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Uncertainty of data, fuzzy membership functions,
and multi-layer perceptrons.

Whiodzistaw Duch

Abstract— Probability that a crisp logical rule applied to
imprecise input data is true may be computed using fuzzy
membership function. All reasonable assumptions about in-
put uncertainty distributions lead to membership functions of
sigmoidal shape. Convolution of several inputs with uniform
uncertainty leads to bell-shaped Gaussian-like uncertainty func-
tions. Relations between input uncertainties and fuzzy rules are
systematically explored and several new types of membership
functions discovered. Multi-layered perceptron (MLP) networks
are shown to be a particular implementation of hierarchical sets
of fuzzy threshold logic rules based on sigmoidal membership
functions. They are equivalent to crisp logical networks applied
to input data with uncertainty. Leaving fuzziness on the input
side makes the networks or therule systems easier to under stand.
Practical applications of these ideas are presented for analysis of
questionnaire data and gene expression data.

Index Terms— Neural networks, multi-layer perceptrons, ex-
traction of logical rules, fuzzy systems, neural output functions.

|I. INTRODUCTION

and an Estimated-age, evaluated by visual inspection, is used.
Estimated age is a fuzzy numbét(E..;w), a relatively
broad bell-shaped function expressing the degree of belief
that the age is around the estimated value. The shape of the
F(E,q4e;w) function depends on parametets) ¢hat include
racial features, individual experience in age evaluation, and the
age itself (getting broader for middle values of age). A crisp
rule applied to the fuzzy iNpuF'(E,q4e;w) > 16 is true to a
degree described by some membership funcfioR(Eqge ),

and therefore this rule may be replaced by a fuzzy rule, If
(Ri6(Eage) >Th) then “Let the person in”. The shape of
this membership function depends on the parameters defining
F(E,g4;w) uncertainty distribution function. The threshold Th

in the cinema example is shifted towards lower values to let
younger customers in.

Although the theory developed below is applicable to any
fuzzy system the focus will be on classification rules. Relations
between input uncertainty and membership functions may in
many important cases be estimated analytically. In particular

UZZY logical rules found numerous applications in clasmost assumptions about localized distribution of input uncer-
sification, approximation and control problems [1], [2]tainties lead to membership functions with sigmoidal shapes.

[3], [4], [5], [6]. Many useful algorithms to define and optimizeSuch functions are quite common in multilayer perceptron net-
fuzzy membership functions exist. Comprehensibility of thes&orks (MLPs), with two nodes forming a soft window to filter
rules unfortunately decreases quickly with the growing size #fe data. Putting fuzziness on the input, rather than on the rule
the rule set, and the sophistication of membership functiog#le, enables application of fuzzy concepts to any black box
and aggregation operators used to draw conclusions. Large satstem. Sampling from input uncertainty distribution will be
of fuzzy rules form frequently classification or control systemgquivalent to the use of specific mutidimensional membership
as opaque as any black box solution based on neural netwofrfkgctions that may be estimated from such numerical simula-
There is a direct, although rarely explored, relation betwedions. The effects of increasing input uncertainty (or changing
uncertainty of input data and fuzziness expressed by membether assumptions about it) may be easier to understand and
ship functions. Various assumptions about the type of inpa@ntrol than the effects of changing parameters of membership
uncertainty distributions change the discontinuous mapping#ctions on sets of fuzzy rules. For large input uncertainties
provided by crisp logic systems into more smooth mapping¥edictions of class memberships may reachetpeiori rates,
that are implemented in a natural way by fuzzy rules usinghile for crisp input values predictions close to certainty may
specific types of membership functions. On the other harf¢ possible.
shifting uncertainty from fuzzy rules to the input values may This reasoning allows for an interesting interpretation of
simplify logical rules, making the whole system easier t&ILP networks in terms of fuzzy rules. Equivalence of radial
understand, and allowing for easy control of the degree 6@sis function (RBF) networks with fuzzy systems has been
fuzziness in the system. well established [5], [7]. Much less work has been devoted
Fuzziness of inputs has frequently natural interpretation at@ explore relationships between MLP networks and fuzzy
may be modeled directly, while an equivalent modification asystems. Benitez et al [8] showed that for a three-layer MLP
the membership function may not be so obvious. For exampRetwork a fuzzy additive system may be constructed that
in many countries an age limit to see a movie in cinema Ralculates exactly the same mapping. Moraga and Temme
based on a crisp decision rule, If (True-age6) then “Let [9] show functional equivalence between MLP networks and
the person in”. In practice true age is not readily availabi#izzy models. In both cases aggregation operators are defined
that lead to the replacement of nonlinear neural functions
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show why sigmoidal functions are so important, or how ta: > +1, and1/2 for 2 = 0 (see Fig. 1). Various assumptions
find deeper connections of rule-based crisp logic systerfar rule types, input uncertaintyy, and resulting membership
with MLP networks. The approach proposed here is ndtnctions S, are considered below.
based on any specific aggregation operators, and its practicat > a rule, uniform U, semi-linear S.
consequences are quite different. The use of crisp logical rule with uniform input uncertainty
In the next section relations between the input uncertaiis equivalent to the use of semilinear membership functions
ties and membership functions are discussed, first for ofs sharply defined input. The truth value of the> a rule
dimensional problems (single input variable), and then fds described by the semilinear membership functitr{z —
multidimensional problems. Investigation of these relationsg; Axz), linear in the(a — Az, a+ Axz) interval centered at =
gives justification to several new types of transfer functiong. and constant outside of this interval. Using this membership
The third section shows more applications of these idedanction is equivalent to assumption thamay be anywhere in
Section four presents relations with multi-layer perceptronthe interval(z— Az, x+Axz), that is it has uniform uncertainty
Significance of these results is discussed in the last sectionf@fiction U(y — z; Az) = O(y — x — Az) — O(y — = + Ax).
this paper. Az is used here and below to designate the interval around the
center of the uncertainty distribution. Symmetric uncertainty
[I. INPUT UNCERTAINTIES AND MEMBERSHIP FUNCTIONS functionsU (y — z;w) for z > a rules lead to antisymmetric
In many applications crisp logic rules are sufficient. Aceémbership functions (z —a;w) —1/2 (or without the shift,
curacy of crisp rules extracted for a number of real world (% = @;w) +S(=z +a;w) = 1), and forz € (a,b) rules to
datasets proved to be higher than of any other classificatismetric functionsi(z—(a+b)/2;w). In generalr should be
methods, including fuzzy-rule based systems [10]. Since tff¢ated as a paramet€i(y; ,w), but for functions considered
number of parameters defining crisp rules is minimal, simple€re the dependence anis taken into account by shifting
and understandable descriptions of analyzed data are obtaifd4?: that is usingU (y — z; w).
Therefore a good strategy is to improve crisp rule-based 1N fuzzy rulesS:(z —a; Az) > 1/2 means that the degree
systems without loosing their advantages. of tru.th of the equwalgnt crisp rule > a with the uncertainty
There are several problems with crisp rules [10]. The yd¥nctionU(y—u; Az) is 1/2. The fuzzy rulesS: (z—a; Az) >
or no answers are not acceptable in many situations, leadfhé €auivalent to the crisp rule > a+ (26 —1) Az with such
to sudden changes for small perturbations of the data samptgertainty function.
that lie near decision boundary. Classification systems should
provide an estimation of posterior probabilip(C;|X) of
assigning vectorX = {Xi,X,,...X,} to classCy, or
at least membership degrees that change smoothly betwes’
adjacent points in the feature space (assuming that som.
features are continuous). Crisp rules are difficult to optimize,-
requiring non-gradient procedures to minimize discontinuous’
cost function (usually the number of classification errors)...
Continuous values of membership functions should make the
optimization process of a set of rules easier.
Introduction of fuzziness is not only desirable, but in mogtig- 1. Uniform input uncertainty for = 0 and the semilinear membership
o . . . function of the truth degree of the > 0 rule.
cases it is also unavoidable. Values of continuous inputs taken
from tests or observations have finite accuracy. Finding fuzzy . .
system that is equivalent to crisp rule system applied to” < (a,b) rule, uniform U, triangular 5.

. . . neralization of rul rul involving tw
uncertain feature values allows for controlled introduction of Generalization o T > a Tules to rules olving t 0
fuzziness Interval, R, »(x) true if 2 € (a,b) and false otherwise, is

straightforward § > a). Using expressions for > a all
formulas forz < b may be deduced from symmetry principles
A. One-dimensional situation. and final formulas obtained by subtracting the two cases.
The simplest situation involves a single inpytand a crisp Consider first the uniform uncertainty functibiy —x; Ax)
logic rule premisex > 0, or x € (0,00). Suppose that: with Az = (b — a)/2, matching exactly the rule support. For
is measured with accuracyl. Then the uncertainty of is z = z,, = (a+b)/2 in the middle of the interval the degree of
described by a uniform distributiofi (y — z;1) = 1 for y €  fulfillmentis 1, but for smaller or larger it decreases in linear
[x — 1,z + 1], and zero outside (here is a parametery way, reaching zero fot = z,, = 2Az. Thus the ruleR, ,(z)
an independent variable). This is a rectangular membershgptrue to the degree described by a triangular membership
functionU(y—=z;1) = ©(y—x—1)—O(y—x+1), centered on functionTs(z — z; 2Az) = S1(z — a; Az) — S1(x — b; Ax),
y = x, the average measured (or estimated) input va(e} centered atr,,, the middle of the(a,b) interval. Triangular
is the step function. I > +1 then the rule is certainly true; if membership functions arise in the unlikely situation in which
x < —1 itis false. Otherwise it may be true to a degree equ#te uniform uncertainty of input values matches exactly the
to S1(z; Ax) = S1(z;1/2) = max(0, min(1, (x+1)/2)). This interval defining the rule. In practical application there is
is a semi-linear membership function, zerofox. —1, one for usually no reason for such assumption to be true.
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x € (a,b) rule, uniform U, trapezoidal S.
Trapezoidal membership functions are obtained for rule

intervals that are either broadeb { a > 2Azx) or more (1) (z—a)(2Az+z—a) e AAx

narrow ¢ — a < 2Az) than input uncertainty. The main So(x — a; Azx) = 2t T8z Y€ la — Az, a)

difference between the two cases is that for the narrow rule ’ 1+ % z € [a,a+ Ax]

intervals the degree of fulfillment is never 1, but reaches at 1 z>a+ Az

most (b — a)/2Az, so the trapezoid is not normal. The center ©)

of the rule interval,,, = (a+b)/2 will be the symmetry point  The crisp rule with triangular uncertanty is equivalent to a

of the trapezoid. fuzzy rule with S2 membership function; by analogy to the
Ti(z — T3 a,b, Az) = 1) semi-linear functionS,(-) this function will be called semi-

oo b quadraticSz(+). It has sigmoidal shape, similar to the error
/ Rap(y)U(y — z; Ax)dy = / U(y — z; Az)dy  function and logistic functions (see below). It is much faster to
a compute than the logistic or other types of continuous sigmoid-
= Si(z —a;Ax) — Si(z — b; Ax) shape functions, has very simple gradients and constant second
This function is linear forr € [a — Az, a + Az], constant Qerivatives. It_should be qsefql as the neurpn output function
betweerja + Az, b— Az], and linear inb— Az, b+ Az], with N .MLP algorithms [21], significantly speeding up the calcu-
zero values outside of these regions. Trapezoidal membersifions-
functions result from crisp interval-based rule applied to inputs.
with uniform uncertainty. Triangular and trapezoidal functions
may also be used to model feature uncertainty. N
It is important to realize that triangular and trapezoidal.
functions appear in the dual role here: they may represer:
input uncertainty distribution (as a function gf centered on
x), or they may serve as membership functions (as a functio..
of x) for fuzzy rules that provide the same results as the cris|
rules applied to uncertain inputs. Typical fuzzy system uses
this type of membership functions only in this second role, . . . , . .
. " . . ig. 2. Triangular uncertainty and the semiquadratic membership function
with positions and width parameters fixed as a result of e¥;at results from its integration.
plicit modeling or some optimization procedures. Uncertainty
distributions are centered on the value of the input variablex € (a,b) rule, triangular U, semi-quadratic S.

x, while membership functions are fixed at positions derived A crisp rule R, , applied to the triangular input number
from the logical rule intervals, b. Uncertainty distributions Ty(y — x; Az) is (tlfue to a degree given by a combination of
are of course also membership functions for fuzzy number&i o soft irapezoidal functionSs ( — a; Ax) — Sa(x — b; Az)

_ The membership functions derived above should be normgii i, has very similar sigmoidal shape to the function shown
ized to facilitate standard interpretation. For a crisp g, in Fig. 5. If the supporeAz of T5() is larger tham — a the
(wherea or b may be infinite) and any functiot/ (y; z,w) truth value is always lower than one.

representing uncertainty of variabtenormalized membership z € (a,b) rule, trapezoidal U, semi-linear-quadratic S
function representing the degree of fulfillmerii) of the rule Trapez,oidal uncertainty functions are constructed from a

is given by the integral: combination of uniform function centeredatwith 2+ Az flat
fb U (y: 2, w)dy top region, and linear slopes with non-zero yalues (support)
7(z;0,b,w) = =2—"— (2) between[z — Az — 2t,z — Az] on the left side andz +
Jo Uy 2, w)dy Az, x + Az + 2t] on the right side. They may be constructed
Fuzzy ruler(z;a,b) > 6 is equivalent to a certain confi- as a difference of two semi-linear functions:
dencg in truth of the crisp rule > (a+b)/2. More examples Us(y—a; Az, t) = Sy (y— 2+ Az+t;8)— 81 (y—z— Az —t; 1)
are given below.
x > a rule, triangular U, semi-quadratic S. Crisp rulesz > « with such uncertainty are equivalent to
Suppose that repeated measurements of some feature @izzy rules with semi-linear-quadratic membership function
the meanr with frequency of other valueg decreasing sym- Si»(x; Ax,t) that is a combination of piecewise constant,
metrically in a linear way with the distan¢g— x| until zerois linear and quadratic functions resulting from integration of
reached fory = 24+ Ax. The uncertainty functiot/ (y —z;w) the Us(y — x; Az, t) function (see Fig. 3).
has then triangular shap€(y — z;w) = Ts(y — z; Az), The S12(z; Az, t) function may also be useful for MLP
centered onrz and zero ouside the + Az interval. Thus training, because it is inexpensive to compute and the linear
x IS not a crisp, but a triangular number, with membershipart gives the MLP network a possibility to find a linear so-
function equal to a difference of two semi-linear functiongdution, if it is sufficient. Regularization of network parameters
Ts3(y — x; Azx) = S1(y — (x — Az/2); Az/2) — Si1(y — (x + [20] tends to make all weighted input values quite small; in
Ax/2); Az/2). Crisp rulex > a with triangular uncertainty effect only the linear part of the output function is used. For
function T5(y — x; Az) is true to a degree: the linear part all second derivatives are zero, significantly

—0o0
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simplifying calculations of the Hessian matrix used in the
second-order MLP training procedures [20].

Fig. 4. Gaussian uncertainty and the erf sigmoidal membership function.

Fig. 3. Trapezoidal uncertainty and the sigmoidal quadratic-linear memberA logistic membership function may be obtained from

ship function. x > a rule and input uncertainty distribution that is similar to
a GaussiarG(y — z; Az). The product of logistic functions
x > a rule, Gaussian U, erf S. Uly—z;8) =0(By —x))(1 —a(B(y — x))) has bell-shape

Gaussian distribution is quite commonly assumed for thbat for 3 = 1.56 slope of the logistic function differs from a
uncertainty of real measurements. In this case the crispstandardized Gaussian functid@\z) = 1) by less than 3.4%
values are replaced by a Gaussian number centered orat each point. Taking/ (y—x; 3,b) = o(Bz+b)(1—o(Sz—b))
with dispersionAz. As in the case of triangular functionsadds a flat maximum region around= 0, changing the bell-
membership functions corresponding to Gaussian uncertainti@®spe into a soft trapezoidal shape. The difference of the two
have sigmoidal shape. Crisp logical rule> a with Gaussian logistic functions,STr(z;b) = o(8x + b) — o(Bz — b), has
numberG(y — z; Az) = G(y;zAx) as input is equivalent the same soft trapezoidal shape. In fact these two functions
to a fuzzy rule with crispr and SG(z — a; Az) membership are identical up to a normalization factor:
function:

o(x+b)—o(x—>0) o(x+b)(1—o(x—0>))

= 6
S6(e — a3 Az) / C-mindy @ O —o-0 | e@U-olm) O
The proof is straightforward although a bit tedious. The
{1 _ erf( )] denominator goes to zero for small but this expression is
T2 Az\/2 quite stable from numerical point of view even fior= 10 ~5.
where erfu) = —erf(—u) is the error function extended to Such soft trapezoid functions are useful as neural output
negative values. Generalizationof> a rules to rulesk , , = functions [21]. It is also easy to prove that the logistic function

{z]a < x < b} involving interval is straightforward. For crisp ©f @ sum of two variables is equal to a ratio of products:
rule R, the difference of the tw&'G(z — a; Az) — SG(x —
b; Ax) functions has soft trapezoidal shape (compare Fig. 5),

or a bell-shape for small — a difference, olwty) = ol@)xoly) (7)
_ o(z)o(y)
o(x)o(y) + (1 —o(z))(1 —o(y))
5G2(z;a,b, Az) ®) The x operator may be regarded as a fuzzy aggregation
:/ Gy — z; Az)dy — / Gy — z; Az)dy operator [8]. The logistic form of uncertainty distributions is
bell-shaped fob = 0 and has soft-trapezoidal shape for 1
_ {e f< > o f< >] or larger. Assuming crisp logic rute > a and soft trapezoidal
2 Azy/2 Azy/2 input uncertaintysT'r(y —x; b) with  as the middle point, the

Error function erf is not used as neural output funcUorPnemberSh'p function for the fullfilment of the rule is obtained

because it is rather expensive to compute. Sigmoidal funce™ Integration:
tions of the logistic typeo(x) = 1/(1 + exp(—=x)), are

most commonly used in multilayer perceptrons. The functio o _ 1 e . _
SG(x — a;Ax) is approximated very well by the logistic gLE(m %b) = 2b J, STrly — w;b)dy = (®)
function SG(z — a; Az) =~ o(B(a — x)), with 3 = 1.7Axz. 1 [~
The accuracy of this approximation is within 1% for aland = 3 (c(y—z+0b)—o(y—z—1))
Azr =1. ) . . ) . 1 1 + e(l—.T/-f—b
The assumption of Gaussian input uncertainty is thus = 5 In [ﬁ}
ea—x—

equivalent to evaluation of the degree of truth by sigmoidal
functions of the erf type, and to a very good approximation This logarithmic-exponential function has sigmoidal shape
also by logistic functions. Thus the output of a typical MLPwith the linear part in the middle, similar to the semilinear

neuron is equal to the degree of fulfillment of the> a logical  function with softened edges (Fig. 5). It is continuous and has
rule for inputz that has Gaussian uncertainty. almost linear central part, making it very suitable as the output
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function for MLP neurons. The linear part should prevent Some features occurring in the rufé may be mutually
too quick convergence to the local minima of the MLP errodependent. If a few strongly dependent features are used in a
function, providing non-linearity only when they are necessargingle rule, product of;(X;) probabilities may become quite
and linear solutions when they are sufficient. small. Other T-norms may be useful in such cases, although
Gaussian functions are frequently taken as membershsimple probabilistic interpretation may be lost. De-correlation
functions. Although approximations to Gaussians may b input features, used frequently in signal analysis, solves that
obtained from various natural assumptions about input uncgroblem at the expense of introduction of linear combinations
tainties the exact form of the Gaussian functions is obtained features. Selection of input variables used in rule conditions
only with an assumption o¥/ (y; z,w) < yG(y;z, Ax) type partially solves the problem of strongly correlated features.
of uncertainty that seems to be hard to justify. Various other Many rule extraction algorithms (for example, decision
bell-shaped uncertainty distributions may be considered, atvdes) partition the feature space into disjoint areas. For
their dual membership functions found, but perhaps thosay input vectorX a single rule is active (although for
mentioned above are the most important. inputs with uncertainties activities of different rules should
be taken into account). Algorithms that generate a set of
conjunctive crisp rulesR™ covering the same regions of
the feature space require special treatment. Summing and
normalizing probabilities obtained from different rules may
give results quite different from the Monte Carlo simulations.
Care should be taken to count each region only once. Given
two rulesR!(X), R?(X) for the same clas§' the probability
p(C|X; M) is P(X € R')+ P(X € R?)— P(X € R'NR?).
These probabilities are derived from classification system
M rather then directly from data. Estimation of probabilities
Fig. 5. Soft trapezoidal uncertainty centeredzat 0 with b = 5, and the with Monte Carlo sampling from high-dimensional distri-
log-exp membership function. butions is a slowly convergent process, therefore whenever
possible analytical formulas should be used. In the limit
of very large input uncertainty the whole data range is
. : e IN&luded. Asymptotic behavior of probabilities assigned by
of intervalsz € (aq1,b1) V & € (ag,bs) etc. is not difficult.

lassifiers depends on many factors. Fuzzy rule systems with
Any S-norm may be used to aggregate the results. Such rufggalized (compact support) membership functions, and radial

have network |mplementat|on with single _mput and a fevyjasis function networks (RBF) that are equivalent to such
nodes representing fuzzy rules or neurons in neural networlg,,

. ) - . 'stems, may give estimations that converge toahgiori
Rules with < msteaq of< conditions are handled by plaCmgclass probabilities for the dataset. Most classifiers, including
intervals between discrete values.

rule-based systems that use membership functions with non-
compact support, decision trees, nearest neighbor methods and

In this section crisp rulesxx € (a,00) and z € (a,b)
were considered. Generalization of these results to the su

B. Multidimensional situation. multi-layer perceptron neural networks do not have correct
Crisp conjunctive rulesR = R; A ... A R, where each asymptotic behavior.
R; is a condition of theX; € (a;,b;) type (wherea; or b; Input uncertainty for feature = X; is given by a member-

may be infinite), are easy to handle if all conditions are basethip functionr(y; z,w), dependent on:, with w parameters
on independent, uncorrelated featu?és Each feature has its describing its shape. This function represents the degree of
own uncertainty functiod/ (Y;; X;,w) and the probability that belief (or sometimes probability) that valugsmay still be
R(X) is true, is equal to the product of the probabilities ofaken asxz. Membership functions (MFs) may in principle
7;(X;) for i = 1...k. Thus a fuzzy rule withr;(X;) mem- have arbitrary shape, estimated from observations. Because
bership functions may replace the crisp rule plus uncertaintiye features of the input vect® = {X;, X,,... X, } are
functions. For example, ifX; > a1 A X2 > ao) rule premises uncertain instead of using a single input vecx¥it would be
are used with uniform assumption about uncertafiitfy; — more appropriate to sample from the multidimensional distri-
X, AX;) then as the result of integration a product of twdution defined by all appropriate MEs(y; X;,w;) (Symbolic
semi-linear functions$; (X; —a1; AX1)S1(X2 —a2; AX,) is  features may not be appropriate because they usually cannot
obtained. be fuzzified). From this multi-dimensional distribution a large
Thus a natural T-norm for fuzzy rules equivalent to crismumber of input vector¥ € O.(X) may be generated in the
logic rules applied to uncertain inputs is based on simmeighborhood,(X) defined by MFs around the query vector
ple product of membership functions. Products of variouX.
membership functions derived in previous section replace theAny classification systemM that predicts class labels
need to calculate the degree of fulfilment of crisp rules bM(X) = (%, including sets of crisp decision rules, decision
integration over input distributions. Each conjunctive rule magrees, neural networks or statistical black-box classification
be implemented as a product node, and for independent rugstems, may be applied to the set Wf vectors. If for
the sum of outputs from nodes that share the same conclusiSnvectors Y from this set classC; has been predicted
gives the final answer. Ny, times, p(Cx|X; M,w) = Ni/N is an estimation of the
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probability that a vector from the neighborhodd. (X) will  logical functions using threshold logic into MLP networks.
be of assigned to clas§), by the classification system/ The theory of logical networks has been well developed in
with parametersw (including parameters of the samplingthe early days of neural models, starting with McCulloch and
procedure). Similar estimation may also be done if the W. Pitts [19]. This theory became important for construction
system predicts membership values or probabilities. of digital circuits. Relations between fuzzy logic and their

This Monte Carlo sampling procedure facilitates the reretwork implementations have never been analyzed to com-
construction of multidimensional membership functions foparable extent.
any classification system, not just logical rule-based systemsAtrtificial neurons, or network nodes, are the basic building
Analytical results for single inputs obtained in the previoublocks of MLP networks [20]. Motivated by functions of bio-
subsection may be approximated using such numerical sinlagical neurons artificial neurons implement sigmoidal output
lations, with U(y — z;w) input uncertainty distributions and functions, usually of the logistic type (for a survey of neural
classifiers based on rules with a single premise (a,b). functions see [21]). Other types of sigmoidal neuron output
Generalizing these results a good guiding principle is to réunctions, such as hyperbolic tangent or arctangent functions,
quire that probabilities generated from Monte Carlo samplingjve essentially the same results. Semi-linear functions are
should be the same as those obtained from the equivalent fusgynetimes used as an approximation to the continuous sig-
system. The goal here is to obtain the same results with crigwidal functions. All these functions estimate the truth of
logic system applied to uncertain inputs as with the fuzzg crisp logical rulex > a under various input uncertainty
system applied to crisp inputs. assumptions, as derived in the previous section.

Consider first the simplest example: one-dimensional case,
one neuron network. A threshold functi@(x — a) imple-
menting logical rulex > a in case of uniform uncertainty

Equivalence of fuzzy logic systems with radial basis funds equivalent to a fuzzy rule with semi-linear membership
tion (RBF) networks is well known and has been formallyunction. For Gaussian uncertainties sigmoidal erf functions
proven for Gaussian and other localized functions [5]. Eadre obtained, and they are approximated quite well with
node of the RBF network corresponds to a fuzzy rule. llogistic functions. Presenting fuzzy membership functions in
practice feature selection in RBF networks is rarely dongraphical form as nodes of a network (Fig. 6) allows for
while in fuzzy rule-based systems it is of primary importancémplementation of the same fuzzy logical functions.

RBF networks are based on similarity evaluation, while multi-
layer perceptrons, the most popular neural network models, ¢

IIl. RELATION WITH MULTI -LAYER PERCEPTRONS

based on non-linear soft discrimination. RBF nodes frequent +1t

- . . . . (W x-t)
use multidimensional Gaussian functions, calculating produc W>. 1
of one-dimensional membership functions. Such nodes ci x_.g S
culate the truth value of conjunctive logical rules applied t
uncertain inputs. % o(W, x-)

Results of the previous section showed that memberst
functions based on various trapezoidal and soft trapezoic
functions arise for interval-based premisesc (a,b) under
many assumptions about input uncertainty. Although proc
ucts of these functions are not radial, they can still b ., @ P a b
used as output functions of neurons in basis function (RBI f
like) network architectures [21]. Functions that are proc
ucts of components depending on single varialfleX) = Type 3 Type 4
f1(X1)f2(X2) ... fn(Xnw), are called separable. Radial basi
functions are usually not separable, with an important excep-
tion of the multidimensional Gaussian function with diagongtiy 6 Neural implementation of 4 types of crisp conditidiss € (a, b),
covariance matrix that is a product of one-dimensional compaith S; = —S$2 = 1 and o (-) with infinite slopes: type 1 fof; = W2 =
nents. Feature Space Mapping networks [14], [15] are baskd! = a, t' = b, type 2 forWy = —1, W =1, t = —a,t’ = b, type 3

. . obtained from type 1 witth = co and type 4 is obtained from type 2 with
on separable functions, therefore their neurons evaluate the —
truth of conjunctive logical rules. Products 6f'r(X;;w;)
soft trapezoidal functions are used in the Incremental Net- Input weights provide scaling for feature values, and the
work (IncNet) neural network implemented in the Ghostminesign of weight determines the type of inequality and the
package [16], [17]. threshold of the neuron determines the value ¢§ee Fig.6).

Basis function networks with product nodes implement corFhe truth value of premises is thus measured by the value
junctive rules. Multi-layer perceptrons are based on threshatd sigmoidal functionS(Wzx — a) for input z. The network
logic. Increasing input uncertainty from zero to some finitbased on such nodes sums the conclusions of all rules referring
value is equivalent to the transition from step-like thresholtb the same class in the output layer. The output weights
functions©(W - X) to the smooth sigmoidal functiong W -  estimate the relative importance of these rules in reaching the
X). This transition converts networks implementing crisfinal conclusion. FoiVz € (a,b) rule a combination of two

+1 t
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S(Whrx—t)—S(Wax—t') neurons should be used, and this canf two-dimensional rectangular joint distribution of tlg and
either be implemented by a single node, or by a linear neurdf variables ori¥;Y; +W>Y; line. Adding third input requires
in the output layer. For example, W; = +1, W5 = —1 and convolution of triangular and rectangular function, resulting in
thresholds are:, b a rule withz € (a,b) is implemented by soft-trapezioidal function made from semiguadratic fragments
the network with one input, two hidden nodes and one linedcompare Fig.8). For larger number of inputs soft-trapezoidal
shape of uncertainty distribution is preserved, but the higher-
order polynomials should be used to approximate it. Analytical
formulas for such distributions may be derived, but they will
not be very useful, because these functions are composed from
many fragments.
Xy W, Thus although each of the original variables has uniform
— uncertainty distribution, their linear combination has uncer-
X VV1X1+W2X 2> 4 tainty distribution of the soft trapezoidal shape. Integration of
O/ G(X— a) this distribution leads to the logarithmic-exponential type of
X, W2 sigmoidal function Eq. 8 that should serve as the membership
function. The sum of several normalized inputs with similar
Fig. 7. Two independent inputs and one hidden neuron impIementiHé\"form unlce.rtamty has aI_Ways Pe”'ShaPeq unp_ertamty dis-
threshold logic. tribution, similar to Gaussian (Fig.9). This justifies the use
of logistic or similar sigmoidal functions that result from
Conjunctive rulesk = R; A R, where eachR; involves integration of such distributions. In a typical situation weights
an independent variable and inten&l; = X; € (a;,0;), of the linear combination of inputs = W - X have different
applied to.X; inputs with some uncertainty, lead to a producbalues (in the Bayesian approach to MLP training it is assumed
of two membership functions. This is what neural networkghat weight distribution is Gaussian) and final uncertainties
based on separable transfer functions, and fuzzy rule based:;w) have shapes that range from triangular, through bell-
systems, normally do: evaluate the evidence provided by inp@iape to soft triangular. If uncertainties of input variables are
X; using some membership functions, and get the conclusismnificantly different, or if the weights are quite different, an
combining the results using some T-norm, in this case g@proximation to the logarithmic-exponential functions with
product. There is another option that is not so popular iinear area around the rule threshold should be used.
fuzzy logic: using threshold logic, as it is done in mulit-
layer perceptrons. Neurons in MLP networks implement fuzzy |
threshold logic to evaluate the truth of crisp threshold logic-
rules in presence of input uncertainties. F
MLP transfer functionsf(X) map vectorsX to scalar
valuesI(X) called activation, which are then processed by
the threshold output function(I), so thatf(X) = o(I(X))
[21]. For a single input, activation is simply the weighted - .
input value. The output function has usually sigmoidal shape, 1| | 1| l R \ i
For two or more inputs activation is usually taken as a linear
combinationz = > W;X; = W - X. Thus N-dimensional Fig. 8. 3 inputs with uniform uncertainty, but different centers and width,
threshold neurons are essentially single input neurons appmﬁgr convolution give semi-quadratic soft trapezoidal uncertainty distribution.
to some scalar activation values. Linear combination of inputs
is sometimes used in fuzzy logic when rules are applied to the
pre-processed signal, time series or image data, for examp
after extraction of principal components or independent com™” T
ponents. Rules > a are then defined along tf& direction
in the feature space.
How should the input uncertainty distributidti(y; ,w)
for £ = W1 X, + W)X, variable be calculated? Given two
independent random variabl&$, Y, and their corresponding
distributionsU (y; X1,w1) and U(y; X2, w2), the distribution
of random variableZ = Y7 + Y5 is given by the convolution:

Fig. 9. 4 inputs with uniform uncertainty and identical width, centered
at +0.25 and +0.75, after convolution giving Gaussian-like uncertainty
+oo distribution.
U(z; X1+ Xo,w) = U(z — y; X1,w1)U (y; X2, w2)dy
—0o0

9) For triangular uncertainties or more complex types of un-
Convolution of two uniform distributions with identical certainties of input variables qualitatively similar behavior is
width gives triangular uncertainty functions, and with differenbbserved. For example, taking 4 inputs with identical Gaussian
width trapezoidal functions. This shape comes from projectiafispersions forX; = —0.75, X = —0.25, X3 = 0.25
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and X, = 0.75, and different weights (Fig. 10), gives afterin the hidden space. The goal is to create separable clusters
convolution bell-shaped Gaussian-like distribution. Thus lineaf images of the input vectors in the hidden space. In MLPs
combination of many input variables with any type of uncereutput neurons provide discriminating functions that separate
tainties, uniform, triangular, trapezoidal, or Gaussian, leads tisese clusters. From fuzzy logic perspective rule conclusions
bell shaped distributions that after integration give sigmoidalre aggregated using weights and thresholds that maximize
type of membership functions. Thus a rule> a, with z equal the number of correct answers to a rule> a, wherey is
to a weighted combinatioWV - X with arbitrary uncertainties, a weighted combination of rule conclusions. MLPs provide a
is always approximated by a fuzzy rufe — S(z — a) > ¢, hierarchical system of such rules. Adding more network layers
whereS(-) is some type of sigmoidal function. This is a softis equivalent to more levels in this hierarchy that includes rules
hyperplane used by MLP neurons. about intermediate rule conclusions (from previous hidden
layers), not only about data. Such intermediate conclusions
may have some sense, especially if the network is pruned
leaving only most important connections [10].

Hierarchical fuzzy systems are an active research topic in
A 2 fuzzy logic, aimed at reduction of the exponential number of

AV ) rules arising in control and other applications.nf mem-
bership functions are defined for each of thanputs then
the number of possible fuzzy rulesis™. There are several
ways to go around this problem [23], [24], but the hierarchical
fuzzy systems approached gains recently most interest [25].
Fig. 10. 4 inputs with Gaussian uncertainty, identical dispersions, cente%ldCh _SYStemS process_ mquS n Iower-dlm_ensmnal _SUbSpaces’
at £0.25 and +£0.75, with 1,0.2, —0.2, —1 weights, after convolution give combining the results in a binary-tree fashion. In this process
Gaussian-like uncertainty distribution. comprehensibility or the physical interpretation and the ability

to design such systems without much training is easily lost,

Combination of inputs creates new linguistic variables thafithough there are some proposals to restore it [26]. MLP
may not have sense, except for providing some discriminatizgoids problems with combinatorial explosion, but the price is
hyperplanes. MLP nodes based on threshold logic divide tBemetimes high: weighted combinations of inputs may not be
feature space into two half-spaces using hyperplanes, whiasy to understand, and optimal weights cannot be designed
neural networks based on separable functions divide the fdart have to be learned. A compromise is offered by neural
ture space into areas where products of membership functiaighitectures that enforce simple, skeleton networks structure,
are larger than some thresholds — for rectangular memberstiiat frequently can be analyzed in details and converted to a
functions, these areas are hyperrectangles, providing rulesset of logical rules [10].
classical logic. Soft threshold logic rulé§W - X — a) > ¢
may sometimes simplify logical interpretation, and although IV. EXAMPLES OF APPLICATIONS
they may be re-interpreted using conjunctive logic at the Good estimation of input uncertainty is in many cases
expense of special aggregation operators [8] they will n@lossible. For example, medical tests have known accuracy
become more comprehensible. If all inputs reaching a neurand models of uncertainty distributions may be constructed.
belong to the same type, linear combination, equivalent ®xplicit model for uncertainty of the test may include not
rotation and rescaling, may provide new, interesting featuresly the actual measurement, but many other factors, such

that have some interpretation. as the type of treatment, physical exercise, or food and drinks
Adding more neurons in the hidden layer is equivalerdonsumed prior to the test. Specific membership functions may
to more fuzzy rulesF;, < o(f;i — a;) > ¢;, with f; = then be constructed to evaluate more accurately various risks

W . X, Rules leading to the same conclusion (same claks measured input values.
membership) are combined together in the output layer. MLP Conjunctive logic rules are perhaps most frequently used,
assigns weights to rule conclusions and makes final aggregat in some situations M-of-N type of rules, employing
tion of evidence in two ways. Linear output neurons combingareshold logic, are more natural. Rule conditions may be
weighted evidence, and either a maximum is selected or finedated as constraints rather than absolute requirements. If
class memberships are calculated after some normalizatiant all constraints may be fulfilled solutions that satisfy most
Alternatively, soft threshold logic is used to create conjunctivef the constraints are searched for. For example, information
rules (for high thresholds) or disjunctive rules (for low threshretrieval systems (including all of the internet search engines)
olds). The need for soft threshold logic is motivated again byre based on such approach. If documents with all N keywords
propagation of uncertainty through the hidden layer. are not found then links to documents with N-1 keywords
In fuzzy logic various forms of sophisticated aggregatioare displayed, followed by links to documents with smaller
operators are in use, for example ordered weighted aggregatioirmber of keywords, until a minimum of M keywords is
(OWA) operators [22]. They may be more or-like or and-likefound. Thus the queries are handled by threshold-based logic
similarly as the weighted activation aggregation. Activity ofather than conjunctive logic. The uncertainty of inputs may
hidden neurons, or the degree to which rules implemented bg expressed in the alternative keywords and may be captured
hidden neurons are fulfilled, form an image of input vectorasing fuzzy rules operating on context vectors.
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Medical personnel frequently uses logical rules based s performed. This minimization may either be added to the
various thresholds for different tests. Medical textbooks ateaining procedure, or done by plotting the dependence of

full of rules of M-of-N type: E(s) and selecting the minimum. In the limit of a small
If at least 3 symptoms of the 5 from the sét;, so, s3, 54,85} sigmoidal functions are very steep, acting as step functions,
are present, then conclusion follows. and minimization of the soft error function (10) becomes

Each of the symptoms may be of the fuzzy linguistic variequivalent to minimization of the number of classification
able type: high fever, high blood pressure, high cholesterefrors. Optimak value that minimizes the error function gives
level etc. Network that represents such rule should containad estimation of the unknown uncertainty.

pairs of nodes that filter measured inputs (Fig.6) to provide This approach to extraction and optimization of rules has
values of the membership functions, followed by the outpuideen applied to analysis of Minnesota Multiphasic Personality
neuron that combines the evidence and compares it with thventory (MMPI) psychometric data, consisting of 550 ques-
thresholdz > 3. Knowing the uncertainty of measured valuegions with 3 possible answers (yes, no, don’'t know) each [18].
slope of corresponding sigmoidal functions may be set. TH@omputerized versions of this test assist only in information
backpropagation training algorithm will adjust the weightacquisition, but evaluation of results is still done by an
that in the original rule are all 1, tuning the rule to matclexperienced clinical psychologist. The raw MMPI data is used
its prediction to the data. As a result the network may pubd compute 14 real-valued coefficients, called “psychometric
more emphasis on high blood pressure than on the cholesteschles”. These coefficients are often displayed as a histogram
level. There is nothing mysterious about such networks. Thegalled “a psychogram”) allowing skilled psychologists to
recommendations are at least as comprehensible as those diegnose specific problems, such as neurosis, drug addiction
follow from fuzzy systems. or criminal tendencies.

Uncertainties may have different origin (see [3]) and some- The data was collected in the Academic Psychological
times cannot be reliably estimated. For example, evaluation Gfinic of Nicholaus Copernicus University, Torun, Poland
guestionnaires, such as census data, medical or psycholog(sataller version of this data has been analyzed previously
surveys, followed by averaging of some responses, leads[1®]). Expert psychologists provided about 1600 cases belong-
numerical values of observations of unknown accuracy. Thisg to 27 classes for women the same number of cases divided
problem may be approached via fuzzy sets of the secoimdo 28 classes for man (about 60 cases/class). Rules were
type [6]. On the other hand uncertaintieg of the values initially generated using C4.5 classification tree [12], and SSV
of features may be used as additional adaptive parameters tthatision tree [13], with another set of crisp rules generated by
may be optimized. This is done in several steps: the Feature Space Mapping (FSM) neurofuzzy network [14],

« Prepare a training data base containing results of survdy§] using rectangular membership functions. Both SSV and
reduced to numerical coefficients and categorized in ESM algorithms are implemented in the Ghostminer data min-
reliable way. ing package [16] used to generate all results described below.

« Extracted from this data initial crisp logic rules, usingonly simple rules are of interest to psychologists, because
decision trees [12], [13], MLP2LN neural networks [11]each set of rules for a given class has to be commented upon,
or other approaches [10]. providing verbal interpretation useful for support of diagnosis.

« Assume some type of uncertainty distributions, for exanome rules covered only a few cases from the database,
ple triangular or Gaussian, and use small initial uncertaiterefore pruning and re-optimization was performed.
ties s; to fuzzify crisp rules using membership functions C4.5 creates 2-3 rules per class involving between 2 to 9
that correspond to input uncertainties of the selected typaitributes, and achieving 93.0% of correct responses. Agree-

« Optimize a cost functiorE (s, w) to find the best values ment between two human experts analyzing this type of data
for model parameters, including the uncertainties. is usually below 80%. Gaussian distribution of uncertainty in

Soft cost function may be based on a sum of predictd@Puts was assumed, and the corresponding erf membership
probabilities or normalized membership values: funcpong 5 approxllmated.by @fferences of logistic functions

to simplify calculations. With dispersion around=1% of the
data range improves results by about 1%. FSM network was
E(s,w)=>_ > (p(CilX;s,w) — CLi(X)))>  (10) used with rectangular membership functions to generate crisp
X i rules. These rules may overlap, therefore high membership
where w includes intervals defining linguistic variables,degrees in more than one class are possible. 3-4 per class were
weights and thresholdss, are uncertainties of inputs, created, agreeing in 95% with original diagnosis. Gaussian
CL;(X) € [0,1] is a label for the training vectoK (sev- fuzzification at the level of 1.1-1.5% increases this accuracy
eral non-zero entries for different class may be used), ahg 2.5%.
p(Ci|X;s,w) is calculated using the neural network or a Rectangular membership functions of crisp rules are con-
system of fuzzy rules. This error function may be optimizeslerted to the soft trapezoidal functions corresponding to the
using backpropagation gradient-based techniques. optimal uncertainty of about 1.5%. This uncertainty is suffi-

If all features represent measurements of the same tygently small to make the verbal interpretation of fuzzy rules
all s; may be taken as a percentage of the range of eastill quite easy. The true uncertainty of psychometric scales is
feature,s; = s(max(X;) — min(X;)), and one-dimensional unknown and the reliability of the training data is also hard
minimization of the error function over a singleparameter to estimate. For small input uncertainties rules predict one
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or more classes, while for large uncertainties many classefs uncertainty of one or more input feature values. Such
have comparable probabilities (Fig. 11). With input uncertaintgraph shows the stability of predictions of the systeh

set to zero crisp rules are used. The query case in Fig. Hrpund the inputX. Cases far from decision borders show

is found in the region where rules for two different classesnly slow decrease of predicted membership functions, but
overlap. Using crisp rules such solution should be preferabtases near decision border show significant decrease of the
to predictions of a single class only — the evidence availabtlominant class memberships at the expense of new classes.
in the data is not sufficient to favor any of the two classe3his technique may be useful in evaluating the type of errors
Assuming small uncertainty = 1% breaks the tie betweenthat the system makes.

the two classes, and increasing the uncertainty to 2 and 4%

shows two more classes for which significant membership is

oredicted. For example, in the Leukemia gene expression data [27]

two classes, acute lymphoblastic leukemia (ALL) and acute
myeloid leukemia (AML) should be distinguished, given 7129

features (gene expression levels from microarray experiments).

Analysis of this data made with different methods available

— in the Ghostminer package [16] showed that using only one

' = single feature all 38 training samples, and all but 3 of the 34
test samples (AML mistaken for ALL cases), are classified

correctly. Using SSV decision tree a crisp logical rule based

I B 2 ] I | on a single threshold for feature 4847 was found giving such

= = T high accuracy. Can fuzzification help? It is easy to check that

no assumptions about uncertainty of input data will create

Fig. 11. Influence of input uncertainty on predictions of class memberships.
Top left: no uncertainty - two equally probable classes are predicted; top ri%t:fuzzy rule that makes less than 3 errors on the test set.

optimal 1% uncertainty, first class becomes more probable than the secéRgfeasing the number of features (gene expression values)

bottom: 2% and 4% uncertainty assumed, leading to several new classes tjththe most promising 10 features, and using Support Vector

smaller membership values. M . . . . .
achine based on Gaussian kernels, a solution with no training

The rule with largest membership, shown fer= 3% and a single test error was found.

Gaussian uncertainties in Fig. 12, has 5 conditions (out of
14 possible). Feature values of the query case are connectethis one test error may result from insufficient input in-
with line segments, Gaussian distributions are attached tofdsmation, the inability of SVM to provide correct decision
feature values that appear in the rule under consideratidsorders, or training data that is too small and does not repre-
Two intervals (for Ps and Pt features) include the measurednt the true data distribution. While the first two errors in the
values for the evaluated case rather close to their boundarigs;t set were indeed due to the insufficient information this last
therefore only 56.4 and 66.7% of the Gaussian is capturegror seems to be of a different type. It may be a mislabeled
inside the interval. As a result membership value of the actugéta case, or an error in the diagnosis, a different type of
case in this rule is only 38%. leukemia that does not fit to any of the two classes. It may also
be a very rare and untypical case of acute myeloid leukemia
that should be distinguished as a new subtype, leading perhaps
to the similar medical condition. This is indicated by the
following observation. 5% input uncertainty for all of the 10
gene expression values has been taken (this is sufficiently large
to cover in two-dimensional scatterograms most of the data
from the ALL class), and 1000 vectors in the neighborhood
4 g 1 of the selected test AML vector has been generated. All of
these vectors are assigned by SVM and other methods to the
(wrong) ALL class. This vector is not near the decision border,
but placed firmly in the feature space area that all classification
methods assign to the AML class, containing many vectors
“from this class and no vectors from ALL class. Generating
Fig. 12. Psychogram with rule conditions and fuzzified input o 3% 1000 points aroyr}d the other tWO.V.eCtorS shows that they were
displayed. close to the decision border (significant number of vectors was
assigned to the ALL class), therefore increasing the number
These estimates of membership values give an idea ho#features from 1 to 10 helped to separate them correctly.
strongly rules support the assignment of vecXoto different It seems rather unlikely that new information (either training
classesCy. The whole fuzzy rule based system may beata or adding more features) could change classification of
presented as an MLP network. this one vector, because such change in the decision boarders
Instead of displaying membership values for a given uncerould have to influence classification of other vectors in the
tainty it may be useful to pIop(Ck|X;s;J\Z/) as a function neighborhood.
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V. DISCUSSION is a specific way to optimize this set. Threshold logic is
implemented by neurons with sigmoidal output functions in
Sets of crisp logic rules applied to uncertain inputs arg p networks, while networks based on separable functions
equivalent to fuzzy rules applied to crisp inputs. Integration anplement classical crisp conjunctive logic rules.
uncertainty distribution for a fixed rule threshold or interval nctions performed by neural nodes may be understood at
gives probability, or degree of fulfillment, of a crisp rule.east in three ways. First, logical neurons implement threshold
The same result may be obtained directly as a value of cqyic allowing for realization of M-of-N rules: if M out of N
responding membership function for a given input. Differenfremises are true than conclusion is also true. Some concepts,
assumptions about input uncertainty lead in a natural way {Qch as “majority of inputs’, are much easier to express
different types of membership functions, but all of them havgsing M-of-N threshold logic rules, than using prepositional
sigmoidal shapes. Fuzzification of input values should give trpggic rules. If input uncertainty is taken into account these
same probabilities as the Monte Carlo procedure performed f@feshold logical neurons should be replaced by soft sigmoidal
input vectors sampled from uncertainty distributions centerggrons. Second, linear combination of inputs may provide
at the measured values. In many practical cases analytigaly features, containing more information than original fea-
formulas for fuzzy membership functions have been deriveqyres. This combination is then propagated through sigmoidal
With single input and uniform uncertainty/(y; =, Az) membership function, giving the degree to which a rule is
semi-linear membership functidi(z —a; Ax) should be used fyffilled, used as input to the next layer. Comprehensibility
for estimation of the degree of truth of > a crisp rule. In of rules is usually lost due to the linear combination of
all other cases smoother membership functions of sigmoidaput features. However, pruning the network, or requiring
shape are needed, justifying the use of sigmoidal functiogsplicitly that only some groups of inputs should be mixed,
from the logical point of view. The use of sigmoidal functionselps to restore comprehensibility [10]. Third, a specific form
has also been justified using approximation theory [20], [Sbf aggregation operator may be used to interpret the M-of-N
The fact that MLPs are universal approximators is in itself nqlyles as aggregation of individual conditions [8], [9]. Arguably,
surprising (it is difficult to make a basis set expansion that doggnjunctive rules obtained in this way do not make these rules
not have universal approximation property). Favorable rates ghsier to understand.
convergence of expansions based on sigmoidal functions inType-2 fuzzy sets have membership functions that are
highly dimensional spaces are more important [28]. These fgremselves fuzzy [6]. Knowledge mining using surveys has
sults tell us why the use of MLPs for approximation problemgeen one of the main applications of the fuzzy systems of the
is a good idea, while the analysis done in this paper showgcond type. An alternative approach has been presented here.
why it is natural to generalize hierarchical sets of logical ruIeLseang uncertainty on both the input and the rule side leads
using MLP network implementation with sigmoidal functionsto similar effects without decreasing comprehensibility of the
Several new types of membership functions have beenle-based system. An application of these ideas to the analysis
introduced here, resulting from integration of uncertainty dissf questionnaire based surveys has been presented. Similar
tributions. Of particular practical importance is the quadratigpplications are possible whenever a set of crisp logic rules
sigmoidal function resulting from integration of triangulars given. For example, decision trees are very popular data
uncertainties, and log-exp sigmoidal function with extendeghining tools that provide crisp rules. Methods developed in
linear part resulting from integration of soft trapezoidal unthis paper may be used to fuzzify predictions made by decision
certainty distribution. Linear combination of many inputs hagees and improve calculation of classification probabilities
after convolution soft-trapezoidal uncertainty distribution thapeyond evaluation based on the purity of tree leaves.
lead to such log-exp functions. Preliminary tests with MLPs |nput uncertainties provide a principled way to fuzzify sets
based on such transfer functions (F. Piekniewski, L. Rybickf crisp rules and logical networks. Keeping fuzziness at the
W. Duch, in preparation) show their ability to learn quicklyinput side makes fuzzy systems and neural networks easier to
The main reason seems to be connected with the extendg@lerstand. This idea may be used to convert MLP network
linear range of the log-exp functions. Strong nonlinearitiepito equivalent logical network, with input uncertainties pro-
give significant gradients in small areas of the feature spaggrtional to the inverse of the norm of incoming weights. MLP

significantly slowing the learning process and the growtReural networks are in many cases more comprehensible than
of weights in the final stages. New transfer functions coveiierarchical sets of fuzzy rules.

with their extended linear range larger volumes of the feature
space where the data is found and thus lead to a faster
learning and weight growth process; when activation becomes

sufficiently large non-linear saturation point is rapidly reached The program for psychometric data analysis has been writ-
and learning is finished. ten by Krzysztof Graczewski and Rafat Adamczak from the

Crisp logic rules applied to uncertain inputs may be remacé%epartment of Informatics, Nicholaus Copernicus University.

by fuzzy rules with sigmoidal membership functions. Sets of>hostminer”is a trademark of FQS Poland.
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