IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. YY, 2004

Support Vector Neural Training.

Wihodzistaw Duch

Index Terms— Mulitlayer perceptrons, neural networks, back-
propagation, active learning, machine learning.

Abstract— Neural networks are usually trained on all available
data. Support Vector Machines start from all data but near the
end of the training use only a small subset of vectors near
the decision border. The same learning strategy may be used
in neural networks, independently of the actual optimization
method used. Feedforward step is used to identify vectors that
will not contribute to optimization. Threshold for acceptance
of useful vectors for training is dynamically adjusted during
learning to avoid excessive oscillations in the number of support
vectors. Benefits of such approach include faster training, higher
accuracy of final solutions and identification of a small number
of support vectors near decision borders. Results on satellite
image classification and hypothyroid disease obtained with this
type of training are better than any other neural network results
published so far.

I. INTRODUCTION

Typical training error curve of the feedforward neural
networks has exponential shape, showing rapid decrease of
the error in initial epochs, followed by almost flat long tail,
where the network error decreases very slowly. The training
progresses according to the law of diminishing returns. In the
final part of the training, presentation of most vectors that
are far from decisions borders has almost no influence on the
network parameters. In multi-layer perceptrons (MLPs) these
vectors are in the region where outputs of neurons are close to
0 or 1, thus giving vanishing gradients. Only the vectors that
are close to the decision border have significant influence, with
largest gradients obtained after presentation of those vectors
that lead to activations of some neurons near their threshold
values, or to the outputs that are around the middle of the
linear part of sigmoidal function.

In contrast to the neural learning support vector machines
(SVMs, [1]) take into account initially all training vectors,
but progressively the influence of those vectors that are far
from decision borders is decreased and near the end of the
training only a small percentage of vectors that are close to
the decision hyperplane are left. This approach contributes not
only to the increased speed near the end of training, but also
to the higher accuracy that is finally achieved. Linear SVM
algorithm with reasonably small margin discriminates between
border vectors with greater precision than a perceptron. If
the margin between the hyperplane and the vectors from two
classes is small the long tails of sigmoidal output function
contributing to the error function may shift the position of the
hyperplane, and although the mean square error will decrease
the number of classification errors may increase. We have

Author is with the Department of Informatics, Nicholaus Copernicus
University, Grudziadzka 5, Torud, Poland, http://www.phys.uni.torun.pl/kmk,
and School of Computer Engineering, Nanyang Technological University,
Singapore.

observed such behavior [2] after initialization of the MLP net-
work with parameters obtained from the linear discrimination
analysis (LDA). Although MLPs converge quickly after such
initialization the LDA hyperplane gave usually lower number
of errors than the perceptron solution.

Only a few attempts to train neural networks using border
vectors seem to be investigated so far. One way to select such
vectors is to use distances between vectors of different classes
[3]. For the two class problems, for each vector from the first
class the closest vector from the second class is selected; then
the process is repeated for the second class. A few closest
vectors may be selected, and the selection process may be
repeated several times to leave only the vectors that have close
neighbors from the opposite class. For large databases this is
costly, scaling with a square of the number of vectors, and it
is not clear at which moment the switch from training using
all vectors to training using just the border vectors should be
made.

Sensitivity analysis in respect to input perturbations has
been used [4], [5] to visualize and analyze decision borders.
This is a form of active learning [6], in which the training
algorithm has an influence on what part of the inputs space
the information comes from. Zhang [7] has developed the
selective incremental learning algorithm that starts from a
random subset of the training set. After training the remaining
examples available in the training set are evaluated, and those
that give large error are added to the current training set. This
algorithm has been tested on the binary majority function
problem, non-linear function mapping and handwritten digit
recognition, achieving significant accuracy gains. Rdbel [8]
has also described an incremental “dynamic selection algo-
rithm" in which available patterns that give largest errors
are incrementally added to the training set and evaluation of
generalization is done using validation set. He has applied this
algorithm to prediction of chaotic time series.

In this paper perhaps the simplest, but it seems that so
far little explored, approach to active learning is investigated.
Similarly as in the SVM approach [1] all data is initially
used and after a few epochs vectors that do not contribute
much to the next epoch training process are removed. The
algorithm and properties of this approach are described in
the next section. In the third section an illustration of the
selection process is shown on a version of XOR data, and
a few applications are presented showing the effectiveness of
such training. The paper ends with a few conclusions.

Il. ACTIVE LEARNING BY DYNAMIC SELECTION OF
TRAINING VECTORS.

The Support Vector Neural Training (SVNT) algorithm
presented here is a modification of the standard backpropa-
gation procedure. The goal is to reduce the amount of training

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. YY, 2004

data, findng only those training vectors that are really needed
to support the training process. The neural network Fy =
Mk (X;W), for k=1...K (the number of outputs is equal
to the number of classes), is a vector mapping on Fy € [0,1]
that depends on parameters W. These parameters are updated
after presentation of the training data T, depending on the
difference between the target output values and the achieved
network output Yi — Mk(X; W):

K
als\gv\ll:/) - k;l (Y — M (X; W)

IM(X; W)
aVV|j

AW = -1 @

If the difference e(X) = X |Yk — Mk(X;W)] is suffciently
small the pattern X will have negligible influence on the
training process. Patterns that are close to the decision borders
may give significant errors and thus should be used for train-
ing. A forward propagation step (computationally inexpensive)
before each training epoch may determine which vectors have
a chance to influence the training procedure. Vectors for which
€(X) > emin are included in the current training set for the
next epoch, other vectors have no chance to exert significant
influence.

The number of vector selected for training depends critically
on the emin threshold. If it is too low most vectors will
be included, and the savings will be minimal. If it is too
high only a few vectors that lead to largest errors will be
included. On some data where many neurons have to adjust
their parameters to separate well defined clusters this may
be a good strategy. However, for noisy data or for strongly
overlapping clusters convergence may become oscilatory, with
the number of vectors selected in each training epoch changing
rapidly.

This emi, parameter may be automatically adjusted to avoid
strong oscillations. In the first training epoch &, =0 and all
training vectors are used. Different schedules may be proposed
to change this parameter in such a way that only useful support
vectors will be left at the end of training. In the simplest case
€min IS increased by Ae = 0.01 after every epoch in which
the accuracy has been increased. Increasing €min should lead
to dynamic reduction of the number of vectors, until only
the necessary support vectors close to the decision borders
are left. Increasing this value further will remove important
support vectors and the accuracy will decrease. Since there is
no guarantee that convergence will be monotonic it may be
necessary to step back and decrease e, threshold.

The number of currently selected support vectors is a more
sensitive indicator that important support vectors have been
removed than accuracy. If this number increases after the
next selection by more than 5% of the current number of
vectors than enin should be set slightly lower to stabilize the
iterative process. and therefore it is set back by Ae. To reduce
oscillations the value of Ae is then reduced dividing it by 1.2.
After a few oscillations this value stabilizes, but if the initial
value of Aeg is too large some oscillations in the number of
support vectors, MSE and classification accuracy may persist.
The number of vectors used for training may still decrease
in the iterative process even if emin will stabilize, because
minimization of the error function leads to growing weights.

If weights are very large sigmoidal functions have effectively
steeper slopes. This comes from the fact that o(W - X —
0) =o(B(W -X—0")), where B = ||[W]|, W =W/||W|| and
0’ = 0/||W]||. The network provides sharper decision borders,
leaving fewer support vectors that have €(X) > €nin; in the
limit for separable data clusters the number of such vectors
may go to zero.

This works well if the number of mislabeled patterns, or
noisy patterns, giving large errors, is not too large, but it is
clear that such patterns end up as support vectors. If all training
data is used they may have smaller influence than if only
support vectors are used for training. This problem is solved
by excluding from training also the patterns that give very
large errors, keeping only those for which &(X) € [€min, €max]-
In practice to avoid new parameters emax = 1 — emin has been
used. The emi, threshold determines the margin of the size
1 — 2emin, centered at 1/2, for the output values. This may be
translated into a margin around the decision surface near some
points X, using the curvature of the sigmoidal functions in
this area. Vectors falling into this margin are used as support
vectors for training while those outside are assumed to be
already correctly handled. Thus the SVNT algorithm selects
best support vectors for training, cleaning the data at the same
time.

The SVTN algorithm proceeds as follows:

1) Initialize the network parameters W, set Ae = 0.01,

emin=20, set SV =T.
Until no improvement is found in the last Nt iterations
do

2) Optimize network parameters for Nopt steps on SV data.

3) Run feedforward step on T to determine overall accu-

racy and errors, take SV = {X|e(X) € [emin,1 — €min]}-
4) If the accuracy increases:
compare current network with the previous best one,
choose the better one as the current best (take lower
MSE if the number of errors is identical);
increase €min = €min + A€.

5) If the number of support vectors |SV| increases on more
than 0.05- |SV|
decrease €min = €min — AE;
decrease Ae = Ae/1.2.

MSE error should always be determined on the whole
data set. Variants of this algorithm may include changes of
basic parameters, more sophisticated schedules of parameter
changes, for example increase of the number of iterations Nopt
between support vector selections that may speed up the final
convergence, and many others. Of course various thresholds
may also be built in the backpropagation procedure itself, but
in this paper only the simplest solution that does not require
changes to the network optimization procedure is investigated.

Regularization is a commonly used technique to prevent
overfitting of complex neural models and improve general-
ization [9]. Adding sum of squares of weights, or similar
such terms, to the error function obviously decreases the
value of weights. In effect the slopes of sigmoidal functions
are rather small, influencing the margin very strongly. For a
single network node &(X) = |Yx — (W - X —0)| is therefore
always close to 0.5. The margin around the front of the

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. YY, 2004

o(W - X —0) = 0.5 hyperplane where &(X) > enin is rather
large, sometimes covering the whole data range. Qualitatively
the situation is the same in MLPs, so most vectors will be
used for training. Large regularization term may significantly
increase the total value of the cost function and slow down
the convergence, but it may improve the final results.

In particular implementation used in the experiments de-
scribed below the optimization procedure runs for a small
number of iterations (typically Nopt =2 —50), and then
selection of support vectors performed. After the number of
selected vectors stabilizes the number of iterations performed
between reductions may be increased, or a stopping criterion
for optimization may be used to converge to the particular
solution for reduced data. After subsequent reduction of the
training set another solution may be found. Thus the algorithm
explores various solutions in the parameter space, keeping the
core support vectors and changing small percentage of these
vectors after every restart. Convergence at the later stages may
therefore be far from monotonic, and it is worthwhile to wait
for some number of iterations before stopping. Network with
the lowest number of the training errors, and among those with
lowest MSE error, is returned at the end and used on the test
data.

I1l. NUMERICAL EXPERIMENTS

Implementation of the SVNT algorithm has been made us-
ing Netlab package [10]. All MLP networks were trained using
Scaled Conjugated Gradient (SCG) optimization procedure.
No modification of the optimization algorithm itself was done,
only some outer loops were added to control its use.

In order to see that SVNT algorithm is indeed capable of se-
lecting correct support vectors noisy version of XOR data has
been created, with Gaussian clouds around the corners and two
additional vectors per cluster defining decision borders (Fig.
1). This data may be perfectly separated with two hyperplanes.
Correct support vectors have been selected by the GhostMiner
data mining package implementation of the SVM algorithm,
using Gaussian and quadratic kernels [11]. Parameter tuning
was necessary for Gaussian kernel (optimal parameters are
determined in an automatic way using crossvalidation by this
GhostMiner software). Some kernels (linear, cubical) could
not find the optimal solution for the range of parameters
investigated.

SVNT algorithm with selection of support vectors after
every second iteration, and Ae = 0.01 converges to optimal
solution in about 2/3 of the runs. The number of support
vectors is rapidly reduced to 8, and stays at this level for
some time (Fig.2). This stability results from the fact that the
number of vectors available for training is very small, so only
after a longer training weights become sufficiently large to
reduce the margin around the decision border so that some of
these vectors become also excluded (see Fig.2, right).

Increasing the number of iterations between restarts to
Nopt = 5 or more leads to convergence in almost all runs.
Since the noisy XOR problem is quite simple taking larger
Nopt Vvalues leads to convergence too fast giving €min NO
chance to increase to sufficiently large values (0.05 is usually

0 ~

30 v 0
\ % ¢
17} 01
20} v 29
vV VY %
Siv v Al v Q
W v A \

6

Fig. 1. Noisy XOR data with additional 8 vectors added to enforce unique
borders; two perfect solutions to this problem, the lower one with wider
margin achieved by adding regularization term.

sufficient) that enable reduction of the number of support
vectors to the minimal number. Adding regularization term
slows down the convergence, but results in more unsuccessful
runs and increases the margin.

Satellite Image data consists of the multi-spectral values
of pixels in the 3x3 neighborhoods in a small section (82x100)
of an image taken by the Landsat Multi-Spectral Scanner.
The intensities are one-byte numbers (0-255), the training set
includes 4435 samples and the test set 2000 samples. Central
pixel in each neighborhood is assigned to one of the six
classes: red soil (1072), cotton crop (479), grey soil (961),
damp grey soil (415), soil with vegetation stubble (470), and
very damp grey soil (1038 training samples). This dataset is
rather difficult to classify, with strong overlaps between some
classes. Test set accuracies reported in the Statlog project [13]
ranged between 71% (Naive Bayes method) to 91% for the
k-Nearest Neighbor classifier. MLPs were at the level of 86%,
and RBF at 88% accuracy on the test set.

This dataset has been re-analyzed with a number of meth-
ods available in the Ghostminer package [11]. Many other
results for this dataset may be found in the Statlog book
[13]. Best results (Table I) were achieved with the k-Nearest
Neighbors classifier with small k (automatic selection using
crossvalidation tests found optimal k=3), suggesting that rather

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. YY, 2004

N reduced

70

60

50

30

20

10

70[' ' B
60
50|
401

L c:
30 e &@

20

I
70

10

Fig. 2. Typical run on the noisy XOR data; left, the number of support vectors
decreasing during iterations; right, the final solution with only support vectors
shown.

complex decision borders are needed. From the description of
this dataset one may conclude that dimensionality reduction
is rather unlikely. Creating a network with 36 hidden nodes,
one per each output, and adding a regularization term with
o = 0.5 to avoid overfitting rather, led to very good results.
The maximum variance of the hidden node responses reached
0.85, but for 5 nodes it was of the order of 0.001, and for
another 4 nodes it was below 0.1, showing that such network is
slightly too large, but most neurons are fully utilized. Minimal
MSE and minimal number of training errors has been achieved
after 1300 iterations using all 4435 training vectors. The test
accuracy of this network is 5% higher than the Statlog result
for MLP network, and about 3% better than the best SVM
solution. No other classification system applied to this data
has obtained such good result.

Even higher accuracy may be achieved using SVNT algo-
rithm using a fraction of all training vectors. Dependence of
accuracy on the fixed € threshold is shown in Figure 3. Best
results are achieved with automatic determination of relevant
threshold. In particular large classes 1 and 5 may be reduced to
10% without any degradation of accuracy, while some classes
retain almost all their vectors. Confusion matrices in all runs
looked very similar. With regularization at oo = 0.5 level no
overfitting is observed, the training results is well correlated

TABLE |
RESULTS FOR THE SATELLITE IMAGE DATA. OPTIMAL PARAMETERS HAVE
BEEN DETERMINED USING CROSSVALIDATION ON THE TRAINING SET.

System and parameters Train accuracy | Test accuracy
MLP, 36 nodes, o. = 0.5+SVNT 96.5 91.3
MLP, 36 nodes, o.= 0.5 96.0 91.0
kNN, k=3, Manhattan - 90.9
FSM neurofuzzy, learn 0.95 95.1 89.7
kNN, k=1, Euclidean - 89.4
SVM Gaussian kernel (best) 91.6 88.4
RBF, Statlog result 88.9 87.9
MLP, Statlog result 88.8 86.1
C4.5 tree 96.0 85.0
SSV tree 90.9 84.3

Fig. 3. Convergence of a network with 36 hidden neurons on the Satellite
Image data for different thresholds €: left, training (upper) and test (lower
curve) accuracy; right, number of support vectors.

with the test results — the number of training errors in Fig. 4
goes below the number of test errors without any increase in
the latter.

In various experiments, changing the schedule of € reduction
and the number of iterations between the reductions training
accuracies as high as 96.5% were achieved, with correspond-
ing test set results of 91.3%. In this case (see Fig. 4) the
final number of support vectors was 2075, still rather large,
because using 1507 vectors (for the final € = 0.935) resulted
with only slightly worse training results (157 instead of 154
errors), with small improvement of the test results (175 instead
of 175 errors).

Strong overlap of classes for this dataset requires relatively
large number of support vectors. Other data with strong
imbalance between classes allow for much larger reduction
of the support vector set. Hypothyroid dataset [12] has for
a long time been a challenge to neural networks. This data
has been collected during two years of real medical screening
tests for thyroid diseases and therefore contains mostly healthy
cases. Among 3772 cases there are only 93 cases of primary
hypothyroid, and 191 of compensated hypothyroid, the remain-
ing 3488 cases are healthy cases. 3428 cases are provided for
testing, with similar class distribution 73, 177, and 3178. 21
attributes (15 binary, 6 continuous) are given, but only two
of the binary attributes (on thyroxine, and thyroid surgery)
contain any useful information [?], therefore the number of
attributes used below has been reduced to eight.

This datasets presents quite different challenge. All kNN
results are in this case rather poor; using all features they are

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. YY, 2004

00 000 300 400 4500

Fig. 4. Convergence of the same network with dynamic e threshold
determination: upper left — MSE, upper right — training (upper) and test (lower
curve) accuracy; bottom, number of support vectors.

only slightly above the base rate, while using 8 features best
test result is 97.3%. MLPs trained using all tricks of the trade
(local learning rates, genetic optimization), and the cascade
correlation algorithm still reach only 98.5% percent accuracy
on the test set [16]. Best results (Table Il) are obtained with
a few optimized logical rules, or very simple decision trees
[15], [14]. This shows the need of logical, sharp decision
borders. In contrast to the Satellite Image problem there is no
chance here to get good results using large, complex network
with regularization. A small network with large weights,
providing sharp decision borders, is needed. Unfortunately
finding good solutions with gradient-based backpropagation
methods for small networks is not easy, global optima of the
cost function may be found in small, narrow wells in the
parameter space. This problem may be remedied using global
optimization techniques (see for example analysis in [17]).
Here the simplest solution is used, multistart optimization,
selecting from ten runs a network with lowest MSE after 2000
iterations and converging it until no improvement in MSE is
found in the last 1000 iterations.

Networks with 3 neurons do not give good results, therefore
at least 4 neurons are needed (this is also necessary to
obtain 4 logical rules [14]). More neurons will lead to faster
convergence. For example, one network with 12 neurons,
optimized using SCG procedure that was run for 100 iterations
and then run again, found a solution with zero errors on
training and 40 errors on the test (98.83% accuracy) after less
than 5000 iterations. This seems to be the best result obtained
with MLP so far on this dataset. Using 4 neurons only in 20
runs the number of training errors has never reached zero, and
the number of iterations needed for convergence was always
quite large, reaching 50000 or more. The best result running
SCG optimization repeatedly for 100 iterations was found after
15000 iterations, with MSE about three times larger than for 12
neurons (further training for more than 1000 iterations always
returned higher MSE). Although 7 errors were left on the

training set (99.81% accuracy) only 26 errors were made on
the test set (99.24% accuracy). finding such good results may
require many starts.

SVM algorithm with 8 selected features and Gaussian
kernels requires optimization of the C and bias parameters,
achieving best results for C = 1000 and bias= 0.05, found
by crossvalidation on the training set. With the number of
support vectors between 115 and 143 for each class versus
two other classes the test result was 98.4%. Using Minkovsky
kernel €|-||a, Optimizing the exponent (a= 1 works best) and
C =1000, bias= 0.15, leads to much better results, with 100%
accuracy on the training set and 99.18% accuracy on the test
(only 22 vectors were wrongly classified, and 6 vectors were
left unclassified). The number of support vectors for each class
versus two other classes ranged from 131 to 190.

Experiments with SVNT algorithm showed that with auto-
matic determination of € zero errors may be reached on the
training set using the same type of training as before. A rather
flat error curve has been reached after 27400 iterations, with
only two errors on the training, 34 errors on the test set. The €
has stabilized at 0.048 and 67 support vectors were selected. If
the training is continued further MSE drops very slowly, and
after 43500 iterations zero training errors is reached, with 37
test errors and 45 support vectors (7, 21, and 17 respectively,
from the three classes). The number of iterations may be large,
but with less than 100 vectors for training and a very small
network time to do such calculations is quite short. The final
weights grow to quite high values, of the order of 100, showing
that this problem has an inherent logical structure: forced
to take binary decisions (sick or healthy) medical experts
probably used in almost all cases threshold values for different
tests. Convergence is quite slow because very little is gained
by very large increase of the weights.

TABLE 11
RESULTS FOR THE HYPOTHYROID DATASET.

[Method | % train | % test | Ref. |
C-MLP2LN rules 99.89 99.36 [14]
CART tree 99.79 | 99.36 [15]
SSV tree 99.79 99.33 [14]
MLP+SCG, 4 neurons 99.81 99.24 | this work
SVM Minkovsky kernel 100.0 | 99.18 | this work
MLP+SCG, 4 neurons, 67 SV 99.95 99.01 | this work
MLP+SCG, 4 neurons, 45 SV 100.0 98.92 | this work
FSM 10 rules 99.60 | 98.90 [14]
MLP+SCG, 12 neurons 100.0 98.83 | this work
Cascade correlation 100.0 98.5 [16]
MLP+backprop 99.60 98.5 [16]
SVM Gaussian kernel 99.76 98.4 [14]
k-NN, k=1, 8 features - 97.3 | this work
Naive Bayes 97.0 96.1 [15]

These results represent probably the limit of accuracy that
may be achieved for this data set. Significant improvement
over previously published neural network results has been
achieved with standard SCG batch optimization procedure.
This type of training is not as effective as on-line training,
as has been verified experimentally recently [18]. It should
therefore be worthwhile to use the SVNT also in on-line
learning procedures.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. YY, 2004

IV. DISCUSSION AND CONCLUSIONS

Reduction of the size of the dataset used for training leads
to increased accuracy and higher speed of learning. Although
many algorithms for active learning exist the simplest one,
based on rejection of training vectors that have no chance to
contribute to the weight changes, seems to be quite effective.
Using a conservative threshold € = 1, leads only to speed
increase, without affecting the convergence. In this paper
the network training has been simply continued on reduced
training data, but trivial modifications to the standard training
algorithm may be done to reject training vectors in on-line
learning.

The SVNT algorithm is especially useful in the cases
when one class dominates over all others. The number of
data samples from each class near the end of the training
seems to be well balanced and may include only a small
fraction of the original training set. This leads to significant
improvement in classification of unbalanced data. In case
of hypothyroid problem the number of support vectors was
amazingly small, about 1.2% of the whole training data.
Unfortunately these support vectors cannot be saved and used
directly in other classification algorithms because they are
selected from vectors that have been standardized using the
whole training data. Thus they have to be remembered together
with standardization coefficients that should be applied to all
data. Training other systems on support vectors selected by
SVNT and validating results on the remaining training data
should be quite effective.

Depending on the rejection threshold, MSE, the number of
errors and the number of selected vectors may oscillate. Large
oscillations are damped by the dynamic rejection threshold
update in the SVNT algorithm, but small oscillations may
actually be useful. Reduction of the traing set introduces a
stochastic element to the training, pushing the system out
of the local minima. Comparing this approach to the algo-
rithms based on evolutionary or on other global optimization
algorithms it is clear that at the initial stages convergence is
fast and that all good models need to share roughly the same
characteristics. There is no reason to do much exploration of
the solutions space, gradient-based methods are much faster.
Near the end of the training gradients are small and wider
exploration of the parameter space is worthwhile to fine tune
the decision borders. This is exactly what SVNT does.

More empirical tests are needed to evaluate support vector
neural training approach, but the ability to find correct support
vectors (XOR data), handle multiclass problems with strong
class overlaps (satellite image data), and excellent results
on the unbalanced data (hypothyroid) show the potential of
this idea. The algorithm may be applied to any type of
feedforward network, not only MLPs. A few issues remain for
further investigation, such as the optimal scheme for reduction
of thresholds, implementation in on-line learning algorithms,
using different neural optimization procedures, and improving
convergence in the final stages of learning, when flat plateaus
of the error function are reached. One idea to speed up
convergence is based on principal components in the weight
space, calculated from several epochs (M. Kordos, W. Duch,

in preparation). Two principal components capture almost all
variance, therefore the error surface may be mapped in two
dimensions and larger jump towards minimum may be done.
This should be especially effective in cases where the main
improvements come from growth of network weights.

ACKNOWLEDGMENTS

Dr Norbert Jankowski has developed the SVM imple-
mentation in the Ghostminer package, has done preliminary
calculations on the hypothyroid data, and has helped me to
use it.

REFERENCES

[1] B. Schélkopf, and A.J. Smola, Learning with Kernels. Support \ector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA:
MIT Press, 2001.

[2] W. Duch, R. Adamczak, and N. Jankowski, “Initialization and optimiza-
tion of multilayered perceptrons”. Proc. 3rd Conf. on Neural Networks
and Their Applications, Kule, Poland, pp. 105-110, 1997.

[3] W. Duch, “Similarity based methods: a general framework for classi-
fication, approximation and association,” Control and Cybernetics, vol.
29 (4), pp. 937-968, 2000.

[4] A. P. Engelbrecht, “Sensitivity Analysis for Decision Boundaries,"
Neural Processing Letters, vol. 10(3), pp. 253-266, 1999.

[5] A. P. Engelbrecht, “Sensitivity Analysis for Selective Learning by
Feedforward Neural Networks," Fundamenta Informaticae, vol. 45(1),
pp. 295-328, 2001.

[6] D. Cohn, L. Atlas, and R. Ladner, “Improving Generalization with
Active Learning," Machine Learning, vol. 15, pp. 201-221, 1994.

[7] B-T. Zhang, “Accelerated Learning by Active Example Selection",
International Journal of Neural Systems, vol. 5(1), pp. 67-75, 1994.

[8] A.Rdbel, “The Dynamic Pattern Selection Algorithm: Effective Training
and Controlled Generalization of Backpropagation Neural Networks",
Technical Report, Institute fiir Angewandte Informatik, Technische Uni-
versitat Berlin, pp. 497-500, 1994.

[9] C. Bishop, Neural networks for pattern recognition. Oxford: Clarendon
Press, 1994.

[10] I. Nabnay, and C. Bishop, NETLAB software, Aston University, Birm-
ingham, UK, 1997. http://www.ncrg.aston.ac.uk/netlab/

[11] W. Duch, N. Jankowski, K. Grabczewski, A. Naud, and R. Adamczak,
Ghostminer software, http://www.fgspl.com.pl/ghostminer/

[12] C.L, Blake, and C.J. Merz, UCI Repository of machine learning
databases, http://www.ics.uci.edu/ mlearn/MLRepository.html. Univer-
sity of California, Irvine, Dept. of Information and Computer Science,
1998-2003.

[13] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, Machine Learning,
Neural and Statistical Classification. London, UK: Ellis Horwood, 1994.

[14] W. Duch, R. Adamczak, and K. Grabczewski, “A New Methodology of
Extraction, Optimization and Application of Crisp and Fuzzy Logical
Rules,” IEEE Transactions on Neural Networks, vol. 12, pp. 277-306,
2001.

[15] S.M. Weiss, and |. Kapouleas, “An empirical comparison of pattern
recognition, neural nets and machine learning classification methods",
in: Readings in Machine Learning, eds. J.W. Shavlik, T.G. Dietterich,
Morgan Kauffman Publ, CA 1990

[16] W. Schiffman, M. Joost, and R. Werner, “Comparison of optimized back-
propagation algorithms". Proc. of European Symposium on Artificial
Neural Networks, De facto Publications, Brussels 1993, pp. 97-104

[17] Y. Shang, and B.W. Wah, “Global optimization for neural network
training"”. IEEE Computer, vol. 29, pp. 45-54, 1996.

[18] D.R. Wilson, and T.R. Martinez, “The general inefficiency of batch
training for gradient descent learning." Neural Networks, vol. 16, pp.
1429-1451, 2003.

