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ABSTRACT 
The variable step search algorithm is based on a simple 
search procedure that changes one network parameter at a 
time. Visualization of learning trajectories and MLP error 
surfaces is used for the algorithm design and optimization. 
The algorithm is compared to three other MLP training 
algorithms: Levenberg-Marquardt, scaled conjugate 
gradient, and training based on numerical gradient.   
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1.  Introduction 
 
The search-based algorithms for multi-layer perceptron 
(MLP) training are based on the idea of changing network 
parameters (weight and biases) and checking the influence 
of such change on the mean-square error (MSE), or 
another error measure. In contrast to backpropagation and 
other training algorithms that use analytical gradients 
search based algorithms impose no restrictions on transfer 
functions, error functions or neural connection structures. 
In particular transfer functions do not have to be 
differentiable.  

Many variants of search algorithms are possible. One 
of the simplest from the search-based family called 
variable step search algorithm (VSS) is presented here. It 
changes one weight at a time and roughly searches for a 
minimum of the error along the weight direction (bias is 
considered here to be on of the weights). VSS algorithm 
does not calculate gradients, but use certain properties of 
MLP error surface that impose similar changes on the 
same weight in two successive training cycles. 

In the paper we consider only standard 3-layer MLP 
networks with sigmoidal transfer functions in hidden and 
output layer trained for classification tasks using MSE 
calculated on the entire training set as performance 
measure. The network structure is fixed during the 
training.   

Many papers compare new algorithms with standard 
gradient backpropagation. Instead we compare VSS not 
with the algorithm that was developed as first but with 
algorithms that are considerd to be most effective as 
Levenberg-Marquardt algorithm and scaled conjugate 
gradient. 

 
2.  Training Algorithms 
 
2.1 Variable Step Search Algorithm (VSS) 
 
The simplest search-based algorithm works in the 
following way: in one training cycle the value of dw is 
added to or subtracted from a single weight w. If the error 
decreases after the change then the change is kept, 
otherwise it is rejected. Then dw is added or subtracted 
from the next weight and again the error is calculated, 
until the changes of all weights are examined. dW maybe 
decreased each training cycle. The simplest search-based 
algorithm was also used for rule extraction from MLP 
network with not fully connected layers [1].  

VSS is a modified version of that algorithm, in which 
dw is not constant, but dynamically adjusted 
independently for each weight during a rough 
minimization in each weight direction. VSS was designed 
taking the advantage of MLP error surface properties that 
its steepness in different directions varies ranks of orders, 
and the ravines in which the MLP learning trajectories lay 
are usually curves, slowly changing their direction [2-5]. 
Basic on the properties we can expect that optimal dw for 
the same weight in two successive training cycles will not 
differ much while dw for different weights in the same 
training cycle may differ ranks of order.  

In each training cycle i the first guess of dwi[w] for a 
given weight w might be the value dwi-1[w] that the 
weights changes about in the previous training cycle. 
However the detailed experimental analysis of the 
algorithm behaviour lead to the conclusion that for most 
cases the least number of calculations is obtained when 
the first guess is  dwi=(0.33÷0.37)dwi-1, in spite that 
statistically the ratio dwi/dwi-1 is close to 1.  

Fig. 1. shows a diagram for determining dw of a single 
weight in one training cycle. Before the training starts the 
weights are initialized with random values from the 
interval (-1;1). (Initializing all hidden layer weights with 
zero values and setting large d0 is a good way for feature 
reduction in the first training cycle. The larger d0 (0.5, 1, 
2) the more features are eliminated from further training. 
After the first training cycle all hidden weights that are 
still zero are pruned and d0 is set to a smaller value.) 

In the first training cycle d=d0=0.25. Since dw0[w]=0, 
for each weight w in the first training cycle the first guess 
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Fig. 1. Determining a single weight value in one training cycle of the 
Variable Step Search Algorithm 
 
is dw1[w]=d0. The ravine on the error surface is narrow 
close to the algorithm starting point. Thus setting d0>0.5 
frequently causes that the trajectory cannot well fit into 
the ravine bottom and some weights oscillate while others 
do not change at all during some initial training cycles 
what results in slowing down the training. 

  
The VSS algorithm follows (Fig. 1): 
 
for i=1 to NumOfTrainingCycles do begin 
for w=1 to NumOfWeights do begin 
 
1:  If dwi-1[w]=0 then goto 3. 
2: The value of c*dwi-1[w] (experimentally determined 
optimal c=0.33÷0.37) is added to the weight w.  
3: If the weight w did not change in the previous training 
cycle try to add (or subtract) to it a smaller value 
d=d0*(1-exp(-const/i). where i is the training cycle 
number. Optionally the weights can be frozen. 
4: If the new error NE after the change is smaller than old 
error OE before the change then the direction of the 
change is correct, goto 7. 

5: otherwise change the direction of search d=-d. 
6: If the new error NE after the change is not smaller than 
old error OE before the change then do not change the 
weight, take the next weight and goto 1. 
7: Search for an approximate minimum along this 
direction; set d=h*d (experimentally determined optimal 
h=2.0÷2.5). 
8: If the new error NE after the change is smaller the than 
old error OE before the change, |w|<max_w and 
|dw|<max_dw then goto 9 else goto 10 (maximal 
acceptable values for a single weight max_w and for a 
single weight change max_dw given in order to prevent 
excessive weight growth, the values are optional and can 
be set to infinity).  
9: If n<max_n goto 7. max_n is given to prevent the loop 
through points 7-9 from being executed too many times. 
(experimentally determined optimal max_I=4 when h=2) 
10: set d=d/h. 
11-15: Optional steps. The error value is calculated in two 
additional points that are the geometric mean of d and d/h 
and of d and d*h. The best value of the two points and d 
becomes dW. In most cases points 11-15 do not need to be 
used. h=2 assures a maximum difference between dwi[w] 
and the distance from wi-1 to the error minimum in the 
direction w of 50%, what in most cases providing the 
fastest network learning. Finding minima with greater 
precision could also be done by setting h to a smaller 
value but that slows down the training more 
 
if error<desired_error then exit; 
end; 
end; 
 
On average the error is calculated about 3 times while 
determining a single weight value in one training cycle. 
Since only one weight is changed at a time, the signals do 
not need to be propagated through the entire network to 
calculate the error, but only through the fragment of the 
network in which the signals are different before and after 
the change. The remaining signals incoming to all neurons 
of hidden and output layers are remembered for each 
training vector in an array called “signal table”. The 
signals must be propagated through the entire network 
only once at the beginning of the training thus filling in 
the signal table. The dimension of the signal table is 
Nv(No+Nh) where Nv is the number of vectors in the 
training set and Nh and No the number of hidden and 
output neurons. After a single weight is changed only the 
appropriate entries in signal table are updated. Also the 
MSE error of each output neuron is remembered and do 
not need to be calculated again if a weight of another 
output neuron is changed. Using the signal table causes a 
significant speedup of the training, especially for bigger 
networks. For the network 125-8-2 the speed up is 25 
times and for the network 4-4-2 two times. 



2.2 Numerical Gradient (NG) 
 
NG algorithm developed by us [2] has many common 
features with the Variable Step Search Algorithm. The 
training algorithm consists of two stages: finding the 
gradient direction and finding the minimal error along this 
direction.  

To find the gradient direction, a constant value dw is 
added to each weight and the E[w+dw] calculated. If it 
decreases, then the component of the gradient direction 
V[w] is calculated as:  
 

V[w] = η [(E[w] − E[w+dw]) / E[w]] 
 

The same value ∆w is subtracted from the weight w and 
the E[w-∆w] calculated. If it decreases more then it 
decreased previously, then the gradient component should 
be: 

V[w] =η [(E[w] − E[w-dw]) / E[w]] 
 

If changing of the weight does not change the error than 
V[w]= 0. The values V[w] are proportional to the decrease 
of error as a result of weight perturbation with ∆w.  

Making one step dw along the gradient direction V 
moves from the starting point D = dw ||V|| units, where  
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The starting point of an iteration is in the minimum of the 
previous iteration, D is also the distance between two 
successive starting points. The bigger ||V|| is the faster are 
the error changes when moving along the gradient 
direction (the error surface is steeper). Adding momentum 
term usually makes the training faster. 
 
2.3 Levenberg-Marqurdt Algorithm (LM) 
 
LM algorithm is one of the most efficient training 
algorithms for smaller networks. It uses gradient descent 
incorporating curvature of the error surface (Newton’s 
method) [3]. Combining these two approaches the 
following update rule is obtained: 
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where  )(2
iwEH ∇=  is the Hessian matrix and 

)( iwE∇ is the Jacobian matrix. Replacing the identity 

matrix with the Hessian diagonal increases the step in the 
direction of small gradient minimizing the trajectory 
oscillations [4]. Thus we get the final Levenberg-
Marquardt update rule: 
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λ is dynamically decreased by an order of magnitude if 

the error decreases. If the error increases λ  is increased 
by an order of magnitude, the learning trajectory returns 
to the previous point and the step is repeated.  

The main disadvantage of LM algorithm is its high 
memory requirement. The size of the Jacobian is NVNONW  

and that of Hessian is 
2
wN . In practice even for modest 

networks it becomes a problem, for example for the 
satellite image database with 27 hidden neurons (see [5]) 
the Jacobian alone requires 248 MB memory using double 
precision (8 Byte) representation. By comparison VSS 
algorithm requires only 1.26 MB for the same network 
architecture. Storing the training set in memory takes 1.3 
MB of RAM. 

To reduce the memory requirements the Jacobian may 
be divided into several parts and Hessian calculated by 
summing partial results, but this adds a significant 
computational overhead. 
 
2.4 Scaled Conjugate Gradient (SCG) 
 

SCG algorithm is considered to be the quickest one 
among the well known algorithms for larger networks.  

 With initial gradient g0 and initial vector d0=-g0 the 
conjugate gradient method recursively constructs two 
vector sequences: 

    )( 11 ++ ∇= ii wEg    and  iiii dgd γ+= ++ 11   

where g is gradient direction and d is called conjugate 
direction. We proceed from wi along the direction di to the 
minimum of E at wi+1 through line minimization and then 
set gi+1 at the minimum. [6] 

Since conjugate gradient methods do not compute any 
matrices they scale well with the network size. 

The conjugate direction d minimizes trajectory 
oscillations and allows longer steps, which leads to a 
faster convergence than steepest descent directions, 
although the error function decreases most rapidly in the 
steepest descent directions. A similar affect is caused by 
momentum added to numerical gradient or to 
backpropagation.  

Scaled conjugate gradient algorithm is a version of 
conjugate gradient that avoids the time-consuming line 
search along conjugate directions. As a Levenberg-
Marquardt algorithm, it introduces a scalar λ to regulate 

the indefiniteness of EH 2∇= . The scaling procedure 
is described in details in [7]. 
  
3. Learning Trajectories 

 
3.1 Visualization of Learning Trajectories and Error 
Surface 
 
MLP error surface E(W)=∑x||Y-M(X;W)|| is defined in 
the weight space W for a given training data X, desired 
output vector Y and structure of network mapping 
M(X;W). An MLP training process can be defined as 
searching for a minimum on the error surface, where the 
learning process creates a trajectory on that surface. 

PCA (Principal Component Analysis) as a natural 
choice for visualizing high dimensional data and was 
previously used for three-dimensional visualization of 
learning trajectories [8][9][11] and MLP error surfaces 
[10][11]. PCA is performed by singular value 



decomposition on the covariance matrix of weights taken 
from each training cycle. 

The vertical axis in Fig.3. shows MSE error. Horizontal 
axes show distances in the weight space in c1 and c2 PCA 
directions corresponding to the first and second 
eigenvector of the weight covariance matrix. The view of 
error surface in PCA projections depends only on dataset 
and on network structure, but does not depend almost at 
all on the training algorithm so it is shown only once. 
Instead the trajectories stronly depend on the training 
algorithm. 

All sample visualizations use the same network with 4 
inputs, 4 hidden and 3 output neurons trained with iris 
dataset.  

 

 
 

Fig. 2. MSE error (E), classification accuracy on training set (A) and 
||Wi||/||W5|| (W) during 5 training cycles of IRIS (4-4-3). After three 
training cycles the training has converged and should be stopped 
 

 
Fig. 3. Projection of IRIS (4-4-3) error surface trained with VSS and 
learning trajectory in the first and second PCA direction. The trajectory 
color changes every training cycle  
 

 
Fig. 4. Projection of IRIS (4-4-3) learning trajectory trained with VSS in 
the first and second PCA direction. The cross shows the zero point in the 
weight space 

 
Fig. 5. Projection of IRIS (4-4-3) learning trajectory trained with the 
simplest search algorithm changing one weight at a time. (VSS version 
going always through point 3 instead of point 2 with max_n=1, see 
Fig.1) in the first and second PCA direction 
 
 

 
Fig. 6. Projection of IRIS (4-4-3) learning trajectory trained with NG in 
the first and second PCA direction 
 

 
Fig. 7. Projection of IRIS (4-4-3) learning trajectory trained with LM in 
the first and second PCA direction 
 

 
Fig. 8.  Projection of IRIS (4-4-3) learning trajectory trained with SCG 
in the first and second PCA direction  
 

 
Fig. 9. Projection of IRIS (4-4-3) learning trajectory trained with VSS  in 
the third and fourth PCA direction. Higher PCA components have 
significant values only at the beginning of the training, what is clear, 
because VSS algorithm frequently changes the direction at the beginning 
of the training and weights grow quicker in the next cycles



3.2 Using Error Surface and Learning Trajectory 
Properties to Enhance Algorithms Performance 
 

The similarity between all trajectories presented in Fig. 
4-8 is obvious; they create similar arcs following the 
shape of iris error surface ravine Also the difference 
between VSS and other algorithms learning trajectories is 
clearly visible. Using gradient-based information makes 
the training dependent on a factor that vanishes as the 
training progresses, so gradient-based algorithms have a 
tendency to decrease their learning steps as gradient 
decreases and thus slowing down the training even more. 
(LM and SCG additionally make smaller steps when the 
trajectory is turning more and bigger when it goes through  
relatively straight parts of the error surface ravine – effect 
of using second order information, which is proportional 
to the curvature). 

VSS increases the step when the gradient decreases and 
that makes the algorithm effective. The increase of VSS 
step is caused by the fact that VSS does not rely on 
gradient information, but rather on the learning history. 
The learning history creates a trajectory. When 
performing PCA on the points through which the 
trajectory goes, then usually about 95% of total variance 
is captured by the first and second PCA direction. So 
figures 3-8 reflect the learning trajectory properties quite 
well. The trajectories show some regularities, not only for 
iris but also for all datasets. VSS uses the regularities to 
make the training more effective.  

Not only dw for the same weight in two successive 
training cycles will not differ much while dw for different 
weights in the same training cycle may differ ranks of 
order but also some trends in weight changes may be 
observed. 

Many attempts were made to use the statistical 
distributions of weight changes to speed up the algorithm 
but so far none of them was successful, and the version of 
VSS presented in that paper has the best performance. 
Also some attempts were made to extrapolate the 
trajectory in two or more PCA directions and then jump to 
that point thus omitting several training cycles. But due to 
the complex shape of the valleys on the error surface and 
to the fact that PCA/ICA/kernel PCA/Principal Curves or 
whatever directions are changing all the time during the 
training it is extremely difficult to guess proper point in a 
weight space several training cycles ahead. So far it was 
successful only for a few databases.  Nevertheless the 
approaches seem very promising and worth further 
research. 

 
4.  Comparison of VSS, NG, LM and SCG  
 
Three parameters determining algorithm efficiency are 
considered:  the total computational complexity (Ct) 
required to achieve the desired effect, the quality of the 
solution the algorithm can find (%test) and the percentage 
of the algorithm runs that converge to the solution (CR).    

VSS and NG calculations were done using a program 
developed by one of us (MK). Matlab Neural Network 

Toolbox (written by H. Demuth and M. Hagen) was used 
for LM and SCG calculations. Since the training times 
between Matlab and our program written in Delphi could 
not be directly compared, the computational complexity 
of the algorithms was assessed in the following way: first 
only the datasets were propagated through the network 
with calculating the MSE error Sn times. Sn was set to a 
value assuring the time of simulation St about 1 minute (in 
the case of Matlab it was done by modifying trainscg.m so 
that only sim() function was called within the plot). Then 
the algorithms were run the average number of training 
cycles require to converge Tn for mushroom, thyroid and 
shuttle and 1000 training cycles for iris and breast and the 
training time Tt was measured (the real training times for 
iris and breast were too short for reliable direct 
measurement). All on-screen display and additional 
options were switched off in both programs during the 
experiment. A given algorithm computational complexity 
per one training cycle was calculated for given dataset and 
network structure as: Ce=(Tt/Tn)/(St/Sn). 

For VSS Ce is from 20 for the smaller networks (iris, 
breast) to 100 for the bigger networks (mushroom). For 
LM Ce is between 8 for iris and 540 for mushroom and 
grows rapidly with network size. For SCG it does not 
depend much on network size being between usually 
between 4 and 8, however for very large datasets as 
shuttle with 43,500 vectors it falls down even below 2. 
The number of training cycles required to converge Nt was 
always the lowest for VSS and the highest for SCG. 

The total computational complexity Ct shown in Table 
1. is the parameter reflecting the algorithm speed. It 
express the ratio of the total training time to the time of 
propagating the dataset through the network once. Ct can 
be obtained by multiplying the per training cycle 
complexity Ce by the average number of training cycles Nt 
required to train the network: Ct=CeNt.  

In all cases Ct for VSS was lower than that for LM. In 
most cases it was also lower than that of SCG, however 
for larger datasets that are relatively easy to train, as 
mushroom, the difference between Ct for VSS and for 
SCG vanishes.  

VSS and LM were able to find the best solutions with 
%test frequently higher than shown in Table 1, which 
were in many cases out of reach for NG and SCG. 
However LM frequently did not converge to the solution 
and had to be repeated with other starting weights. The 
CR parameter in Table 1. expresses the convergence rate 
of algorithms, e.i. the percentage of the algorithm runs 
that converged to the desired solution within 5000 cycles.  

For VSS and NG the minimum and maximum number 
of training cycles in that a given algorithm converges to a 
given solution differed less than 30% from the mean 
number Nt given in Table 1, while for LM the difference 
was often over 100%. VSS and NG algorithms had the 
smallest memory requirements. Though the performance 
of NG could be frequently improved by adding 
momentum, it still will be poorer than that of VSS. The 
main difference between the algorithms is that NG uses 
directly gradient information, while VSS does not.  



For each training algorithm 10-20 experiments were 
made with every dataset. The network was tested on test 
sets (thyroid, shuttle) or in 10-fold crossvalidation (iris, 
breast, mushroom). A vector was considered to be 
classified correctly if its corresponding output neuron 
signal was higher then other neurons signals and than 0.5. 
All training algorithms were run with the same default 
parameters for each dataset.  

It is clear that including additional techniques such as 
freezing or pruning the least significant weights, 
calculating error on a different part of vectors each 
training cycle instead of on the entire dataset or 
eliminating from further training vectors that give the 
least error [13] much shorter training times are possible 
with each of the examined algorithms, but till now it was 
not a matter of our research. 
 

5.  Conclusions 
 

The proposed variable step search algorithm is fast, can 
find very good solutions, does not require multistart and 
has low memory requirements. It is also very simple to 
program since it does not require calculation of 
derivatives and matrices, therefore it is quite surprising 
that in empirical tests it usually outperforms both LM and 
SCG. 

It is clear that search-based techniques, popular in 
artificial intelligence and completely neglected in neural 
networks (with an exception of Alopex algorithm [14] 
based on simulated annealing), may be the basis for 
competitive network training algorithms. They may be 
used for initialization and combined with traditional 
gradient-based techniques. But so far  the performance of 
VSS as a standalone algorithm has been more than 
satisfactory. 
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Table 1. Comparison of VSS, NG, LM and SCG algorithms.  
 

dataset % VSS NG LM SCG 

network test Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct Nt MB CR Ct 
iris 96 2.3 100 41 14 100 223 20 80 223 118 90 948 

4-4-3 98 3.5 
- 

100 63 22 
- 

100 350  22  
- 

80 246  157 
- 

90 1260 
breast 

10-4-2 
98 1.0 - 100 30 10  -  100  280  20 1.5 100 109  438 0.4 10 807  

mushroom 98 1.2 100 124 21 100 1070 4 90 2180 20 100 167 

125-4-3 99.9 2.0 
0.4 

100 206 - 
0.4  

0 - 6 
240 

90 3260 45 
40 

100 377 
thyroid 97 6.1 100 392 40 40 862 25 50 1640 103 70 581 

21-4-3 98 10 
0.2 

100 643 - 
0.2 

0 - 35  
30 

40  2300 - 
1.0 

0  - 

shuttle 98 4.5 100 423 34  90  1300  14 60 1430 780 50 1480 

10-6-7 99 6.0  
1.6 

100 564  58 
1.6  

90  1740   19 
1400 

60 1940 1620 
20 

30  3080 
 
Nt - number of training cycles 
MB - memory usage in MB for storing network parameters, without including memory for the data set (calculated by subtracting the memory used by the 
program running the algorithm on given dataset from the memory used by the program with the given dataset loaded in memory and running the algorithm 
on xor dataset. Memory usage measured with Task Manager) 
CR – convergence rate, percentage of training runs that converged to a given accuracy solution within 5000 training cycles 
Ct  - total computational complexity;  the ratio of the total training time to the time of propagating the dataset through the network once 


