
A Survey of Factors Influencing MLP Error Surface

by

Miros�law Kordos1 and W�lodzis�law Duch2,3

1Faculty of Automatic Control, Electronics and Computer Science,
The Silesian University of Technology, Gliwice, Poland

2Department of Informatics, Nicholaus Copernicus University, Toruń, Poland
3School of Computer Engineering, Nanyang Technological University, Singapore

www.phys.uni.torun.pl/~duch

Abstract: Visualization of neural network error surfaces and
learning trajectories helps to understand the influence of numerous
factors on the neural learning process. This understanding can be
used to improve training and design of MLP networks. The following
topics are discussed using a few benchmark datasets for illustration:
general error surface properties including local minima, plateaus and
narrow funnels, their dependence on network structure, input data,
transfer and error functions, consequences of weight initialization,
and interesting directions in the weight space. The error surfaces
are shown in 3-dimensional PCA-based projections. Finally a possi-
bility of effective weight number reduction is discussed.

Keywords: neural networks, MLP, error surface, visualization,
learning trajectory.

1 Introduction

Error surface (ES) E(W) =
∑

X ||Y−M(X; W)|| of a neural network is defined
in the weight space W (including biases as W0 components) for a given set of
training vectors X, desired output vector Y and a vector mapping M(X; W)
provided by the neural network. Only the multi-layer perceptron (MLP) net-
works will be considered here, although the same techniques may be used to
investigate other types of feedforward networks. An MLP training process can
be defined as a search for the global minimum on the hyper-surface E(W),
where the learning process creates a trajectory on that surface.

One way to understand better the learning dynamics of the MLP is to vi-
sualize both the ES and the learning trajectory using projections of the orig-
inal weight space on the two- or three-dimensional subspace. The projection
directions should preserve most information about the original surface. In two-
dimensional visualizations error value is displayed on the vertical axis, with the
horizontal axis presenting one interesting direction selected in the weight space.

A good choice is either the gradient direction, or the first principal component
direction. A sample plot showing the change of the mean squared error (MSE)
in the direction of numerical gradient (Duch and Kordos, 2003) is shown in
Fig. 1. and in the subspace of two most important PCA components in Fig.
2. The MLP network with a single hidden layer composed of four nodes (4-4-3
architecture) has been trained on the Iris data taken from the UCI repository
(Mertz and Murphy, 1999). This data is frequently used for simple benchmarks
of classification systems.

The curves in Fig. 1. were created by changing the weight vector W in
the gradient direction dW after four consecutive training epoch that started
from the minimum found in the gradient direction at the previous step. The
first curve has a narrow and deep minimum, indicating that a rather narrow
funnel is traversed on the error surface. The second and the subsequent curves
reach lower error levels. The ravine on ES is getting wider and wider during
the training, finally leading to a broad plateau. That is visible in some of
the sections in gradient directions, although not in all, since sometimes the
gradient direction deflects from the ravine direction. This should be expected
in all problems where separation of vectors that belong to different classes is
relatively easy. The error surface should then be insensitive to weight changes
that correspond to rotations and shifts of decision borders that do not affect
the separation.

−100 −50 0 50 dW
0

0.2

0.4

0.6

0.8

E

Figure 1: Section of the MLP (4-4-3) error surface for the Iris data in directions
of numerical gradients after four consecutive training epoch.

It seems worthwhile to investigate error surfaces in higher dimensional spaces.
PCA (Principal Component Analysis) is a natural choice for visualizing the
weight space because it provides components from which the original weight
space may be reconstructed with the highest accuracy. Moreover the first two
PCA components capture almost all variance of the weight changes. PCA di-
rections were previously used for three-dimensional visualization of learning tra-

2

jectories by Gallagher (Gallagher 2000). We propose here to use them also for
the visualization of MLP error surfaces.

Using weights from an MLP network with 4 hidden nodes in a single hidden
layer trained on the Iris data two principal components c1 and c2 were found,
producing the error surface shown on the left side of Fig. 2. The learning
trajectory lies on the bottom of one of the ravines. Starting the training from
another point could result with the trajectory lying on the bottom of another
ravine. Some sample trajectories are shown in section 7.

−100

c1

100

−100

c2

100

0

E

1

−100

c1

100

−100

c2

100

0

E

1

Figure 2: Left: MLP (4-4-3) error surface for the Iris data displayed in the first
two PCA directions; right: the same error surface rotated and stretched to show
additional aspects of the surface structure.

2 Research Methodology

2.1 Training Algorithms

The following procedure of determining the projection directions has been used:
a network is trained using either standard backpropagation (Haykin, 1994),
Levenberg-Marquardt algorithm (Marquardt, 1964), scaled conjugate gradi-
ent (Moller, 1993), numerical gradient (Duch and Kordos, 2003), the simplest
search-based numerical method that changes one weight at a time (Duch and
Kordos, 2003), or its modified version with variable step search (Duch and
Kordos, 2004). However, the results of computational experiments do not de-
pend significantly on the training algorithm. Weight vectors W(t) containing
all adaptable network parameters are stored after each training epoch t and
collected in the weight matrix Wmax = [W(1), W(1) . . . W(tmax)]. Principal
components are obtained using Singular Value Decomposition (SVD) applied
directly to the Wmax matrix, or to the covariance matrix calculated using the
W(t) vectors. Interesting directions may also be obtained using independent
component analysis (ICA). FastICA algorithm has been used to determine ICA
directions. These methods are compared in subsection 2.5.

3

2.2 Limitations of PCA Projections

Although PCA projections are very useful for visualization of error surfaces they
do not show certain aspects of the high-dimensional surfaces:

1. Some ravines in which the training trajectories lie are curved, not straight
as shown in the PCA projections.

2. The deepest ravines reach lower error values than those shown in PCA
projections.

3. Sometimes shallow local minima close to the ES center are visible in PCA
projections, although they do not exist in the original ES.

The curvature and greater steepness of ravines are not shown, because they
are not visible in three-dimensional projections. They can be only imagined or
visualized if the projection directions will change locally in different fragments
of the plot. Such detailed visualizations have not been attempted because they
may be rather difficult to interpret. PCA projections may not offer a perfect
representation of the ES, but still carry a lot of useful information. The right
side of Fig. 2. shows how the ES may look like, addressing the points mentioned
above. It was obtained by applying horizontal rotation and vertical stretching
to some fragments of the original ES projection in Fig. 2, left.

2.3 Methods of Constructing Plots

Vertical axis in the plots shows relative error per vector and per class, Er(W) =
E(W)/NvNc, where Nv is the number of vectors and Nc is the number of classes
in the training set. For all error functions based on Minkovsky’s metric || · ||
the error function is bounded from above by NvNc, thus the relative error is
bounded by 1. Horizontal axes show distances in the weight space in c1 and
c2 PCA directions corresponding to the first and the second eigenvector of the
weight covariance matrix.

MLP networks were trained for data classification. The character of ES
is determined by the dataset and network structure, but it does not depend
on the training method or network initialization. The exact number of epochs
varied depending on the training algorithm and dataset used. Network training
was stopped before reaching convergence, when the error reached 10% above
the minimum value that can be achieved. The final epochs, when the error
was decreasing slowly and weights of output neurons tended sometimes to grow
quicker then those of hidden neurons, were rejected. The training was repeated
several times for a given method with various random initial weights.

Neither the random weight distribution, nor the training method has sig-
nificant influence on the shape of ES presented in the space of two main PCA
components. Moreover, weights of each layer have comparable contributions in
determining PCA directions. The projection of error surface for a given dataset
and network structure may differ a bit, depending on the initial weights and
training method. It may rotate from one plot to another, its elements may be
a bit higher or lower, but the overall structure is well preserved.

4

To obtain the most reliable ES projection PCA should be calculated from
the training cycles ranging from the initial weights to that point when the error
begins to change very slowly. However, if only the first half or even fewer
training cycles are taken the differences are hardly visible. It is important that
the initial training cycles, when the error changes are rapid, should not be
omitted; otherwise some distortions, that are described in section 8.2, are likely
to occur.

MLPs based on sigmoidal transfer functions are used to generate most of
the plots presented here, but ES projections obtained with hyperbolic tangent
functions do not differ significantly. Few other types of neural functions have
also been tested.

Experiments with over 20 datasets, most of them from the UCI machine
learning dataset repository (Mertz and Murphy 1999), have been made. To be
concise only one ES typical for a given situation is shown here; the others are
qualitatively similar.

The name of a dataset in figure labels is followed by the number of neurons
in successive layers; for example, in Fig. 4. Iris 4-4-3 means that the MLP
network with 4 inputs, 4 hidden and 3 output neurons has been trained on the
Iris data.

2.4 Typical PCA Values

Typically first and second PCA directions contain together about 95% of the
total variance. There is a strong correlation between the change of the weight
dwi = wi(t0) − wi(tmax) during the training and its corresponding entry in the
first principal component vector c1(wi) (Fig. 3, left). The remaining entries
in the principal component vector seem to be uncorrelated with the change of
corresponding weights during the training (Fig. 3, right).

−0.4 −0.2 0 0.2 PC1(w)
−4

−2

0

2

dw

−0.4 −0.2 0 0.2 PC2(w)
−4

−2

0

2

dw

Figure 3: Left: Correlation of c1(wi) with the change dwi of the weight for Iris
(4-4-3); right: No such correlation is found for the second component.

5

2.5 Comparison of SVD on Weight Matrix, Weight Co-
variance Matrix, FastICA and Two-Weight Coordi-
nate Systems

SVD can be calculated either directly on the weight matrix, or on the weight
covariance matrix. The resulting plots are of similar nature, although eigen-
value distribution is different. The weight matrix gives smaller first to second
eigenvalue ratio and has larger less significant eigenvalues, but in both cases
the first and second PCA directions typically contain about 94–97% of the total
variance. Nevertheless, a covariance matrix has two advantages: a projection of
the error surface reaches lower error values, and plots differ less from training
to training, being less influenced by random initial distribution of weights. For
this reason all plots presented here are based on a covariance matrix, except for
the two sample ES presented in Fig. 4. for comparison.

100

c2

−100
−100

c1

100

0

E

1

100

c2

−100

100

c1

−100
0

E

1

Figure 4: Left: ES of Iris (4-4-3) obtained with PCA on weight matrix for the
same training as shown in Figs. 1-2; right: ES of Iris (4-4-3) obtained with
FastICA algorithm for the same training as shown in Figs. 1-2.

PCA projections are in the directions of maximum variance, thus even if
the data is clearly divided into two clusters, PCA may not reveal that struc-
ture. ICA (Independent Component Analysis) projections are in the maximally
non-gaussian directions, providing usually a better separation of clusters. ICA
approach may therefore show some additional ES properties that are not visible
in PCA projections. FastICA algorithm (Hyvarinen and Oja, 2002) has been
used here, resulting in very similar projections to those obtained with PCA
on the covariance matrix. The global character of both projections is the same.
Magnification of ES obtained with ICA projections reveals however more details
that are hardly visible in the scale of Fig. 4, left in the form of rough ridges.
The first ICA direction is almost parallel to the first PCA direction with the
cosine between them approximately equal to 0.99, but the second PCA and ICA
components are uncorrelated, with the cosine between them being usually be-
low 0.3. Change of various FastICA algorithm parameters does not noticeably

6

change the character of the plots, althought they may differ slightly because
FastICA uses some random numbers.

Using a coordinate system based on two most significant weights does not
provide so much information as using principal components. Most error surfaces
for networks with more than 20 weights in the two-weight coordinate system
create four horizontal planes, which are sometimes reduced to two or even one
plane. The surfaces have the same nature for every data set and every network
structure. More complex shapes of ES projection in two-weight systems are rare
for medium to large networks. This is not difficult to understand: changing only
2 weights cannot have much influence on the error, while changing PCA compo-
nents leads to coordinated changes of all weights. In networks with significantly
more hidden neurons then required to learn the task many neurons perform
highly redundant roles. In such cases changing any two weights of the trained
network may have no influence on the error and only one horizontal plane may
be visible in the ES projection.

3 Influence of the Network Structure

Networks without hidden layers have very simple ES consisting only of some
horizontal or slightly inclined half-planes, situated at various heights, with slopes
connecting them (Fig. 5, left).

ES of networks with hidden layers has a starfish structure. An interesting
depiction of it was given by Denker et al. (Denker, 1987): “E(W) surface
resembles a sombrero that has been warped in certain symmetric ways: near
the middle (W = 0) all configurations have moderately bad E values. Radiating
out from the center are a great number of ridges and valleys. The valleys get
deeper as they go out, but asymptotically level out. In the best valleys, E
is exactly or asymptotically zero, other valleys have higher floors”. Pictures
presented here confirm that global minima rarely create craters but frequently
ravines reaching their minimum in infinity. This corresponds to the infinite
growth of (usually output layer) weights when the training is contined.

Each of the h hidden neurons may be labeled by an arbitrary and unique
number from 1 to h. Renumerating the network parameters does not change the
mapping implemented by the network thus giving h! permutational symmetries.
A neural activation function for which f(−x) = −f(x) + const gives further
2h sign-flip symmetries (Sussmann, 1992). This gives together 2hh! equivalent
global minima. A training algorithm converges to that minimum which is easiest
to reach from the starting point. Only some of these minima are clearly visible
in the PCA projections.

Networks with two hidden layers have more complex ES than with a single
hidden layer, even if they have fewer neurons (Fig. 5, right). Finding optimal
solution for networks with more than one hidden layer is more difficult, because
the training algorithm may easily end on many high-laying plateaus.

In 3-layer networks with crossover connections the output layer is connected
directly to both; the input (as in the 2-layer networks) and the hidden layer (as

7

−100

c1

100

−100

c2

100
0

E

1

−100

c1

100

−100

c2

100
0

E

1

Figure 5: Left: ES of the 2-layer network (Iris 4-3); right: ES of the 4-layer
network (Iris 4-4-4-3).

in 3-layer networks). Consequently their ES displays features of 2-layer networks
(low symmetry of ES, Fig. 6, left) and 3-layers networks (complexity of ES).

Too few neurons in any hidden layer create a bottleneck, making it impossible
for the network to learn the task. ES consists then of some horizontal planes
all placed relatively high with some disturbances between them, but has no the
characteristic ravines leading to global minima (not shown here). The number
of global minima visible in PCA projections initially grows with the increase
of the number of hidden neurons, but with too many hidden neurons large
horizontal planes begin to appear (Fig. 6, right). This effect caused by the
weight redundancy is very clear in the two-weight coordinate system, where the
projected ES is almost flat becuase many weights must be changed at the same
time to change the error.

−100

c1

100

−100

c2

100

0

E

1

−100

c1

100

−100

c2

100

0

E

1

Figure 6: Left: ES of the 3-layer network with crossover connections (Iris 4-4-3);
right: ES of the 3-layer network with too many hidden neurons (Iris 4-100-3).

8

4 Influence of the Training Dataset

Similar network structure x-4-2 has been used for several datasets from the UCI
repository (Mertz and Murphy, 1999). Generally the following tendencies can be
observed: 1) More complex training data produces more complex ES with more
ravines, especially for vectors that are not linearly separable. 2) Equal number
of examples in each class leads to a more symmetric ES (Gallagher 2000).

Wisconsin breast cancer data (Fig. 7, left) has 699 vectors, two classes and
only a few overlapping vectors, with good classifiers achieving 97% accuracy
(Duch et al., 2001), therefore ES is quite simple. Iris (Fig. 2, right) has 3
classes with little overlap, and Ionosphere (Fig. 7, right) has two classes with
not much more overlap, and they both give similar ES. Good classifiers reach
97-98% on these datasets (Duch et al., 2001)).

Appendicitis has only 21 vectors in one class and 85 in the second. It gives
a highly non-symmetric ES (Fig. 8, left), and although convergence on this
dataset is rather fast the accuracy is less than 90% (Duch et al., 2001)). The
same dataset with balanced number of vectors, taking all 21 vectors from class 1
and randomly selecting the same number from class 2, produces quite symmetric
ES (Fig. 8, right), although with more complex shape.

XOR is strongly linearly non-separable and therefore has a complex ES (Fig.
9, left). 6-bit parity is even more strongly linearly non-separable, with 32 clus-
ters per class (XOR has only 2). Its ES is very intricate, but with equal number
of vectors per class the symmetry is preserved (Fig. 9, right). It is clear that
MLP convergence for parity problems is quite difficult to achieve.

−100

c1

100

−100

c2

100

0

E

1

−100

c1

100

−100

c2

100
0

E

1

Figure 7: Left: ES of Wisconsin Breast Cancer (10-4-2); right: ES of Ionosphere
data (43-4-2).

9

−100

c1

100

−100

c2

100
0

E

1

−100

c1

100

100

c2

−100
0

E

1

Figure 8: Left: ES of entire Appendicitis dataset (12-4-2); right: ES of Ap-
pendicitis dataset (12-4-2) with only 42 vectors - all 21 vectors of class 1 and
randomly chosen 21 vectors of class 2.

−100

c1

100

−100

c2

100
0

E

1

100

c1

−100

−100

c2

100

0

E

1

Figure 9: Left: ES of xor (2-2-2); right: ES of 6-bit parity (6-6-2).

5 Influence of the Transfer Function Type

5.1 Monotone Transfer Functions

Transfer functions may have very strong influence on the convergence properties
of neural networks (Duch and Jankowski, 1999). In this section examples of
error surfaces obtained with several transfer functions are presented, such as
the staircase function or stretched sigmoid. The purpose of introducing these
functions is to prevent the weights from infinite growth during training, and in
the case of staircase functions also to simplify the calculations.

The fewer stairs in the staircase function, the more plateaus with sharp
edges are found on the surface, and the more difficult training with gradient-
based methods becomes. The stretched sigmoid do not cause any sharpness on

10

Figure 10: Transfer functions: a) stretched sigmoid, b) staircase function.

−100
c1

100−100

c2

1000

E

1

100

c1

−100

100

c2

−100
0

E

1

Figure 11: Left: ES of Ionosphere (42-4-2) with stretched sigmoid (stretch=1.3);
right: ES of Iris (4-4-3) with staircase transfer function (5 stairs).

the error surface. With a small stretch (1.01-1.1) it seems to be a good solution.
But with a bigger stretch the function becomes similar to a step function and
has a limited usefulness for complex data sets, with large flat areas appearing
on the error surfaces (Fig. 11, left). More exotic neural functions may be used
(Duch and Jankowski, 1999), but their investigation is beyond the scope of this
article.

5.2 Non-monotone Transfer Functions

Non-monotone transfer functions produce many local minima. Fig. 12. shows
ES of XOR (2-2-2) with a sinusoidal transfer function. The training of the net-
work was successful only because all weight remained in the monotone sinusoid
interval (−π/2; π/2). ES visible in this figure has nothing in common with ES
of MLP with monotone transfer functions, such as widely used logistics and
hyperbolic tangent sigmoidal functions, where local minima are very rare for
real-world datasets, although they may appear as an effect of superpositions
of two or more sigmoids. In the standard case ill-conditioning, large flat ar-
eas and choosing a wrong ES valley may cause many difficulties with training
algorithms.

11

100

c2

−100

100

c1

−100
0

E

1

Figure 12: ES of Xor (2-2-2) with sinusoidal transfer function S = 0.5 + 0.5 ∗
sin(x)

Basing on the ES shown in figs. 11 and 12, and the ES obtained with
standard sigmoidal transfer functions, it can be concluded that the shape of
transfer function is reflected in the features of ES.

6 Influence of the Error Functions

6.1 Regularization of Weights

The regularization term is added to the error function to keep the weights small
and assure smooth, gradual changes that increase classification margins and
thus improve generalization. In the simplest form the regularization term is the
sum of all weights squared α

∑
i w2

i . The training error with the regularization
term included reaches higher values even though the number of errors may be
smaller. The error surface lies in general higher, especially farther from the
center where larger weights W contribute to the error function. The effect is
stronger for large regularization parameter α. A plot for the Wisconsin breast
dataset with α = 0.03 is presented in Fig. 13. A superposition of the original
ES of the dataset and the paraboloid coming from the quadratic term can be
observed.

Using MSE error function with desired output signals 0.1 and 0.9 or 0.2
and 0.8 produces very similar ES as with desired outputs 0 and 1, but a global
minimum tends to lie close to the ES center in a shallow valley (not shown here).

6.2 Different Exponents in the Error Function

Mean Squared Error function is commonly used, but the error function can use
powers for absolute values of the difference between achieved and desired output
with different exponents. This has an effect of paying more (or less) attention
to small or large differences. An error surface does not depend strongly on

12

−100

c2

100

−100

c1

100
0

E

1

Figure 13: ES of Wisconsin Breast Cancer (10-4-2) with weight regularization,
α = 0.03.

the exponent of a power function in the 0.5 to 8.0 range. Two pictures of error
surfaces obtained with more extreme values of exponent = 0.1 and 32 are shown
in Fig. 13. High error exponents successfully reduce weight growth and act as
a weight regularization method. The learning trajectory remains in the global
minimum near the center. For Iris 4-4-3 the module of weight vector never
exceeded 25, no matter how long the training lasted, and the network always
converged. Low exponents in the error function produce ES with central peak
and slopes falling slowly down. With error exponent = 0.1 it is usually enough
to reduce the distance error by 20% to achieve the same classification accuracy
on a training set, as would require reducing an MSE error by 90%.

−300

c2

300

−300

c1

300
0

E

1

100

0

−100

−100

0

100
0

E

1

Figure 14: Left: ES of Iris (4-4-3) with the exponent of the error function 0.1;
right: the same case with the exponent=32.

13

6.3 Cross-Entropy Error Function

The cross-entropy error function for a a single output M(X; W) and target
values Y (X) ∈ {0, 1} is given by the following formula:

E(W) = −
∑
X

(Y (X) ln M(X; W) + (1 − Y (X)) ln(1 − M(X; W))) (1)

To avoid numerical problems with logarithms for arguments approaching
zero the following modification has been used:

E(W) = −
∑
X

(
Y (X)

ln(M(X; W) + ε)
ln(1 + ε)

+ (1 − Y (X))
ln(1 − M(X; W) + ε)

ln(1 + ε)

)

(2)
where ε ≈ 10−10 is a small positive number.

The total network error is the sum of all single output errors. Comparing to
MSE or other power error functions, cross-entropy error functions give similar,
however usually more complex ES. Furthermore the ES changes slower with the
distance from the center and therefore the ES with large c1 and c2 axes range
(−300 to 300) are shown (Fig. 15.). Convergence in the final part of the training
may therefore be rather slow. ES values for cross-entropy may be higher then
1 due to the fact that the error is not bounded by NvNc as it is in the case of
power error functions.

−300

c2

300

−300

c1

300
0

E

1

−300

c2

300

−300

c1

300
0

E

1

Figure 15: Left: ES of Appendicitis (7-4-2) with cross-entropy error function;
right: ES of XOR (4-4-2) with cross-entropy error function (note different range
on horizontal axes).

7 Visualization of the Learning Trajectory

Learning trajectories can be shown in the same plot as their corresponding
error surfaces. Although the learning trajectory really does not lie on this two-

14

dimensional section of ES, but somewhere in the weight space, to a certain
degree it tends to adhere to the ES projection. The trajectory tends at least to
lead to the ravine that was followed by the training algorithm (Fig. 16, right).
The beginning of a trajectory lies often over the ES projection and its end
under, because the ES projections are often flatter then original ES on which
the trajectory lies. The trajectories in n-dimensional weight space frequently
create arcs. The mean direction of the arc is usually parallel to the direction of
the ES ravine in PCA projections (Fig. 16, left).

Learning trajectories look differently depending on the training algorithm
and its parameters. Using batch backpropagation with small learning rate tra-
jectories are very smooth. Increasing learning rate gives more irregular trajecto-
ries. Fragments of the backpropagation trajectories may go as well downwards
as upwards, while trajectories obtained with some other algorithms go only
downwards. Backpropagation trajectories with various learning rates have al-
ready been analyzed (Gallagher and Downs, 2003), and therefore they are not
discussed here in detail.

ES is always associated with a given set of vectors. Any training that does
not calculate the error for every epoch on the entire set leads to ES that changes
for each subset of the training vectors. In particular this is the case for online
backpropagation – each point on the trajectory corresponds to another ES. This
is why the trajectory is so rough and jagged, but globally it follows its main path.
It is impractical to show such a trajectory and the average ES in one picture,
because for successful training with online backpropagation the learning rate
must be very small, and thus so small trajectory fragments going in different
directions would be invisible in the global ES picture scale.

−100
c1

100
−100

c2
100

0

E

1

−100

c1

100

−100
c2

100

0

E

1

Figure 16: Left: ES and the learning trajectory of Iris (4-4-3) trained with
backpropagation; right: trained with Levenberg-Marquardt algorithm.

Fig. 7 shows also the effect of different training algorithms on the error
surfaces. First-order backpropagation algorithm (left subfigure) has slower con-
vergence than the second-order Levenberg-Marquardt algorithms (right subfig-
ure). In Fig. 17. trajectories of tho other learning algorithms are displayed in
two-dimensional projections.

15

0 10 20 30 PC1

10

PC2

0 10 20 30 PC1

10

PC2

Figure 17: Two-dimensional projections in the first and second PCA direction
of Iris (4-4-3) learning trajectories. Left: training with variable step search
algorithm; right: training with scaled conjugate gradient.

8 Network Training Acceleration by Reduction
of Effective Parameters Number

PCA is frequently used for preprocessing of training data to reduce the number
of network inputs. PCA was also proposed for weight pruning (Levin, 1994). In
this section the possibility to use PCA to reduce the number of effective training
parameters is discussed. After training the network for some number of epochs
PCA is performed on the weight matrix. Then searching for the minimum of
error can take place in the reduced space of PCA-determined directions.

8.1 Directions in the Weight Space

The analysis of directions in a weight space reveals some important properties
of ES that can be used to design or improve some neural training algorithms
(Duch and Kordos, 2004). Some trends and tendencies are common for many
datasets and network structures, differing only in details.

The curves for cosW, ‖W‖, E(t), cos(W, PCA) shown in Fig. 18. are similar
for various training methods. Decrease of the E(t) error is precisely correlated
with changes of the weight vector direction cosW. At the final stage of the
training direction of W remains almost constant and the error decreases very
slowly, although the weights continue to grow. The trajectory is then already in
the flat part of the ES ravine. Regularization or very high exponent of the error
function may damp the weight growth, but nevertheless the error decreases as
long as the weight vector changes its direction.

The cos(W, PCA) line in Fig. 18. shows cosine of the angle between the
resultant PCA direction, calculated as a vector sum of all PCA components, each
multiplied by its corresponding eigenvalue. Using only the first and the second
PCA component gives almost identical results as using all PCA components.
PCA components higher then 6-th contain only the negligible 10−10 of total
variance, and thus contribute only a small amount of noise that can safely be
rejected. In the example only the weights from the first 100 epochs were included
in the weight matrix for PCA calculation. cos(W, PCA) takes the greatest
value after about the 50-th epoch, after that PCA and W directions start to

16

diverge more. The divergence is sometimes even stronger than in Fig. 18. For
that reason a large jump along PCA directions during network training only
seldom will be successful. PCA directions are very good for ES and even better
for trajectory visualization, where a little difference in angles does not matter.
However using PCA for extrapolation of learning trajectories thus making a
jump several epochs ahead is not an easy task, since the proper direction of the
jump must be determined very precisely.

0 100 200 epoch

0.5

1

cos W
||W||
E
cos PC

Figure 18: Change of parameters during network training. Vertical
axis: normalized ‖W‖, normalized MSE error, cos(W) = cos(W(t) −
W (tmax)), cos(W, PCA) = cos between the weight vector W and the resultant
PCA direction. Horizontal axis shows epoch number t.

8.2 PCA-based Parameters Reduction. A Case Study

1. Starting from the random weights (error=326) the network is trained
on Wisconsin Breast Cancer dataset for several epochs. The training is
stopped with error=240.

2. PCA directions are determined.
3. A minimum in the PCA direction is found (using a gradient-based method)

with error=43 and a jump is made to that point.
4. No further error decrease in PCA-directions is possible. The network is

trained again with a standard algorithm.
5. Again PCA directions are determined on the weight matrix from the last

training.
6. Since PCA provides only the direction, there is a free choice of the starting

point in the weight space to which the PCA components will be added.
Two possibilities of choosing the point are considered:
a) zero point in the weight space or the starting point of the entire training.
The two points are very close to each other, therefore choosing any of them
leads to a very similar result: the projection of the ES lifts up. The lowest

17

point on the error surface has now an error=244 (Fig. 19, left).
b) the last training point (Fig. 19, right). Now the projection of ES is
not lifted up, but due to the fact that PCA directions are determined on
the weight matrix from only a small part of the training some local PCA
directions are obtained. The minimum is situated very close to the last
point of the training.

7. In any case the jump can be made only once.

100
c1

−100

100

c1

−100

0

E

1

−100

c1

100

−100

c2

100

0

1

E

Figure 19: ES for the Wisconsin Breast Cancer (10-4-2) determined from the 5
training cycles after the jump; left: PCA components added to the zero point;
right: PCA components added to the last training point.

Breast cancer dataset was chosen for the case study intentionally, because
the dataset is very easy to train (it has very simple ES, Fig. 7.). For most
datasets such big jumps in PCA directions, decreasing error significantly, are
not possible. However, it is always possible to obtain a PCA-based projection
of ES on which the last point from the training lies. Almost always a point
with error lower than that from the last training point can be found on the ES
projection (Fig. 9, right). Still the method is in most cases impractical because
of the high computational costs of calculating PCA that is then used to make
only a small move in the reduced space.

8.3 Extrapolating learning trajectories

Although for very complex, artificial problems, the trajectory can change its
direction several times, for most real-world problems the learning trajectories
create arcs, which are more or less irregular, depending on the training algo-
rithm. Higher PCA components usually vanish as the training progresses, thus
an attempt can be made to extrapolate learning trajectory only in two or three
PCA directions. Many experiments were conducted with speeding up network
training by trajectory extrapolation in up to six PCA directions. The results
showed that in order to achieve a significant gain the trajectory must be ex-
trapolated very precisely. That in most cases cannot be done in a single step

18

and some search procedures are required to find the optimal point. Although
achieving a smaller error in that way is usually possible, it is in most cases
impractical due to the computational cost of calculating PCA every few epochs
in order to make only a small extrapolation of the learning trajectory.

9 Conclusions

Although it is impossible to see high-dimensional space in three dimensions with-
out any distortions, the PCA-based projections give an interesting insight into
many important properties of error surfaces. The most important ES properties
are listed below.

1. ES of networks with hidden layers has a starfish structure.
2. ES depends on the network structure, becoming more complex when more

hidden layers are added, and developing large plateaus if the network has
many redundant weights.

3. ES are simple for linearly separable (or almost separable) training data,
but become more complex for highly nonseparable data that requires com-
plex decision borders.

4. Smooth transfer functions lead to simpler ES, staircase or periodic func-
tion may create very complicated error landscapes.

5. Error functions do not influence ES strongly for a rather wide range of
exponents.

6. Local minima in craters are rare in the standard MLP networks with
monotone transfer functions trained with real-world data sets.

7. With MSE error functions global minima are in infinity. Local minima lie
in ravines that asymptotically reach higher error values.

8. Difficulties of training algorithms result from bad initialization, choosing
a wrong ES ravine, or entering large flat plateaus.

The training method used to generate data for PCA, as long as it converges
does not significantly influence the resulting error surfaces. The learning tra-
jectories of many algorithms create an arc lying in the bottom of one of the ES
valleys. This arc may be smooth or it may be rough. ES projections depend on
the weights after each epoch. If the training is not successful than the learning
trajectory and the ES projection are too flat and too highly situated.

ES has greatest diversity close to its center. Far from the center the surface
changes slowly and flat horizontal areas occupy much place. If the range of ran-
dom initial weights is too broad then there is a great chance that the starting
point will lie somewhere on the flat area, and as a result the network cannot
be trained by any gradient-based or local search methods. On the contrary,
if all initial weights are zero, the network can be successfully trained because
gradients are large in this point. Some gradient methods, such as the backprop-
agation or numerical gradient algorithm, cannot be initialized with zero weights,
but this is a limitation of these algorithms, not the zero point itself.

In some cases network training can be accelerated by determining PCA com-
ponents in the weight space after some initial training and then jumping to a

19

minimum found in PCA coordinates, or by extrapolating the learning trajectory
in the PCA direction, but a universal solution has not been found so far. Non-
linear techniques, such as principal curves, principal surfaces or kernel PCA, can
also be used to display the surfaces and to attempt the training reduction. This
is one of the subjects of our current research aimed at better understanding of
neural networks and using this understanding to improve network architectures
and training methods.

References

Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel,

L., Hopfield, J.J. (1987) Automatic learning, rule extraction and gen-
eralization. Complex Systems, vol. 1, pp. 887-922.

Duch W., Jankowski N. (1999) Survey of neural transfer functions. Neural
Computing Surveys, vol. 2, pp. 163-213.

Duch W., Adamczak R., Gra̧bczewski K. (2001) A new methodology of
extraction, optimization and application of crisp and fuzzy logical rules.
IEEE Transactions on Neural Networks, vol. 12, pp. 277-306.

Kordos M., Duch W. (2003) Search-based Training for Logical Rule Extrac-
tion by Multilayer Perceptron. Proc. of Int. Conf. on Artificial Neural
Networks (ICANN), Istanbul, June 2003, pp. 86-89.

Kordos M., Duch W. (2003) Multilayer Perceptron Trained with Numerical
Gradient. Proc. of Int. Conf. on Artificial Neural Networks (ICANN),
Istanbul, June 2003, pp. 106-109.

Kordos M., Duch W. (2004) Variable Step Search Algorithm for MLP Train-
ing. The 8th IASTED Int. Conf. on Artificial Intelligence and Soft Com-
puting, Marbella, Spain, Sept. 2004, pp. 215-221.

Gallagher M., Downs T. (2003) Visualization of Learning in Multi-layer
Perceptron Networks using PCA. IEEE Transactions on Systems, Man
and Cybernetics-Part B: Cybernetics, vol.33, pp. 28-34.

Hyvarinen A., Oja E. (2002) Independent Component Analysis: A Tutorial.
http://www.cis.hut.fi/projects/ica

Levin A.U., Leen T.K, Moody J.E. (1994) Fast Pruning Using Principal
Components. Advances in Neural Information Processing, vol. 6, pp.
35-42.

Mertz C.J., Murphy P.M (1999) UCI repository of machine learning data-
bases. http://www.ics.uci.edu/ mlearn/MLRepository.html

Moller M. F. (1993) A Scaled Conjugate Gradient Algorithm for Fast Su-
pervised Learning. Neural Networks, vol. 6, pp. 525-533.

Ranganathan A. (2004) The Levenberg-Marquardt Algorithm.
http://www.cc.gatech.edu/people/home/ananth

Sussmann H.J. (1992) Uniqueness of the weights for minimal feedforward nets
with a given input-output map. Neural Networks, vol. 5. pp. 589-593.

20

