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Uncertainty of data, fuzzy membership functions,
and multi-layer perceptrons.

Włodzisław Duch

Abstract— Probability that a crisp logical rule applied to
imprecise input data is true may be computed using fuzzy
membership function. All reasonable assumptions about in-
put uncertainty distributions lead to membership functions of
sigmoidal shape. Convolution of several inputs with uniform
uncertainty leads to bell-shaped Gaussian-like uncertainty func-
tions. Relations between input uncertainties and fuzzy rules are
systematically explored and several new types of membership
functions discovered. Multi-layered perceptron (MLP) networks
are shown to be a particular implementation of hierarchical sets
of fuzzy threshold logic rules based on sigmoidal membership
functions. They are equivalent to crisp logical networks applied
to input data with uncertainty. Leaving fuzziness on the input
side makes the networks or the rule systems easier to understand.
Practical applications of these ideas are presented for analysis of
questionnaire data and gene expression data.

Index Terms— Neural networks, multi-layer perceptrons, ex-
traction of logical rules, fuzzy systems, neural output functions.

I. I NTRODUCTION

FUZZY logical rules found numerous applications in clas-
sification, approximation and control problems [1], [2],

[3], [4], [5], [6]. Many useful algorithms to define and optimize
fuzzy membership functions exist. Comprehensibility of these
rules unfortunately decreases quickly with the growing size of
the rule set, and the sophistication of membership functions
and aggregation operators used to draw conclusions. Large sets
of fuzzy rules form frequently classification or control systems
as opaque as any black box solution based on neural networks.

There is a direct, although rarely explored, relation between
uncertainty of input data and fuzziness expressed by member-
ship functions. Various assumptions about the type of input
uncertainty distributions change the discontinuous mappings
provided by crisp logic systems into more smooth mappings
that are implemented in a natural way by fuzzy rules using
specific types of membership functions. On the other hand
shifting uncertainty from fuzzy rules to the input values may
simplify logical rules, making the whole system easier to
understand, and allowing for easy control of the degree of
fuzziness in the system.

Fuzziness of inputs has frequently natural interpretation and
may be modeled directly, while an equivalent modification of
the membership function may not be so obvious. For example,
in many countries an age limit to see a movie in cinema is
based on a crisp decision rule, If (True-age≥ 16) then “Let
the person in”. In practice true age is not readily available
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and an Estimated-age, evaluated by visual inspection, is used.
Estimated age is a fuzzy numberF (Eage; ω), a relatively
broad bell-shaped function expressing the degree of belief
that the age is around the estimated value. The shape of the
F (Eage; ω) function depends on parameters (ω) that include
racial features, individual experience in age evaluation, and the
age itself (getting broader for middle values of age). A crisp
rule applied to the fuzzy inputF (Eage; ω) ≥ 16 is true to a
degree described by some membership functionR 16(Eage),
and therefore this rule may be replaced by a fuzzy rule, If
(R16(Eage) ≥Th) then “Let the person in”. The shape of
this membership function depends on the parameters defining
F (Eage; ω) uncertainty distribution function. The threshold Th
in the cinema example is shifted towards lower values to let
younger customers in.

Although the theory developed below is applicable to any
fuzzy system the focus will be on classification rules. Relations
between input uncertainty and membership functions may in
many important cases be estimated analytically. In particular
most assumptions about localized distribution of input uncer-
tainties lead to membership functions with sigmoidal shapes.
Such functions are quite common in multilayer perceptron net-
works (MLPs), with two nodes forming a soft window to filter
the data. Putting fuzziness on the input, rather than on the rule
side, enables application of fuzzy concepts to any black box
system. Sampling from input uncertainty distribution will be
equivalent to the use of specific mutidimensional membership
functions that may be estimated from such numerical simula-
tions. The effects of increasing input uncertainty (or changing
other assumptions about it) may be easier to understand and
control than the effects of changing parameters of membership
functions on sets of fuzzy rules. For large input uncertainties
predictions of class memberships may reach thea priori rates,
while for crisp input values predictions close to certainty may
be possible.

This reasoning allows for an interesting interpretation of
MLP networks in terms of fuzzy rules. Equivalence of radial
basis function (RBF) networks with fuzzy systems has been
well established [5], [7]. Much less work has been devoted
to explore relationships between MLP networks and fuzzy
systems. Benitez et al [8] showed that for a three-layer MLP
network a fuzzy additive system may be constructed that
calculates exactly the same mapping. Moraga and Temme
[9] show functional equivalence between MLP networks and
fuzzy models. In both cases aggregation operators are defined
that lead to the replacement of nonlinear neural functions
σ(x+y) with additive arguments, by aggregationσ(x)�σ(y) of
independent, single argument functions. Although aggregation
operator proposed in [8] is interesting these papers do not
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show why sigmoidal functions are so important, or how to
find deeper connections of rule-based crisp logic systems
with MLP networks. The approach proposed here is not
based on any specific aggregation operators, and its practical
consequences are quite different.

In the next section relations between the input uncertain-
ties and membership functions are discussed, first for one
dimensional problems (single input variable), and then for
multidimensional problems. Investigation of these relations
gives justification to several new types of transfer functions.
The third section shows more applications of these ideas.
Section four presents relations with multi-layer perceptrons.
Significance of these results is discussed in the last section of
this paper.

II. I NPUT UNCERTAINTIES AND MEMBERSHIP FUNCTIONS.

In many applications crisp logic rules are sufficient. Ac-
curacy of crisp rules extracted for a number of real world
datasets proved to be higher than of any other classification
methods, including fuzzy-rule based systems [10]. Since the
number of parameters defining crisp rules is minimal, simple
and understandable descriptions of analyzed data are obtained.
Therefore a good strategy is to improve crisp rule-based
systems without loosing their advantages.

There are several problems with crisp rules [10]. The yes
or no answers are not acceptable in many situations, leading
to sudden changes for small perturbations of the data samples
that lie near decision boundary. Classification systems should
provide an estimation of posterior probabilityp(Ck|X) of
assigning vectorX = {X1, X2, . . . Xn} to class Ck, or
at least membership degrees that change smoothly between
adjacent points in the feature space (assuming that some
features are continuous). Crisp rules are difficult to optimize,
requiring non-gradient procedures to minimize discontinuous
cost function (usually the number of classification errors).
Continuous values of membership functions should make the
optimization process of a set of rules easier.

Introduction of fuzziness is not only desirable, but in most
cases it is also unavoidable. Values of continuous inputs taken
from tests or observations have finite accuracy. Finding fuzzy
system that is equivalent to crisp rule system applied to
uncertain feature values allows for controlled introduction of
fuzziness.

A. One-dimensional situation.

The simplest situation involves a single inputx, and a crisp
logic rule premisex > 0, or x ∈ (0,∞). Suppose thatx
is measured with accuracy±1. Then the uncertainty ofx is
described by a uniform distributionU(y − x; 1) = 1 for y ∈
[x − 1, x + 1], and zero outside (herex is a parameter,y
an independent variable). This is a rectangular membership
functionU(y−x; 1) = Θ(y−x−1)−Θ(y−x+1), centered on
y = x, the average measured (or estimated) input value;Θ(·)
is the step function. Ifx > +1 then the rule is certainly true; if
x < −1 it is false. Otherwise it may be true to a degree equal
to S1(x; ∆x) = S1(x; 1/2) = max(0, min(1, (x+1)/2)). This
is a semi-linear membership function, zero forx < −1, one for

x > +1, and1/2 for x = 0 (see Fig. 1). Various assumptions
for rule types, input uncertaintyU , and resulting membership
functions S, are considered below.

x > a rule, uniform U , semi-linear S.
The use of crisp logical rule with uniform input uncertainty

is equivalent to the use of semilinear membership functions
for sharply defined input. The truth value of thex > a rule
is described by the semilinear membership functionS1(x −
a; ∆x), linear in the(a−∆x, a+∆x) interval centered atx =
a and constant outside of this interval. Using this membership
function is equivalent to assumption thatx may be anywhere in
the interval(x−∆x, x+∆x), that is it has uniform uncertainty
functionU(y − x; ∆x) = Θ(y − x − ∆x) − Θ(y − x + ∆x).
∆x is used here and below to designate the interval around the
center of the uncertainty distribution. Symmetric uncertainty
functionsU(y − x; ω) for x > a rules lead to antisymmetric
membership functionsS(x−a; ω)−1/2 (or without the shift,
S(x − a; ω) + S(−x + a; ω) = 1), and forx ∈ (a, b) rules to
symmetric functionsS(x−(a+b)/2; ω). In generalx should be
treated as a parameterU(y; x, ω), but for functions considered
here the dependence onx is taken into account by shiftingy
by x, that is usingU(y − x; ω).

The fuzzy ruleS1(x− a; ∆x) > 1/2 means that the degree
of truth of the equivalent crisp rulex > a with the uncertainty
functionU(y−x; ∆x) is 1/2. The fuzzy ruleS1(x−a; ∆x) >
θ is equivalent to the crisp rulex > a+(2θ−1)∆x with such
uncertainty function.
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Fig. 1. Uniform input uncertainty forx = 0 and the semilinear membership
function of the truth degree of thex > 0 rule.

x ∈ (a, b) rule, uniform U , triangular S.
Generalization ofx > a rules to rules involving two

interval, Ra,b(x) true if x ∈ (a, b) and false otherwise, is
straightforward (b > a). Using expressions forx > a all
formulas forx < b may be deduced from symmetry principles
and final formulas obtained by subtracting the two cases.

Consider first the uniform uncertainty functionU(y−x; ∆x)
with ∆x = (b − a)/2, matching exactly the rule support. For
x = xm = (a+b)/2 in the middle of the interval the degree of
fulfillment is 1, but for smaller or largerx it decreases in linear
way, reaching zero forx = xm ± 2∆x. Thus the ruleRa,b(x)
is true to the degree described by a triangular membership
functionT3(x− xm; 2∆x) = S1(x− a; ∆x)−S1(x− b; ∆x),
centered atxm, the middle of the(a, b) interval. Triangular
membership functions arise in the unlikely situation in which
the uniform uncertainty of input values matches exactly the
interval defining the rule. In practical application there is
usually no reason for such assumption to be true.
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x ∈ (a, b) rule, uniform U , trapezoidal S.
Trapezoidal membership functions are obtained for rule

intervals that are either broader (b − a > 2∆x) or more
narrow (b − a < 2∆x) than input uncertainty. The main
difference between the two cases is that for the narrow rule
intervals the degree of fulfillment is never 1, but reaches at
most(b− a)/2∆x, so the trapezoid is not normal. The center
of the rule intervalxm = (a+b)/2 will be the symmetry point
of the trapezoid.

T4(x − xm; a, b, ∆x) = (1)

=
∫ ∞

−∞
Ra,b(y)U(y − x; ∆x)dy =

∫ b

a

U(y − x; ∆x)dy

= S1(x − a; ∆x) − S1(x − b; ∆x)

This function is linear forx ∈ [a − ∆x, a + ∆x], constant
between[a+∆x, b−∆x], and linear in[b−∆x, b+∆x], with
zero values outside of these regions. Trapezoidal membership
functions result from crisp interval-based rule applied to inputs
with uniform uncertainty. Triangular and trapezoidal functions
may also be used to model feature uncertainty.

It is important to realize that triangular and trapezoidal
functions appear in the dual role here: they may represent
input uncertainty distribution (as a function ofy, centered on
x), or they may serve as membership functions (as a function
of x) for fuzzy rules that provide the same results as the crisp
rules applied to uncertain inputs. Typical fuzzy system uses
this type of membership functions only in this second role,
with positions and width parameters fixed as a result of ex-
plicit modeling or some optimization procedures. Uncertainty
distributions are centered on the value of the input variable
x, while membership functions are fixed at positions derived
from the logical rule intervalsa, b. Uncertainty distributions
are of course also membership functions for fuzzy numbers.

The membership functions derived above should be normal-
ized to facilitate standard interpretation. For a crisp ruleRa,b

(wherea or b may be infinite) and any functionU(y; x, ω)
representing uncertainty of variablex, normalized membership
function representing the degree of fulfillmentτ(R) of the rule
is given by the integral:

τ(x; a, b, ω) =

∫ b

a U(y; x, ω)dy∫ ∞
−∞ U(y; x, ω)dy

(2)

Fuzzy ruleτ(x; a, b) > θ is equivalent to a certain confi-
dence in truth of the crisp rulex > (a+ b)/2. More examples
are given below.

x > a rule, triangular U , semi-quadratic S.
Suppose that repeated measurements of some feature give

the meanx with frequency of other valuesy decreasing sym-
metrically in a linear way with the distance|y−x| until zero is
reached fory = x±∆x. The uncertainty functionU(y−x; ω)
has then triangular shapeU(y − x; ω) = T3(y − x; ∆x),
centered onx and zero ouside thex ± ∆x interval. Thus
x is not a crisp, but a triangular number, with membership
function equal to a difference of two semi-linear functions
T3(y − x; ∆x) = S1(y − (x − ∆x/2); ∆x/2) − S1(y − (x +
∆x/2); ∆x/2). Crisp rulex > a with triangular uncertainty
function T3(y − x; ∆x) is true to a degree:

S2(x − a; ∆x) =




0 x < a − ∆x
1
2 + (x−a)(2∆x+x−a)

2(∆x)2 x ∈ [a − ∆x, a)
1
2 + (x−a)(2∆x−x+a)

2(∆x)2 x ∈ [a, a + ∆x]

1 x > a + ∆x
(3)

The crisp rule with triangular uncertanty is equivalent to a
fuzzy rule with S2 membership function; by analogy to the
semi-linear functionS1(·) this function will be called semi-
quadraticS2(·). It has sigmoidal shape, similar to the error
function and logistic functions (see below). It is much faster to
compute than the logistic or other types of continuous sigmoid-
shape functions, has very simple gradients and constant second
derivatives. It should be useful as the neuron output function
in MLP algorithms [21], significantly speeding up the calcu-
lations.
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Fig. 2. Triangular uncertainty and the semiquadratic membership function
that results from its integration.

x ∈ (a, b) rule, triangular U , semi-quadratic S.
A crisp rule Ra,b applied to the triangular input number

T3(y − x; ∆x) is true to a degree given by a combination of
two soft trapezoidal functionsS2(x−a; ∆x)−S2(x− b; ∆x),
which has very similar sigmoidal shape to the function shown
in Fig. 5. If the support2∆x of T3() is larger thanb − a the
truth value is always lower than one.

x ∈ (a, b) rule, trapezoidal U , semi-linear-quadratic S.
Trapezoidal uncertainty functions are constructed from a

combination of uniform function centered atx, with x±∆x flat
top region, and linear slopes with non-zero values (support)
between[x − ∆x − 2t, x − ∆x] on the left side and[x +
∆x, x + ∆x + 2t] on the right side. They may be constructed
as a difference of two semi-linear functions:

U4(y−x; ∆x, t) = S1(y−x+∆x+t; t)−S1(y−x−∆x−t; t)

Crisp rulesx > a with such uncertainty are equivalent to
fuzzy rules with semi-linear-quadratic membership function
S12(x; ∆x, t) that is a combination of piecewise constant,
linear and quadratic functions resulting from integration of
the U4(y − x; ∆x, t) function (see Fig. 3).

The S12(x; ∆x, t) function may also be useful for MLP
training, because it is inexpensive to compute and the linear
part gives the MLP network a possibility to find a linear so-
lution, if it is sufficient. Regularization of network parameters
[20] tends to make all weighted input values quite small; in
effect only the linear part of the output function is used. For
the linear part all second derivatives are zero, significantly
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simplifying calculations of the Hessian matrix used in the
second-order MLP training procedures [20].
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Fig. 3. Trapezoidal uncertainty and the sigmoidal quadratic-linear member-
ship function.

x > a rule, Gaussian U , erf S.
Gaussian distribution is quite commonly assumed for the

uncertainty of real measurements. In this case the crispx
values are replaced by a Gaussian number centered onx
with dispersion∆x. As in the case of triangular functions
membership functions corresponding to Gaussian uncertainties
have sigmoidal shape. Crisp logical rulex > a with Gaussian
numberG(y − x; ∆x) = G(y; x∆x) as input is equivalent
to a fuzzy rule with crispx andSG(x − a; ∆x) membership
function:

SG(x − a; ∆x) =
∫ ∞

a

G(y − x; ∆x)dy (4)

=
1
2

[
1 − erf

(
x − a

∆x
√

2

)]

where erf(u) = −erf(−u) is the error function extended to
negative values. Generalization ofx > a rules to rulesRa,b =
{x|a < x < b} involving interval is straightforward. For crisp
ruleRa,b the difference of the twoSG(x− a; ∆x)−SG(x−
b; ∆x) functions has soft trapezoidal shape (compare Fig. 5),
or a bell-shape for smallb − a difference,

SG2(x; a, b, ∆x) (5)

=
∫ ∞

a

G(y − x; ∆x)dy −
∫ ∞

b

G(y − x; ∆x)dy

=
1
2

[
erf

(
a − x

∆x
√

2

)
− erf

(
b − x

∆x
√

2

)]

Error function erf is not used as neural output function
because it is rather expensive to compute. Sigmoidal func-
tions of the logistic type,σ(x) = 1/(1 + exp(−x)), are
most commonly used in multilayer perceptrons. The function
SG(x − a; ∆x) is approximated very well by the logistic
function SG(x − a; ∆x) ≈ σ(β(a − x)), with β = 1.7∆x.
The accuracy of this approximation is within 1% for allx and
∆x = 1.

The assumption of Gaussian input uncertainty is thus
equivalent to evaluation of the degree of truth by sigmoidal
functions of the erf type, and to a very good approximation
also by logistic functions. Thus the output of a typical MLP
neuron is equal to the degree of fulfillment of thex > a logical
rule for inputx that has Gaussian uncertainty.
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Fig. 4. Gaussian uncertainty and the erf sigmoidal membership function.

A logistic membership function may be obtained from
x > a rule and input uncertainty distribution that is similar to
a GaussianG(y − x; ∆x). The product of logistic functions
U(y − x; β) = σ(β(y − x))(1 − σ(β(y − x))) has bell-shape
that for β = 1.56 slope of the logistic function differs from a
standardized Gaussian function ((∆x) = 1) by less than 3.4%
at each point. TakingU(y−x; β, b) = σ(βx+b)(1−σ(βx−b))
adds a flat maximum region aroundx = 0, changing the bell-
shape into a soft trapezoidal shape. The difference of the two
logistic functions,STr(x; b) = σ(βx + b) − σ(βx − b), has
the same soft trapezoidal shape. In fact these two functions
are identical up to a normalization factor:

σ(x + b) − σ(x − b)
σ(b) − σ(−b)

=
σ(x + b)(1 − σ(x − b))

σ(b)(1 − σ(−b))
(6)

The proof is straightforward although a bit tedious. The
denominator goes to zero for smallb, but this expression is
quite stable from numerical point of view even forb = 10−6.
Such soft trapezoid functions are useful as neural output
functions [21]. It is also easy to prove that the logistic function
of a sum of two variables is equal to a ratio of products:

σ(x + y) = σ(x) � σ(y) (7)

=
σ(x)σ(y)

σ(x)σ(y) + (1 − σ(x))(1 − σ(y))

The � operator may be regarded as a fuzzy aggregation
operator [8]. The logistic form of uncertainty distributions is
bell-shaped forb = 0 and has soft-trapezoidal shape forb ≈ 1
or larger. Assuming crisp logic rulex > a and soft trapezoidal
input uncertaintySTr(y−x; b) with x as the middle point, the
membership function for the fullfilment of the rule is obtained
from integration:

SLE(x − a; b) =
1
2b

∫ −∞

a

STr(y − x; b)dy = (8)

=
1
2b

∫ −∞

a

(σ(y − x + b) − σ(y − x − b))

=
1
2b

ln
[
1 + ea−x+b

1 + ea−x−b

]

This logarithmic-exponential function has sigmoidal shape
with the linear part in the middle, similar to the semilinear
function with softened edges (Fig. 5). It is continuous and has
almost linear central part, making it very suitable as the output
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function for MLP neurons. The linear part should prevent
too quick convergence to the local minima of the MLP error
function, providing non-linearity only when they are necessary,
and linear solutions when they are sufficient.

Gaussian functions are frequently taken as membership
functions. Although approximations to Gaussians may be
obtained from various natural assumptions about input uncer-
tainties the exact form of the Gaussian functions is obtained
only with an assumption ofU(y; x, ω) ∝ yG(y; x, ∆x) type
of uncertainty that seems to be hard to justify. Various other
bell-shaped uncertainty distributions may be considered, and
their dual membership functions found, but perhaps those
mentioned above are the most important.
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Fig. 5. Soft trapezoidal uncertainty centered atx = 0 with b = 5, and the
log-exp membership function.

In this section crisp rulesx ∈ (a,∞) and x ∈ (a, b)
were considered. Generalization of these results to the sums
of intervalsx ∈ (a1, b1) ∨ x ∈ (a2, b2) etc. is not difficult.
Any S-norm may be used to aggregate the results. Such rules
have network implementation with single input and a few
nodes representing fuzzy rules or neurons in neural networks.
Rules with≤ instead of< conditions are handled by placing
intervals between discrete values.

B. Multidimensional situation.

Crisp conjunctive rulesR = R1 ∧ . . . ∧ Rk, where each
Ri is a condition of theXi ∈ (ai, bi) type (whereai or bi

may be infinite), are easy to handle if all conditions are based
on independent, uncorrelated featuresX i. Each feature has its
own uncertainty functionU(Yi; Xi, ω) and the probability that
R(X) is true, is equal to the product of the probabilities of
τi(Xi) for i = 1 . . . k. Thus a fuzzy rule withτi(Xi) mem-
bership functions may replace the crisp rule plus uncertainty
functions. For example, if(X1 > a1∧X2 > a2) rule premises
are used with uniform assumption about uncertaintyU(Y i −
Xi, ∆Xi) then as the result of integration a product of two
semi-linear functionsS1(X1−a1; ∆X1)S1(X2−a2; ∆X2) is
obtained.

Thus a natural T-norm for fuzzy rules equivalent to crisp
logic rules applied to uncertain inputs is based on sim-
ple product of membership functions. Products of various
membership functions derived in previous section replace the
need to calculate the degree of fulfillment of crisp rules by
integration over input distributions. Each conjunctive rule may
be implemented as a product node, and for independent rules
the sum of outputs from nodes that share the same conclusion
gives the final answer.

Some features occurring in the ruleR may be mutually
dependent. If a few strongly dependent features are used in a
single rule, product ofτi(Xi) probabilities may become quite
small. Other T-norms may be useful in such cases, although
simple probabilistic interpretation may be lost. De-correlation
of input features, used frequently in signal analysis, solves that
problem at the expense of introduction of linear combinations
of features. Selection of input variables used in rule conditions
partially solves the problem of strongly correlated features.

Many rule extraction algorithms (for example, decision
trees) partition the feature space into disjoint areas. For
any input vectorX a single rule is active (although for
inputs with uncertainties activities of different rules should
be taken into account). Algorithms that generate a set of
conjunctive crisp rulesRm covering the same regions of
the feature space require special treatment. Summing and
normalizing probabilities obtained from different rules may
give results quite different from the Monte Carlo simulations.
Care should be taken to count each region only once. Given
two rulesR1(X), R2(X) for the same classC the probability
p(C|X; M̂) is P (X ∈ R1)+P (X ∈ R2)−P (X ∈ R1∩R2).

These probabilities are derived from classification system
M̂ rather then directly from data. Estimation of probabilities
with Monte Carlo sampling from high-dimensional distri-
butions is a slowly convergent process, therefore whenever
possible analytical formulas should be used. In the limit
of very large input uncertainty the whole data range is
included. Asymptotic behavior of probabilities assigned by
classifiers depends on many factors. Fuzzy rule systems with
localized (compact support) membership functions, and radial
basis function networks (RBF) that are equivalent to such
systems, may give estimations that converge to thea priori
class probabilities for the dataset. Most classifiers, including
rule-based systems that use membership functions with non-
compact support, decision trees, nearest neighbor methods and
multi-layer perceptron neural networks do not have correct
asymptotic behavior.

Input uncertainty for featurex = X i is given by a member-
ship functionτ(y; x, ω), dependent onx, with ω parameters
describing its shape. This function represents the degree of
belief (or sometimes probability) that valuesy may still be
taken asx. Membership functions (MFs) may in principle
have arbitrary shape, estimated from observations. Because
the features of the input vectorX = {X1, X2, . . . Xn} are
uncertain instead of using a single input vectorX it would be
more appropriate to sample from the multidimensional distri-
bution defined by all appropriate MFsτi(y; Xi, ωi) (symbolic
features may not be appropriate because they usually cannot
be fuzzified). From this multi-dimensional distribution a large
number of input vectorsY ∈ Oτ (X) may be generated in the
neighborhoodOτ (X) defined by MFs around the query vector
X.

Any classification systemM̂ that predicts class labels
M̂(X) = Ck, including sets of crisp decision rules, decision
trees, neural networks or statistical black-box classification
systems, may be applied to the set ofY vectors. If for
N vectorsY(i) from this set classCk has been predicted
Nk times, p(Ck|X; M̂, ω) = Nk/N is an estimation of the
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probability that a vector from the neighborhoodO τ (X) will
be of assigned to classCk by the classification system̂M
with parametersω (including parameters of the sampling
procedure). Similar estimation may also be done if thêM
system predicts membership values or probabilities.

This Monte Carlo sampling procedure facilitates the re-
construction of multidimensional membership functions for
any classification system, not just logical rule-based systems.
Analytical results for single inputs obtained in the previous
subsection may be approximated using such numerical simu-
lations, with U(y − x; ω) input uncertainty distributions and
classifiers based on rules with a single premisex ∈ (a, b).
Generalizing these results a good guiding principle is to re-
quire that probabilities generated from Monte Carlo sampling
should be the same as those obtained from the equivalent fuzzy
system. The goal here is to obtain the same results with crisp
logic system applied to uncertain inputs as with the fuzzy
system applied to crisp inputs.

III. R ELATION WITH MULTI -LAYER PERCEPTRONS.

Equivalence of fuzzy logic systems with radial basis func-
tion (RBF) networks is well known and has been formally
proven for Gaussian and other localized functions [5]. Each
node of the RBF network corresponds to a fuzzy rule. In
practice feature selection in RBF networks is rarely done,
while in fuzzy rule-based systems it is of primary importance.
RBF networks are based on similarity evaluation, while multi-
layer perceptrons, the most popular neural network models, are
based on non-linear soft discrimination. RBF nodes frequently
use multidimensional Gaussian functions, calculating products
of one-dimensional membership functions. Such nodes cal-
culate the truth value of conjunctive logical rules applied to
uncertain inputs.

Results of the previous section showed that membership
functions based on various trapezoidal and soft trapezoidal
functions arise for interval-based premisesx ∈ (a, b) under
many assumptions about input uncertainty. Although prod-
ucts of these functions are not radial, they can still be
used as output functions of neurons in basis function (RBF-
like) network architectures [21]. Functions that are prod-
ucts of components depending on single variable,f(X) =
f1(X1)f2(X2) . . . fN(XN ), are called separable. Radial basis
functions are usually not separable, with an important excep-
tion of the multidimensional Gaussian function with diagonal
covariance matrix that is a product of one-dimensional compo-
nents. Feature Space Mapping networks [14], [15] are based
on separable functions, therefore their neurons evaluate the
truth of conjunctive logical rules. Products ofSTr(X i; ωi)
soft trapezoidal functions are used in the Incremental Net-
work (IncNet) neural network implemented in the Ghostminer
package [16], [17].

Basis function networks with product nodes implement con-
junctive rules. Multi-layer perceptrons are based on threshold
logic. Increasing input uncertainty from zero to some finite
value is equivalent to the transition from step-like threshold
functionsΘ(W ·X) to the smooth sigmoidal functionsσ(W ·
X). This transition converts networks implementing crisp

logical functions using threshold logic into MLP networks.
The theory of logical networks has been well developed in
the early days of neural models, starting with McCulloch and
W. Pitts [19]. This theory became important for construction
of digital circuits. Relations between fuzzy logic and their
network implementations have never been analyzed to com-
parable extent.

Artificial neurons, or network nodes, are the basic building
blocks of MLP networks [20]. Motivated by functions of bio-
logical neurons artificial neurons implement sigmoidal output
functions, usually of the logistic type (for a survey of neural
functions see [21]). Other types of sigmoidal neuron output
functions, such as hyperbolic tangent or arctangent functions,
give essentially the same results. Semi-linear functions are
sometimes used as an approximation to the continuous sig-
moidal functions. All these functions estimate the truth of
a crisp logical rulex > a under various input uncertainty
assumptions, as derived in the previous section.

Consider first the simplest example: one-dimensional case,
one neuron network. A threshold functionΘ(x − a) imple-
menting logical rulex > a in case of uniform uncertainty
is equivalent to a fuzzy rule with semi-linear membership
function. For Gaussian uncertainties sigmoidal erf functions
are obtained, and they are approximated quite well with
logistic functions. Presenting fuzzy membership functions in
graphical form as nodes of a network (Fig. 6) allows for
implementation of the same fuzzy logical functions.
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Fig. 6. Neural implementation of 4 types of crisp conditionsWx ∈ (a, b),
with S1 = −S2 = 1 andσ(·) with infinite slopes: type 1 forW1 = W2 =
1, t = a, t′ = b, type 2 forW1 = −1, W2 = 1, t = −a, t′ = b, type 3
is obtained from type 1 withb = ∞ and type 4 is obtained from type 2 with
b = −∞.

Input weights provide scaling for feature values, and the
sign of weight determines the type of inequality and the
threshold of the neuron determines the value ofa (see Fig.6).
The truth value of premises is thus measured by the value
of sigmoidal functionS(Wx − a) for input x. The network
based on such nodes sums the conclusions of all rules referring
to the same class in the output layer. The output weights
estimate the relative importance of these rules in reaching the
final conclusion. ForWx ∈ (a, b) rule a combination of two
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S(W1x−t)−S(W2x−t′) neurons should be used, and this can
either be implemented by a single node, or by a linear neuron
in the output layer. For example, ifW1 = +1, W2 = −1 and
thresholds area, b a rule with x ∈ (a, b) is implemented by
the network with one input, two hidden nodes and one linear
output node, as in Fig. 6.

More hidden neurons may be added to implement other rule
premises, and their output grouped together into two or more
classes. The situation for a single input is quite clear.

( )
1 1 2 2x W X W X a

x aσ
= + >

−

X1

X2

W1

W2

Fig. 7. Two independent inputs and one hidden neuron implementing
threshold logic.

Conjunctive rulesR = R1 ∧ R2, where eachRi involves
an independent variable and intervalR i = Xi ∈ (ai, bi),
applied toXi inputs with some uncertainty, lead to a product
of two membership functions. This is what neural networks
based on separable transfer functions, and fuzzy rule based
systems, normally do: evaluate the evidence provided by inputs
Xi using some membership functions, and get the conclusion
combining the results using some T-norm, in this case a
product. There is another option that is not so popular in
fuzzy logic: using threshold logic, as it is done in mulit-
layer perceptrons. Neurons in MLP networks implement fuzzy
threshold logic to evaluate the truth of crisp threshold logic
rules in presence of input uncertainties.

MLP transfer functionsf(X) map vectorsX to scalar
valuesI(X) called activation, which are then processed by
the threshold output functiono(I), so thatf(X) = o(I(X))
[21]. For a single input, activation is simply the weighted
input value. The output function has usually sigmoidal shape.
For two or more inputs activation is usually taken as a linear
combinationx =

∑
WiXi = W · X. Thus N -dimensional

threshold neurons are essentially single input neurons applied
to some scalar activation values. Linear combination of inputs
is sometimes used in fuzzy logic when rules are applied to the
pre-processed signal, time series or image data, for example
after extraction of principal components or independent com-
ponents. Rulesx > a are then defined along theW direction
in the feature space.

How should the input uncertainty distributionU(y; x, ω)
for x = W1X1 + W2X2 variable be calculated? Given two
independent random variablesY1, Y2 and their corresponding
distributionsU(y; X1, ω1) and U(y; X2, ω2), the distribution
of random variableZ = Y1 + Y2 is given by the convolution:

U(z; X1 + X2, ω) =
∫ +∞

−∞
U(z − y; X1, ω1)U(y; X2, ω2)dy

(9)
Convolution of two uniform distributions with identical

width gives triangular uncertainty functions, and with different
width trapezoidal functions. This shape comes from projection

of two-dimensional rectangular joint distribution of theY 1 and
Y2 variables onW1Y1+W2Y2 line. Adding third input requires
convolution of triangular and rectangular function, resulting in
soft-trapezioidal function made from semiquadratic fragments
(compare Fig.8). For larger number of inputs soft-trapezoidal
shape of uncertainty distribution is preserved, but the higher-
order polynomials should be used to approximate it. Analytical
formulas for such distributions may be derived, but they will
not be very useful, because these functions are composed from
many fragments.

Thus although each of the original variables has uniform
uncertainty distribution, their linear combination has uncer-
tainty distribution of the soft trapezoidal shape. Integration of
this distribution leads to the logarithmic-exponential type of
sigmoidal function Eq. 8 that should serve as the membership
function. The sum of several normalized inputs with similar
uniform uncertainty has always bell-shaped uncertainty dis-
tribution, similar to Gaussian (Fig.9). This justifies the use
of logistic or similar sigmoidal functions that result from
integration of such distributions. In a typical situation weights
of the linear combination of inputsx = W ·X have different
values (in the Bayesian approach to MLP training it is assumed
that weight distribution is Gaussian) and final uncertainties
U(x; ω) have shapes that range from triangular, through bell-
shape to soft triangular. If uncertainties of input variables are
significantly different, or if the weights are quite different, an
approximation to the logarithmic-exponential functions with
linear area around the rule threshold should be used.
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Fig. 8. 3 inputs with uniform uncertainty, but different centers and width,
after convolution give semi-quadratic soft trapezoidal uncertainty distribution.
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Fig. 9. 4 inputs with uniform uncertainty and identical width, centered
at ±0.25 and ±0.75, after convolution giving Gaussian-like uncertainty
distribution.

For triangular uncertainties or more complex types of un-
certainties of input variables qualitatively similar behavior is
observed. For example, taking 4 inputs with identical Gaussian
dispersions forX1 = −0.75, X2 = −0.25, X3 = 0.25
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and X4 = 0.75, and different weights (Fig. 10), gives after
convolution bell-shaped Gaussian-like distribution. Thus linear
combination of many input variables with any type of uncer-
tainties, uniform, triangular, trapezoidal, or Gaussian, leads to
bell shaped distributions that after integration give sigmoidal
type of membership functions. Thus a rulex > a, with x equal
to a weighted combinationW ·X with arbitrary uncertainties,
is always approximated by a fuzzy ruleF ↔ S(x − a) > φ,
whereS(·) is some type of sigmoidal function. This is a soft
hyperplane used by MLP neurons.
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Fig. 10. 4 inputs with Gaussian uncertainty, identical dispersions, centered
at ±0.25 and±0.75, with 1, 0.2,−0.2,−1 weights, after convolution give
Gaussian-like uncertainty distribution.

Combination of inputs creates new linguistic variables that
may not have sense, except for providing some discriminating
hyperplanes. MLP nodes based on threshold logic divide the
feature space into two half-spaces using hyperplanes, while
neural networks based on separable functions divide the fea-
ture space into areas where products of membership functions
are larger than some thresholds – for rectangular membership
functions, these areas are hyperrectangles, providing rules of
classical logic. Soft threshold logic rulesS(W · X − a) > φ
may sometimes simplify logical interpretation, and although
they may be re-interpreted using conjunctive logic at the
expense of special aggregation operators [8] they will not
become more comprehensible. If all inputs reaching a neuron
belong to the same type, linear combination, equivalent to
rotation and rescaling, may provide new, interesting features
that have some interpretation.

Adding more neurons in the hidden layer is equivalent
to more fuzzy rulesFk ↔ σ(fi − ai) > φi, with fi =
W(i) · X. Rules leading to the same conclusion (same class
membership) are combined together in the output layer. MLP
assigns weights to rule conclusions and makes final aggrega-
tion of evidence in two ways. Linear output neurons combine
weighted evidence, and either a maximum is selected or final
class memberships are calculated after some normalization.
Alternatively, soft threshold logic is used to create conjunctive
rules (for high thresholds) or disjunctive rules (for low thresh-
olds). The need for soft threshold logic is motivated again by
propagation of uncertainty through the hidden layer.

In fuzzy logic various forms of sophisticated aggregation
operators are in use, for example ordered weighted aggregation
(OWA) operators [22]. They may be more or-like or and-like,
similarly as the weighted activation aggregation. Activity of
hidden neurons, or the degree to which rules implemented by
hidden neurons are fulfilled, form an image of input vectors

in the hidden space. The goal is to create separable clusters
of images of the input vectors in the hidden space. In MLPs
output neurons provide discriminating functions that separate
these clusters. From fuzzy logic perspective rule conclusions
are aggregated using weights and thresholds that maximize
the number of correct answers to a rule:y > a, wherey is
a weighted combination of rule conclusions. MLPs provide a
hierarchical system of such rules. Adding more network layers
is equivalent to more levels in this hierarchy that includes rules
about intermediate rule conclusions (from previous hidden
layers), not only about data. Such intermediate conclusions
may have some sense, especially if the network is pruned
leaving only most important connections [10].

Hierarchical fuzzy systems are an active research topic in
fuzzy logic, aimed at reduction of the exponential number of
rules arising in control and other applications. Ifm mem-
bership functions are defined for each of then inputs then
the number of possible fuzzy rules ismn. There are several
ways to go around this problem [23], [24], but the hierarchical
fuzzy systems approached gains recently most interest [25].
Such systems process inputs in lower-dimensional subspaces,
combining the results in a binary-tree fashion. In this process
comprehensibility or the physical interpretation and the ability
to design such systems without much training is easily lost,
although there are some proposals to restore it [26]. MLP
avoids problems with combinatorial explosion, but the price is
sometimes high: weighted combinations of inputs may not be
easy to understand, and optimal weights cannot be designed
but have to be learned. A compromise is offered by neural
architectures that enforce simple, skeleton networks structure,
that frequently can be analyzed in details and converted to a
set of logical rules [10].

IV. EXAMPLES OF APPLICATIONS.

Good estimation of input uncertainty is in many cases
possible. For example, medical tests have known accuracy
and models of uncertainty distributions may be constructed.
Explicit model for uncertainty of the test may include not
only the actual measurement, but many other factors, such
as the type of treatment, physical exercise, or food and drinks
consumed prior to the test. Specific membership functions may
then be constructed to evaluate more accurately various risks
for measured input values.

Conjunctive logic rules are perhaps most frequently used,
but in some situations M-of-N type of rules, employing
threshold logic, are more natural. Rule conditions may be
treated as constraints rather than absolute requirements. If
not all constraints may be fulfilled solutions that satisfy most
of the constraints are searched for. For example, information
retrieval systems (including all of the internet search engines)
are based on such approach. If documents with all N keywords
are not found then links to documents with N-1 keywords
are displayed, followed by links to documents with smaller
number of keywords, until a minimum of M keywords is
found. Thus the queries are handled by threshold-based logic
rather than conjunctive logic. The uncertainty of inputs may
be expressed in the alternative keywords and may be captured
using fuzzy rules operating on context vectors.
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Medical personnel frequently uses logical rules based on
various thresholds for different tests. Medical textbooks are
full of rules of M-of-N type:
If at least 3 symptoms of the 5 from the set:{s1, s2, s3, s4, s5}
are present, then conclusion follows.
Each of the symptoms may be of the fuzzy linguistic vari-
able type: high fever, high blood pressure, high cholesterol
level etc. Network that represents such rule should contain 5
pairs of nodes that filter measured inputs (Fig.6) to provide
values of the membership functions, followed by the output
neuron that combines the evidence and compares it with the
thresholdx > 3. Knowing the uncertainty of measured values
slope of corresponding sigmoidal functions may be set. The
backpropagation training algorithm will adjust the weights
that in the original rule are all 1, tuning the rule to match
its prediction to the data. As a result the network may put
more emphasis on high blood pressure than on the cholesterol
level. There is nothing mysterious about such networks. Their
recommendations are at least as comprehensible as those that
follow from fuzzy systems.

Uncertainties may have different origin (see [3]) and some-
times cannot be reliably estimated. For example, evaluation of
questionnaires, such as census data, medical or psychological
surveys, followed by averaging of some responses, leads to
numerical values of observations of unknown accuracy. This
problem may be approached via fuzzy sets of the second
type [6]. On the other hand uncertaintiessX of the values
of features may be used as additional adaptive parameters that
may be optimized. This is done in several steps:

• Prepare a training data base containing results of surveys
reduced to numerical coefficients and categorized in a
reliable way.

• Extracted from this data initial crisp logic rules, using
decision trees [12], [13], MLP2LN neural networks [11]
or other approaches [10].

• Assume some type of uncertainty distributions, for exam-
ple triangular or Gaussian, and use small initial uncertain-
ties si to fuzzify crisp rules using membership functions
that correspond to input uncertainties of the selected type.

• Optimize a cost functionE(s, ω) to find the best values
for model parameters, including the uncertainties.

Soft cost function may be based on a sum of predicted
probabilities or normalized membership values:

E(s, ω) =
∑
X

∑
i

(p(Ci|X; s, ω) − CLi(X)))2 (10)

where ω includes intervals defining linguistic variables,
weights and thresholds,sx are uncertainties of inputs,
CLi(X) ∈ [0, 1] is a label for the training vectorX (sev-
eral non-zero entries for different class may be used), and
p(Ci|X; s, ω) is calculated using the neural network or a
system of fuzzy rules. This error function may be optimized
using backpropagation gradient-based techniques.

If all features represent measurements of the same type
all si may be taken as a percentage of the range of each
feature,si = s(max(Xi) − min(Xi)), and one-dimensional
minimization of the error function over a singles parameter

is performed. This minimization may either be added to the
training procedure, or done by plotting the dependence of
E(s) and selecting the minimum. In the limit of a smalls
sigmoidal functions are very steep, acting as step functions,
and minimization of the soft error function (10) becomes
equivalent to minimization of the number of classification
errors. Optimals value that minimizes the error function gives
an estimation of the unknown uncertainty.

This approach to extraction and optimization of rules has
been applied to analysis of Minnesota Multiphasic Personality
Inventory (MMPI) psychometric data, consisting of 550 ques-
tions with 3 possible answers (yes, no, don’t know) each [18].
Computerized versions of this test assist only in information
acquisition, but evaluation of results is still done by an
experienced clinical psychologist. The raw MMPI data is used
to compute 14 real-valued coefficients, called “psychometric
scales”. These coefficients are often displayed as a histogram
(called “a psychogram”) allowing skilled psychologists to
diagnose specific problems, such as neurosis, drug addiction
or criminal tendencies.

The data was collected in the Academic Psychological
Clinic of Nicholaus Copernicus University, Torun, Poland
(smaller version of this data has been analyzed previously
[10]). Expert psychologists provided about 1600 cases belong-
ing to 27 classes for women the same number of cases divided
into 28 classes for man (about 60 cases/class). Rules were
initially generated using C4.5 classification tree [12], and SSV
decision tree [13], with another set of crisp rules generated by
the Feature Space Mapping (FSM) neurofuzzy network [14],
[15] using rectangular membership functions. Both SSV and
FSM algorithms are implemented in the Ghostminer data min-
ing package [16] used to generate all results described below.
Only simple rules are of interest to psychologists, because
each set of rules for a given class has to be commented upon,
providing verbal interpretation useful for support of diagnosis.
Some rules covered only a few cases from the database,
therefore pruning and re-optimization was performed.

C4.5 creates 2-3 rules per class involving between 2 to 9
attributes, and achieving 93.0% of correct responses. Agree-
ment between two human experts analyzing this type of data
is usually below 80%. Gaussian distribution of uncertainty in
inputs was assumed, and the corresponding erf membership
functions 5 approximated by differences of logistic functions
to simplify calculations. With dispersion arounds =1% of the
data range improves results by about 1%. FSM network was
used with rectangular membership functions to generate crisp
rules. These rules may overlap, therefore high membership
degrees in more than one class are possible. 3-4 per class were
created, agreeing in 95% with original diagnosis. Gaussian
fuzzification at the level of 1.1-1.5% increases this accuracy
by 2.5%.

Rectangular membership functions of crisp rules are con-
verted to the soft trapezoidal functions corresponding to the
optimal uncertainty of about 1.5%. This uncertainty is suffi-
ciently small to make the verbal interpretation of fuzzy rules
still quite easy. The true uncertainty of psychometric scales is
unknown and the reliability of the training data is also hard
to estimate. For small input uncertainties rules predict one
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or more classes, while for large uncertainties many classes
have comparable probabilities (Fig. 11). With input uncertainty
set to zero crisp rules are used. The query case in Fig. 11)
is found in the region where rules for two different classes
overlap. Using crisp rules such solution should be preferable
to predictions of a single class only – the evidence available
in the data is not sufficient to favor any of the two classes.
Assuming small uncertaintys = 1% breaks the tie between
the two classes, and increasing the uncertainty to 2 and 4%
shows two more classes for which significant membership is
predicted.

Fig. 11. Influence of input uncertainty on predictions of class memberships.
Top left: no uncertainty - two equally probable classes are predicted; top right:
optimal 1% uncertainty, first class becomes more probable than the second;
bottom: 2% and 4% uncertainty assumed, leading to several new classes with
smaller membership values.

The rule with largest membership, shown fors = 3%
Gaussian uncertainties in Fig. 12, has 5 conditions (out of
14 possible). Feature values of the query case are connected
with line segments, Gaussian distributions are attached to 5
feature values that appear in the rule under consideration.
Two intervals (for Ps and Pt features) include the measured
values for the evaluated case rather close to their boundaries,
therefore only 56.4 and 66.7% of the Gaussian is captured
inside the interval. As a result membership value of the actual
case in this rule is only 38%.

Fig. 12. Psychogram with rule conditions and fuzzified input fors = 3%
displayed.

These estimates of membership values give an idea how
strongly rules support the assignment of vectorX to different
classesCk. The whole fuzzy rule based system may be
presented as an MLP network.

Instead of displaying membership values for a given uncer-
tainty it may be useful to plotp(Ck|X; s; M̂) as a function

of uncertainty of one or more input feature values. Such
graph shows the stability of predictions of the system̂M
around the inputX. Cases far from decision borders show
only slow decrease of predicted membership functions, but
cases near decision border show significant decrease of the
dominant class memberships at the expense of new classes.
This technique may be useful in evaluating the type of errors
that the system makes.

For example, in the Leukemia gene expression data [27]
two classes, acute lymphoblastic leukemia (ALL) and acute
myeloid leukemia (AML) should be distinguished, given 7129
features (gene expression levels from microarray experiments).
Analysis of this data made with different methods available
in the Ghostminer package [16] showed that using only one
single feature all 38 training samples, and all but 3 of the 34
test samples (AML mistaken for ALL cases), are classified
correctly. Using SSV decision tree a crisp logical rule based
on a single threshold for feature 4847 was found giving such
high accuracy. Can fuzzification help? It is easy to check that
no assumptions about uncertainty of input data will create
a fuzzy rule that makes less than 3 errors on the test set.
Increasing the number of features (gene expression values)
to the most promising 10 features, and using Support Vector
Machine based on Gaussian kernels, a solution with no training
and a single test error was found.

This one test error may result from insufficient input in-
formation, the inability of SVM to provide correct decision
borders, or training data that is too small and does not repre-
sent the true data distribution. While the first two errors in the
test set were indeed due to the insufficient information this last
error seems to be of a different type. It may be a mislabeled
data case, or an error in the diagnosis, a different type of
leukemia that does not fit to any of the two classes. It may also
be a very rare and untypical case of acute myeloid leukemia
that should be distinguished as a new subtype, leading perhaps
to the similar medical condition. This is indicated by the
following observation. 5% input uncertainty for all of the 10
gene expression values has been taken (this is sufficiently large
to cover in two-dimensional scatterograms most of the data
from the ALL class), and 1000 vectors in the neighborhood
of the selected test AML vector has been generated. All of
these vectors are assigned by SVM and other methods to the
(wrong) ALL class. This vector is not near the decision border,
but placed firmly in the feature space area that all classification
methods assign to the AML class, containing many vectors
from this class and no vectors from ALL class. Generating
1000 points around the other two vectors shows that they were
close to the decision border (significant number of vectors was
assigned to the ALL class), therefore increasing the number
of features from 1 to 10 helped to separate them correctly.
It seems rather unlikely that new information (either training
data or adding more features) could change classification of
this one vector, because such change in the decision boarders
would have to influence classification of other vectors in the
neighborhood.
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V. DISCUSSION.

Sets of crisp logic rules applied to uncertain inputs are
equivalent to fuzzy rules applied to crisp inputs. Integration of
uncertainty distribution for a fixed rule threshold or interval
gives probability, or degree of fulfillment, of a crisp rule.
The same result may be obtained directly as a value of cor-
responding membership function for a given input. Different
assumptions about input uncertainty lead in a natural way to
different types of membership functions, but all of them have
sigmoidal shapes. Fuzzification of input values should give the
same probabilities as the Monte Carlo procedure performed for
input vectors sampled from uncertainty distributions centered
at the measured values. In many practical cases analytical
formulas for fuzzy membership functions have been derived.

With single input and uniform uncertaintyU(y; x, ∆x)
semi-linear membership functionS(x−a; ∆x) should be used
for estimation of the degree of truth ofx > a crisp rule. In
all other cases smoother membership functions of sigmoidal
shape are needed, justifying the use of sigmoidal functions
from the logical point of view. The use of sigmoidal functions
has also been justified using approximation theory [20], [5].
The fact that MLPs are universal approximators is in itself not
surprising (it is difficult to make a basis set expansion that does
not have universal approximation property). Favorable rates of
convergence of expansions based on sigmoidal functions in
highly dimensional spaces are more important [28]. These re-
sults tell us why the use of MLPs for approximation problems
is a good idea, while the analysis done in this paper shows
why it is natural to generalize hierarchical sets of logical rules
using MLP network implementation with sigmoidal functions.

Several new types of membership functions have been
introduced here, resulting from integration of uncertainty dis-
tributions. Of particular practical importance is the quadratic
sigmoidal function resulting from integration of triangular
uncertainties, and log-exp sigmoidal function with extended
linear part resulting from integration of soft trapezoidal un-
certainty distribution. Linear combination of many inputs has
after convolution soft-trapezoidal uncertainty distribution that
lead to such log-exp functions. Preliminary tests with MLPs
based on such transfer functions (F. Piekniewski, L. Rybicki,
W. Duch, in preparation) show their ability to learn quickly.
The main reason seems to be connected with the extended
linear range of the log-exp functions. Strong nonlinearities
give significant gradients in small areas of the feature space,
significantly slowing the learning process and the growth
of weights in the final stages. New transfer functions cover
with their extended linear range larger volumes of the feature
space where the data is found and thus lead to a faster
learning and weight growth process; when activation becomes
sufficiently large non-linear saturation point is rapidly reached
and learning is finished.

Crisp logic rules applied to uncertain inputs may be replaced
by fuzzy rules with sigmoidal membership functions. Sets of
crisp logic rules are equivalent to logical networks. Sets of
equivalent fuzzy rules are equivalent to single hidden layer
perceptron networks. Hierarchical sets of rules are equivalent
to multi-layer perceptrons. Backpropagation training algorithm

is a specific way to optimize this set. Threshold logic is
implemented by neurons with sigmoidal output functions in
MLP networks, while networks based on separable functions
implement classical crisp conjunctive logic rules.

Functions performed by neural nodes may be understood at
least in three ways. First, logical neurons implement threshold
logic allowing for realization of M-of-N rules: if M out of N
premises are true than conclusion is also true. Some concepts,
such as “majority of inputs”, are much easier to express
using M-of-N threshold logic rules, than using prepositional
logic rules. If input uncertainty is taken into account these
threshold logical neurons should be replaced by soft sigmoidal
neurons. Second, linear combination of inputs may provide
new features, containing more information than original fea-
tures. This combination is then propagated through sigmoidal
membership function, giving the degree to which a rule is
fulfilled, used as input to the next layer. Comprehensibility
of rules is usually lost due to the linear combination of
input features. However, pruning the network, or requiring
explicitly that only some groups of inputs should be mixed,
helps to restore comprehensibility [10]. Third, a specific form
of aggregation operator may be used to interpret the M-of-N
rules as aggregation of individual conditions [8], [9]. Arguably,
conjunctive rules obtained in this way do not make these rules
easier to understand.

Type-2 fuzzy sets have membership functions that are
themselves fuzzy [6]. Knowledge mining using surveys has
been one of the main applications of the fuzzy systems of the
second type. An alternative approach has been presented here.
Leaving uncertainty on both the input and the rule side leads
to similar effects without decreasing comprehensibility of the
rule-based system. An application of these ideas to the analysis
of questionnaire based surveys has been presented. Similar
applications are possible whenever a set of crisp logic rules
is given. For example, decision trees are very popular data
mining tools that provide crisp rules. Methods developed in
this paper may be used to fuzzify predictions made by decision
trees and improve calculation of classification probabilities
beyond evaluation based on the purity of tree leaves.

Input uncertainties provide a principled way to fuzzify sets
of crisp rules and logical networks. Keeping fuzziness at the
input side makes fuzzy systems and neural networks easier to
understand. This idea may be used to convert MLP network
into equivalent logical network, with input uncertainties pro-
portional to the inverse of the norm of incoming weights. MLP
neural networks are in many cases more comprehensible than
hierarchical sets of fuzzy rules.
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