
 
  

 

  
Abstract. Search-based non-gradient training techniques are 

used to train an MLP-like neural network with quantized 
parameters. The network training is quite fast and the final 
network function is converted to crisp or fuzzy logical rules using 
a simple analysis of its weights. Various modifications of the 
method are presented, each generating a specific form of rules. 
Depending on the desired information one of the methods can be 
chosen. Feature selection and data discretization are 
automatically performed. 
 

Index Terms— quantized weights, neural networks, rule 
extraction, search algorithms 

I. INTRODUCTION 
 

good strategy in data mining is to extract simplest crisp 
logical rules first. They provide hyperrectangular decision 
borders in the feature space. This approximation may not 

be sufficient if complex decision borders are required, but it 
works quite well if the problem has an inherent logical 
structure. For many datasets crisp logical rules proved to be 
highly accurate, they are easy to understand by experts in a 
given domain, and they may expose problems with the data 
itself [1].  

A general approach to classification and extraction of 
logical rules is proposed in this paper. The acronym of this 
approach, SMLP, may be interpreted either as "search-based 
MLP" or “simplified MLP”. The advantages of MLP neural 
networks are combined with rule based systems, allowing for 
extraction of simple logical rules. Instead of the gradient-based 
methods that run into problems for discontinuous, step-like 
transfer functions, the training algorithm is based on search 
methods. It leads to simplified network structures, with few 
connections between hidden and output layer. Various SMLP 
structures, trainings, and rule extraction algorithms are 
considered. Several sets of rules of similar accuracy may be 
generated, offering different advantages to domain experts. 
The search-based training methods have also been successfully 

 
 

tested with fully connected MLP networks [2], but this aspect 
is not discussed in this paper.  

 

II. SMLP NETWORK 
 

The simplest version of SMLP networks is based on a 3-
layer MLP architecture. Neurons implement sigmoidal or step 
output functions with scalar product activation. The network 
requires discrete input data. If the data is continuous, it must 
be discretized prior to the training, or at the run-time by an 
additional network layer. 
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Fig. 1.  SMLP Network Diagram, with some pre-processing L-units 
shown for FC1 feature  

A separate input neuron for each discretized feature value 
is used. Thus the number of all input neurons equals the sum 
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of all distinct values for all features. The input values are 1 if 
the feature has the value represented by this neuron and 0 
otherwise.  

One hidden neuron per class is created at the beginning. 
The second hidden neuron per class is added, if the results 
with only one neuron are not satisfactionary, and then the 
whole network is re-trained or only the added neuron is 
trained. If the results are still unsatisfactory then the next 
hidden neuron is added. The number of hidden neurons per 
class should equal the number of data simplexes. The hidden 
layer performs M-of-N operation, which in most cases can be 
reduced to AND operation.  

There is one output neuron per class that combines the 
partial rules given by hidden neurons for a given class (OR 
operation). The biases and weights of output neurons are 
constant (bias = ±0.5 each weight = ±1). 

The network diagram is shown in Fig.1. Each value of a 
discrete feature (FD1.value1, FD2.value2) is given to a 
different input neuron. Continuous features (FC1) are 
discretized by logical units (L-units), as described in [1] and 
signals from L-units are given to the input neurons.  

Only weights and biases of the hidden neurons are 
optimized. The weights can take integer values (only –1, 0, 1 if 
the transfer functions are step). The biases can take an integer 
−0.5 values (−0.5, 0.5, 1.5, 2.5,…., number_of_features+0.5).  

At the beginning of the training all hidden neurons weights 
have the value of zero and biases of 0.5, so no data is assigned 
to any class. The value of 1 is added or subtracted from a 
single weight and bias. If the MSE error decreases then the 
change is kept, otherwise it is rejected. Then the value of 1 is 
added or subtracted from the next weight and again the error is 
calculated, until the change of all weights and biases in the 
hidden layer is examined. In some cases changing only one 
parameter at a time may not be sufficient for the algorithm to 
converge. Then modifying two or more parameters at a time 
can be used, though it is more time consuming. 

The error can be calculated on the whole training set or, to 
speed up the operation, on a randomly chosen (different each 
time the error is calculated) subset of the training set. The 
signal of each output neuron should be 1 if the vector belongs 
to the class represented by this neuron, and 0 otherwise. We 
consider a vector to be classified correctly if the signal of the 
output neuron assigned to its class is higher than any other 
output neuron signal. 

  

III.  RULE EXTRACTION AND FEATURE DISCRETIZATION 
 
In general the hidden neurons give M-of-N rules (if M 

assumptions out of N are satisfied then the condition is true). If 
the sum of all inputs of a hidden neuron exceeds its bias a 
logical rule in the hidden layer is generated. In practice, after 
the training, biases often take the value equal to the sum of the 
incoming weights minus 0.5. Thus all N assumptions must be 
satisfied and M-of-N operations are reduced to AND 
operations. The output layer performs OR operation, 
combining rule conditions into final rules. This gives very 
plain and comprehensive rules. If a presence of a given value 

contributes to a given class, the hidden neuron weight will be 
positive. If the absence - then negative. If the value is 
irrelevant to this class then the weight is zero.  

There are two objectives while discretizing continuous 
data: to have a few discrete values, to obtain a simple networks 
and simple rules, and to have enough discrete values for 
accurate rules and a reliable classification. Two discretization 
models are presented. 

 

A.    Prior to Training Discretization Based on Histogram 
Analysis  

Initially each continuous feature space is divided into n 
equal width or equal frequency intervals (n = 10 is sufficient in 
most cases). Then each interval is assigned to the class to 
which the majority of its vectors belongs. Then adjacent 
intervals assigned to the same class are joined. If points from 
different classes overlap in many segments then that feature 
does not provide us with any information and is eliminated. 
This simplifies the rules significantly and does not influence 
classification accuracy.  

This is the simplest and the quickest discretization method. 
It is tried as first and only if the results are inadequate it is 
followed by L-unit based discretization. More advanced 
discretization techniques may also be used, but so far have not 
been attempted [3]. 

 

C.   Run-time L-unit Based Discretization  
This discretization has been used in MLP2LN networks 

[1]. It is performed using a combination of three neurons, 
called L-unit, with frozen weights but adaptable biases. Since 
discretization and learning are done in the same network, 
results depend on the whole training set, not just on the single 
feature being discretized.  

The initial interval boundaries obtained from some prior-
to-training discretizations may be tuned using search 
techniques. An interval cut-off point in the most significant 
feature is shifted and the training is performed. If the error 
decreases then the shift was in a proper direction, otherwise in 
the wrong direction. The procedure may be repeated with each 
interval boundary point for all features. Features that are 
useless for discrimination of a given class are automatically 
removed. 

 

IV. TRAINING METHODS AND THEIR INFLUENCE ON THE 
RULES  

First the training algorithm changes one weight at a time.  
If this does not work - then two weights are changed at a time. 
Changing more than three parameters is rather costly. We have 
also tested and successfully applied update of many parameters 
using genetic algorithms, which becomes more effective if 
changing many parameters at a time is required, but we do not 
report this here. However, for the real-world data sets 
changing two parameters at a time is usually sufficient.  

In changing n parameters at a time, the order in which the 
weights are examined plays a role. It is an undesirable effect, 



 
  

 

because the extracted rules depend on the training process in 
an unforeseen way. This problem is solved using feature 
selection based on the information included either in the 
single feature, or in the single feature value. The algorithm 
assesses the amount of information contained within a single 
feature (or a singe value), or jointly in two or more features 
(or values not necessarily within the same feature).  

Searching first through values of a single feature is 
advantageous because it usually leads to the simplest and 
most comprehensive rules. Since this approach is not 
universal (e.g. it does not solve the XOR problem) also search 
through the feature values of vectors from one class can be 
performed. These searches usually produce more 
comprehensive rules then searching simultaneously 
throughout all feature values. Best First Search (BFS) or 
Beam Search (BES) search strategy may be used in all cases. 

Weights of neurons that have already been trained may be 
frozen, minimizing calculation time and leading frequently to 
better results, since it corresponds to incremental learning, 
decomposing the task into learning general rules and than 
exception to these rules instead of trying to modify all rules to 
fit the data.  

With biases of output neurons set to +0.5 the rules are 
positive - they express which conditions must be satisfied 
when a vector belongs to a given class (example: class 0 if  
petal-length < 3). If the biases are −0.5 then the rules are 
negative  - they express which conditions must not be satisfied 
when a vector belongs to a given class (example: class 0 if  
not  3 <petal-length < 4.9 and not petal-length > 4.9).  

 

V. STEP VERSUS SIGMOIDAL TRANSFER FUNCTION  
 
In most cases step transfer functions are used for logical 

rule extraction. In comparison with sigmoidal functions they 
produce simpler rules usually of the same, and sometimes even 
higher accuracy. Step functions give only information 
absolutely necessary to classify a vector. With step functions 
when a vector is classified - the error already equals zero and 
no additional incoming conditions can decrease it, so they do 
not come into the final rule.  

Sigmoidal functions give also information about other 
feature values, specific to a given class but not required by the 
classification process. With sigmoidal functions adding more 
conditions to a rule may still decrease the MSE error, since the 
output signal is less than 1 and always can be increased. 
Moreover the number of additional conditions of the rule may 
be regulated by the required output accuracy, assuming that 
output values above some threshold are considered as 1. 
 
On the Iris data trained with one feature only step transfer 
functions give:   
Class 0 if     petal-length < 3 
Rules obtained with sigmoidal transfer functions have two 
conditions: 
Class 0 if    petal-length < 3 and not 3 < petal-length < 4.9 
 

VI. WINDOW MECHANISM  AND FUZZY RULES  
 

The window function can be realized by three neural nodes 
(perceptrons), as shown in Fig. 1. Neurons Nl and Nu have 
step transfer functions, their output signal can take value –1 or 
1. Ni has a linear transfer function. No has step transfer 
function with possible outputs 0 and 1. The original 
continuous signal is given to the Ni input. The discrete output 
signal from No is passed to the corresponding input neuron of 
an SMLP network. Weights and biases have the following 
values: Nl.weight = 1, Nu.weight = 1, Nl.bias = lower limit of 
the input signal, Nu.bias = upper limit of the input signal, 

No.weight(Nl) = 1, No.weight(Nu) = −1, No.bias = 1.5. 
No.signal = 1 only if Ni.bias < input signal < Nu.bias. If the 
input signal should be bounded only from one side then 
Nl.output or a Nu.output is given to the input layer neuron. 

Fig. 2 shows a two-dimensional projection of the 
Appendicitis data. Some areas can be assigned only to one 
class. Other areas contain points that can be assigned to two 
classes. Fuzzy rules can describe points in areas where crisp 
rules overlap. The value of the membership function of such a 
point can be proportional either to the probability density for a 
given class in this area, or to the distance from that point to the 
decision border. 
 

VII. EXAMPLES OF RULES EXTRACTED FROM SOME 
BENCHMARK DATA SETS 

We include some examples of rules extracted from UCI 
databases using the SMLP network using 10-fold 
crossvalidation. 
 
The rule set for Iris data (150 samples, 50 of class 0, 50 of 
class 1 and 50 of class 2). Rules were obtained with one 
hidden neuron per class, changing one parameter at a time, 
with prior to training discretization based on histogram 
analysis. Accuracy of the rules below is 96.0%  
 
Class 0 if     petal-length < 3.0 
Class 1 if     3.0 < petal-length < 4.9 ∧  0.9 < petal-width < 1.7 
Class 2 if     4.9 < petal-length ∨  1.7 < petal-width 

Rule sets for Appendicitis data (small medical data set, 106 
samples, 21 of class 0 and 85 of class 1) were also obtained 
with 1 hidden neuron per class. Changing one or two 
parameters at a time with prior to training discretization based 
on histogram analysis followed by run-time L-unit based 
discretization  to adjust precisely interval cut-off points gave: 
 
Rule 1:  class 0 if mnea<6700 ∧  mbap<11 else class 1 (91.5%) 
Rule 2:  class 0 if    hnea<5600    else class 1  (89.6%) 
Rule 3:  class 0 if    mnea<6700   else class 1  (89.6%) 
Rule 4:  class 0 if   (hnea<5600 ∧  mnea<6700) 
              class 1 if   (hnea>5600 ∧  mnea>6700) 
              P(class 0) = P(class 1)=0.5 if (hnea<5600 xor 
              mnea<6700)     (89.2%) 



 
  

 

 
Although the total accuracy of Rule 4 is in this case slightly 
lower than that of Rule 2 and 3, it probably better describes the 
properties of this set, providing more information about the 
structure of data, as can be seen in Fig. 2. 
 

 
Fig. 2.  Appendicitis data with decision borders, projection 
into two features 

Rule sets for Ljubljana Breast Cancer data (medical data set: 
286 samples, 202 of class 0, 84 of class 1) were obtained with 
3 hidden neurons per class, changing 2 parameters at a time. 
The original data set has already discrete values, dividing 
continuous values into 9 bins for age, 13 bins for the number 
of nodes involved and 3 for the degree of malignancy. 
 
Class 0  if  ( involved nodes ∉  (0,2) ∧  degree malignant = 3 
and tumor size = 45-49 ∧  age ∉  10-19) ∨  
(involved nodes = (9-11)  ∧  age ∉  (40-49)) or (tumor size ∈  
(35-39) ∧  age ∈  (30-39)) else Class 1 
 

These rules have already overfitted the data, accounting for 
accidental correlations rather then important factors. The best 
methods reduce the error from 29.7% (default) by a few 
percent. In this case a simpler solution is required [1], the rules 
clearly expose a problem with the reliability of this data. 

Table 1. 10-fold cross-validation results for Appendicitis and 
Ljubljana Breast Cancer data 

Method Accuracy (%) 
for Appendicitis 
data 
 

Accuracy (%) 
for Breast Cancer 
data 

SMLP  89.6 78.3 
C-MLP2LN [4] 89.6 78.0 
MLP +BP [4] 83.9 71.5 
CART [5] 84.9 77.3 
C4.5 [5] 84.9 76.9 
Bayes Rule [2] 83.0 75.9 
FSM [4] 84.9 71.6 

AQ15 [6] - 73.5 
Default 80.2 70.3 

 
 

VIII. CONCLUSIONS 
A neural network approach to classification and rule 

extraction, called SMLP was proposed. The model combines 
the advantages of MLP neural networks with the possibility of 
extracting simple rules in a comprehensive way. The training 
model is much simpler than gradient-based algorithms. Due to 
the perceptron properties, the rules given by hidden neurons 
are in the M-of-N form. Since the prepositional form of logical 
rules is usually preferred, M-of-N rules are reduced to AND + 
OR operations if possible.  

As the experiments showed, the accuracy of results on the 
popular benchmark data sets is comparable with the best 
results obtained from other methods, while the network and 
rules are simpler and the training process is quicker. It cannot 
be said that the only criterion of the rule quality is the 
classification accuracy either using crossvalidation or a 
separate test set. Sometimes rules which are simpler, or which 
reflect data structure better, may be preferred, although their 
accuracy is lower. It is possible to obtain several sets of rules 
by the modification of network parameters and training 
process. A set of SMLP networks can be built to give users the 
possibility of choosing rules that are most suitable for their 
purpose. 

Although many issues require further investigation this 
search-based approach has some potential that seems to be 
largely unexplored. 
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