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Abstract— Committees of classification and approximation
models are used to improve accuracy and decrease the variance
of individual models. Each model has an equal right to vote
(democratic procedure), despite obvious differences in model
competence in different regions of the feature space. Adding
competence factors to different models before calculationof
the committee decision (undemocratic procedure) improvesthe
quality of the committee. A method for creation of a committee
of competent models is described and several real-life empirical
tests performed. Significant improvement of results is observed.

I. I NTRODUCTION

Although brains are massively parallel computing devices
attention mechanisms are used to inhibit parts of the neocortex
that are not competent in analysis of a given type of signal. All
sensory inputs (except olfactory) travel through the thalamus
where their importance and rough category is estimated. Tha-
lamic nuclei activate only those brain areas that may contribute
useful information to the analysis of a given type of signals
[1]. This may serve as an inspiration for construction of better
algorithms for data analysis.

Combining information from different classifiers, called also
ensemble learning, mixture of experts, voting classification
algorithms, or committees of models [2], is an important and
popular subject in machine learning. Conferences and special
issues of journals are devoted to this subject (see references
in [3]). In some real-life problems, such as predicting the
glucose levels of diabetic patients, a large number of different
classification algorithms have been applied [3]. The optimal
way of combining results of many systems has not yet been
found.

Committees of classification models have twofold advan-
tage: they are less biased then individual models, providing
flexibility to create more accurate data models, and they
stabilize and improve generalization of the whole system,
decreasing its variance [4]. Variability of indivdual models
used in a committee comes from two sources: data and model
construction. Many methods randomize training data, and
use stochastic learning algorithms, creating different models
at each run. In crossvalidation training, or using boosting,
bagging or arcing [2], [4], models are trained on different data
subsets. Construction of classification models is determined by
many parameters, such as the pruning parameters in decision
trees, number of neurons and topology of their connections

in neural networks, or regularization parameters in other
methods. Selection of features is another source of variability.
Recently a framework for similarity based methods (SBM) has
been developed [5] and used to create voting committees [6],
obtaining for many datasets significant improvements of the
accuracy of results. In this paper SBM, neural and decision
tree are used with a new voting scheme.

Typical voting techniques follow the democratic majority
decision, linear combination or selecting the most confident
models. In the mixture of experts neural architecture Jacobs [7]
has introduced a gating network to select the most competent
model. Very recently Ortega et al [3] used similar idea, a
“referee meta-model” deciding which model should contribute
to the final decision. These undemocratic procedures exploit
the fact that different models may have different areas of
competence. The idea of competent voting was also mentioned
in [8], but has not been developed further. Global selectionof
competent models has recently been introduced [9]. Insteadof
training a meta-model each area of the input space in which
a given model makes a number of errors is identified and a
penalty factor is used to decrease the influence of this model
during the voting.

In the next section methods for model combination are
briefly discussed and algorithms for creating committees of
competent models are described. In the third section results of
a numerical experiment are presented. Finally some conclu-
sions and plans for further work are given.

II. COMBINING MODELS.

Individual models are frequently unstable [4], i.e. quite
different models are created as a result of repeated training
(if learning algorithms are stochastic), or if the trainingset
is slightly perturbed [10]. The mixture of models allows
to approximate complicated probability distributions quite
accurately. Withl = 1. . .m models providing estimation of
probabilitiesP(Ci |X;Ml ) for i = 1. . .K classes, one can use the
majority voting, average results of all models, select one model
that has highest confidence (i.e. gives the largest probability),
or set a threshold to select a subset of models with highest
confidence and use majority voting for these models.

An empirical comparison of voting algorithms, including
bagging and boosting, has been published by Bauer and
Kohavi [11]. Tests were made using decision trees and naive



Bayes method. The bagging algorithm uses classifiers trained
on bootstrap samples, created by randomly drawing a fixed
number of training data vectors from the pool which always
contains all training vectors (i.e. drawing does not remove
them from the pool). Results are aggregated by voting. Ad-
aBoost (Adaptive Boosting) creates a sequence of training
sets and determines weights of the training instances, with
higher weights for those that are incorrectly classified. The
arcing method uses a simplified procedure for weighting of the
training vectors. Bauer and Kohavi [11] provided an interesting
decomposition of bias and variance components of errors for
these algorithms.

A linear meta-model

p(Ci |X;M) =
m

∑
l=1

Wi,l P(Ci |X;Ml ) (1)

provides additionalmK linear parameters for model combi-
nation, determined using the standard Least Mean Squares
(LMS) procedure.

III. C OMMITTEES OFUNDEMOCRATIC COMPETENT

(CUC) MODELS

In most approaches all models used in a committee are
allowed to vote on the final result. Krogh and Vedelsby [12]
showed that the committee generalization error is small if
highly accurate classifiers disagreeing with each other are
used. Xin Yao has used averaging of results with negative
correlation between individual models to diversify their pool
[13]. Each model does not need to be accurate for all data,
but should account well for a different (overlapping) subset of
data.

The Similarity Based Models [5] use reference vectors
(selected from a training set) and it is relatively easy to
determine the areas of the input space where a given model is
competent (makes a few errors) and where it fails. Vectors that
cannot be correctly classified show up as errors that all model
make, but some vectors that are erroneously classified by one
model may be correctly handled by another. Although in most
methods large committees are prefered, here we shall create
small committees, using explicit competence factor functions
for each member of the committee. The algorithm proceeds
as follows:

1) Preliminaries: Set the stopping criterion: maximum
number of modelsLmax, or a minimum number of new
vectors Nmin correctly classified by the model to be
added to the committee.

2) Start from a pool ofm > Lmax modelsMl , l = 1. . .m
and optimize their parameters on the training set using
a cross-validation procedure;

3) Create an empty set for committee members; tag all
training vectors.

4) Until the stopping criteria are true do:

a) Select from the pool of available models modelMl

that is most accurate on all tagged training vectors.
b) Use this model for all training vectorsRi to predict

classesCl (Ri);

c) if Cl (Ri) 6=C(Ri), i.e. modelMl makes an error for
vector Ri , determine the area of incompetence of
the model, finding the distancedi, j to the nearest
vector that modelMl has correctly classified;

d) set parameters of the incompetence factorF(||X−
Ri ||;Ml ); their value should significantly decrease
for ||X −Ri|| ≥ di, j/2.

e) Create incompetence function for the model
F(X;Ml ) = ∏i F(||X − Ri ||;Ml ) for all training
vectors that have been incorrectly handled.

f) Untag all vectors that are correctly classified by
this model and remove modelMl from the pool of
available models.

The incompetence functionF(X;Ml )≈ 1 in all areas where
the model has worked well andF(X;Ml )≈ 0 near the training
vectors where errors were made. A number of functions
may be used for that purpose: a Gaussian functionF(||X −
Ri ||;Ml ) = 1−G(||X −Ri ||

a;σi), wherea ≥ 1 coefficient is
used to flatten the function, a simplerF(||X − Ri ||;Ml ) =
1/(1+ ||X −Ri||

−a) function or a sum of two logistic func-
tions σ(−||X − Ri || − di, j/2) + σ(||X − Ri || − di, j/2). Since
a number of factors enters the incompetence function of
the model each factor should quickly reach 1 outside the
incompetence area. This is achieved either by using largea
values, high slopes of sigmoids or defining a cut-off values
where a value 1 is taken.

Such committee of competent models may be used in
several ways. In the voting phase nearest neighbor reference
vectors should be determined and only those classifiers that
are competent should be included in the voting procedure. If
no competent models are found the vector given for classifi-
cation is probably an outlier and should be left as ‘rejected’
or ‘impossible to classify’. Sometimes it helps if all such
vectors are removed from the training set, but this is achieved
automatically by competent classifiers.

Even simpler way of creating competent committee is
introduced if linear combinations are used instead of majority
voting. For classCi coefficients of linear combination are
determined from the least-mean square solution of:

p(Ci |X;M) =
m

∑
l=1

∑
m

Wi,l F(X;Ml )P(Ci |X;Ml ) (2)

The incompetence factors simply modify probabilities
F(X;Ml )P(Ci |X;Ml ) that are used to set linear equa-
tions for all training vectorsX, therefore the solution is
done in the same way as before. After renormalization
p(Ci |X;M)/∑ j P(Cj |X;M) give final probability of classifi-
cation. In contrast to AdaBoost and similar procedures [2]
explicit information about competence, or quality of classifier
performance in different feature space areas, is used here.

IV. N UMERICAL EXPERIMENTS

Computer program implementing CUC has been tested
on artificial data and applied to several complex datasets.
Classification of 11 English vowels, searching for intron/exon
coding areas in DNA, classification of hand-written letters,



and classification of satelite images (all data were taken from
the UCI repository [14]). In each case several classification
models have been included in the committee: kNN models
with different number of neighbors and different distance
functions, Feature Space Mapping (FSM) neurofuzzy network,
Separability Split Value (SSV) decision tree, and the Incre-
mental Network (IncNet) neural model. All calculations were
done using the GhostMiner datamining software developed in
the Department of Informatics1. Gaussian competence factors
were used.

The Vowel dataset contains 528 training, and 462 test
vectors, each with 10 continuous features describing one of
the 11 vowels spoken several times by 14 people. FSM,
IncNet and SSV contributed one model, 3 kNN with Euclidean
distance and k=5, 7, 9, two kNN with Manhattan distance
and k=7, 9, and one kNN model with Chebyshev distance,
k=7, have been used. FSM achieved best training set result
(98.7%), but was quite poor on the test set (50.9%). kNN with
Euclidean distance and k=7 gave 92.6% on the training set but
was most accurate (60.0%) on the test. Models selected for the
committee could theoretically account correctly for 99.4%of
all training and 88.5% of all test vectors in the sense that
at least one model could correctly classify a given vector.
Although CUC results on the training set are close to this
maximum accuracy (99.2%) test set results are much worse,
62.2%. Majority voting gives 61.8% accuracy. Since the data
is rather small (considering large number of classes) the gain
due to the use of CUC committee is not significant.

The primate splice-junction gene sequences (DNA)data
was used in the Statlog project [15]. It contains a set of 3190
sequences composed of 60 nucleotides. The task is to find if
there is an “intron=> exon", or “exon=> intron" boundary
in the string, or neither. 2000 strings are used for trainingand
1190 for testing. Best results obtained in the Statlog project are
collected in Table I. Symbolic featuresx∈ {a,c,t,g} have been
replaced by probabilitiesp(Cj |x) = Nj(x)/N(x). Since there
are 3 classes instead of 60-dimensional strings of symbols
180 real numbers are used.

6 models have been selected for the committee, two kNN,
FSM, IncNet and two SSV models. For the kNN classifers
the training accuracies reported in Table I refer to the leave-
one-out calculations. FSM was the best single model on the
training data (97.0%), with the test set accuracy of 94.5%,
while kNN with k=7, Euclidean distance, reached 94.5%
on training, but was most accurate (95.3%) on test. The
majority voting committee gave 94.7% correct answers, a
lower accuracy then obtained by the best model; this may
happen since not all models are good in all feature space
regions, they should rather specialize in correct classification
of certain areas that other models do not handle well. At
least one of the 6 models classifies correctly 98.5% of test
cases. Although RBF result quoted in Statlog seem to be better
than CUC result [15], the RBF model that has been used is
quite complex (720 neurons) and should have a large variance,

1http://www.fqspl.com.pl/ghostminer/

TABLE I

COMPARISON OF RESULTS ON THEDNA DATA . RESULTS ARE FROM THE

STATLOG BOOK OR OUR OWN CALCULATIONS.

System Train % Test % Remarks

CUC committee 98.1 95.7

Majority committee 96.6 94.7

RBF (720 neurons) 98.5 95.9 Statlog

kNN, k=7, Euclidean 94.9 95.3 best single CUC model

Dipol92 98.3 95.2 Statlog

Alloc80 93.7 94.3 Statlog

Quadratic DA 100 94.1 Statlog

LDA 96.6 94.1 Statlog

TABLE II

COMPARISON OF RESULTS ON THE LETTER DATASET. RESULTS ARE FROM

THE STATLOG BOOK OR OUR OWN CALCULATIONS.

System Train % Test % Remarks

CUC committee 98.5 96.5

Majority committee 95.8 95.4

kNN, k=5, Euclidean 94.8 95.4 best single CUC model

Alloc80 93.5 93.6 Statlog

kNN, k=1, Euclidean 100 93.2 Statlog

LVQ 94.3 92.1 Statlog

Quadratic DA 89.9 88.7 Statlog

therefore this result may be fortuitous.
The letter datasetcontains 16 features derived from OCR

images of 26 letters written using more than 20 different
fonts. these images were randomly distorted to provide 500-
600 training samples for each letter (a total of 15000 training
samples), and about 200 samples per letter for testing (5000
test samples). This dataset was used in the Statlog project and
the best results are presented in Table II.

The committee included 7 models, five kNN (k=5, 7, 9,
11 Euclidean, and k=5, Manhattan), one FSM and one SSV
model. These 7 models can theoreticaly account for 98.7% test
samples correctly. The worst training results were obtained
by the SSV decision tree (81.2%), and the best one by
FSM (97.5%). The worst test result was still obtained by
SSV (77.4%), while the best by kNN, k=5, with Euclidean
distance function (95.4%). The majority voting committee has
improved upon the best kNN result only on the training set,
while CUC committee gave significantly better result (the
two-tailed t-test with pmax as high as 0.9998 still finds it
significantly better over other results).

The satimage datasetcontains intensities of pixels derived
from Landsat satellite images that have been segmented into
areas corresponding to 6 different types of surface: red soil,
grey soil, damp grey soil, very damp grey soil, cotton crop and
vegatation. 4 spectral bands were used and the feature vector
contains intensities of the central and 8 surrounding pixels,
altogether 36 features quantized from 0 to 255. The training
set contains 4435 vectors and the test set 2000 vectors. Best



TABLE III

COMPARISON OF RESULTS ON THE SATIMAGE DATASET. RESULTS ARE

FROM THE STATLOG BOOK OR OUR OWN CALCULATIONS.

System Train % Test % Remarks

CUC committee 95.0 91.1

Majority committee 93.3 89.6

kNN, k=5, Euclidean 90.8 90.4 best single CUC model

kNN 91.1 90.6 Statlog

LVQ 95.2 89.5 Statlog

Dipol92 94.9 88.9 Statlog

RBF 88.9 87.9 Statlog

Alloc80 96.4 86.8 Statlog

results from the Statlog project are reported in the Table III.
The committee included again 7 models, five kNN (k=5, 7,

9 Euclidean, and k=5, 9 Manhattan), one FSM and one SSV
model. These 7 models can theoreticaly account for 95.6%
test samples correctly. Again the decision tree was worst both
on training (83.7%), and test (81.8%), while FSM was best
on training (93.9%) and kNN, k=5, with Euclidean distance
function gave the best results on the test set (90.4%). The
majority voting committee has improved upon the best kNN
result only on the training set, while CUC committee gave
significantly better result (the two-tailed t-test withpmax as
high as 0.97 still finds it significantly better over other results).
The majority voting improves the result only for the Vowel
database, while CUC results were better comparing to the best
model and to majority voting in all cases.

V. CONCLUSIONS

Assigning incompetence factors in various voting proce-
dures, including linear combination of models, is an attrac-
tive idea that may significantly improve analysis of difficult
problems. Since there is no need to create a single model
that handles all data correctly learning may become modular,
with each model specializing in different subproblems. A
constructive approach to committee growth may be used: after
creating initial committee by combining competent models
created so far new models should be searched that classify
correctly just those vectors, that the committee has still prob-
lems with. Significant improvements have been achieved over
individual classifiers and over committee based on majority
voting. Although more empirical tests are needed to evaluate
CUC performance the approach seems to be promissing and
may be developed in a number of directions.

So far we have tried to aggregate only a few models
generated with different parameters and the selection process
has not yet been systematic. Diversification of models by
adding explicit negative correlation is also worth considering
[13]. CUC voting may be applied to models generated using
adaptive boosting or similar algorithms [2]. The competence
factors may be calculated during classification, using the
training data results as the reference, in the spirit of the
nearest neighbor methods. Receiver Operator Characteristic
(ROC) may be used instead of accuracies for evaluation of
results. A combination of classifiers gives ROC curves that
cover a convex combination of all individual ROC curves,
allowing to reach better operating points, i.e. detection rates
for a given false alarm rate [16]. Boosting schemes may also
benefit from adding local competence factors [10]. A number
of other options remains to be investigated.
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