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Abstract. Visualization of MLP error surfaces helps to understand the influence of network
structure and training data on neural learning dynamics. PCA is used to determine two or-
thogonal directions that capture almost all variance in the weight space. 3-dimensional plots
show many aspects of the original error surfaces.

1 Introduction

Multi-layer perceptron (MLP) error surface (EBYW) = > "« ||Y — M(X; W)]|

is defined in the weight spad¥ (including biases al/, weights) for a given train-

ing dataX, desired output vectdY and structure of network mappidg (X; W).

Only mean-square error functions are considered herg,-$pis Euclidean norm
andE(W) = Y« ||[Y — M(X; W)||?. Learning processes are trajectories that lie

on the hyper-surfac& (W) in the weight spacdV. To understand learning dy-
namics error surface can be visualized using projections of the original space onto
a three-dimensional subspace. In all plots presented here we use sigmoidal transfer
functions, but ES projections obtained with hyperbolic tangent do not differ signifi-
cantly.

It is beneficial to choose the projection directions which preserve most infor-
mation about the original surface character. PCA (Principal Component Analysis)
proved a good method of determining the directions. The network was trained us-
ing several algorithms, but the results were algorithm independent. The used algo-
rithms included standard backpropagation (BP) [3], numerical gradient (NG) [1]
and search-based methods (SM) [2]. Weight vediBKs) after each training epoch
t were collected into the weight matrix. The training was stopped when the error be-
gun decreasing very slowly (close to convergence). Singular Value Decomposition
(SVD) was performed either on the weight matrix, or on the weight covariance ma-
trix to determine principal components (all results here are for covariance matrices).

Typically the first and second PCA directions contain together about 95% of
the total variance and therefore the plots reflect ES properties very well. The ES
character is determined by the dataset and network structure but not by the training
method and starting point. Several training methods (various versions of NG, SM
and BP) have been used for the same network structure and training set. The train-
ing has been repeated several times for a given method with various random initial



weights. Neither the random weight distribution, nor the training method, nor the
number of training cycles for which PCA is calculated has significant influence on
the ES presented in the space of two main PCA components. The plots may differ
slightly, especially those obtained with BP, because BP depends more on initializa-
tion and produces ES projections that are not so uniform. The surface may rotate
from one plot to another, its fragments may be a bit higher or lower, but the overall
structure is well preserved. Experiments with over 20 datasets, most of them from
the UCI dataset repository [4], have been made. Due to the limited space only a few
ES are shown here. The name of a dataset in figure labels is followed by numbers
of neurons in the successive layers; for example, in Fig. 1 Iris 4-4-3 means that the
network trained on Iris data had 4 input, 4 hidden and 3 output neurons.

At the final stage of the training weights of output neurons tend to grow quicker
then those of hidden neurons, but since the training is stopped before convergence
weights of each layer have comparable contributions in determining PCA directions.
Vertical axis in the plots shows relative errbr.(W) = E(W)/N,N,, whereN,,
is the number of vectors and. is the number of classes in the training set. For all
error functions based on Minkovsky’s mettic ||, the error function is bounded
from above byN, N, thus the relative error is bounded by 1. Horizontal axes show
distances in the weight spacednandc, PCA directions corresponding to the first
and second eigenvector of the weight covariance matrix.
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Fig. 1. The same error surface of a 3-layer network (lris 4-4-3). Left: in original proportions,
right: the scale of c2 axis multiplied by /e1 (this scaling is used for all drawings).

Usually the first PCA eigenvalue, is an order of magnitude larger than the
second ones. For that reason the plots are easier to interpret if unequal scales are
used on horizontal exes (Fig. 1, right). For this purpose projections are rescaled
by the ratioes/e; of the second to the first eigenvalue of the weight covariance
matrix. But it should be taken into consideration that in the rescaled plots the ill-
conditioning and narrowness of the ravines are not so well visible as in pictures
made in original proportions (Fig. 1, left).



2 Network Structure Influence on Error Surface

A network without a hidden layer has a very simple ES consisting only of two or four
horizontal or slightly inclined half-planes, situated on various heights, with slopes
connecting them (Fig. 2, left). ES of networks with hidden layers has a “starfish”
structure. A vivid depiction of such ES was given by Denker et. al [B|W)
surface resembles a sombrero or a phono record that has been warped in certain
symmetric ways: near the middI®{=0) all configurations have moderately bad E
values. Radiating out from the center are a great number of ridges and valleys. The
valleys get deeper as they go out, but asymptotically level out. In the best vdileys,

is exactly or asymptotically zero, other valleys have higher floors”. The pictures pre-
sented in this paper confirm that global minima rarely create craters but frequently
ravines reaching their minimum in infinity. This corresponds to the infinite growth
of (usually output layer) weights when the training is continued for a sufficiently
long time.
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Fig.3. Left: ES of 3-layer network with crossover connections (Iris 4-4-3); right: ES of 3-
layer network with too many hidden neurons (Iris 4-100-3)



Each ofh hidden neurons may be labeled by an arbitrary and unique number
from 1 to h. Renumerating the network parameters does not change the mapping
implemented by the network thus givirid permutational symmetries. A neural
activation function for whichf(—z) = —f(x) + const gives further2” sign-flip
symmetries [6]. This gives togeth2th! equivalent global minima. A training algo-
rithm converges to that minimum, which is easiest to reach from the starting point.
Only some of the minima are clearly visible in the PCA projections. Their number
originally grows with the increase of hidden neurons number, but with too many hid-
den neurons big horizontal planes begin to appear Fig. 3, right). This effect caused
by the weight redundancy is better perceptible in a two-weight coordinate system,
where the projected ES is almost flat since many weights must be changed at the
same time to change the error.

In 3-layer networks with crossover connections the output layer is connected di-
rectly to both; the input (as in 2-layer networks) and the hidden layer (as in 3-layer
networks). Consequently their ES display features of 2-layer networks (asymmetry
of ES) and 3-layers networks (complexity of ES) (Fig. 3, left). A network with too
few neurons in any hidden layer cannot map all required information and as a result
is unable to learn the task. Its ES consists of several horizontal planes, all placed
relatively high, with some rough areas between them, but it does not show char-
acteristic ravines leading to global minima (not shown here). Four-layer networks
have more complex ES than the three-layer ones, even with fewer neurons. Thus
they can map more complex data (Fig. 2, right).

3 Training Data Influence on Error Surface

In all the experiments presented in this section a similar network structure x-4-2 has
been used for various datasets. More complex training data produces more complex
ES, especially if the data is not linearly separable, as in the casdibparity.
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Fig. 4. Left: ES of Breast (10-4-3). Right: ES of lonosphere (43-4-2)
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Fig.5. Left: ES of entire Appendicitis dataset (12-4-3). Right: ES of Appendicitis dataset
(12-4-3) with only 44 vectors - all 22 vectors of class 1 and randomly chosen 22 vectors of
class 2.

Equal distribution of examples among classes leads to a more symmetric ES [7].
Appendicitis (21 vectors of class 0 and 85 of class 1) gives a highly non-symmetric
ES (Fig. 5, left). Selecting 42 vectors from the dataset, all of class 0 and 21 vec-
tors randomly chosen from class 1, produces a quite symmetric error surface. Other
datasets have approximately equal number of vectors in each class thus their ES are
more symmetric. Breast dataset has two classes with a few overlapping vectors, and
therefore its ES is quite simple (Fig. 4, left). Iris (Fig. 1, right) has 3 classes with
little overlap, and ionosphere (Fig. 4, right) two classes with some more overlap,
and they both give similar ES. XOR data is linearly non-separable and therefore has
a complex ES (Fig. 6, left). 6-bit parity (Fig. 6, right) is linearly non-separable and
has 32 clusters per class (XOR has only 2). ES for even-bit parity problems is highly
intricate, however it is symmetric because of equal class distribution.
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Fig. 6. Left: ES of xor (4-4-3). Right: ES of 6-bit parity (12-8-2).



4 Conclusions

Although it is impossible to see the error surfd€€W) without any distortions,
displaying it in the first and second PCA component coordinate system gives good
insight into many important ES properties (incomparably better than using any two
weight system). Nevertheless due to the fact that local PCA directions are not con-
stant in the entire weight space, such aspects of ES as ravine curvatures and slopes
of their bottoms are not especially well reflected in the projections which use global
PCA directions (the shape of ES projection is determined by weight changes in all
training steps). For real-world data sets local minima in craters are very rare for
networks with monotone transfer functions. Large plateaus accessible via narrow
ravines, or ravines that lead to plateaus with larger error (due to poor network ini-
tialization) may cause many difficulties in neural training algorithms. The bigger is
the difference between the first and the second eigenvalue, the more difficult and
slower is the training procedure, because the training algorithm has to find proper
direction very precisely. When the difference exceeds two orders of magnitude the
training effectiveness may be severely affected.

ES depends on network structure, training data, transfer and error functions,
but not on training methods. ES has greatest diversity close to its center. Far from
the center flat horizontal planes occupy large areas. If the range of random initial
weights is too broad then it is likely that the starting point lies somewhere on the
flat area, and as a result the network cannot be trained with gradient-based or local
search method. On the contrary, if all initial weights are zero the network can be
successfully trained with search-based techniques [2]. Backpropagation methods
cannot start from zero weights [3], but this is only due to the limitations of the
algorithms, and not of the properties of the zero point on the error surface.

Perhaps an interesting suggestions from this study will be also to use PCA to
re-duce the effective number of training parameters to a few.
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