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Abstract— Committees of classification and approximation in neural networks, or regularization parameters in other
models are used to improve accuracy and decrease the variaac methods. Selection of features is another source of véitiabi
of individual models. Each model has an equal right to vote Racently a framework for similarity based methods (SBM) has

(democratic procedure), despite obvious differences in nutl - .
competence in different regions of the feature space. Addi been developed [5] and used to create voting committees [6],

competence factors to different models before calculatiorof —©Obtaining for many datasets significant improvements of the
the committee decision (undemocratic procedure) improveshe accuracy of results. In this paper SBM, neural and decision
quality of the committ_ee. A mc_ethod for creation of a_comm_it_t&e tree are used with a new voting scheme.
of competent models is described and several real-life enmpal Typical voting techniques follow the democratic majority
tests performed. Significant improvement of results is obseed. L . S - .
decision, linear combination or selecting the most confiden
models. In the mixture of experts neural architecture Ja¢ob
has introduced a gating network to select the most competent
Although brains are massively parallel computing devicegsodel. Very recently Ortega et al [3] used similar idea, a
attention mechanisms are used to inhibit parts of the némcor“referee meta-model” deciding which model should contigou
that are not competent in analysis of a given type of signl. Ao the final decision. These undemocratic procedures e@xploi
sensory inputs (except olfactory) travel through the timaa the fact that different models may have different areas of
where their importance and rough category is estimated- Th@mpetence. The idea of competent voting was also mentioned
lamic nuclei activate only those brain areas that may coutii in [8], but has not been developed further. Global seleatibn
useful information to the analysis of a given type of signalsompetent models has recently been introduced [9]. Insiéad
[1]. This may serve as an inspiration for construction otdret training a meta-model each area of the input space in which
algorithms for data analysis. a given model makes a number of errors is identified and a
Combining information from different classifiers, calldd@ penalty factor is used to decrease the influence of this model
ensemble learning, mixture of experts, voting classiftgati during the voting.
algorithms, or committees of models [2], is an important and In the next section methods for model combination are
popular subject in machine learning. Conferences and apediriefly discussed and algorithms for creating committees of
issues of journals are devoted to this subject (see refesencompetent models are described. In the third section mesfilt
in [3]). In some real-life problems, such as predicting tha numerical experiment are presented. Finally some conclu-
glucose levels of diabetic patients, a large number of difie  sions and plans for further work are given.
classification algorithms have been applied [3]. The optima
way of combining results of many systems has not yet been Il. COMBINING MODELS.
found. Individual models are frequently unstable [4], i.e. quite
Committees of classification models have twofold advaxlifferent models are created as a result of repeated tgainin
tage: they are less biased then individual models, progidifif learning algorithms are stochastic), or if the trainiagt
flexibility to create more accurate data models, and théy slightly perturbed [10]. The mixture of models allows
stabilize and improve generalization of the whole systertg approximate complicated probability distributions tqui
decreasing its variance [4]. Variability of indivdual mdsle accurately. Withl = 1...m models providing estimation of
used in a committee comes from two sources: data and moprbabilitiesP(C;|X; M) fori=1...K classes, one can use the
construction. Many methods randomize training data, amegjority voting, average results of all models, select ooel@h
use stochastic learning algorithms, creating differentet® that has highest confidence (i.e. gives the largest prabgbil
at each run. In crossvalidation training, or using boostingr set a threshold to select a subset of models with highest
bagging or arcing [2], [4], models are trained on differeatad confidence and use majority voting for these models.
subsets. Construction of classification models is detezthiry An empirical comparison of voting algorithms, including
many parameters, such as the pruning parameters in deciddagging and boosting, has been published by Bauer and
trees, number of neurons and topology of their connectioshavi [11]. Tests were made using decision trees and naive

|I. INTRODUCTION



Bayes method. The bagging algorithm uses classifiers ttaine ¢) if G(R;) #C(R;), i.e. modelM; makes an error for

on bootstrap samples, created by randomly drawing a fixed vector R;, determine the area of incompetence of
number of training data vectors from the pool which always the model, finding the distanad j to the nearest
contains all training vectors (i.e. drawing does not remove vector that modeM, has correctly classified;
them from the pool). Results are aggregated by voting. Ad- d) set parameters of the incompetence fa&tgrxX —
aBoost (Adaptive Boosting) creates a sequence of training Ri||;M)); their value should significantly decrease
sets and determines weights of the training instances, with for || X —Ri|| > di /2.
higher weights for those that are incorrectly classifiede Th e) Create incompetence function for the model
arcing method uses a simplified procedure for weighting ef th FOGM) = MiF(IX = Ril|;M;) for all training
training vectors. Bauer and Kohavi [11] provided an inténes vectors that have been incorrectly handled.
decomposition of bias and variance components of errors for f) Untag all vectors that are correctly classified by
these algorithms. this model and remove mod®l; from the pool of
A linear meta-model available models.
m The incompetence functiodfh(X;M;) ~ 1 in all areas where
P(GIX:M) = ;WU P(GIX;M) (@) the model has worked well arf(X; M) ~ 0 near the training

) » ) _vectors where errors were made. A number of functions
provides additionaimK linear parameters for model comb|-may be used for that purpose: a Gaussian funcEfX —
nation, determined using the standard Least Mean Squa'g:\;?ﬁ.Ml) — 1-G(||X —Ri|[%0i), wherea > 1 coefficient is

(LMS) procedure. used to flatten the function, a simplé&r(||X — Ri||;M|) =

ll. COMMITTEES OF UNDEMOCRATIC COMPETENT 1/ (1+[[X —Ri[[~®) function or a sum of two logistic func-
(CUC) MODELS tions o(—[[X —Ri[| — di j/2) + o([[X — Ri[| — dij/2). Since
In most approaches all models used in a committee aenumber of factors enters the incompetence function of
j"i;
I

allowed to vote on the final result. Krogh and Vedelsby [1 e model each factor_should qwckly .reach L opt3|de the
. 2 ) competence area. This is achieved either by using large
showed that the committee generalization error is small ) . . .
values, high slopes of sigmoids or defining a cut-off values

highly accurate classifiers disagreeing with each other e ore a value 1 is taken.

used. Xin Yao has used averaging of results with negatlveSUCh committee of competent models may be used in

correlation between individual models to diversify theaop everal ways. In the voting phase nearest neighbor referenc

Llugi]‘skiﬁg gggilrf\?viﬁ fr:)?tangi(fefgr':-;-ontb(%vaecrlcz;j;;g?ﬁgf)og ueg;f:a\ﬁae‘ctors should be determined and only those classifiers that

are competent should be included in the voting procedure. If
data. . -
no competent models are found the vector given for classifi-

The Similarity Based Models [5] use reference VeCtoré‘:'ation is probably an outlier and should be left as ‘rejected

(selectgd from a training .set) and it is relatlve_ly easy t‘?)r ‘impossible to classify’. Sometimes it helps if all such
determine the areas of the input space where a given model is

competent (makes a few errors) and where it fails. Vectas tﬁ/ectors are removed from the ”ai.”_mg set, but this is asitlev
cannot be correctly classified show up as errors that all moggtomatm_ally by competent cla_ssmers. , .
make, but some vectors that are erroneously classified by oneEven S'”."'p!er way Of. creating competent committee is
modei may be correctly handled by another. Although in mog trpduced it linear comb|_n§1t|ons are_used msteqd o_f rigjor
) vating. For classC; coefficients of linear combination are

methods large committees are prefered, here we shall cregdle. ' mined from the least-mean square solution of:
small committees, using explicit competence factor fuongi '

for each member of the committee. The algorithm proceeds m
I=1m

incompetence factors simply modify probabilities
(X;M)P(G|X;M;) that are used to set linear equa-
ions for all training vectorsX, therefore the solution is
done in the same way as before. After renormalization
2) Start from @ pool ofin > Lmax modelsM;,| =1...m ,cx-\1) 5 p(Ci[X; M) give final probability of classifi-

and optimize their parameters on the training set usi tion. In contrast to AdaBoost and similar procedures [2]

a cross-validation procedure; e@plicit information about competence, or quality of clies

3) Cr_ea_te an empty set for commitiee members; tag ﬁ rformance in different feature space areas, is used here.
training vectors.

4) Until the stopping criteria are true do: IV. NUMERICAL EXPERIMENTS
a) Select from the pool of available models mohit| Computer program implementing CUC has been tested
that is most accurate on all tagged training vectoren artificial data and applied to several complex datasets.
b) Use this model for all training vectoR to predict Classification of 11 English vowels, searching for introwfe
classe< (R); coding areas in DNA, classification of hand-written letters

1) Preliminaries: Set the stopping criterion: maximurtf,he
number of modeld max Or a minimum number of new =
vectors Nmin correctly classified by the model to bet
added to the committee.



TABLE |
COMPARISON OF RESULTS ON THEDNA DATA. RESULTS ARE FROM THE
STATLOG BOOK OR OUR OWN CALCULATIONS

and classification of satelite images (all data were takem fr
the UCI repository [14]). In each case several classificatio
models have been included in the committee: kNN models

with .different number of neighbors and different distance System Train % | Test % Remarks
functlons.,.Featu_re Space Mapping (_ESM) neurofuzzy network™—=,c commitee 981 957
Sepz;lr?ml|tt3\/NSka|t|Va,I\LIJet (SSV)Idemdsul)nAtI:ee,I ar:dt_the Incre Majority committee | 96.6 94.7
mental Networ (Inc e_) neural model. All calculations wer —-c (720 newrons)| 9.5 959 Statlog
done using the GhostMiner datamining software developed in . .
. . kNN, k=7, Euclidean| 94.9 95.3 | best single CUC mode]

the Department of InformatiésGaussian competence factors _
were used. Dipol92 98.3 95.2 Statlog

The Vowel datasetcontains 528 training, and 462 test Allocg0 93.7 | 943 Statlog
vectors, each with 10 continuous features describing one gf ~Quadratic DA 100 | 94.1 Statlog
the 11 vowels spoken several times by 14 people. FSM LDA 96.6 | 941 Statlog
IncNet and SSV contributed one model, 3 kNN with Euclidean TABLE Il

distance and k=5, 7, 9, two KNN with Manhattan distance
a.nd k:7, 9, and one kNN mOdel Wlth ChebyShev distancg,OMPARISON OF RESULTS ON THE LETTER DATASETRESULTS ARE FROM
k=7, have been used. FSM achieved best training set result THE STATLOG BOOK OR OUR OWN CALCULATIONS
(98.7%), but was quite poor on the test set (50.9%). kNN wit}
Euclidean distance and k=7 gave 92.6% on the training set bur
was most accurate (60.0%) on the test. Models selecteddor th
committee could theoretically account correctly for 99.4%6
all training and 88.5% of all test vectors in the sense tha

System Train % | Test % Remarks

CUC committee 98.5 96.5
Majority committee 95.8 95.4
kNN, k=5, Euclidean| 94.8 95.4 | best single CUC mode]|

—+

at least one model could correctly classify a given vector Allocg0 935 | 936 Statlog
Although CUC results on the training set are close to thig KN\ k=1, Euclidean) 100 | 93.2 Statlog
LVQ 943 | 921 Statlog

maximum accuracy (99.2%) test set results are much worse
62.2%. Majority voting gives 61.8% accuracy. Since the data___Quadratic DA 899 | 887 Statlog
is rather small (considering large number of classes) tle ga
due to the use of CUC committee is not significant.
The primate splice-junction gene sequences (DNAJata therefore this result may be fortuitous.
was used in the Statlog project [15]. It contains a set of 3190The letter datasetcontains 16 features derived from OCR
sequences composed of 60 nucleotides. The task is to findmges of 26 letters written using more than 20 different
there is an “intron=> exon", or “exon=> intron" boundary fonts. these images were randomly distorted to provide 500-
in the string, or neither. 2000 strings are used for traiing 600 training samples for each letter (a total of 15000 tragni
1190 for testing. Best results obtained in the Statlog ptajee  Samples), and about 200 samples per letter for testing (5000
collected in Table 1. Symbolic features {a,c,t,g} have been test samples). This dataset was used in the Statlog praject a
replaced by probabilitieg(Cj|x) = Nj(x)/N(x). Since there the best results are presented in Table II.
are 3 classes instead of 60-dimensional strings of symbolsThe committee included 7 models, five kNN (k=5, 7, 9,
180 real numbers are used. 11 Euclidean, and k=5, Manhattan), one FSM and one SSV
6 models have been selected for the committee, two kNRodel. These 7 models can theoreticaly account for 98.7€6 tes
FSM, IncNet and two SSV models. For the kNN classifers@mples correctly. The worst training results were obthine
the training accuracies reported in Table | refer to thedeawy the SSV decision tree (81.2%), and the best one by
one-out calculations. FSM was the best single model on th&M (97.5%). The worst test result was still obtained by
training data (97.0%), with the test set accuracy of 94.598SV (77.4%), while the best by kNN, k=5, with Euclidean
while kNN with k=7, Euclidean distance, reached 94.5%istance function (95.4%). The majority voting committes h
on training, but was most accurate (95.3%) on test. TH@proved upon the best kNN result only on the training set,
majority voting committee gave 94.7% correct answers, Vhile CUC committee gave significantly better result (the
lower accuracy then obtained by the best model; this méyo-tailed t-test withpmax as high as 0998 still finds it
happen since not all models are good in all feature spagi@nificantly better over other results).
regions, they should rather specialize in correct clasgifin The satimage datasetontains intensities of pixels derived
of certain areas that other models do not handle well. Aiom Landsat satellite images that have been segmented into
least one of the 6 models classifies correctly 98.5% of te®teas corresponding to 6 different types of surface: refl soi
cases. Although RBF result quoted in Statlog seem to berbe@éey soil, damp grey soil, very damp grey soil, cotton crog an
than CUC result [15], the RBF model that has been usedMggatation. 4 spectral bands were used and the featurervecto
quite complex (720 neurons) and should have a large varjaneentains intensities of the central and 8 surrounding pixel
altogether 36 features quantized from 0 to 255. The training
Lhttp:/Avww.fgspl.com.pl/ghostminer/ set contains 4435 vectors and the test set 2000 vectors. Best




TABLE Il
COMPARISON OF RESULTS ON THE SATIMAGE DATASETRESULTS ARE
FROM THE STATLOG BOOK OR OUR OWN CALCULATIONS

System Train % | Test % Remarks
CUC committee 95.0 911
Majority committee 93.3 89.6
kNN, k=5, Euclidean| 90.8 90.4 | best single CUC mode]|
kNN 91.1 90.6 Statlog
LVQ 95.2 89.5 Statlog
Dipol92 94.9 88.9 Statlog
RBF 88.9 87.9 Statlog
Alloc80 96.4 86.8 Statlog

So far we have tried to aggregate only a few models
generated with different parameters and the selectionegsoc
has not yet been systematic. Diversification of models by
adding explicit negative correlation is also worth consiuig
[13]. CUC voting may be applied to models generated using
adaptive boosting or similar algorithms [2]. The compegenc
factors may be calculated during classification, using the
training data results as the reference, in the spirit of the
nearest neighbor methods. Receiver Operator Charaiterist
(ROC) may be used instead of accuracies for evaluation of
results. A combination of classifiers gives ROC curves that
cover a convex combination of all individual ROC curves,
allowing to reach better operating points, i.e. detectiates
for a given false alarm rate [16]. Boosting schemes may also
benefit from adding local competence factors [10]. A number

results from the Statlog project are reported in the Talile Il ot gther options remains to be investigated.

The committee included again 7 models, five KNN (k=5, 7,
9 Euclidean, and k=5, 9 Manhattan), one FSM and one SSV
model. These 7 models can theoreticaly account for 95.6%
test samples correctly. Again the decision tree was wortst bo
on training (83.7%), and test (81.8%), while FSM was best’
on training (93.9%) and kNN, k=5, with Euclidean distance
function gave the best results on the test set (90.4%). TH&
majority voting committee has improved upon the best kNN
result only on the training set, while CUC committee gaves]
significantly better result (the two-tailed t-test wifhnax as
high as 097 still finds it significantly better over other results). 5]
The majority voting improves the result only for the Vowel
database, while CUC results were better comparing to thte bes
model and to majority voting in all cases. [6

V. CONCLUSIONS [7]

Assigning incompetence factors in various voting procel®!
dures, including linear combination of models, is an attrac
tive idea that may significantly improve analysis of difficul [9]
problems. Since there is no need to create a single mo 1%]
that handles all data correctly learning may become mogdular
with each model specializing in different subproblems. fu1]
constructive approach to committee growth may be used: afte
creating initial committee by combining competent modeﬁz]
created so far new models should be searched that classify
correctly just those vectors, that the committee has stibp
lems with. Significant improvements have been achieved oJle?J
individual classifiers and over committee based on majority
voting. Although more empirical tests are needed to evaluadt?!
CUC performance the approach seems to be promissing and

may be developed in a number of directions.
[15]

[16]
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