be
differentiable.

Many variants of search agorithms are possible. One
of the simplest from the search-based family called
variable step search agorithm (VSS) is presented here. It
changes one weight at a time and roughly searches for a
minimum of the error along the weight direction (bias is
considered here to be on of the weights). VSS algorithm
does not calculate gradients, but use certain properties of
MLP error surface that impose similar changes on the
same weight in two successive training cycles.

In the paper we consider only standard 3-layer MLP
networks with sigmoidal transfer functions in hidden and
output layer trained for classification tasks using MSE
calculated on the entire training set as performance
measure. The network structure is fixed during the
training.

Many papers compare new agorithms with standard
gradient backpropagation. Instead we compare VSS not
with the agorithm that was developed as first but with
algorithms that are considerd to be most effective as
Levenberg-Marquardt algorithm and scaled conjugate
gradient.
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2. Training Algorithms
2.1 Variable Step Search Algorithm (VSS)

The simplest search-based algorithm works in the
following way: in one training cycle the value of dw is
added to or subtracted from a single weight w. If the error
decreases after the change then the change is kept,
otherwise it is rejected. Then dw is added or subtracted
from the next weight and again the error is calculated,
until the changes of al weights are examined. dW maybe
decreased each training cycle. The simplest search-based
algorithm was aso used for rule extraction from MLP
network with not fully connected layers[1].

VSS is a modified version of that algorithm, in which
dw is not constant, but dynamicaly adjusted
independently for each weight during a rough
minimization in each weight direction. VSS was designed
taking the advantage of MLP error surface properties that
its steepness in different directions varies ranks of orders,
and the ravines in which the MLP |earning trajectories lay
are usualy curves, slowly changing their direction [2-5].
Basic on the properties we can expect that optimal dw for
the same weight in two successive training cycles will not
differ much while dw for different weights in the same
training cycle may differ ranks of order.

In each training cycle i the first guess of dwi[w] for a
given weight w might be the value dw[w] that the
weights changes about in the previous training cycle.
However the detailled experimental analysis of the
agorithm behaviour lead to the conclusion that for most
cases the least number of calculations is obtained when
the first guess is dw=(0.33+0.37)dw; 1, in spite that
statistically the ratio dwi/dw;_; iscloseto 1.

Fig. 1. shows a diagram for determining dw of a single
weight in one training cycle. Before the training starts the
weights are initidized with random values from the
interval (-1;1). (Initializing al hidden layer weights with
zero values and setting large dO is a good way for feature
reduction in the first training cycle. The larger dO (0.5, 1,
2) the more features are diminated from further training.
After the first training cycle all hidden weights that are
still zero are pruned and d0 is set to asmaller value.)

In the first training cycle d=d0=0.25. Since dwg[wW] =0,
for each weight w in thefirst training cycle the first guess
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Fig. 1. Determining a single weight value in one training cycle of the
Variable Step Search Algorithm

is dwy[w]=d0. The ravine on the error surface is narrow
close to the agorithm starting point. Thus setting d0>0.5
frequently causes that the trgjectory cannot well fit into
the ravine bottom and some weights oscillate while others
do not change at all during some initia training cycles
what results in slowing down the training.

The VSS agorithm follows (Fig. 1):

for i=1 to NumOfTrainingCycles do begin
for w=1 to NumOfWeights do begin

1: If dw;,[w]=0then goto 3.

2: The vaue of c*dwi[w] (experimentaly determined
optimal ¢=0.33+0.37) is added to the weight w.

3: If the weight w did not change in the previous training
cycle try to add (or subtract) to it a smaler vaue
d=d0* (1-exp(-const/i). where i is the training cycle
number. Optionally the weights can be frozen.

4: If the new error NE after the change is smaller than old
error OE before the change then the direction of the
changeis correct, goto 7.

5: otherwise change the direction of search d=-d.

6: If the new error NE after the change is not smaller than
old error OE before the change then do not change the
weight, take the next weight and goto 1.

7. Search for an approximate minimum aong this
direction; set d=h*d (experimentally determined optimal
h=2.0+2.5).

8: If the new error NE after the change is smaller the than
old eror OE before the change, |w|j<max w and
|dw|<max_dw then goto 9 else goto 10 (maxima
acceptable values for a single weight max_w and for a
single weight change max_dw given in order to prevent
excessive weight growth, the values are optiona and can
be set to infinity).

9: If n<max_n goto 7. max_n is given to prevent the loop
through points 7-9 from being executed too many times.
(experimentally determined optimal max_I=4 when h=2)
10: set d=d/h.

11-15: Optional steps. The error value is calculated in two
additional points that are the geometric mean of d and d/h
and of d and d*h. The best value of the two points and d
becomes dW. In most cases points 11-15 do not need to be
used. h=2 assures a maximum difference between dwi[ w]
and the distance from wi.; to the error minimum in the
direction w of 50%, what in most cases providing the
fastest network learning. Finding minima with greater
precision could also be done by setting h to a smaller
value but that slows down the training more

if error<desired_error then exit;
end;
end;

On average the error is caculated about 3 times while
determining a single weight value in one training cycle.
Since only one weight is changed at atime, the signals do
not need to be propagated through the entire network to
calculate the error, but only through the fragment of the
network in which the signals are different before and after
the change. The remaining signalsincoming to al neurons
of hidden and output layers are remembered for each
training vector in an array caled “signa table’. The
signals must be propagated through the entire network
only once at the beginning of the training thus filling in
the signal table. The dimension of the signa table is
Ny(No+Ny) where N, is the number of vectors in the
training set and N, and N, the number of hidden and
output neurons. After a single weight is changed only the
appropriate entries in signa table are updated. Also the
MSE error of each output neuron is remembered and do
not need to be calculated again if a weight of another
output neuron is changed. Using the signa table causes a
significant speedup of the training, especialy for bigger
networks. For the network 125-8-2 the speed up is 25
times and for the network 4-4-2 two times.



2.2 Numerical Gradient (NG)

NG agorithm developed by us [2] has many common
features with the Variable Step Search Algorithm. The
training agorithm consists of two stages. finding the
gradient direction and finding the minimal error along this
direction.

To find the gradient direction, a constant value dw is
added to each weight and the E[w+dw] calculated. If it
decreases, then the component of the gradient direction
V[w] is cdculated as:

VIW] = 7 [(E[W] —E[w+dw]) / E[w]]

The same value Aw is subtracted from the weight w and
the E[w-Aw] calculated. If it decreases more then it
decreased previoudly, then the gradient component should
be:

VIW] =7 [(E[W] —E[w-dw]) / E[w]]

If changing of the weight does not change the error than
V[w]= 0. The values V[w] are proportional to the decrease
of error as aresult of weight perturbation with Aw.
Making one step dw along the gradient direction V
moves from the starting point D = dw || V|| units, where

VI-(Zviwr

The starting point of an iteration is in the minimum of the
previous iteration, D is aso the distance between two
successive starting points. The bigger ||V|| is the faster are
the error changes when moving aong the gradient
direction (the error surface is steeper). Adding momentum
term usually makes the training faster.

2.3 Levenberg-Marqurdt Algorithm (LM)

LM agorithm is one of the most efficient training
agorithms for smaller networks. It uses gradient descent
incorporating curvature of the error surface (Newton's
method) [3]. Combining these two approaches the
following update rule is obtained:

W, =W —(H+l)'VE(w)

i+1
where  H =V’E(w) is the Hessan matrix and

VE(w)is the Jacobian matrix. Replacing the identity

matrix with the Hessian diagonal increases the step in the
direction of small gradient minimizing the trgectory
oscillations [4]. Thus we get the fina Levenberg-
Marquardt update rule:

W, =W —(H + Adiag[H]) " VE(w)

i+1
Ais dynamically decreased by an order of magnitude if
the error decreases. If the error increases A is increased
by an order of magnitude, the learning trajectory returns
to the previous point and the step is repeated.

The main disadvantage of LM algorithm is its high
memory requirement. The size of the Jacobian is NyNoNw

and that of Hessian is NVZV. In practice even for modest

networks it becomes a problem, for example for the
satellite image database with 27 hidden neurons (see [5])
the Jacobian aone requires 248 MB memory using double
precision (8 Byte) representation. By comparison VSS
algorithm requires only 1.26 MB for the same network
architecture. Storing the training set in memory takes 1.3
MB of RAM.

To reduce the memory requirements the Jacobian may
be divided into severa parts and Hessian calculated by
summing partia results, but this adds a significant
computational overhead.

2.4 Scaled Conjugate Gradient (SCG)

SCG algorithm is considered to be the quickest one
among the well known algorithms for larger networks.

With initial gradient g, and initial vector dy=-g, the
conjugate gradient method recursively constructs two
vector sequences:

g, = VE(W,;) and d,, =0, +7d
where g is gradient direction and d is called conjugate
direction. We proceed from w; along the direction d; to the
minimum of E at w;,; through line minimization and then
set gi+1 at the minimum. [6]

Since conjugate gradient methods do not compute any
matrices they scale well with the network size.

The conjugate direction d minimizes trgectory
oscillations and alows longer steps, which leads to a
faster convergence than steepest descent directions,
athough the error function decreases most rapidly in the
steepest descent directions. A similar affect is caused by
momentum added to numerica gradient or to
backpropagation.

Scaled conjugate gradient algorithm is a version of
conjugate gradient that avoids the time-consuming line
search along conjugate directions. As a Levenberg-
Marquardt agorithm, it introduces a scalar A to regulate

the indefiniteness of H = V2E . The scaling procedure
isdescribed in detailsin [7].

3. Learning Trajectories

3.1 Visualization of Learning Trajectories and Error
Surface

MLP error surface E(W)=2X||Y-M(X;W)|| is defined in
the weight space W for a given training data X, desired
output vector Y and structure of network mapping
M(X;W). An MLP training process can be defined as
searching for a minimum on the error surface, where the
learning process creates atrgectory on that surface.

PCA (Principa Component Anaysis) as a natura
choice for visualizing high dimensional data and was
previously used for three-dimensional visuaization of
learning tragjectories [8][9][11] and MLP error surfaces
[10][11]. PCA is performed by singular value



decomposition on the covariance matrix of weights taken
from each training cycle.

The vertica axisin Fig.3. shows MSE error. Horizontal
axes show distances in the weight space in ¢; and ¢, PCA
directions corresponding to the first and second
eigenvector of the weight covariance matrix. The view of
error surface in PCA projections depends only on dataset
and on network structure, but does not depend almost at
al on the training algorithm so it is shown only once.
Instead the trgectories stronly depend on the training
agorithm.

All sample visualizations use the same network with 4
inputs, 4 hidden and 3 output neurons trained with iris
dataset.
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Fig. 2. MSE error (E), classification accuracy on training set (A) and
[IWill[[Ws|| (W) during 5 training cycles of IRIS (4-4-3). After three
training cycles the training has converged and should be stopped
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Fig. 3. Projection of IRIS (4-4-3) error surface trained with VSS and
learning trajectory in the first and second PCA direction. The trgjectory
color changes every training cycle
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Fig. 4. Projection of IRIS (4-4-3) learning trajectory trained with VSSin
the first and second PCA direction. The cross shows the zero point in the
weight space
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Fig. 5. Projection of IRIS (4-4-3) learning trajectory trained with the
simplest search agorithm changing one weight at atime. (VSS version
going always through point 3 instead of point 2 with max_n=1, see
Fig.1) in thefirst and second PCA direction
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Fig. 6. Projection of IRIS (4-4-3) learning trajectory trained with NG in
the first and second PCA direction
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Fig. 7. Projection of IRIS (4-4-3) learning trajectory trained with LM in
the first and second PCA direction
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Fig. 8. Projection of IRIS (4-4-3) learning trajectory trained with SCG
in the first and second PCA direction

Fig. 9. Projection of IRIS (4-4-3) learning trajectory trained with VSS in
the third and fourth PCA direction. Higher PCA components have
significant values only at the beginning of the training, what is clear,
because V SS algorithm frequently changes the direction at the beginning
of the training and weights grow quicker in the next cycles



3.2 Using Error Surface and Learning Trajectory
Properties to Enhance Algorithms Performance

The similarity between all trgectories presented in Fig.
4-8 is obvious, they create similar arcs following the
shape of iris error surface ravine Also the difference
between VSS and other agorithms learning trgjectories is
clearly visible. Using gradient-based information makes
the training dependent on a factor that vanishes as the
training progresses, so gradient-based algorithms have a
tendency to decrease their learning steps as gradient
decreases and thus slowing down the training even more.
(LM and SCG additionally make smaller steps when the
trgjectory is turning more and bigger when it goes through
relatively straight parts of the error surface ravine — effect
of using second order information, which is proportional
to the curvature).

V SSincreases the step when the gradient decreases and
that makes the agorithm effective. The increase of VSS
step is caused by the fact that VSS does not rely on
gradient information, but rather on the learning history.
The learning history creates a trgectory. When
performing PCA on the points through which the
trgjectory goes, then usualy about 95% of tota variance
is captured by the first and second PCA direction. So
figures 3-8 reflect the learning trgjectory properties quite
well. The trgjectories show some regularities, not only for
iris but also for all datasets. VSS uses the regularities to
make the training more effective.

Not only dw for the same weight in two successive
training cycles will not differ much while dw for different
weights in the same training cycle may differ ranks of
order but also some trends in weight changes may be
observed.

Many attempts were made to use the statistical
distributions of weight changes to speed up the agorithm
but so far none of them was successful, and the version of
VSS presented in that paper has the best performance.
Also some attempts were made to extrapolate the
trgjectory in two or more PCA directions and then jump to
that point thus omitting several training cycles. But due to
the complex shape of the valleys on the error surface and
to the fact that PCA/ICA/kernel PCA/Principal Curves or
whatever directions are changing all the time during the
training it is extremely difficult to guess proper point in a
weight space severa training cycles ahead. So far it was
successful only for a few databases. Nevertheless the
approaches seem very promising and worth further
research.

4. Comparison of VSS, NG, LM and SCG

Three parameters determining algorithm efficiency are
considered: the tota computational complexity (C)
required to achieve the desired effect, the quality of the
solution the algorithm can find (%test) and the percentage
of the algorithm runs that converge to the solution (CR).
VSS and NG calculations were done using a program
developed by one of us (MK). Matlab Neural Network

Toolbox (written by H. Demuth and M. Hagen) was used
for LM and SCG calculations. Since the training times
between Matlab and our program written in Delphi could
not be directly compared, the computational complexity
of the algorithms was assessed in the following way: first
only the datasets were propagated through the network
with calculating the MSE error S, times. S, was set to a
value assuring the time of simulation S about 1 minute (in
the case of Matlab it was done by modifying trainscg.m so
that only sim() function was called within the plot). Then
the algorithms were run the average number of training
cycles require to converge T, for mushroom, thyroid and
shuttle and 1000 training cycles for iris and breast and the
training time T, was measured (the real training times for
iris and breast were too short for reliable direct
measurement). All on-screen display and additional
options were switched off in both programs during the
experiment. A given algorithm computational complexity
per onetraining cycle was cal culated for given dataset and
network structure as. C=(T/T)(HS,).

For VSS C, is from 20 for the smaller networks (iris,
breast) to 100 for the bigger networks (mushroom). For
LM C. is between 8 for iris and 540 for mushroom and
grows rapidly with network size. For SCG it does not
depend much on network size being between usualy
between 4 and 8, however for very large datasets as
shuttle with 43,500 vectors it falls down even below 2.
The number of training cycles required to converge N; was
aways the lowest for VSS and the highest for SCG.

The total computational complexity C, shown in Table
1. is the parameter reflecting the algorithm speed. It
express the ratio of the total training time to the time of
propagating the dataset through the network once. C; can
be obtaned by multiplying the per training cycle
complexity Ce by the average number of training cycles N,
required to train the network: C=C.N..

In al cases C, for VSS was lower than that for LM. In
most cases it was also lower than that of SCG, however
for larger datasets that are relatively easy to train, as
mushroom, the difference between C; for VSS and for
SCG vanishes.

VSS and LM were able to find the best solutions with
%test frequently higher than shown in Table 1, which
were in many cases out of reach for NG and SCG.
However LM frequently did not converge to the solution
and had to be repeated with other starting weights. The
CR parameter in Table 1. expresses the convergence rate
of algorithms, e.i. the percentage of the algorithm runs
that converged to the desired solution within 5000 cycles.

For VSS and NG the minimum and maximum number
of training cycles in that a given algorithm converges to a
given solution differed less than 30% from the mean
number N; given in Table 1, while for LM the difference
was often over 100%. VSS and NG algorithms had the
smallest memory requirements. Though the performance
of NG could be frequently improved by adding
momentum, it still will be poorer than that of VSS. The
main difference between the algorithms is that NG uses
directly gradient information, while VSS does not.



For each training algorithm 10-20 experiments were
made with every dataset. The network was tested on test
sets (thyroid, shuttle) or in 10-fold crossvaidation (iris,
breast, mushroom). A vector was considered to be
classified correctly if its corresponding output neuron
signal was higher then other neurons signals and than 0.5.
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Table 1. Comparison of VSS, NG, LM and SCG a gorithms.
dataset % VSS NG LM SCG
network |test | N; |MB| CR | G N; |MB| CR | C N | MB| CR | G N; |MB| CR C
iris 9% | 2.3 100 | 41 | 14 100 | 223 | 20 80 | 223 | 118 90 948
4-4-3 98 | 35 100 | 63 | 22 100 [ 350 | 22 80 | 246 | 157 90 1260
breast
10-4-2 98 | 1.0 - 100 | 30 | 10 - 100 |280 | 20 | 1.5 {100 ({109 | 438 | 04 | 10 807
mushroom | 98 | 1.2 100 | 124 | 21 100 {1070| 4 90 (2180 20 100 167
04 04 240 40
125-4-3 |999]| 2.0 100 | 206 | - 0 - 6 90 |3260( 45 100 377
thyroid 97 | 6.1 100 | 392 | 40 40 | 862 | 25 50 [1640| 103 70 581
y 0.2 02 30 1.0
21-4-3 98 | 10 100 | 643 | - 0 - |35 40 |2300| - 0 -
shuttle 98 | 45 100 | 423 | 34 90 |1300| 14 60 |1430( 780 50 1480
. 16 16 1400 20
10-6-7 99 | 6.0 100 | 564 | 58 90 |1740 | 19 60 [1940| 1620 30 3080

N - number of training cycles

MB - memory usage in MB for storing network parameters, without including memory for the data set (calculated by subtracting the memory used by the
program running the algorithm on given dataset from the memory used by the program with the given dataset loaded in memory and running the algorithm

on xor dataset. Memory usage measured with Task Manager)

CR — convergence rate, percentage of training runs that converged to a given accuracy solution within 5000 training cycles
C. - total computational complexity; theratio of the total training time to the time of propagating the dataset through the network once



